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K-SEMISTABILITY FOR IRREGULAR SASAKIAN
MANIFOLDS
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Abstract

We introduce a notion of K-semistability for Sasakian mani-
folds. This extends to the irregular case of the orbifold K-semi-
stability of Ross–Thomas. Our main result is that a Sasakian man-
ifold with constant scalar curvature is necessarily K-semistable.
As an application, we show how one can recover the volume min-
imization results of Martelli–Sparks–Yau, and the Lichnerowicz
obstruction of Gauntlett–Martelli–Sparks–Yau from this point of
view.

1. Introduction

Determining necessary and sufficient conditions for the existence of
constant scalar curvature Kähler (cscK) metrics on a compact Kähler
manifold X is an important open problem in complex geometry, requir-
ing methods from algebraic geometry and partial differential equations.
When c1(X) represents a negative or trivial cohomology class, then
Yau [44] proved that there exist Kähler–Einstein metrics in classes pro-
portional to c1(X) (see also Aubin [3] for the c1(X) < 0 case). However,
when the first Chern class is positive, or we are looking at general Kähler
classes, then there are obstructions to existence. A famous conjecture of
Yau says that the existence of Kähler–Einstein metrics, when c1(X) > 0,
should be equivalent to some geometric invariant theory (GIT) notion
of stability for the underlying variety [45]. Tian [42] introduced the
notion of K-stability, and showed that it is a necessary condition for
existence. The notion of K-stability was refined by Donaldson [11], and
extended to any Kähler class given by the first Chern class c1(L) of an
ample line bundle L. The Yau–Tian–Donaldson conjecture states that
K-stability (or some refinement of it) of a polarized manifold (X,L) is
equivalent to the existence of a cscK metric in c1(L). For more on this
very active area of research, see the survey of Phong–Sturm [32], and
the references therein.

From the works of Donaldson [10], Stoppa [40], and Mabuchi [26] we
know that the existence of a cscK metric implies K-stability. Part of this
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work was subsequently generalized by Ross–Thomas [36] to the case of
orbifolds with cyclic quotient singularities, where they showed that the
existence of a cscK orbifold metric in c1(L) implies the K-semistability
of the polarized orbifold (X,L). As we will recall below, the work of
Ross–Thomas can be phrased as a result about quasi-regular Sasakian
manifolds, and the goal of the present paper is to extend this to the
irregular case.

Sasakian geometry is an important, odd-dimensional counterpart of
Kähler geometry, which has garnered much attention recently. On the
one hand, it has relations to theoretical physics through the AdS/CFT
correspondence [27], but also in differential geometry, in the construc-
tion of new Einstein metrics on spheres, for instance, [5]. It is, thus,
a natural problem to determine necessary and sufficient conditions for
the existence of Sasaki–Einstein metrics, and more generally, Sasakian
metrics of constant scalar curvature (or even the analogs of extremal
metrics [6]). As in the Kähler case, this is well understood when the
basic first Chern class is negative or zero [12, 38]. However, when the
basic first Chern class is positive, there are obstructions to existence
[17, 18, 28]. It is expected that a suitably generalized version of the
conjecture of Yau [45] should hold. Some sufficient conditions for the ex-
istence of Sasaki–Einstein metrics have been provided in [9] in the spirit
of [33, 34], by examining conditions which are sufficient to guarantee
the convergence of the Sasaki–Ricci flow, introduced in [38]. There is
also important work on obstructions to the existence of Sasaki–Einstein
metrics [28, 29], where, in particular, the classical Futaki invariant [14]
is given a Sasakian interpretation.

In the current work, our primary interest is to develop a notion of
K-stability for a Sasakian manifold S. When the Sasakian manifold is
quasi-regular, then this is equivalent to the work of Ross–Thomas [36]
on K-stability for orbifolds. The question of whether there is a suitable
extension of this to the irregular case has been posed in several places
in the literature [39, Problem 7.1], [28, 15]. In this paper we provide
such an extension, and prove that the existence of a constant scalar
curvature Sasakian metric implies the K-semistability of S. Our main
result is, thus, the following corollary of Theorem 5.4.

Corollary 1.1. Let (S, g) be a Sasakian manifold with Reeb vector
field ξ. If g has constant scalar curvature, then the cone (C(S), ξ) is
K-semistable.

As already suggested by Sparks [39], the obvious approach is to ap-
proximate a given irregular Sasakian manifold with a sequence of regular
ones, and attempt to take a limit of the obstructions provided by the
results of Ross–Thomas in the orbifold case. In particular, one can
always approximate an irregular Reeb field with a sequence of quasi-
regular ones. It is difficult to deal with the varying orbifold quotients
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as the Reeb field changes, so instead we work on the cone over the
Sasakian manifold, which remains unchanged. The central ingredient of
K-stability is the Futaki invariant, and to define this we use the Hilbert
series as opposed to the usual Riemann–Roch expansions. This point
of view was already used in [28] in the form of the index character,
to compute the volume of a Sasakian manifold. The main advantage is
that for orbifolds the Riemann–Roch expansions contain periodic terms,
which become unmanageable as we approach an irrational Reeb field,
whereas in the index character these periodic terms are not visible.
This allows us to show the continuity of the Futaki invariant with re-
spect to the Reeb field, and, thus, carry out the approximation argu-
ment.

As an application, we recover the results of [28] algebraically by
showing that in the situation they considered, volume minimization
is equivalent to K-semistability for product test configurations. As a
second application, we show that the Lichnerowicz obstruction to exis-
tence of Sasaki–Einstein metrics studied in [18] can be interpreted in
terms of K-semistability for deformations arising from the Rees algebra
of a principal ideal of the coordinate ring. Indeed, for rational Reeb
fields, the Lichnerowicz obstruction was interpreted in terms of slope
stability for the quotient orbifold in [36]. Our computations recover
this result, and extend it to irrational Reeb fields by establishing an
explicit formula for the Donaldson–Futaki invariant of the Rees defor-
mation.

We begin our developments in section 2 with a brief review of Sasakian
manifolds, and affine schemes polarized by a Reeb vector field. We
also briefly recall some facts about orbifolds and orbifold K-stability.
In section 3, we define the Calabi functional on a polarized affine va-
riety equipped with a Kähler metric compatible with the Reeb field.
In section 4, we discuss the index character and the Donaldson–Futaki
invariant of a polarized affine variety. In section 4, we define test config-
urations for polarized affine varieties, and K-semistability. We then use
the results of sections 2, 3, and 4 to prove our main theorem. Finally,
in section 6, we show that the volume minimization results of Martelli,
Sparks, and Yau [28], and the Lichnerowicz obstruction of [18] arise
from K-stability considerations for product test configurations, and the
Rees algebra, respectively.
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referees for several helpful comments.



84 T. C. COLLINS & G. SZÉKELYHIDI

2. Background

2.1. Sasakian geometry. In this section, we will recall some aspects
of Sasakian geometry that we will use. There are various points of view
on the subject, and for a thorough treatment see Boyer–Galicki [8].

Definition 2.1. A Sasakian manifold is a smooth Riemannian man-
ifold (S, g), dimR S = 2n + 1, such that the metric cone (C(S), ḡ) :=
(S ×R>0, dr

2 + r2g, J) is Kähler. Note that S is canonically imbedded
in C(S) as the set {r = 1}.

A Sasakian manifold inherits a number of key properties from its
Kähler cone. In particular, an important role is played by the Reeb
vector field.

Definition 2.2. The Reeb vector field is ξ = J(r∂r)|{r=1}, where J
denotes the integrable complex structure on C(S).

The Reeb vector field is a unit length, real holomorphic, Killing vector
field whose integral curves foliate S by geodesics. Sasakian manifolds
are roughly categorized by their Reeb vector fields. When the integral
curves of S are all compact, the action of the Reeb vector field integrates
to a U(1) action. A Sasakian manifold is said to be regular if this
U(1) action is free; otherwise, it is said to be quasi-regular. When the
integral curves of the Reeb vector field are not all compact, the Sasakian
manifold is said to be irregular. The regular and quasi-regular Sasakian
manifolds are well understood, owing to the following theorem of Boyer
and Galicki.

Theorem 2.3 ([7] Theorem 2.4). Let (S, g) be a compact regular or
quasi-regular Sasakian manifold of dimension 2n+1. Then the space of
leaves of the Reeb foliation Z is a compact, complex Kähler manifold
or orbifold, respectively, with a Kähler metric h and a Kähler form
ω which defines an integral class [ω] ∈ H2

orb(Z,Z) in such a way that
π : (S, g)→ (Z, h) is a Riemannian submersion.

In particular, [ω] ∈ H2
orb(Z,Z) is a positive class. Let L denote the

corresponding positive line bundle on Z. Since S is the total space of
the U(1) principal bundle induced by L−1, and S is smooth, it follows
Lemma 4.2.8 of [8] that the local uniformizing groups of the orbifold Z
inject into U(1), and, hence, act faithfully on the fibers of the positive
line bundle L. In particular, Z carries an orbiample line bundle in the
sense of [36, Definition 2.7]. As a result, by [36, Proposition 2.11], there
is an embedding of Z into a weighted projective space which preserves
the orbifold structure. The results of Rukimbira [37] imply that any
irregular Reeb vector field can be approximated by quasi-regular Reeb
fields. In particular, every Sasakian manifold admits at least one quasi-
regular Reeb vector field. Combining this with Theorem 2.3, we see
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that for any Sasakian manifold S, the cone over S is an affine variety
with an isolated singularity at 0. With this observation in hand, for
the remainder of this paper, we will work primarily with affine varieties,
smooth away from 0, and comment on the Sasakian aspects of our work
only where pertinent.

When defining test-configurations, we will need to consider degen-
erations of an affine variety into possibly non-reduced schemes, and
we will need an algebro-geometric formulation of the notion of a Reeb
vector field. Suppose that Y ⊂ CN is an affine scheme, with a torus
T ⊂ Aut(Y ). Let us write t := Lie(TR) for the Lie algebra of the
maximal compact sub-torus. Let H denote the global sections of the
structure sheaf of Y , and write

H = ⊕α∈t∗Hα,
for the weight decomposition under the action of T .

Definition 2.4. A vector ξ ∈ t is a Reeb vector field if for each
non-empty weight space Hα, with α 6= 0, we have α(ξ) > 0, i.e., ξ acts
with positive weights on the non-constant functions on Y . We will often
identify the vector ξ with the vector field it induces on Y . We define
the Reeb cone to be

CR := {ξ ∈ t
∣∣ξ is a Reeb field } ⊂ t.

Since H is finitely generated, CR is a rational, convex, polyhedral cone,
and for any ξ ∈ CR there is an ε > 0 such that α(ξ) > ε|α| for all non-
empty weight spaces. We say that ξ is rational if there exists λ ∈ R>0

such that α(λξ) ∈ N for every non-empty weight space. Otherwise, we
say that ξ is irrational.

Note that any homogeneous variety admits a Reeb field generated
by the usual C∗ action on C. In analogy with this case, we shall call
an affine scheme Y with a holomorphic torus action admitting a Reeb
vector field a polarized affine scheme. An affine scheme Y may admit
more than one Reeb field; choosing a Reeb vector field ξ is analogous
to fixing a polarization for a projective scheme. For the most part, we
shall consider only polarized affine varieties. The next lemma shows
that Reeb vector fields are always induced from Lie algebra actions
on the ambient space, possibly after increasing the codimension of the
embedding.

Lemma 2.5. Let Y ⊂ CN be an affine scheme, and let T be a torus
acting holomorphically on Y . Then there exists an embedding Y ↪→ CN ′

and a torus T ′ ⊂ GL(N ′,C) such that the multiplicative action of T ′ on

CN ′ induces the action of T on Y .

Proof. Let Y be cut out by the ideal I ⊂ C[x1, . . . , xN ], so that Y =
Spec H for H = C[x1, . . . , xN ]/I. The torus T induces a decomposition



86 T. C. COLLINS & G. SZÉKELYHIDI

H = ⊕α∈t∗Hα,

and the images of x1, . . . , xn generate H. In particular, there exists
a finite set of homogeneous generators u1, . . . uN ′ ∈ H, with weights
α1, . . . , αN ′ . Consider the map

C[x1, . . . , xN ′ ] −→ H,
xi 7−→ ui.

Define an action of T on C[x1, . . . , xN ′ ], where T acts on xi with weight
αi. We get an exact sequence

0 −→ I ′ −→ C[x1, . . . , xN ′ ] −→ H −→ 0,

which is equivariant with respect to the torus action. We obtain

Spec H ∼= Spec
C[x1, . . . , xN ′ ]

I ′
↪→ Spec C[x1, . . . , xN ′ ],

and, hence, an embedding Y ↪→ CN ′ . The action of T on Y is induced
by the linear, diagonal action of T on CN ′ as desired. q.e.d.

Because of this lemma, we are essentially dealing with affine schemes
defined by ideals I ⊂ C[x1, . . . , xN ] for some N , which are homogeneous
for the action of a torus T ⊂ GL(N,C). We can even assume that
the torus action is diagonal. A choice of an integral vector ξ ∈ t then
induces a grading on C[x1, . . . , xN ], which has positive weights when ξ
is a Reeb vector.

We will now relate our algebraic Reeb cone to the one defined differ-
ential geometrically in [28] (see also He–Sun [20], and the Sasaki Cone
in [6]). Suppose that Y ⊂ CN is an affine variety, smooth away from
the origin, and Y is defined by an ideal I ⊂ C[x1, . . . , xN ], homogeneous
for the diagonal action of a torus T . We will also assume that Y is not
contained in a linear subspace.

Definition 2.6. A Kähler metric Ω on Y is compatible with a Reeb
vector field ξ ∈ t if there exists a ξ-invariant function r : Y → R>0

such that Ω = 1
2 i∂∂r

2 and ξ = J(r ∂∂r ), where J denotes the complex
structure of Y .

Fixing a Reeb field and a compatible metric is analogous to fixing an
ample line bundle L and choosing a metric in c1(L). To see this, let Y
be a polarized affine variety with dimC Y = n+1, and let ξ be a rational
Reeb vector field. Let ξC be the complexification of ξ and consider the
holomorphic action induced by ξC ∈ tC. Then Y \{0} is a principal C∗
orbibundle over the orbifold X = Y/C∗ corresponding to an ample orbi-
line bundle L→ X. In particular, Y \{0} is the complement of the zero
section in the total space of the orbi-line bundle L−1. By the Kodaira–
Bailey embedding theorem [4], the ampleness of L is equivalent to the
existence of a Hermitian metric h on L−1 such that ω = i∂∂ log h is a
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metric on X. We define a function r : Y → R>0 by (z, σ)→ |σ|h(z), for

σ in the fiber of L−1 over z ∈ X. We get a metric on Y by setting

(1) Ω = i∂∂r2.

In particular, when ξ is rational, (Y, ξ) always admits a compatible
Kähler metric.

Given a rational Reeb vector ξ0, and compatible metric Ω0 on Y , the
contact 1-form η0 is defined to be dual to ξ0. The Reeb cone is defined
in [20] to be

(2) C′R = {ξ ∈ t | η0(ξ) > 0 on Y \ {0}}.

Proposition 2.7. The cone C′R in (2) above coincides with the Reeb
cone CR that we defined in Definition 2.4.

Proof. We need to relate the condition that η0(ξ) > 0 with the weights
of the circle action generated by ξ on the ring of functions. As shown in
[28], H = 1

2r
2η0(ξ) is a Hamiltonian for the vector field ξ with respect

to Ω0. It follows that

Jξ = −∇H,
and, moreover, H → 0 as we approach the cone point 0.

Suppose first that H is strictly positive, so ξ cannot vanish anywhere.
It follows that if we write φt : Y → Y for the negative gradient flow of
H, then

lim
t→∞

φt(p) = 0,

for any p ∈ Y . Suppose that f is a non-constant regular function on Y
(for instance, a coordinate function on the ambient CN ), on which ξ acts
with weight λ, and p is a point such that f(p) 6= 0. Then Jξ(f) = −λf ,
so

d

dt
f(φt(p)) = −λf(φt(p)).

Since f(0) = 0, we must have λ > 0. So if ξ ∈ C′R, then ξ ∈ CR.
Conversely, suppose that H is negative somewhere. Since H is homo-

geneous under r ∂∂r , we can then find points arbitrarily close to 0, where
H is negative. For a suitable point p, the positive gradient flow φt of
H will satisfy φt(p) → 0 as t → ∞. Then the same argument as above
shows that if f is a non-constant homogeneous function for ξ which does
not vanish at p, then the weight of ξ on f must be negative. q.e.d.

Corollary 2.8. If ξ is an irrational Reeb vector field on Y and Ω
is a compatible Kähler metric with potential 1

2r
2
0, then there exists a

sequence ξk ∈ t of rational Reeb vector fields and compatible metrics Ωk

with potentials 1
2r

2
k on Y , such that ξk → ξ in t, the Ωk converge to Ω

smoothly on compact subsets of Y , and {rk = 1} = {r0 = 1}.
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Proof. The argument is similar to that given in [20, Lemma 2.5]. We
include the details for the reader’s convenience. Let ξ be an irrational
Reeb vector field, and denote by r0 the potential for the Kähler form Ω
on Y . Since CR is a rational convex polyhedral cone, we can approximate
ξ with a sequence of rational elements ξk ∈ CR. For ξk we define a map
rk : Y → S × R>0 as follows: by Proposition 2.7, the assumption that
η(ξk) > 0 implies that the holomorphic vector field −Jξk −

√
−1ξk acts

with positive weights on Y . Let φk(t, y) denote the image of y under
the diffeomorphism of Y induced by the vector field −Jξk. Then for
each y ∈ Y there is a unique time Ty,k such that φ(Ty,k, y) ∈ {r0 = 1}.
Define a smooth function by rk = e−Ty,k . Clearly {rk = 1} = {r0 = 1}.
Then rk defines a diffeomorphism Ψk : Y → S × R>0 by

Ψk(y) = (φ(Ty,k, y), e−Ty,k).

It follows immediately that the functions rk generate the Euler vector
field of the trivial line bundle S×R. In particular, on S×R>0 we have

rk∂rk = −Jξk.

We define

Ωk = i∂∂

(
r2
k

2

)
.

Arguing as in [20, Lemma 2.5], one easily shows that Ωk define Kähler
cone metrics on Y . Finally, it is clear that if ξk converge to ξ smoothly
on compact sets, then rk converge smoothly to r0 on compact sets, and,
hence, Ωk converges smoothly to Ω. q.e.d.

2.2. Orbifold K-stability. For a review of the basic properties of orb-
ifolds with constant scalar curvature metrics in mind, see Ross–Thomas
[35]. Similarly, to them, we will only be interested in polarized orb-
ifolds, and as explained in [35] Remark 2.16, these can be viewed as
global C∗-quotients of affine schemes. More precisely, given a finitely
generated graded ring

R =
⊕
k>0

Rk

over C, the grading induces a C∗-action on Spec(R). When Spec(R)
is smooth, the corresponding orbifold is the quotient of Spec(R) \ {0}
by this C∗-action. More generally, the quotient is a Deligne–Mumford
stack. In our terminology below, the grading corresponds to a choice of
rational Reeb field on the affine scheme Spec(R).

Differential geometrically the affine scheme Y = Spec(R), if smooth
away from the origin, arises as the blowdown of the zero section in the
total space of L−1 for an orbifold X with orbiample line bundle L. In
Section 3 below, we will express the Calabi functional on the orbifold X
in terms of a cone metric on Y . In the rest of this section we will review
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the work of [35] which gives a lower bound for the Calabi functional on
the orbifold X in terms of the Futaki invariants of test-configurations.

Roughly speaking, a test-configuration for a polarized orbifold (X,L)
is a polarized, flat, C∗-equivariant family over C, whose generic fiber
is (X,Lr) for some r > 0. In greatest generality the family should be
allowed to be a Deligne–Mumford stack. For computations it is useful
to reformulate this more algebraically. Let

R =
⊕
k>0

H0(X,Lk)

be the homogeneous coordinate ring of (X,L). Any set of homogeneous
generators f1, . . . , fk of R give rise to an embedding of X ↪→ P into a
weighted projective space. Assigning weights to the f1, . . . , fk induces
a C∗-action on the weighted projective space P. Acting on X ↪→ P,
we obtain a family Xt ⊂ P for t 6= 0. Taking the flat completion of
this family across t = 0 is a test-configuration χ. The central fiber of
this test-configuration is a polarized Deligne–Mumford stack (X0, L0),
with a C∗-action. It is convenient to allow L0 to be a Q-line bundle,
so that on the generic fiber we recover L instead of a power of L. Let
us write dk = dimH0(Lk0) and let wk be the total weight of the C∗-
action on H0(Lk0). As explained in [35], the Riemann–Roch theorem
from Toën [43] implies that for large k we have expansions

(3)
dk = a0k

n + (a1 + ρ1(k))kn−1 + . . . ,

wk = b0k
n+1 + (b1 + ρ2(k))kn + . . . ,

where ρ1, ρ2 are periodic functions with average zero. The Futaki in-
variant of the test-configuration is then defined to be

Fut(χ) =
a1

a0
b0 − b1.

Writing Ak for the infinitesimal generator of the C∗-action on H0(Lk0),
there is also an expansion

Tr(A2
k) = c0k

n+2 +O(kn+1),

and the norm of the test-configuration is defined by

‖χ‖2 = c0 −
b20
a0
.

The main result that we need is the extension by Ross–Thomas [35]
of Donaldson’s lower bound for the Calabi functional [10], to orbifolds.

Theorem 2.9 (Donaldson, Ross–Thomas). Suppose that (X,L) is
a polarized orbifold of dimension n, and let ω ∈ c1(L) be an orbifold
metric. In addition, suppose that χ is a test-configuration for (X,L).
Then

‖χ‖ · ‖Rω − R̂‖L2(ω) > −c(n)Fut(χ),

where Rω is the scalar curvature of ω, and R̂ is its average.
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Although this result is not stated explicitly in [35], it follows easily
from their proofs. In particular, using the notation in [35], in their

Theorem 6.6 the constant C can be taken to be 1
2 (vol

∑
i ci)

1/2, while

in the proof of Theorem 6.8 the constant c equals a0
∑

i cik
n+1 to highest

order. Combining these, the last inequality in the proof of Theorem 6.8
gives the result we need.

3. The Calabi functional on a polarized affine variety

Let us suppose as in Section 2.1 that Y \ {0} is the complement of
the zero section in the total space of an orbi-line bundle L−1 over X,
and h is a Hermitian metric on L−1 such that ω = i∂∂ log h is positive
on X. Letting r be the fiberwise norm, define the metric

Ω = i∂∂r2

on Y \ {0}. We will compute the Calabi functional of ω in terms of
the metric Ω on Y . We assume, for convenience, that L is primitive.
That is, there is no line bundle L′ such that L′⊗k = L for k ∈ N. This
assumption can easily be removed by determining the precise scaling of
the Calabi functional, as we point out at the end of this section.

Fix local coordinates (z, w) where z ∈ X and w is a local holomorphic
section of L−1 in a neighborhood of p = (z0, w0), and assume that dh = 0
at p. At p we compute

Ω = i∂∂h(z)|w|2 = r2i∂∂ log h+ h(z)i∂∂|w|2 = r2

(
π∗ω +

idw ∧ dw
|w|2

)
.

Here π : Y → X is the natural projection map. It follows that the Ricci
form and scalar curvature of Ω are given by

Ric(Ω) = π∗Ric(ω)− (n+ 1)π∗ω, RΩ = r−2(π∗Rω − (n+ 1)n).

On a fixed fiber, the cylinder metric |w|−2(dw∧dw) can also be written
as 1

rdr ∧ dθ, where dθ is given by the U(1) action on the fibers of L−1.
Hence, the volume form of Ω is

Ωn+1 = r2n+1(π∗ω)n ∧ dr ∧ dθ.

Let {Ui,Γi}, i = 1, . . . , n be a family of open sets Ui ⊂ Cn together with
local uniformizing groups Γi, so that Ui/Γi ∼= Vi ⊂ X gives an open
cover of X, and so that L−1 is trivial on each Vi. Let φi be a partition
of unity subordinate to the cover Vi. Note that the set S := {r = 1} ⊂ Y
is a smooth submanifold of Y , which is the total space of a principal
U(1) orbibundle over X. Thus, by Lemma 4.2.8 of [8], we have that the
local uniformizing groups inject into U(1). In particular, the maps

U(1)× Ui
ψi−→ Vi
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are exactly |Γi|-to-one on the complement of the orbifold locus. Let R̂ω
denote that average scalar curvature of X. We compute

CalX(ω)2 : = 2π

∫
X

(Rω − R̂ω)2ωn =
∑
i

2π

|Γi|

∫
Ui

φi(Rω − R̂ω)2ωn

=
∑
i

1

|Γi|

∫
U(1)×Ui

π∗φi(π
∗Rω − R̂ω)2π∗ωn ∧ dθ

=
N∑
i=1

∫
Vi

π∗φ(π∗Rω − R̂ω)2π∗ωn ∧ dθ

=

∫
S

(π∗Rω − R̂ω)2ι ∂
∂r

(Ωn+1).

Let us write R̂Ω for the average of RΩ when restricted to S. Then we
have the relation

R̂Ω = R̂ω − (n+ 1)n.

Finally, we can compute∫
{r≤1}⊂Y

(r2RΩ − R̂Ω)2Ωn+1 =

∫ 1

0

∫
S

(π∗Rω − R̂ω)2ι ∂
∂r

(Ωn+1)r2n+1dr

=
1

2n+ 2
CalX(ω)2.

Definition 3.1. Let Y be an affine variety with isolated singular
point at 0 and Reeb field ξ, and let Ω be a Kähler metric on Y compatible
with ξ, with scalar curvature RΩ. Define

CalY (Ω) :=

(∫
{r≤1}

(r2RΩ − R̂Ω)2Ωn+1

)1/2

,

where

R̂Ω :=

∫
S RΩι ∂

∂r
(Ωn+1)∫

S ι ∂
∂r

(Ωn+1)
.

In order to relate this to the Sasakian setting, let (S, g) be a Sasakian
manifold. Observe that when ξ is rational,

(4) π∗Rω =
1

4
RT =

1

4
(R+ 2n) ,

where RT is the transverse scalar curvature of the Reeb foliation and R
is the scalar curvature of the Sasakian metric g. In this case, we have∫

S
(π∗Rω − R̂ω)2ι ∂

∂r
(Ωn+1) =

1

16

∫
S

(RT − R̂T )2ι ∂
∂r

(Ωn+1)

=
1

16

∫
S

(R− R̂)2dµ.
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Here R̂ is the average scalar curvature of (S, g). We note that this
agrees, up to a constant, with the functional studied in [6]. We have
shown that for rational Reeb fields we have the equality

CalY (Ω) =
1

4(2n+ 2)1/2
CalS(g).

Since both sides of this equality depend continuously on the Reeb vector
field, this also holds for irrational Reeb fields by approximation. We
record this in the following proposition.

Proposition 3.2. Let Y be an affine variety polarized by a rational
Reeb field ξ. Then,

CalY (Ω) =
1

(2n+ 2)1/2
CalX(ω).

Moreover, when Y is the cone over a Sasakian manifold (S, g), then

CalY (Ω) =
1

4(2n+ 2)1/2
CalS(g),

and this holds for any Reeb vector field.

Before proceeding, we make a few brief remarks about the scaling of
the Calabi functional as a function of the Reeb field. More precisely,
suppose that Y is an affine cone with Reeb vector field ξ, and a com-
patible Kähler metric Ω = i∂∂r2. Scaling the Reeb vector field by a
factor λ > 0 corresponds to changing r by r 7→ rλ. This scaling yields
a new metric Ωλ = i∂∂r2λ. It is straightforward to check that under a
deformation of this type we have

(5) CalY (Ωλ) = λ
n−1
2 CalY (Ω).

4. The index character and the Donaldson–Futaki invariant

The main difficulty in extending the definition of K-stability to ir-
regular Sasakian manifolds is the absence of a suitable Riemann–Roch
formula when the Reeb field is irrational. When the Reeb field is ra-
tional, Ross–Thomas showed in [36] that the relevant coefficients are
the non-periodic terms of the orbifold Riemann–Roch expansion (see
Section 2.2), so we would like to define the relevant coefficients by ap-
proximating an irrational Reeb vector field ξ by a sequence of ratio-
nal ones ξk. Unfortunately the periodic terms in the expansions (3)
corresponding to the ξk become unmanageable as k → ∞. The key
observation is that the Riemann–Roch coefficients are determined by
the Hilbert series, or equivalently the index character introduced by
Martelli–Sparks–Yau [28]. For the leading term (the volume), this was
also used by [28].

In this section and the next, we take Y ⊂ CN to be an affine scheme
of dimension n + 1, defined by the ideal I = (f1, . . . , fr) ⊂ R =
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C[x1, . . . , xN ]. Let T ⊂ GL(N,C) be a torus of dimension s acting
diagonally, holomorphically, and effectively on Y . We make this as-
sumption without loss of generality by Lemma 2.5. Denote by t the
Lie algebra of T and let H = R/I be the ring of regular functions on
Y . Since T fixes Y , the ideal I is homogeneous for the torus action.
By Corollary 2.8 we may always assume that T contains at least one
rational Reeb vector field. Let

H = ⊕α∈t∗Hα
be the weight space decomposition of H.

Definition 4.1. In the above situation, we define the T -equivariant
index character F (ξ, t) for ξ ∈ CR and t ∈ C with Re(t) > 0, by

(6) F (ξ, t) :=
∑
α∈t∗

e−tα(ξ) dimHα.

Lemma 4.2. The defining sum for F (ξ, t) converges if ξ is a Reeb
vector field and Re(t) > 0.

Proof. The dimensions dimHα are bounded by the corresponding
dimensions for CN . As ξ acts by positive weights, dimHα < C|α|N .
Moreover, since ξ is a Reeb vector field, there is a c > 0 such that
α(ξ) > c|α| for all α with non-zero Hα. We obtain∑

α∈t∗

∣∣∣e−tα(ξ)
∣∣∣ dimHα ≤ C

∑
α∈t∗

e−c|α|Re(t)|α|N ,

which converges if Re(t) > 0. q.e.d.

Suppose that ξ is rational, and it is minimally satisfying the condition
that α(ξ) is integral for each α with non-zero weight space. Then as
before we can think of Y as the total space of a line bundle L over the
orbifold X = Y/C∗, and

H0(X,Lk) =
⊕

α;α(ξ)=k

Hα.

By the orbifold Riemann–Roch theorem [21, 43], we have

dimH0(X,Lk) = a0k
n + (a1 + ρ)kn−1 + · · · ,

for some periodic function ρ with average zero. In this case we have the
following.

Proposition 4.3. The T -equivariant index character F (ξ, t) as a
function of t has a meromorphic extension to a neighborhood of the
origin, and it has Laurent expansion

F (ξ, t) =
a0n!

tn+1
+
a1(n− 1)!

tn
+O(t1−n),

near t = 0.
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Proof. By definition we have

F (ξ, t) =
∞∑
k=0

e−kt dimH0(Lk)

=
∞∑
k=0

e−kt
(
a0k

n + (a1 + ρ)kn−1 +O(kn−2)
)
.

Note that ∑
k

e−tk =
1

1− e−t
=

1

t
+ f(t),

where f is analytic, so differentiating n times with respect to t, we get∑
k

e−tkkn =
n!

tn+1
+ (−1)nf (n)(t).

Moreover, G(t) =
∑

k ρ(k)e−tk is analytic near t = 0 since ρ has average
zero. Indeed, if d is the period of ρ, then we have∑

k

(ρ(k) + ρ(k + 1) + . . .+ ρ(k + d− 1))e−tk = 0,

and so

G(t) + et(G(t)− ρ(0)) + . . .+ e(d−1)t

(
G(t)−

d−2∑
k=0

ρ(k)e−kt

)
= 0,

and, therefore,

G(t) =
H(t)

1 + et + e2t + . . .+ e(d−1)t
,

where H(t) is analytic since it is a finite sum. It follows that G(t) is
also analytic near 0, with poles at t = 2πik

d for non-zero integers k 6= 0.
Finally, it follows that F (ξ, t) is meromorphic near t = 0 with a pole at
the origin, and we have

F (ξ, t) =
a0n!

tn+1
+
a1(n− 1)!

tn
+O(t1−n). q.e.d.

In particular, we can read off the Riemann–Roch coefficients from
the index character, and the periodic terms do not appear. Our goal
is to study how these coefficients change as we vary ξ. We will now
assume that the embedding Y ⊂ CN is obtained through an application
of Lemma 2.5. The corresponding ideal I ⊂ R is then homogeneous with
respect to a multigrading on R. More precisely, let E := {e∗1, . . . , e∗s} be
an integral basis of Rs ∼= t∗ and let αi be the weight of the representation
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on the generator xi of R. Expressing the αi in the basis E yields an
s×N matrix

(7) W =

α1,1 α1,2 . . . α1,N
...

...
. . .

...
αs,1 αs,2 . . . αs,N

 ,

with integer entries. Since R is graded by W , and I is homogenous, it
follows that R/I is a W -graded R module, generated in degree zero.

Definition 4.4. Let s ≥ 1, let R be graded by a matrix W of rank
s in Mats,N (Z), and let α1, . . . , αs be the rows of W . The grading on
R given by W is of positive type if there exists a1, . . . , as ∈ Z such that
all the entries of a1α1 + · · ·+ asαs are positive.

Lemma 4.5. If there exists a Reeb vector field in t, then the grading
induced by W is of positive type.

Proof. We first need to show that W has rank s. Observe that if
vT · W = 0, then the action induced by v is trivial. In particular,
the action of T is not effective. Secondly, by Corollary 2.8 we can
assume that there is an integral Reeb field ξ ∈ t, given in terms of
the dual basis {e1, . . . , es} by a vector (a1, . . . , as) with ai ∈ Z. The
entries of a1α1 + . . . asαs are the weights of the action induced by ξ on
the generators x1, . . . , xN . By definition of a Reeb field, these are all
positive. q.e.d.

We will now recall some results about multigradings and the multi-
graded Hilbert function.

Lemma 4.6 ([24], Proposition 4.1.19). Let R = C[x1, . . . , xN ] be
graded by a matrix W ∈ Matm,N (Z) of positive type, and let M be a
finitely generated graded R-module. Then

1) R0 = C. That is, the degree zero elements in R are precisely the
constants.

2) For every d ∈ Zm, we have dimC(Md) <∞.

The previous lemma indicates that the following definition makes
sense:

Definition 4.7 ([24], Definition 5.8.8, 5.8.11). Let R be graded by
a matrix W ∈Matm,N (Z), and let M be a finitely generated, graded R
module. Then the map

HFM,W : Zm → Z,
(i1, . . . , im) 7→ dimC(Mi1,...,im),

for all (i1, . . . , im) ∈ Zm is called the multigraded Hilbert function of M
with respect to the grading W . We may define the multivariate power
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Hilbert series of M with respect to the grading W by

HSM,W (z1, . . . , zm) =
∑

(i1,...,im)∈Zm

HFM,W (i1, . . . , im)zi11 · · · z
im
m(8)

∈ Z[[z, z−1]].

The following lemma provides a convenient characterization of mul-
tivariate Hilbert series under changes in the grading.

Lemma 4.8 ([24], Proposition 5.8.24). Let W ∈ Matm,N (Z), and
A = (aij) ∈ Matl,m(Z) be two matrices such that the gradings on R =
C[z0, . . . , zN ] given by W and A ·W are both of positive type. Let M be
a finitely generated R-module which is graded with respect to the grading
given by W . Then the Hilbert series of M with respect to the grading
given by A ·W is given by

HSM,A·W (z1, . . . , zl) = HSM,W (za111 · · · zal1l , . . . , za1m1 · · · zalml ).

If R is graded by W = (wij) ∈Matm,n(Z) of positive type, and ξ is a
Reeb field, then the grading induced by ξT ·W is clearly of positive type,
and so the above lemma describes the relation between the multigraded
Hilbert series and the index character. The next proposition describes
the general shape of multivariable Hilbert series.

Proposition 4.9 ([24], Corollary 5.8.19). Let R be graded by W ∈
Matm,N (Z), a matrix of positive type. Let M be a finitely generated,
graded R-module, and (m1, . . . ,mr) be a tuple of non-zero homogeneous
elements of M which form a minimal system of generators. For i =
1, . . . , r, let di = degW (mi). Then the multivariate Hilbert series of M
has the following form:

HSM,W (z1, . . . zm) =
zα1

1 · · · zαm
m ·HN(z1, . . . , zm)∏N

j=1(1− zw1j

1 · · · zwmj
m )

,

where (α1, . . . , αm) is the component wise minimum of {di}, and
HNM (z1, . . . , zm) is a polynomial in Z[z1, . . . , zm].

We can now translate this result to the language of index characters.

Theorem 4.10. Let Y ⊂ CN be an affine scheme of dimension n+1,
and suppose that T ⊂ GL(N,C) is a torus acting effectively, diagonally
and holomorphically on Y . Let t be the Lie algebra of T , and CR ⊂ t
be the Reeb cone. For fixed ξ ∈ CR the index character F (ξ, t) has a
meromorphic extension to C with poles along the imaginary axis. Near
t = 0 it has a Laurent series

(9) F (ξ, t) =
a0(ξ)n!

tn+1
+
a1(ξ)(n− 1)!

tn
+ . . . ,

where ai(ξ) depend smoothly on ξ ∈ CR, and a0(ξ) > 0.
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Proof. As above, with a basis of t ∼= Rs fixed, write ξ = (ξ1, . . . , ξs)
for an element of t. By Proposition 4.9, the Hilbert series of the grading
induced by W is given by

HSW (e−t1 , . . . , e−ts) =
e−t1α1 · · · e−tsαs ·HN(e−t1 , . . . , e−ts)∏N

j=1(1− e−t1w1j · · · e−tswsj )
,

where αi ≥ 0 for every i. By Lemma 4.8, we obtain

F (ξ, t) = HSξT ·W (e−t) =
e−t(ξ1α1+···+ξsαs) ·HN(e−tξ1 , . . . , e−tξs)∏N

j=1(1− e−t(ξ1w1j+···+ξswsj))
.

From this formula it follows that F (ξ, t) is a meromorphic function with
coefficients depending smoothly on the Reeb field. More precisely, for
fixed ξ ∈ CR there are no poles other than the origin in the ball where

|t| < 2π

maxj{ξ1w1j + . . .+ ξswsj}
,

so we can compute the coefficients of the Laurent series using the Cauchy
integral formula on a small circle around the origin. As long as ξ varies
in a bounded subset of CR, we can use the same circle around the origin,
and the coefficients will vary smoothly with ξ. It follows also that the
order of the pole at t = 0 is determined by the order of the pole for
rational ξ, which is n+ 1 by Proposition 4.3. Note that the coefficients
blow up at the boundary of the Reeb cone, since as ξ approaches the
boundary, there will be a j such that ξ1w1j + . . .+ ξswsj → 0. q.e.d.

In some special cases, we can recover this result by computing the
index character explicitly. For example, we have

Proposition 4.11. Let Y be a complete intersection, determined by
the regular sequence f1 = · · · = fk = 0. Let αi be the weight of the
generators xi, and let βj be the weight of fj. Then we have

F (ξ, t) =

∏k
j=1(1− e−tβj(ξ))∏N
i=0(1− e−tαi(ξ))

.

Proof. Use the degree shifted Koszul complex resolution of R/I, and
compute the Hilbert series. q.e.d.

In order to define the Futaki invariant, we need equivariant versions
of the index character, taking into account an extra C∗-action.

Definition 4.12. In the situation of Theorem 4.10 with ξ ∈ CR,
suppose η ∈ t, and define the weight characters

Cη(ξ, t) =
∑
α∈t∗

e−tα(ξ)α(η),

Cη2(ξ, t) =
∑
α∈t∗

e−tα(ξ)(α(η))2.
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The convergence of these weight character follows from the arguments
in Lemma 4.2. As before, when ξ is rational, we obtain a line bundle
L over the orbifold X = Y/C∗ with a C∗-action on L generated by
η. Adapting the computations preceding Proposition 4.3 proves the
following.

Proposition 4.13. In the situation of Theorem 4.10, with ξ rational,
write Ak for the infinitesimal action of η on H0(X,Lk), and define
b0, b1, c0 by the expansions

Tr(Ak) = b0k
n+1 + (b1 + ρ)kn +O(kn−1),

Tr(A2
k) = c0k

n+2 +O(kn+1),

where ρ is a periodic function with average zero, and c0 ≥ 0. Then the
weight characters have the asymptotic expansions

Cη(ξ, t) =
b0(n+ 1)!

tn+2
+
b1n!

tn+1
+O(t−n),

Cη2(ξ, t) =
c0(n+ 2)!

tn+3
+O(t−n−2).

We remark that the inequality c0 ≥ 0 follows from equation (2.20) in
[36]. The results of Theorem 4.10 can also be extended quite easily.

Theorem 4.14. In the situation of Theorem 4.10, with η ∈ t, the
weight characters admit meromorphic expansions to a small neighbor-
hood of 0 ∈ C of the form

Cη(ξ, t) =
b0(ξ)(n+ 1)!

tn+2
+
b1(ξ)n!

tn+1
+O(t−n),

Cη2(ξ, t) =
c0(ξ)(n+ 2)!

tn+3
+O(t−n−2),

where b0, b1, c0 depend smoothly on ξ ∈ CR. Moreover, we have

bi(ξ) =
−1

(n+ 1− i)
Dηai(ξ), for i = 0, 1,

c0(ξ) =
1

(n+ 2)(n+ 1)
D2
ηa0(ξ),

where Dη denotes the directional derivative along η in Rs ∼= t.

Proof. We define

G(ξ, s, t) =
∑
α∈t∗

e−tα(ξ−sη) dimHα.

For s sufficiently small, ξ− sη is a Reeb vector field and so the defining
sum for G(ξ, s, t) converges uniformly for t > 0, and we have G(ξ, s, t) =



K-SEMISTABILITY FOR IRREGULAR SASAKIAN MANIFOLDS 99

F (ξ − sη, t). It is clear that

tCη(ξ, t) =
∂

∂s
G(ξ, s, t)

∣∣∣∣
s=0

=
∂

∂s

(
a0(ξ − sη)n!

tn+1
+
a1(ξ − sη)(n− 1)!

tn
+ · · ·

) ∣∣∣∣
s=0

.

By Theorem 4.10 the coefficients a0, a1, . . . depend smoothly on the
Reeb field and so we can differentiate term by term to obtain

Cη(ξ, t) =
b0(ξ)(n+ 1)!

tn+2
+
b1(ξ)n!

tn+1
+ · · · ,

where, for example, b0(ξ) = −1
n+1Dηa0(ξ) and Dη denotes the directional

derivative along η. The argument for Cη2 is identical. q.e.d.

5. Test configurations for polarized affine varieties

Our first task is to define a test configuration for an affine variety Y
polarized by a Reeb field ξ. Recall that we can assume that Y ⊂ CN
is invariant under the linear action of a torus T and the Reeb field ξ
is in the Lie algebra t of the maximal compact subtorus. Let H be the
coordinate ring of Y .

Definition 5.1. A T -equivariant test-configuration for Y consists of
the following data.

1) A set of T -homogeneous elements {f1, . . . , fk} ∈ H, which gener-
ate H in sufficiently high degrees.

2) Integers wi for i = 1, . . . , k.

This corresponds to the usual, more geometric definition of test-
configurations. Namely we can embed Y into Ck using the functions
{f1, . . . , fk}, and then act on Ck by the C∗-action with weights wi.
Taking the flat limit across 0 of the C∗-orbit of Y , we obtain a flat
family of affine schemes over C. It is in this form that we will con-
struct our test configurations in Section 6. The central fiber Y0 still
has an action of T as well as a new C∗-action commuting with T (if we
have a product configuration, then this new C∗ is actually a subgroup
of T ). Note that when ξ is rational, then we can take T to be the 1-
dimensional torus generated by ξ, and a test-configuration for Y is the
same as a test-configuration for the quotient orbifold as we defined it in
Section 2.2.

It is important to note that as a T -representation, the ring of func-
tions on the central fiber Y0 is isomorphic to H; it is only the multiplica-
tive structure that changes. In particular, if ξ ∈ t is a Reeb field on Y ,
then it is also a Reeb field on Y0. We can, therefore, apply our results
on the index character to Y0. By Theorem 4.10, the index character
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expands asymptotically as

F (ξ, t) =
a0(ξ)n!

tn+1
+
a1(ξ)(n− 1)!

tn
+O(t1−n),

where a0, a1 : CR → R are smooth functions. Moreover, Y inherits
an extra C∗ action generated by η ∈ t′ = Lie(T ′R) for some torus T ′ ⊂
GL(N,C) with T ⊂ T ′. By Theorem 4.14, the weight characters expand
as

Cη(ξ, t) =
b0(ξ)(n+ 1)!

tn+2
+
b1(ξ)n!

tn+1
+O(t−n),

Cη2(ξ, t) =
c0(ξ)(n+ 2)!

tn+3
+O(t2−n),

where b0, b1, c0 : CR → R are smooth functions, and c0 ≥ 0.

Definition 5.2. In the above situation, we define the Donaldson–
Futaki invariant of the test configuration, with respect to the Reeb field
ξ, by
(10)

Fut(Y0, ξ, η) :=
a1(ξ)

a0(ξ)
b0(ξ)− b1(ξ) =

a0(ξ)

n
Dη(

a1

a0
)(ξ) +

a1(ξ)Dηa0(ξ)

n(n+ 1)a0(ξ)
.

Here, as in Theorem 4.14, Dηai, i = 0, 1 denotes the directional deriva-
tive of ai along η, and the second equality follows from Theorem 4.14.
We also define the norm of η, with respect to the Reeb field ξ, by

‖η‖2ξ = c0(ξ)− b0(ξ)2

a0(ξ)
.

Propositions 4.3 and 4.13 show that the above definition of the
Donaldson–Futaki invariant extends Ross–Thomas’s orbifold
Donaldson–Futaki invariant to irrational Reeb vector fields.

Definition 5.3. We say that (Y, ξ) is K-semistable if, for every torus
T 3 ξ, and every T -equivariant test configuration with central fiber Y0,
we have

Fut(Y0, ξ, η) ≥ 0,

where η ∈ T ′ is the induced C∗ action on the central fiber.

K-stability could also be defined along similar lines. Since there is
usually a positive dimensional torus of automorphisms, one natural way
would be to use the notion of relative stability following [41]. This
would also allow us to consider the analogs of extremal metrics (called
canonical Sasakian metrics in [6]). Since we do not use these notions in
this paper, we will not define them. We are now in a position to prove
our main theorem:

Theorem 5.4. Let (Y, ξ) be a polarized affine variety of dimension
n+ 1 with a torus of automorphisms T , containing the Reeb field. Sup-
pose that we have a T -equivariant test-configuration for Y and let Y0 be
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the central fiber with induced C∗-action η. For any Kähler metric Ω on
Y compatible with ξ,

(11) ‖η‖ξ · CalY (Ω) ≥ −c(n)Fut(Y0, ξ, η),

where c(n) is a strictly positive constant depending only on n.

Proof. When ξ is rational and minimal satisfying the condition that
α(ξ) is integral for each α ∈ t∗ with non-empty weight space, this the-
orem is just a restatement of the results of Donaldson [10] and Ross–
Thomas [36]. However, from the definitions of ai, bi, c0 for i = 0, 1,
and the scaling of the Calabi functional in equation (5), the inequality
is invariant under scaling the Reeb field. In particular, it holds for all
rational Reeb vector fields.

Assume that ξ is irrational. According to Corollary 2.8 we can ap-
proximate ξ with a sequence of rational Reeb fields ξk ∈ t, and find corre-
sponding compatible Kähler metrics Ωk, which converge to Ω smoothly
on compact sets. For the rational ξk we already know that

‖η‖ξk · CalY (Ωk) ≥ −c(n)Fut(Y0, ξk, η).

All the terms in this inequality depend smoothly on the Reeb vector field
by Theorems 4.10 and 4.14. Moreover, Ωk → Ω smoothly on compact
sets, and, hence, CalY (Ωk) → CalY (Ω). For this last statement one
can either observe that the integrand in the definition of CalY (Ωk) is
uniformly bounded as rk → 0, or by applying the second formula of
Proposition 3.2 to the link S = {rk = 1}, which is independent of k by
Corollary 2.8. We can, therefore, take a limit as k → ∞ to obtain the
inequality for the irrational Reeb field ξ. q.e.d.

Corollary 1.1, stated in the introduction, follows immediately from
Theorem 5.4, since c(n) > 0.

6. Applications and examples

As an application of our techniques, we will show that the volume
minimization results of [28] and the Lichnerowicz obstruction of [18]
can be obtained directly from K-stability considerations as obstructions
to existence of Sasaki–Einstein metrics. More precisely, we will show
that for Calabi–Yau cones with isolated Gorenstein singularities, and a
torus action inducing a Reeb vector field, K-stability for product test
configurations implies the volume minimization results of [28]. Martelli,
Sparks, and Yau noticed that when the Reeb field minimizing the volume
functional was rational, the Futaki invariant on the quotient orbifold
vanished. Secondly, we will apply the Rees deformation to interpret the
Lichnerowicz obstruction of [18] in terms of K-stability. For rational
Reeb vector fields, the Lichnerowicz obstruction was shown to imply
the slope instability, and, hence, K-instability, of the quotient orbifold
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in [36]. Our results recover this theorem, and extend it to the setting
of irrational Reeb fields.

Let Y be an affine, Calabi–Yau variety with an isolated singularity at
0, and a torus T , acting holomorphically and effectively on Y , admitting
a Reeb vector field ξ ∈ t. We suppose that 0 ∈ Y is a Gorenstein
singularity, by which we mean that the canonical bundle is trivial on
X := Y − {0}. According to section 2.7 of [28], we fix a non-vanishing
section Θ ∈ H0(X,KX) which is homogeneous of degree n + 1 for the
action of the Reeb field. More precisely, we fix a cross-section Σ ⊂ CR
so that for each ξ ∈ Σ, we have LξΘ = i(n+ 1)Θ. According to [28], Σ
is a compact, convex polytope. By the computations in Section 3.1 of
[28], ∫

S
R(gS)dµ = 2n(2n+ 1)V ol(S).

Assuming for the moment that ξ ∈ Σ is rational, the orbifold Riemann–
Roch theorem implies that

a1(ξ) =
1

8πn

∫
X
Rω

ωn

n!
=

n!

16πn+1

(∫
S
R(gS)dµ+ 2nV ol(S)

)
.

This follows from a computation similar to the computation in section
4 for the Calabi functional, and the relation between the complex trans-
verse scalar curvature of the Reeb foliation and the real scalar curvature
of the Sasakian metric given by equation (4). For a similar computation,
see [28]. We also have

a0(ξ) =
n!

2πn+1
V ol(S),

which follows easily by a similar argument. Since both of these identities
are continuous in the Reeb field, they extend from the rational Reeb
fields to all of Σ. As a result, we have

(12) a1(ξ) =
n(n+ 1)

2
a0(ξ).

Consider now a product test configuration Y × C, with a C∗ action
generated by η ∈ t. We assume additionally that η is tangent to Σ.
Applying equation (10), the Donaldson–Futaki invariant is given by

Fut(Y, ξ, η) =
1

2
Dηa0(ξ).

Since we could replace η with −η, it follows from Theorem 5.4 that if ξ
is the Reeb vector field of a Sasaki–Einstein metric, then we must have

Dηa0(ξ) = 0,

for every rational η, and, hence, ξ must be a critical point of the volume
functional. Moreover, it was shown in [28] that the volume functional of
a Sasakian manifold is strictly convex when restricted to Σ, so a critical
point is necessarily a minimum. In particular, we have
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Theorem 6.1. Let (Y,Θ) be an isolated Gorenstein singularity with
link L, and Reeb vector field ξ satisfying LξΘ = i(n+1)Θ. If ξ does not
minimize the volume functional of the link L, then (Y, ξ) is K-unstable.

From the argument it is clear that more generally in any family of
Reeb fields ξ for which the ratio a1/a0 is constant, a K-semistable Reeb
field must be a critical point of the volume a0. In the case of Gorenstein
singularities we obtain the following corollary, which was first pointed
out in [28].

Corollary 6.2. Let (Y,Θ) be an isolated Gorenstein singularity with
link L, and Reeb vector field ξ satisfying LξΘ = i(n + 1)Θ. If ξ does
not minimize the volume functional of the link L, then (Y, ξ) does not
admit a compatible Kähler metric with constant scalar curvature. In
particular, the link L with Reeb field ξ does not admit a Sasaki–Einstein
metric.

Next, we aim to show how the Lichnerowicz obstruction of Gauntlett,
Martelli, Sparks, and Yau [18] can be interpreted in terms of K-stability
by computing explicitly the Donaldson–Futaki invariant of a test con-
figuration arising from the Rees algebra for a principal ideal. These
test configurations, which we call the Rees deformation, are a simplified
version of the deformation to the normal cone test configurations stud-
ied by Ross–Thomas [36, 35]. Let R = C[x1, . . . , xN ]/(f1, . . . , fd), and
Y = Spec R be an affine variety with an effective, holomorphic action
of a torus T , and let V ⊂ Y be an invariant subscheme, corresponding
to a homogenous ideal I ⊂ R. Suppose that ξ ∈ t is a Reeb vector field.
We consider the Rees algebra of R with respect to I, given by

(13) R = R(R, I) :=
⊕
n∈Z

t−nIn = R[t, t−1I] ⊂ R[t, t−1],

where In := R for n ≤ 0. For ease of notation we set Y = Spec R. Note
that Y admits a C∗ action induced by λ · t = λ−1t for λ ∈ C∗. The
canonical inclusion C[t] ↪→ R gives a map π : Y → C, and this map
is clearly C∗ equivariant with respect to the above action. The scheme
Y carries a natural action of T by acting on the t-graded components,
and, hence, commuting with the C∗ action. For α ∈ C− {0}, the fiber
π−1(α) ∼= Y , as R/(T −α)R ∼= R, and so the generic fiber is isomorphic
to Y . The T action on Y clearly preserves the fibers, and restricts to
the action of T on Y away from the central fiber. Moreover, we have

Y0 := π−1(0) = Spec
⊕
n≥0

In/In+1,

and so the central fiber is precisely the normal cone of V in Y . The C∗
action on the central fiber is determined by the grading giving In/In+1

degree n. Moreover, if ξ ∈ t is the Reeb field, then ξ induces a Reeb
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field on Y0. To see this, observe that if ξ induces a positive grading on
R, and I ⊂ R is homogeneous, then ξ also induces a positive grading on

R/I ⊕ I/I2 ⊕ · · · ⊕ In/In+1 ⊕ · · · .

Finally, it is well known that R(R, I) is flat over C[t]; see, for instance,
[13].

In order to obtain the Lichnerowicz obstruction, we consider the sim-
plest family of Rees deformations; namely, those obtained from principal
ideals. Fix a holomorphic function f : Y → C, which is homogeneous
for the torus action. We denote by α ∈ t∗ the weight of f under T .
Consider the ideal I = (f) ⊂ R, and the test configuration given by the
Rees algebra R(R, I). The central fiber, which we denote by Y0, of this
test configuration is determined by the ring⊕

n≥0

In/In+1 ∼= R/I ⊗C C[w].

The grading on the latter ring is induced by the torus T on the first fac-
tor. The torus action on the second factor is by weight α on w. Finally,
the induced C∗ action, denoted η, on the central fiber is trivial on R/I,
and acts with weight 1 on w. We can compute the Donaldson–Futaki
invariant of this test configuration entirely in terms of the weight of the
torus action on f , and the Hilbert series of R. First, we observe that if
HR(z0, . . . , zs) is the Hilbert series of R with multigrading induced by
T , and α0, . . . , αs denote the weight of f under multigrading, then

HR/I(z0, . . . , zs) = (1− zα0
0 · · · z

αs
s )HR(z0, . . . , zs)

is the Hilbert series of R/I. This follows immediately from the degree
shifted exact sequence

0 −→ R[α0,...,αs] f−→ R −→ R/I −→ 0.

Since the Hilbert series is multiplicative on tensor products, we have

HR/I⊗RC[w](z0, . . . , zs, z̃) =
(1− zα0

0 · · · zαs
s )

(1− zα0
0 · · · z

αs
s z̃)

HR(z0, . . . , zs).

Suppose that the index character of Y with Reeb field ξ ∈ t expands as

F (ξ, t) =
a0(ξ)n!

tn+1
+
a1(ξ)(n− 1)!

tn
+O(t1−n).

Then one easily obtains that the index character of the central fiber is
given by

F (ξ − sη, t) =
1− e−tα(ξ)

(1− e−t(α(ξ)−s))

(
a0(ξ)n!

tn+1
+
a1(ξ)(n− 1)!

tn
+O(t1−n)

)
=

a0(ξ)α(ξ)n!

(α(ξ)− s)tn+1
+
α(ξ)(n− 1)!

(α(ξ)− s)tn
[
a1(ξ)− s

2
a0(ξ)n

]
+ . . . .
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Applying Theorem 4.14, the Donaldson–Futaki invariant is given by

(14) Fut(Y0, ξ, η) =
−1

n(n+ 1)

[
a1(ξ)

α(ξ)
− n(n+ 1)

2
a0(ξ)

]
.

Until now, our developments have been completely general, and equa-
tion (14) is the formula for the Donaldson–Futaki invariant of the Rees
algebra for a homogeneous principal ideal. We now employ the assump-
tion that the Y is Gorenstein and Calabi–Yau, and Θ ∈ H0(X,KX) is a
non-vanishing section satisfying LξΘ = i(n+1)Θ; equation (12) applies,
and so

Fut(Y0, ξ, η) = −1

2

[
1

α(ξ)
− 1

]
.

In particular, we have the following theorem, which was proved for
rational Reeb vector fields in [36].

Theorem 6.3. Let (Y,Θ) be an isolated Gorenstein singularity with
link L, and Reeb vector field ξ satisfying LξΘ = i(n+ 1)Θ. If Y admits
a holomorphic function f with Lξf = iλf , and λ < 1, then (Y, ξ) is
K-unstable.

This gives the following corollary, which was first observed in [18].

Corollary 6.4. Let (Y,Θ) be an isolated Gorenstein singularity with
link L, and Reeb vector field ξ satisfying LξΘ = i(n+ 1)Θ. If Y admits
a holomorphic function f with Lξf = iλf , and λ < 1, then (Y, ξ) does
not admit a compatible constant scalar curvature Kähler metric. In
particular, L does not admit a Sasaki–Einstein metric with Reeb field ξ.

Note that even if Y is not a Gorenstein singularity, from (14) we
obtain a lower bound on α(ξ) in terms of the ratio a1/a0 whenever ξ is
a K-semistable Reeb field on Y .

Finally, as an example, we indicate how our methods can be used to
compute stable Reeb fields. The example we are interested in is the
canonical cone over dP2, the second del Pezzo surface, although these
techniques apply in any situation where the equations defining the affine
variety are known. It is well known that the automorphism group of dP2

is not reductive, and, hence, does not admit a Kähler–Einstein metric by
a result of Matsushima [30]. However, by a recent result of Futaki–Ono–
Wang [17], it is known that there exists an irregular Sasaki–Einstein
metric on the circle bundle of a power of the anti-canonical bundle. We
illustrate how our techniques can be used to determine this stable Reeb
vector field explicitly. We point out that this Reeb vector field was
also computed in [28], using different methods. First, the affine scheme
corresponding to the complement of the zero section in the canonical
bundle embeds into C8, equipped with the variables xi for 1 ≤ i ≤ 8.
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Explicitly, it is given by Y = Spec C[x1, . . . , x8]/I, where I =(
x2

4 − x3x5, x2
4 − x1x7, x2

4 − x6x2, x2
6 − x3x8, x2

7 − x5x8,

x3x2 − x4x1, x6x4 − x7x3, x4x2 − x5x1, x6x5 − x7x4,

x3x4 − x6x1, x4x5 − x7x2, x6x7 − x4x8,

x6x4 − x1x8, x7x4 − x2x8

)
.

These equations can be determined using standard theory of toric va-
rieties. Note that this ideal is preserved by three linear, diagonal C∗
actions, which we take to be

e1 = (1, 1, 1, 1, 1, 1, 1, 1),

e2 = (0, 1,−1, 0, 1,−1, 0,−1),

e3 = (1, 0, 1, 0,−1, 0,−1,−1).

Here, the j-th entry defining ei denotes the weight of the action of ei
on the variable xj . As a result, we find that the Reeb cone is given by

CR ={
a1e1 + a2e2 + a3e3

∣∣∣∣a1 > max{|a2|, |a3|, |a2 − a3|}, a1 > a2 + a3

}
.

Now, H = C[x1, . . . , x8]/I is multigraded by the ei’s. Using Macaulay2
[19] we compute that the multivariate Hilbert series is given by

H(T0, T1, T2) =
1 + T0 + T0T

−1
1 + T0T

−1
2 − T 2

0 T1 − T 2
0 T1T

−1
2

P (T )

+
−T 2

0 T2 − 2T 2
0 − T 2

0 T
−1
2 − T 2

0 T
−1
1 T2

P (T )

+
−T 2

0 T
−1
1 + T 3

0 + T 3
0 T1 + T 3

0 T2 + T 4
0

P (T )
,

where the function P (T ) := P (T0, T1, T2) is given by

P (T ) = (1−T0T1)(1−T0T1T
−1
2 )(1−T0T2)(1−T0T

−1
1 T2)(1−T0T

−1
1 T−1

2 ).

For a Reeb vector field ξ = b1e1 + b2e2 + b3e3, the index character is
given by F (ξ, t) = H(e−b1t, e−b2t, e−b3t). Expanding up to order t−2, we
obtain

F (ξ, t) =
(7b21 + 2b1b2 − b22 + 2b1b3 + 2b2b3 − b23)t−3

(b1 + b2)(b1 − b2 − b3)(b1 + b2 − b3)(b1 + b3)(b1 − b2 + b3)

+
(7b31 + 2b21b2 − b1b22 + 2b21b3 + 2b1b2b3 − b1b23)t−2

2(b1 + b2)(b1 − b2 − b3)(b1 + b2 − b3)(b1 + b3)(b1 − b2 + b3)
.

We can read off the gauge fixing condition from this expression and
equation (12) as b1 = 3.
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If the link of (Y, ξ) admits a Sasaki–Einstein metric, then necessarily
it is K-semistable. In particular, by Corollary 6.2, ξ must be a minimum
for a0. In order to determine ξ, we must minimize the function

a0(ξ) =
(7b21 + 2b1b2 − b22 + 2b1b3 + 2b2b3 − b23)

(b1 + b2)(b1 − b2 − b3)(b1 + b2 − b3)(b1 + b3)(b1 − b2 + b3)
,

subject to the constraints b1 = 3, and (b1, b2, b3) ∈ CR. Computing, we
find

b1 = 3, b2 = b3 =
−57 + 9

√
33

16
,

which agrees exactly with the result found in [28].
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