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GROMOV–HAUSDORFF LIMITS OF KÄHLER

MANIFOLDS AND ALGEBRAIC GEOMETRY, II

Simon Donaldson & Song Sun

Abstract

We study Gromov–Hausdorff limits of Kähler–Einstein mani-
folds, in particular, their singularities, and connections with alge-
braic geometry. This is a continuation of our previous work [17].

1. Introduction

For κ > 0, let K(n, κ) be the class of n dimensional compact polarized
Kähler manifolds (X,L, ω, p), where L is a Hermitian holomorphic line
bundle over X with curvature −iω and p is a chosen base point, which
satisfy

(1) Einstein condition:

Ric(ω) = λω,

with |λ| ≤ 1;
(2) Local non-collapsing condition: for all r ∈ (0, 1]

Vol(B(p, r)) ≥ κr2n.

Notice these conditions are preserved if we rescale the metric by a fac-
tor that is greater than one. Given a sequence (Xi, Li, ωi, pi) in K(n, κ),
from general theory by passing to a subsequence we obtain a (pointed)
Gromov–Hausdorff limit (Z, p), which is a length space. By the reg-
ularity theory of Cheeger–Colding–Tian [7], we have a decomposition
Z = R � Σ, where R is an open connected smooth manifold endowed
with a Kähler–Einstein metric, and Σ is a closed subset of Z with real
Hausdorff dimension at most 2n − 4. Let OR be the structure sheaf of
the complex manifold underlying R, and let ι : R → Z be the obvious
inclusion map, then we define a sheaf on Z by OZ = ι∗OR. We have

Theorem 1.1. (Z,OZ) is a normal complex analytic space.
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The precise meaning of this statement, as well as further properties
of Z, will be discussed in detail in Section 2.

Although we expect the results below to hold in greater generality, in
this paper we will focus on the situation that is most closely related to
our previous work [17]. For V > 0 we denote by K1(n, κ, V ) the subset
of K(n, κ) consisting of elements that satisfy the stronger assumptions

(A) Normalized Einstein condition:

Ric(ω) = λω,

for λ ∈ {1, 0,−1}; if λ = 0, we further assume KX is holomorphi-
cally trivial;

(B) Uniform non-collapsing condition:

Vol(B(q, r)) ≥ κr2n,

for all q ∈ X and r ∈ (0, 1].
(C) Uniform volume upper bound:

Vol(X,ω) ≤ V.

By the Bishop–Gromov volume comparison theorem, (B) and (C)
together are equivalent to a uniform diameter bound on X, and the
latter is indeed a consequence of the Einstein condition when λ = 1.
It is proved in [17] that the (polarized) Gromov–Hausdorff limit of a
sequence of spaces in K1(n, κ, V ) is naturally a normal projective variety.
Theorem 1.1 is an extension of this result.

Our main interest in this paper is on rescaled limits. For this purpose
we let K(n, κ, V ) be the set of polarized Kähler manifolds of the form
(X,La, aω, p) for some (X,L, ω, p) ∈ K1(n, κ, V ) and a ≥ 1. Clearly
K(n, κ, V ) is a subset of K(n, κ), so Theorem 1.1 applies to Gromov–
Hausdorff limits of spaces in K(n, κ, V ). Let (Z, p) be such a Gromov–
Hausdorff limit. We consider the family of spaces given by rescaling
(Z, p) by a factor

√
a for a positive integer a. Let a → ∞, by passing

to a subsequence we obtain limit spaces, called the tangent cones at p.
These can themselves be viewed as Gromov–Hausdorff limits of elements
in K(n, κ, V ), so by Theorem 1.1 they are naturally complex analytic
spaces. A fundamental result of Cheeger–Colding says that any tangent
cone in this setting is also a metric cone, so is of the form C(Y ) for some
compact metric space Y (called the cross section). Let R(C(Y )) denote
the ring of holomorphic functions on C(Y ) with polynomial growth at
infinity. Then we have

Theorem 1.2. R(C(Y )) is finitely generated. Moreover, SpecR(C(Y ))
is an affine algebraic variety that is complex analytically isomorphic to
(C(Y ),OC(Y )).
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The proof of this theorem will be given in Section 2.3. We will also
describe the cone structure on C(Y ), in terms of a “grading” on the
ring R(C(Y )).

Theorem 1.3. There is a unique tangent cone at p.

We will prove this in Section 3. This means that any two tangent
cones are isomorphic both as metric cones and as affine algebraic va-
rieties, see also Remark 3.18 for more precise statement. For general
limits of Einstein manifolds, the uniqueness of tangent cones at a sin-
gular point is not known. In a recent work [11], using a Lojasiewicz–
Simon type argument, Colding–Minicozzi proved the uniqueness under
the extra assumption that there is one tangent cone with smooth cross
section. Our approach is very different from this in that we exploit the
complex geometry in a crucial way and the above theorem does not
require the smoothness of the cross section. In Section 3 we also make
some progress towards an algebro-geometric description of the tangent
cone. In particular, we will study the relation between the grading on
R(C(Y )) and the filtration on the local ring of germs of holomorphic
functions at p defined by the limit metric.

When the above limit space (Z, p) is non-compact, i.e., when the
rescaling factors ai tend to infinity, we can ask about the algebraicity of
Z. Let R(Z) be the ring of holomorphic functions on Z with polynomial
growth at infinity. Then we have

Theorem 1.4. R(Z) is finitely generated. Moreover, Spec(R(Z)) is
an affine algebraic variety that is complex analytically isomorphic to
(Z,OZ).

This is an extension of Theorem 1.2. The proof is given in Section
3.4. It involves the study of tangent cones at infinity, for which we will
obtain results analogous to Theorems 1.2 and 1.3. By our assumption
Z is also endowed with a Ricci-flat Kähler metric. When Z is smooth,
it is an asymptotically conical Calabi–Yau manifold, which has been
well-studied recently (see, for example, [13]). Theorem 1.4 can also be
compared with [26], where a similar result is proved for complete Kähler
manifolds with non-negative bisectional curvature and maximal volume
growth.

In the appendix we will prove an extension of the Futaki and Mat-
sushima theorem to singular Ricci-flat Kähler cones, which is used in the
proof of Theorems 1.3 and 1.4. Our arguments follow the corresponding
proof for Q-Fano varieties in [10].

The main application of our results in this paper is to the study of
Kähler–Einstein metrics with positive Ricci curvature (i.e., the Fano
case), in which case the non-collapsing condition holds automatically.
For Kähler–Einstein metrics with negative or zero Ricci curvature (i.e.,
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the General Type or Calabi–Yau case, respectively), it is an interest-
ing question to understand the algebro-geometric meaning of the non-
collapsing condition. There are recent results along this direction, see,
for example, [30, 35, 31, 34].

Acknowledgments. We are grateful to Mark Haskins, Weiyong He,
Hans–Joachim Hein, Robert Lazarsfeld and Jason Starr for helpful dis-
cussions related to this work.

2. Complex structure on Gromov–Hausdorff limits

2.1. Proof of Theorem 1.1. We first recall the notion of polarized
Gromov–Hausdorff convergence introduced in [17]. Fix n and κ > 0,
suppose we are given a sequence of objects (Xi, Li, ωi, pi) in K(n, κ).
Then by passing to a subsequence we obtain a polarized limit space
(Z, p, g∞, J∞, L∞, A∞), which consists of the Gromov–Hausdorff limit
metric space (Z, p), together with a smooth Riemannian metric g∞ and
a compatible complex structure J∞ on the regular set R with Kähler
form ω∞, a Hermitian line bundle L∞ over R, and a smooth connection
A∞ on L∞ whose curvature is −iω∞. (The difference from the definition
in [17] is that here we assume the metrics satisfy the Einstein equation
so the limiting geometric structures are all smooth over R.)

The meaning of the convergence is as follows. For any R > 0, we
can fix a metric di on the disjoint union B(pi, R) � B(p,R) such that
B(pi, R) and B(p,R) are both εi-dense, and di(pi, p) ≤ εi with εi → 0.
Moreover, for any δ > 0, and any compact subset K ⊂ B(p,R) ∩ R we
can find for large enough i open embeddings χi of an open neighborhood
of K into B(pi, R), and bundle isomorphisms χ̂i : L∞ → χ∗

iLi, such that
di(x, χi(x)) ≤ δ for all x ∈ K, and (χ∗

i gi, χ
∗
iJi, χ

∗
iAi) converges smoothly

over K to (g∞, J∞, A∞). Here Ji is the complex structure on Xi and
Ai is the Chern connection on Li with curvature −iωi.

Now let (Z, p) be a limit space. Fix R > 1, and fix a metric di on
B(pi, R)�B(p,R) which realizes the polarized Gromov–Hausdorff con-
vergence. Let O be the sheaf of rings on B(p,R) induced by the presheaf
on B(p,R), which assigns each Ω ⊂ B(p,R) the ring of functions on Ω
that are limits of holomorphic functions over certain domains in Xi, in
the obvious sense. From the definition O depends on R and the choice
of di, but eventually we will prove that O agrees with the restriction of
OZ defined in the introduction, so it, in fact, does not depend on any
choices.

The overall idea to prove Theorem 1.1 is similar to the one we used
in the proof of Theorem 2 in [17]. As discussed in [17], [9] all tangent
cones of Z are “good” so that we can apply the Hörmander technique
to construct holomorphic sections. Recall in [9] we have achieved the
following:
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Proposition 2.1. There are k, C, N , l1, · · · , lN , and ρ1, ρ2 ∈ (0, 1)
with ρ1 > ρ2, such that the following holds:

(1) For i sufficiently large there is a holomorphic section si of L
k
i → Xi

such that |si(x)| ≥ 1/2 when di(p, x) ≤ ρ1, and ||si||L2 ≤ (2π)n+1,
where the norm is measured with respect to the metric kωi;

(2) For j = 1, · · · , N , a holomorphic section σj,i of L
klj
i → Xi for

some integer lj ≥ 1;

(3) The corresponding map Fi : Di → CN , with the j-th component

given by σj,i/s
lj
i , satisfies |Fi(x)|∗ > 1/2 when di(p, x) = ρ1, and

|Fi(x)|∗ ≤ 1/100 when di(p, x) ≤ ρ2. Here | · |∗ is the sup norm
on CN , and Di is a domain in Xi containing all the points with
di(p, x) ≤ ρ1;

(4) |∇Fi| ≤ C.

Let B be a Euclidean ball in CN that is contained in the ball of radius
1/4 in the | · |∗ norm, and let Ωi be the pre-image of B under Fi. Item
(3) implies that for any x ∈ B, the fiber F−1

i (x) is a compact analytic

set and by item (1) the ample line bundle Lkai
i is trivial over F−1

i (B),
therefore, Fi is a finite map from Ωi onto an analytic set Wi in B. Item
(4) means that the volume of Wi measured by the induced metric from
CN is uniformly controlled by the volume of a ball of radius ρ1 in Xi

(with respect to the metric gi), and the latter is uniformly bounded by
the Bishop–Gromov volume comparison theorem. So by passing to a
subsequence we may assume Wi converges to a limit W , which is an
analytic set in B (see, for example, [5]). We endow W with the reduced
analytic structure. (4) also implies that we can take the limit of Fi and
obtain a Lipschitz map F from an open neighborhood Ω of p onto W .
This induces an injective sheaf map F ∗ : OW → F∗O, where OW is the
sheaf of holomorphic functions on W .

Proposition 2.2. The following can be achieved:
(A). For any q1, q2 ∈ Ω, there are an integer r and ε > 0, and for

i large there are holomorphic sections τ1,i, τ2,i of L
kr → Xi so that the

functions τ1,i/s
r
i , τ2,i/s

r
i converge to functions in O(Ω) which separate

B(q1, ε) and B(q2, ε);
(B). For any point q ∈ Ω ∩ R, there is an integer r, and for i large

there are n holomorphic sections (τ1,i, · · · , τn,i) of Lkr → Xi so that
(τ1,i/s

r
i , · · · , τn,i/sri ) converge to functions in O(Ω) that define an em-

bedding of an open neighborhood of q into Cn.

The proof of these is exactly the same as that of Proposition 4.6 and
Proposition 4.7 in [17], by constructing Gaussian holomorphic sections
around two different points separately, and by constructing holomorphic
sections which vanish at one point but with non-vanishing derivative
along any prescribed tangent direction.



332 S. DONALDSON & S. SUN

Given a function f ∈ O(Ω), we could add it as a new component and
obtain a map F ′ = (F, f) : Ω → CN+1. By definition, f is the limit of
holomorphic functions fi defined over some open subset in Xi. By the
gradient estimate for holomorphic functions (see, for example, Proposi-
tion 2.1 in [17]), |∇fi| is locally uniformly bounded. This implies that
the image W ′ of F ′ is a local complex analytic set in CN+1. Moreover,
the projection map π : W ′ → W is finite. By (A) and (B) we may add
finitely many components so that the map F ′ is one-to-one from some
open subset D in Ω ∩R onto an open subset of the smooth part of W ,
and the pre-image of F ′(D) is exactly D. Without loss of generality we
may assume F already meets this property.

Proposition 2.3. By adding finitely many functions from O(Ω) and
by slightly shrinking Ω, we may assume F is a homeomorphism and
maps Ω ∩R into the smooth part of W .

If we add another function in O(Ω) as a new component, the projec-
tion map will be generically one-to-one, so, in particular, we have the
induced inclusion of sheaves of rings OW ↪→ π∗OW ′ ↪→ MW , where
MW is the sheaf of meromorphic functions on W . Indeed, π∗OW ′

is a coherent subsheaf of ÔW , the normalization of OW . By general
theory of complex spaces (cf. [29], Section 11.5) we have a Noether
property, that is, by adding finitely many functions from O(Ω) and by
slightly shrinking Ω, we may eventually achieve a maximal subsheaf, say

π∗OW ′ ⊂ ÔW . Again, without loss of generality we may assume OW is
already maximal, then we have O(W ) = F∗(O(Ω)). Since the functions
constructed from (A) and (B) clearly lie in O(Ω), we see that the map
F is a homeomorphism onto W and it maps Ω∩R into the smooth part
of W .

Now we may run the same arguments locally. Using the fact that
OW,p is a Noetherian ring, by adding functions in Op and by shrinking
Ω if necessary, we may assume that OW,p = F∗(Op).

Proposition 2.4. By further shrinking Ω if necessary we may as-
sume W is normal, and the map F ∗ : OW → F∗(O|Ω) is bijective.

By the openness of normal locus ([29], Theorem 14.4) it suffices to
show W is normal at F (p). This is a local property, so without loss
of generality we may assume Wi and W are analytic subsets of a Eu-
clidean ball B in CN , and we need to prove that a bounded holomorphic
function f defined over the smooth part of W extends to a holomorphic
function over a neighborhood of F (p) in W . By the above discussion, it
suffices to prove that any bounded holomorphic function f defined over
Ω ∩ R extends to a function in O(Ω). For this purpose we need to use
a local version of the Hörmander L2 estimate. The following lemma is
well-known, see, for example, [14], Theorem 6.1.
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Lemma 2.5. Let Y be a complex manifold which admits a complete
Kähler metric. Let ω be an arbitrary Kähler form on Y , and L be a
holomorphic line bundle over Y endowed with a Hermitian metric h
whose curvature satisfies iΘh ≥ cω for some c > 0. Let f be an L-
valued (n, q) (q ≥ 1) form with ∂̄f = 0, then there exists an L-valued
(n, q − 1) form u with ∂̄u = f , and

||u||2L2 ≤ (cq)−1||f ||2L2 .

Notice each Wi is an analytic set in B, so is Stein. Since the map
Fi is finite, it is easy to see that Ωi admits a complete Kähler metric.
We also choose a big number r so that on Ωi the curvature of the line
bundle Lkr

i ⊗K−1
Xi

is bigger than ωi, where the metric on K−1
Xi

is defined

by ωn
i . Now as in [17] we fix a sequence ηi → 0. Using the fact that

the singular set Σ has Hausdorff dimension strictly less than 2n− 2, we
can choose a sequence of good cut-off functions βi on Ω so that βi is
supported in the complement of a neighborhood of Σ∩Ω, βi = 1 outside
the ηi-neighborhood of Σ and ||∇βi||L2 ≤ ηi. Given a non-zero bounded
holomorphic function f defined over Ω ∩ R, we can use the maps χi

to graft βif into Ωi and obtain a smooth section σi = (χ−1
i )∗(βif)s

⊗r
i

of Lkrai
i over Ωi, with ||∂̄σi||L2 → 0. We may view σi naturally as an

Lkrai
i ⊗K−1

Xi
-valued (n, 0) form. By Lemma 2.5 we can solve ∂̄τi = ∂̄σi

with ||τi||L2 ≤ ||∂̄σi||L2 .
Let fi = (σi − τi)/s

⊗r
i , then fi is a holomorphic function on Ωi, and

as in [17] we obtain a uniform L∞ estimate on fi and |∇fi|, where the
constants depend only on the distance to the boundary of Ωi. So we can
take a limit f∞ ∈ O(Ω) by passing to a subsequence. On a ball in Ωi that
has a fixed distance away from Σ, we then obtain a uniform estimate
on |∇τi|, and this together with the fact that ||τi||L2 ≤ εi implies that
|τi| tends to zero uniformly on any compact subset of Ω∩R. Therefore,
f∞ = f on the whole Ω ∩R, hence can be viewed as an extension of f
to Ω.

Now without loss of generality we may assume W itself is normal.
We need to show F ∗ : OW → F∗(O|Ω) is bijective. It suffices to prove
the surjectivity. Given any q ∈ Ω, a holomorphic function f defined on
a neighborhood U of q determines a holomorphic map F ′ : U → CN+1,
and the projection map π : F ′(U)→ F (U) is generically one-to-one, and
f becomes holomorphic on F ′(U). On the other hand, the normality of
W implies that π is a holomorphic equivalence, so f is holomorphic on
F (U). This completes the proof of Proposition 2.4.

Notice by normality OZ |Ω = (ι∗OR)|Ω∩R = O|Ω. Therefore, F
also induces an isomorphism between the ringed spaces (Ω,OZ |Ω) and
(W,OW ), and the same holds in a neighborhood of any point in Z. This
then endows (Z,OZ) with the structure of a normal complex space, in
the usual sense, and thus finishes the proof of Theorem 1.1.
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Remark 2.6. The above arguments make use of some general lan-
guage of complex analytic spaces, and are essentially equivalent to the
approach used in [17].

2.2. Further results. We first clarify the precise notion of Gromov–
Hausdorff topology we shall use in the remaining part of this paper. We
go back to the setting at the beginning of Section 2.1, where we discuss
a polarized limit space (Z, p, g∞, J∞, L∞, A∞). Since the Hermitian line
bundle and the connection enter our discussion only when we apply the
Hörmander construction in [17] (more specifically the construction of
holomorphic sections in Propositions 2.1 and 2.2), and since they are
not the geometric objects that we are interested in later, we will mostly
ignore them. From now on, we will simply call (Z, p, g∞, J∞), or (Z, p)
when there is no confusion caused, a Gromov–Hausdorff limit. By abus-
ing notation we will also denote by K(n, κ) the class of the underlying
(non-polarized) Kähler manifolds of elements in K(n, κ) defined in the

introduction. Let K(n, κ) be the class of all Gromov–Hausdorff limits of

elements in K(n, κ). It is understood that an element (Z, p) ∈ K(n, κ)
is always endowed with some limit polarization, but is in general not
unique.

The discussion in Section 2.1 defines a notion of convergence inK(n, κ)
(by forgetting about the line bundle and connection) which, by gen-

eral construction, yields topology on K(n, κ). This refines the standard
Gromov–Hausdorff topology on metric spaces, and this is what we mean
by Gromov–Hausdorff topology in the rest of this paper.

A basis of this topology can be constructed as follows. Given a pos-
itive integer j and (Z, p) ∈ K(n, κ), we define a neighborhood Nj(Z, p)

to be the set of all spaces (Z ′, p′) ∈ K(n, κ) which satisfy the following
properties:

• There is a metric d on B(p, j) �B(p′, j), such that d(p′, p) < j−1

and B(p, j) and B(p′, j) are both ε-dense for some ε < j−1;
• Denote by Uj the complement of the j−1 neighborhood of the
singular set in B(p, j). Then there is a smooth embedding χ of
an open neighborhood of Uj into the smooth part of B(p′, j), such
that d(x, χ(x)) < j−1 for all x ∈ Uj, and

||χ∗g′ − g||Cj (Uj) + ||χ∗J ′ − J ||Cj(Uj) < j−1,

where the norm is computed with respect to the metric g.

Then the collection of the neighborhoods Nj(Z, p) for all (Z, p) and all

integers j is a basis of the Gromov–Hausdorff topology on K(n, κ).
Lemma 2.7. The Gromov–Hausdorff topology on K(n, κ) is compact,

Hausdorff, and has a countable basis.
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This is not difficult to prove but since we cannot find a reference
for the precise statement in the literature we give a proof here. By a
contradiction argument, it is easy to see that for each fixed j, there
are at most finitely many disjoint neighborhoods of the form Nj(Z, p).
Let Nj(Zj,α, pj,α) (α = 1, · · · , c(j)) be a maximal disjoint set of such
neighborhoods. Now we claim the countable family of open subsets
{Nj(Zk,α)|α = 1, · · · , c(k), j ∈ Z>0} form a basis of the topology. To see

this, given an open set N in K(n, κ) and a point (Z, p) ∈ N , by our above
choice, for each j, we can find αj such that Nj(Z, p) and Nj(Zj,αj

, pj,αj
)

has non-empty intersection. Then it is easy to see that for j sufficiently
large we have N100j(Z, p) ⊂ N10j(Zj,αj

, pj,αj
) ⊂ Nj(Z, p) ⊂ N . This

proves the claim, and hence the topology has a countable basis.
The Hausdorff property is clear. It remains to prove the compactness.

Suppose otherwise, we may find an open cover U of K(n, κ) which does
not admit any finite sub-cover. Using the countable basis constructed
above we may choose a countable sub-cover, say V = {V1, V2, · · · }. By
assumption, for each k, there is a (Zk, pk) which does not belong to Vj

for any j ≤ k. Since each (Zk, pk) is the Gromov–Hausdorff limit of a
sequence of spaces in K(n, κ), by a diagonal sequence argument, we may
pass to a subsequence and assume (Zk, pk) converges to a limit (Z, p).
Now since V is a cover, (Z, p) ∈ Vk0 for some k0. It follows that for k
sufficiently large (Zk, pk) ∈ Vk0 . Contradiction.

For our later purposes we need to extend the discussion of Section
2.1 uniformly to K(n, κ).

Lemma 2.8. There are λ1, λ2 ∈ (0, 1) with λ1 > λ2 and C > 0

depending only on n and κ such that given (Z, p) ∈ K(n, κ), there is
an open set D in Z that contains the closure of the ball Bλ1

(p), and a

holomorphic map F from D to CN such that

• |F (x)|∗ ≥ 1/2 when d(x, p) = λ1;
• |F (x)|∗ ≤ 1/100 when d(x, p) ≤ λ2;
• |∇F (x)| ≤ C for all x in Bλ1

(p).

This follows directly from Proposition 2.1 and a contradiction argu-
ment.

Proposition 2.9. Suppose f is holomorphic function defined on
Bλ1

(p). Then there is a neighborhood U of (Z, p) in K(n, κ), such that

for any (Z ′, p′) ∈ K(n, κ), there is a holomorphic function f ′ defined on
Bλ2

(p′), such that f ′ converges to f uniformly over Bλ2
(p) as (Z ′, p′)

converges to (Z, p).

Remark 2.10. Notice the precise notion of convergence of holomor-
phic functions in our context depends on the choice of metric on the dis-
joint union Z ′�Z realizing the Gromov–Hausdorff convergence. In gen-
eral the limit will be only well-defined up to an isomorphism of Bλ2

(p) (a
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holomorphic isometry) that fixes p. So the precise convergence should
be understood modulo such an isomorphism.

By Lemma 2.8, we can apply Lemma 2.5 and the discussion following
it to find the neighborhood U , and a holomorphic function f ′ on Bλ2

(p′)
for (Z ′, p′) ∈ U ∩K(n, κ), with a uniform L∞ estimate on |f ′| and |∇f ′|.
Then by taking limits of these functions we also find correspondingly
the holomorphic functions for all (Z ′, p′) ∈ U .

Proposition 2.11. There are universal constants K0, K1 depending
only on n, κ and r, so that for any holomorphic function f defined on
a ball B of radius r around p in a limit space Z, we have

|f(p)| ≤ K0|f |L2(B);

|∇f(p)| ≤ K1|f |L2(B).

Here the second estimate is understood in the Lipschitz sense.

A general way to prove this is to adapt the usual Moser iteration
technique directly to the possibly singular space Z. In our case, we can
apply Proposition 2.9 and the fact that the estimate is well-known in
the case when Z is in K(n, κ) (cf. Proposition 2.1 in [17]).

Proposition 2.12. Let F : Bλ1
(p) → CN be a holomorphic embed-

ding. Then we may find V ⊂ U , and for any (Z ′, p′) ∈ V, a holomorphic
map F ′ : Bλ2

(p′) → CN , that is generically one-to-one (in particular,
F ′ is a normalization map onto its image), and as (Z ′, p′) converges to
(Z, p), the image F ′(Bλ2

(p′)) converges to F (Bλ2
(p)) as local complex

analytic sets in CN .

The construction of F ′ follows from Proposition 2.9. By compact-
ness of K(n, κ), to prove that F ′ is generically one-to-one, it suffices to
show that if (Zi, pi) converges to (Z, p) then Fi is generically one-to-one
for sufficiently large i. Fix a metric on Bλ1

(pi) � Bλ1
(p) that realizes

the Gromov–Hausdorff convergence. Choose a ball B with closure con-
tained in the regular part of Bλ2

(p). Then we may find corresponding
balls Bi in Bλ2

(pi) that converge to B. By Colding’s volume conver-
gence theorem and Anderson’s volume gap theorem it follows that for
i large Bi is contained in the regular part of Bλ2

(pi). From the defini-
tion of Gromov–Hausdorff convergence, by varying Bi slightly we may
identify Bi with B using a diffeomorphism χi, under which Fi converges
smoothly to F . Hence Fi is an embedding on Bi. Now using the injec-
tivity of F it is easy to see that for i large on the image of the half ball
1
2Bi, Fi is one-to-one, in particular, Fi is generically one-to-one.

Remark 2.13. Proposition 2.12 will be sufficient for our purpose
in this paper. In general we expect that for i large Fi is indeed a
holomorphic embedding, which will allow us to say that Zi converges
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to Z locally as analytic subsets in some CN , or in other words, locally
Zi is a deformation of Z. Comparing the results in the compact case
[17] that relate the Gromov–Hausdorff convergence to flat convergence
in the Hilbert scheme, we also expect that in general the convergence
is flat in a certain sense. To our knowledge such a theory has not yet
been developed, and we leave this for future work.

Proposition 2.14. The metric singular set of (Z, p) agrees with the
complex analytic singular set.

By Proposition 2.3 it suffices to show that if p is a smooth point
in the complex analytic sense, then the limit metric is smooth in a
neighborhood of p. Choose a holomorphic embedding of a ball B around
p into Cn. By a rescaling we may assume B = Bλ1

(p). Then by
Proposition 2.12 for i large enough we may find a holomorphic map
Fi : Bλ2

(pi)→ Cn, that is generically one-to-one, hence is a holomorphic
equivalence onto its image, and Fi converges to F . By making B even
smaller we may view the Kähler–Einstein metric ωi as a Kähler metric
on a fixed Euclidean ball B in Cn. Moreover, we can write ωi = i∂∂̄φi,
with φi = −k−1 log |si|2, where si is the holomorphic section constructed
in Proposition 2.1. As in [9], we have |φi| ≤ C and ωi ≥ C−1ωEuc for
some C > 0. The Kähler–Einstein equation takes the form

det(i∂∂̄φi) = e−λφi |Ui|2,
where Ui is a non-vanishing holomorphic function. The bound ωi ≥
C−1ωEuc implies that |Ui|−1 is uniformly bounded. Since the volume of
B with respect to ωi is uniformly bounded we obtain an L2 bound on Ui.
So in the smaller ball, say 3

4B, we know |Ui| is also uniformly bounded.
This implies ωi and ωEuc are uniformly equivalent. Then we can apply
the standard Evans–Krylov theory to conclude that φi has a uniform
C2,α bound on 1

2B, and standard bootstrapping yields higher derivative

bound. So ωi converges to a smooth Kähler–Einstein metric ω∞ in 1
2B.

Remark 2.15. As in [17], the above argument also proves that there
is a weak Kähler–Einstein metric on Z in the sense of pluri-potential
theory, with continuous local potential.

We finish this subsection with a lemma on the convergence of holo-
morphic functions, that will be used later. Suppose a sequence (Zi, pi) ∈
K(n, κ) converges to (Z, p). Suppose Bi is a ball in Zi that converges to
a ball B in Z. Given a sequence of holomorphic functions fi on Bi with
||fi||L2(Bi) uniformly bounded, then by the estimate in Lemma 2.11, we
know fi converges (by passing to a subsequence) to a holomorphic func-
tion f on B, and the convergence is uniform over any compact subset
of B. In this case we say fi converges weakly to f .

From our definition of Gromov–Hausdorff convergence, any domain
Ω with Ω̄ ⊂ B∩R is the smooth limit of domains Ωi in Bi, so we always
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have
||f ||L2(B) ≤ lim inf

i→∞
||fi||L2(Bi).

We say fi converges strongly to f if

||f ||L2(B) = lim
i→∞

||fi||L2(Bi).

Lemma 2.16. (1). If fi converges uniformly to f , then fi converges
strongly to f .
(2). Let λ1, λ2 be given as in Lemma 2.8. Suppose fi converges strongly
to f , and gi converges weakly to g. If f extends to a holomorphic func-
tion over the ball B′ = λ1λ

−1
2 B (the same center but with radius multi-

plied by λ1λ
−1
2 ), then ∫

B
f ḡ = lim

i→∞

∫
Bi

fiḡi.

Given a domain Ω ⊂ B ∩ R, we can find Ωi ⊂ Bi which converges
smoothly to Ω. Then we have ||fi||L2(Ωi) converges to ||f |L2(Ω). On
the other hand, by Colding’s volume convergence theorem, we know
Vol(Bi \ Ωi) converges to Vol(B \ Ω), which can be made as small as
we like, since the singular set in B∞ has zero n-dimensional Hausdorff
measure. This proves the first item.

To prove the second item we first use Proposition 2.9 to find a holo-
morphic function hi on Bi that converges uniformly to f . Then we
claim

(2.1) lim
i→∞

∫
Bi

hiḡi =

∫
B
f ḡ.

To see this, let rBi and rB be the balls with the same center as Bi and
B, respectively, and with radius multiplied by r. For any fixed r < 1,
since gi converges uniformly to g on rB, by item (1),

∫
rBi

hiḡi converges

to
∫
rB f ḡ. On the other hand, we have

|
∫
Bi\rBi

hiḡi| ≤ |hi|L∞ |gi|L2(Bi)

√
Vol(Bi \ rBi).

As r → 1, the right hand side tends to 0 uniformly for all i. This proves
the claim. Now we write

(2.2)

∫
Bi

fiḡi =

∫
Bi

(fi − hi)ḡi +

∫
Bi

hiḡi.

Notice ∫
Bi

|fi − hi|2 =
∫
Bi

|fi|2 + |hi|2 − 2Re(hif̄i).

By assumption the first term converges to ||f ||2L2(B). By item (1), the

second term also converges to ||f ||2L2(B). Applying (2.1) with gi replaced

by fi, we see the last term converges to −2||f ||2L2(B). These imply ||fi−
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hi||L2(Bi) converges to zero. Since ||gi||L2(Bi) is uniformly bounded by
assumption, it follows that the first term in (2.2) converges to zero.
Therefore, by (2.1) again we obtain the conclusion.

2.3. Proof of Theorem 1.2. Let (Z, p) be a Gromov–Hausdorff limit
of a sequence of spaces in K(n, κ, V ). Let C(Y ) be a tangent cone at p.

Then we know C(Y ) is in K(n, κ), so Theorem 1.1 already proves that
C(Y ) has the structure of a normal complex analytic space. The main
new ingredient in Theorem 1.2 is the algebraicity. We will make use
of an idea due to Van Coevering [36], who proved essentially the same
result for a Kähler cone with smooth cross section.

Using the metric cone structure we may write the smooth part of
C(Y ) as C(Y reg), where Y reg ⊂ Y is a smooth 2n − 1 dimensional
manifold. The Kähler–Einstein condition implies that C(Y reg) is Ricci-
flat Kähler and Y reg is Sasaki–Einstein with Ricci curvature 2n−2. Let
ξ = J(r∂r), where r is the distance function to the vertex O, and J is
the complex structure on C(Y reg). By a simple local calculation it is
easy to see that ξ is holomorphic and Killing on C(Y reg).

Lemma 2.17. ξ generates a holomorphic isometric action of a com-
pact torus T on C(Y ).

We choose a neighborhood Ω of O and a holomorphic embedding
F : Ω → CN . Notice that we have an action of ξ on O(Ω): given any
function f ∈ O(Ω), by normality the function ξ.f = Lξf on Ω∩C(Y reg)
extends to a function on Ω. In particular, ξ acts on the coordinate func-
tions, so we obtain holomorphic functions fi = ξ.zi on Ω. By possibly
making Ω smaller, we may assume there is a neighborhood U of Ω inCN

such that each fi extends to a holomorphic function on U . In particu-
lar, the vector field

∑
i fi∂zi is a holomorphic vector field on U which

restricts to ξ on Ω∩C(Y reg). For simplicity of notation we also denote
ξ =

∑
i fi∂zi . Now we choose a smaller open set V ⊂⊂ U , then ξ gen-

erates a family of local holomorphic transformations φt (t ∈ [−ε, ε]) so
that φt(V ) ⊂ U . We claim φt maps Ω∩V into Ω∩U . Indeed, given any
holomorphic function f on U that vanishes on Ω∩U , since ξ is tangent
to Ω ∩ C(Y reg), we have ξ.f = 0 on Ω ∩ U ∩ C(Y reg) and thus ξ.f = 0
on Ω ∩ U . This implies that φ∗

t f vanishes on Ω ∩ U for all t, i.e., f
vanishes on φt(Ω ∩ V ), so the claim follows. Clearly φt fixes the vertex
O, and preserves the function r. Using the cone structure it is easy to
see that these local transformations glue together to form a family of
global holomorphic transformations {φt}t∈R of C(Y ).

It is also obvious that φt preserves both the smooth and singular
part of C(Y ). In particular, it preserves the length of any smooth curve
in C(Y reg). Using the fact that C(Y ) is the metric completion of the
Riemannian manifold C(Y reg) (Theorem 3.7 in [6]), it follows that φt

acts by isometries on C(Y ), hence also on Y . Since Y is compact, by
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taking the closure of the one-parameter subgroup φt in the isometry
group of Y (which is known to be a Lie group by [6]), we obtain an
action of a compact torus T on C(Y ). This proves Lemma 2.17.

The algebraicity of C(Y ) depends crucially on this T action. Suppose
Ω is a T-invariant neighborhood of O. Then we have a weight space
expansion

O(Ω) =
⊕̂

α∈Γ∗
Oα(Ω),

where Γ∗ ⊂ Lie(T)∗ is the weight lattice of T, and for f ∈ Oα(Ω), we

have eit.f = ei〈α,t〉f . The notation
⊕̂

should be understood in terms of
Fourier series expansion. We can take the usual Fourier series expansion
of f restricted to each orbit of T, namely, given f ∈ O(Ω), we define

(2.3) fα(x) =

∫
T

e−i〈t,α〉f(eit.x)dt.

It is clear that fα is holomorphic on Ω ∩ C(Y reg), so by normality
and continuity fα ∈ O(Ω). Notice the T action is smooth on C(Y reg),
so it is easy to see

∑
α fα converges uniformly on compact subsets of

Ω ∩ C(Y reg). On the other hand, a singular point of C(Y ) lies in a
holomorphic disk with boundary a fixed distance away from the singular
set, so by a simple maximal modulus theorem we see the convergence is
also uniform on compact subsets of Ω.

LetN be the embedding dimension of C(Y ) at O. This is by definition
the smallest integer such that a neighborhood of O embeds holomorphi-
cally into CN .

Lemma 2.18. There is a holomorphic embedding F : C(Y ) → CN

such that the action of T extends to a diagonal action on CN .

Choose a local holomorphic embedding F : Ω → CN such that
F (O) = 0. By general theory (see, for example, [19], pp. 114–115),
N = dimCmO/m

2
O, where mO is the maximal ideal in OO, and any

holomorphic function vanishing on F (Ω) must have vanishing differen-
tial at 0.

We apply the above expansion to the coordinate functions zi =∑
α zi,α. By Proposition V.B.3 in [20] there is a polydisc Δ around

0, such that each zi,α extends to a holomorphic function on Δ with a
bound ||zi,α||L∞(Δ) ≤ C||zi,α||L∞(Ω) for a constant C > 0 independent
of α. Therefore, we may assume the series

∑
α zi,α also converges to zi

on Δ. So there is some αi such that dzi,αi
(∂zi) is non-zero at 0. Then

the implicit function theorem implies that F ′ = (z1,α1
, · · · , zN,αN

) is a
holomorphic embedding on a possibly smaller neighborhood Ω′ of O.
Moreover, F ′ is T-equivariant, where the T action on CN is diagonal,
with weight on each coordinate given by αi. For simplicity of notation
we still denote (F ′,Ω′) by (F,Ω).
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To extend this to a global embedding of C(Y ), we first notice that
since ξ is holomorphic the action of T induces a holomorphic action of
the complexified torus T

C on C(Y ). One can see this by first com-
plexifying the action of Lie(T) and then argue as before. Since F is
holomorphic and T-equivariant, it is also T

C equivariant, in the sense
that if z and λ.z are both in Ω then F (λ.z) = λ.F (z). Now we simply
define F (λ.z) = λ.F (z) for z ∈ Ω and λ ∈ T

C. Since the radial vector
field r∂r = −Jξ lies in the Lie algebra of TC, we see that F is defined
on C(Y ), and it is clear that F is holomorphic. Since F is an embedding
near O and F is T

C equivariant, it is also an embedding on the whole
C(Y ). This finishes the proof of Lemma 2.18.

For simplicity we will call the map F satisfying the property of Lemma
2.18 an equivariant holomorphic embedding. Now let W be the image of
C(Y ), endowed with the structure of a reduced complex analytic space.

Lemma 2.19. W is an affine variety in CN .

Denote by IW the ideal sheaf of W . For any f ∈ IW,0, we have a

similar expansion f =
∑

α fα with respect to the T action on CN . By
the equivariance fα also vanishes on W ∩ B, so fα ∈ IW,0. Each fα
extends by homogeneity to an entire holomorphic function on CN with
polynomial growth at infinity, so it must be a homogeneous polynomial.
Therefore, IW,0 is generated by the germs of certain homogeneous poly-
nomials. Since IW,0 is Noetherian, it is indeed generated by finitely
many of them, say f1, · · · , fr. So W agrees with the affine subvariety in
CN defined by f1, · · · fr in a neighborhood of 0. By homogeneity they
agree globally.

Under the above embedding, the Reeb vector field has an exten-
sion to CN of the form ξ = Re(i

∑N
a=1 waza∂za) for some real numbers

w1, · · · , wN .

Lemma 2.20. For all a, wa > 0.

For any non-zero polynomial function f on W of weight α, we have
f(λ.x) = λ〈α,ξ〉f(x), where λ.x is the radial dilation by λ of x. Since f
is holomorphic at 0, it follows that 〈α, ξ〉 ≥ 0, and the equality holds if
and only if f is radially invariant, i.e., f is a constant. Therefore, we
see if α �= 0 then 〈α, ξ〉 > 0. The lemma follows by applying this to the
coordinate functions.

Now we describe the affine algebraic structure on C(Y ) intrinsically.
Let R be the ring of holomorphic functions on C(Y ) with at most poly-
nomial growth at infinity, and Hα be the space of polynomial functions
on W with weight α. By the above discussion any function f ∈ R
has a Fourier expansion f =

∑
α∈Γ∗ fα, where fα ∈ Hα, and the series

converges locally uniformly. From the formula (2.3) each fα is also of
polynomial growth with order at most the growth order of f . This im-
plies 〈α, ξ〉 is uniformly bounded for all α with fα �= 0. It then follows
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from the above lemma that there are only finitely many non-zero terms
appearing in the expansion. Hence we have a direct sum decomposition

R =
⊕
α∈Γ∗

Hα.

It is then straightforward to check that under the above embedding
of C(Y ) as an affine variety in CN , R is naturally identified with the
coordinate ring of W . In particular, R is finitely generated and W is
isomorphic to SpecR. This finishes the proof of Theorem 1.2.

There is also an algebraic description of the cone structure on C(Y ).
A holomorphic function f on C(Y ) is called homogeneous with charge
μ if Lξf = iμf for some μ > 0 (the name is adopted from [18]). Let Rd

be the space of holomorphic functions on C(Y ) with charge d. So we
may understand the cone structure as a “grading” on R in terms of the
charge:

R =
⊕
d∈S

Rd,

where S ⊂ R≥0 is the holomorphic spectrum of C(Y ). Notice the linear
map on Γ∗ sending α to 〈α, ξ〉 is injective, so each non-zero Rd corre-
sponds to a unique Hα with 〈α, ξ〉 = d, and we can recover the T action
from this grading. We also call the function h : S → Z; d �→ dimRd the
Hilbert function of C(Y ).

The grading is positive, in the sense ξ lies in the Reeb cone [22], [12],
i.e., the convex cone in Lie(T) consisting of elements γ with 〈α, γ〉 > 0
for all α ∈ Γ∗ and Hα �= 0. Following the terminology introduced in
[12], we call such (C(Y ), ξ) a polarized affine variety.

The next result is crucial for the discussion in Section 3. Notice the
Lie algebra Lie(T) has a natural rational structure determined by the
weight lattice Γ∗.

Proposition 2.21. The Reeb vector field ξ ∈ Lie(T) is an algebraic
vector, as an isolated zero of a system of polynomial equations with
rational coefficients. In particular, S is contained in the set of algebraic
numbers.

This is an extension of a result of Martelli–Sparks–Yau [28] on the
volume minimization property of smooth Sasaki–Einstein metrics. In
our setting, the tangent cone C(Y ) admits a (weak) Ricci-flat Kähler
cone metric, with a global potential given by r2. This enables us to
adapt the pluripotential theoretic techniques, and the proof will be given
in the appendix.

3. Algebro-geometric description of tangent cones

3.1. Rigidity of the holomorphic spectrum. Let (Z, p) be the
Gromov–Hausdorff limit of a sequence of spaces in K(n, κ, V ). Recall
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we have defined a tangent cone at p to be a Gromov–Hausdorff limit of
a convergent subsequence of the re-scalings of (Z, p) by

√
a, for integers

a→∞.

Lemma 3.1. Let C(Y ) and C(Y ′) be two tangent cones at p defined
by two sequences of positive integers {ak}, {bk}, respectively. Suppose
there is a constant C > 0 so that C−1 ≤ ak/bk ≤ C for all k, then C(Y )

and C(Y ′) are isomorphic as elements of K(n, κ). In particular, they
are isomorphic as affine algebraic varieties endowed with a Ricci-flat
Kähler cone metric.

This follows from the property of metric cones and the fact from
Section 2.3 that the radial dilation on a tangent cone is a holomorphic
transformation.

Fix λ = 1/
√
2. Let (Zi, pi) be the rescaling of (Z, p) by a factor

λ−i, and we denote by Cp the set of all sequential Gromov–Hausdorff
limits of (Zi, pi) as i→∞. It follows from Lemma 3.1 that any tangent
cone is indeed isomorphic to one in Cp. Notice in Riemannian geometry,
the metric tangent cones are defined in terms of rescalings of (Z, p) by
real numbers ζ → ∞ which are not necessarily of the above form

√
a.

But a similar argument as Lemma 3.1 shows that any general metric
tangent cone is also isometric to one in Cp. So in our context we shall
simply call Cp the set of tangent cones at p. It is endowed with the
Gromov–Hausdorff topology.

Lemma 3.2. Cp is compact and connected.

This should be well-known to experts, and we include a short proof
here for the convenience of readers. The compactness follows from
Lemma 2.7 and the easy fact that Cp is a closed subset of K(n, κ). Now
suppose Cp is a disjoint union of two closed subsets A and B. Since

K(n, κ) is compact and Hausdorff, we can find disjoint open subsets

U , V in K(n, κ) such that A ⊂ U and B ⊂ V. Then it follows that
for i sufficiently large (Zi, pi) ∈ U ∪ V. Without loss of generality we
may assume there is a subsequence {α} ⊂ {i} such that (Zα, pα) ∈ U .
Now we claim (Zi, pi) ∈ U for all big i. For otherwise we may find a
subsequence {β} ⊂ {i} such that (Zβ, pβ) ∈ U , but (Zβ+1, pβ+1) ∈ V.
Passing to a subsequence we can assume (Zβ , pβ) converges to some

limit C(Y ) ∈ Cp ∩ U . Since U and V are disjoint, and V is open, it

follows that U does not intersect V. Thus we know C(Y ) ∈ A. On
the other hand, by Lemma 3.1, (Zβ+1, pβ+1) also converges to the same
limit C(Y ), so, in particular, for β sufficiently large (Zβ+1, pβ+1) ∈ U .
Contradiction. Now it follows from the claim that Cp = A. Hence Cp is
connected.

Given a tangent cone C(Y ) ∈ Cp, the L2 metric over the ball {r ≤ 1}
defines a Hermitian inner product on R(C(Y )), which is invariant under
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the action of T. Moreover, for d1 �= d2, Rd1(C(Y )) and Rd2(C(Y )) are
orthogonal. We have

Theorem 3.3. The holomorphic spectrum S := S(C(Y )) and the
Hilbert function of C(Y ) are independent of the tangent cones in Cp.

For any D ∈ R+ \ S(C(Y )), we denote

ED(C(Y )) =
⊕

0<d<D

Rd(C(Y )).

Lemma 3.4. Given C(Y ) in Cp, for any D /∈ S(C(Y )), there is a
small neighborhood U of C(Y ) so that the vector spaces ED(C(Y ′)) have
the same dimension for all C(Y ′) in U .

By the compactness of Cp, it suffices to show that if a sequence C(Yj)
converges to C(Y ), then for j sufficiently large dimEj = dimE, where
we denote Ej = ED(C(Yj)) and E = ED(C(Y )).

First assume we are given a sequence of homogeneous holomorphic
functions fj on C(Yj) with charge dj ∈ (0,D), and with ||fj||L2(Bj) = 1,

where Bj the unit ball around the vertex in C(Yj). Using the interior
gradient estimate in Lemma 2.11 we obtain a uniform bound of |∇fj|
over the half ball 1

2Bj. By homogeneity for any fixed k we then obtain
a uniform bound of |∇fj| over the ball kBj. So by passing to a subse-
quence fj converges locally uniformly to a limit f on C(Y ). It is clear
that f is homogeneous of charge d ∈ (0,D), and by Lemma 2.16 we
have ||f ||L2(B) = 1. Now we can apply this to an orthonormal basis of
Ej . So we conclude that for j big, dimEj ≤ dimE.

To prove the other inequality we proceed by contradiction. Suppose
dimE > dimEj for all large j. From the above argument, by passing
to a subsequence we may assume an orthonormal basis of Ej converges
to an orthonormal basis of a proper subspace E′ of E. Now let f be
a function in E which is L2 orthogonal to E′, and with ||f ||L2(B) = 1.
Suppose f has charge D0 ∈ (0,D). By Proposition 2.9 and using the
homogeneity of f we may find for j large a holomorphic function fj
defined on the unit ball Bj ⊂ C(Yj) that converges to f uniformly
over B. Now using the weight expansion we may write fj = gj +
hj , where gj ∈ Ej and hj is L2 orthogonal to gj . Then ||gj ||L2(Bj)

is uniformly bounded, so by homogeneity ||gj ||L2(2Bj) is also uniformly
bounded. Using Lemma 2.11 again, by passing to a subsequence we
may assume gj converges uniformly to a limit g. Hence hj converges
uniformly to h, and f = g + h. By our choice of f we see g = 0. Now
using the weight expansion for hj it is easy to see that there is a constant

d ≥ D such that for all j, ||hj ||L2( 1
2
Bj)

≤ 2−d−n/2||hj |||L2(Bj). Taking

limits, this implies D0 ≥ D. Contradiction.

Lemma 3.5. There is a dense subset I of R+ such that if D ∈ I,
then the dimension of ND := ED(C(Y )) is independent of C(Y ) ∈ Cp.
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This follows from the compactness of Cp and the fact that S(C(Y ))
is discrete.

Now choose D ∈ I. For any C(Y ) ∈ Cp we may arrange the holomor-
phic spectrum of C(Y ) within the interval (0,D) (with multiplicities)
in the increasing order as w1 ≤ · · · ≤ wND

. From the proof of Lemma
3.4 it follows that the map ιD : Cp → (R+)ND sending C(Y ) to its
charge vector (w1, · · · , wND

) is continuous. Since Cp is connected, so
is the image of ιD. On the other hand, Proposition 2.21 implies that
the image is contained in a countable subset of RND , hence it must
consist of a single point. Applying this to all D ∈ I, we conclude that
S := S(C(Y )) is independent of C(Y ). Then by Lemma 3.4 for each
d ∈ S, dimRd(C(Y )) is also independent of C(Y ). This finishes the
proof of Theorem 3.3.

3.2. Vanishing order of holomorphic functions. We first set up
some notations. Given a tangent cone C(Y ) ∈ Cp, we denote by Λ
the dilation by λ on C(Y ). Given a function f defined on a ball B
in C(Y ) around the vertex, we denote by Λ.f the function on B with
Λ.f(x) = f(Λ.x). Let Bi be the unit ball in Zi around pi. By definition
we may naturally identify Bi with a ball in Z, and we have natural
inclusion maps Λi : Bi → Bi−1. For the clarification of later arguments,
given a function f defined on Bi−1, we also denote by Λi.f the induced
function on Bi. As i → ∞, Λi converges by sequence to the dilation
Λ : r �→ λr on the tangent cones.1 There is an ambiguity caused by
the possible holomorphic isometric transformation of the tangent cones
that fixes the vertex, but this will not affect our following discussion
(see Remark 2.10).

Given a function f defined over a domain in Z that contains Bi, we
denote by ||f ||i the L2 norm of the induced function on Bi. If ||f ||i is
finite, then we define a function [f ]i on Bi, which is equal to a · f |Bi

for
some a > 0 so that ||[f ]i||i = 1.

Lemma 3.6. Let B be the ball {r < 1} in some tangent cone C(Y ) ∈
Cp. For any holomorphic function f in L2(B) we have

||Λ.f ||2L2(B) ≤ ||f ||L2(B)||Λ2.f ||L2(B),

and the equality holds if and only if f is homogeneous.

We write f =
∑

d∈S fd, where fd has charge d. Then Λ.f =
∑

d∈S λdfd,

and Λ2.f =
∑

d∈S λ2dfd. Notice that if d1 �= d2, then fd1 and fd2 are

orthogonal in L2(B). It follows from the Cauchy–Schwarz inequality
that

||Λ.f ||2L2(B) ≤ ||f ||L2(B)||Λ2.f ||L2(B),

and the equality holds if and only if f = fd for some d ∈ S.
1In this paper, when we say “converges by sequence”, we mean that given any

subsequence there is always a further subsequence that converges to some limit.
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Proposition 3.7. For any given d̄ /∈ S, we can find i0 = i0(d̄) such
that for all j > i ≥ i0 and any non-zero holomorphic function f defined

on Bi, if ||f ||i+1 ≥ λd̄||f ||i, then ||f ||j+1 > λd̄||f ||j .
Suppose the conclusion fails, then we would find a subsequence {α} ⊂

{i}, and non-zero holomorphic functions fα defined on Bα with

||fα||α+1 ≥ λd̄||fα||α,
||fα||α+2 ≤ λd̄||fα||α+1.

By passing to a subsequence we may assume Bα converges to a unit
ball B∞ in some tangent cone. Multiplying fα by a constant we may

assume ||fα||α+1 = 1. Then ||fα||α ≤ λ−d̄. The gradient estimate
Lemma 2.11 ensures that by passing to a further subsequence we may
assume fα converges to a limit F on B∞, uniformly on B∞(r) for r < 1.
In particular, we have

||F ||L2(B∞) ≤ λ−d̄, ||Λ.F ||L2(B∞) = 1,

||Λ2.F ||L2(B∞) = limα→∞ ||fα||α+2 ≤ λd̄.

By Lemma 3.6 F must be homogeneous holomorphic function on B∞,
and it is clear that the charge must be exactly d̄. This contradicts our
hypothesis on d̄.

Corollary 3.8. Given a non-zero holomorphic function f defined in
a neighborhood of p ∈ Z, then

(1) The limit

lim
i→∞

(log λ)−1 log(||f ||i+1/||f ||i)
is either +∞, or a well-defined number in S. We denote this by
d(f) ∈ S ∪ {+∞};

(2) If d(f) = +∞, then [f ]i converges weakly by sequence to zero;
(3) If d(f) ∈ S, then [f ]i converges strongly by sequence to non-zero

homogeneous holomorphic functions of charge d(f), on the tangent
cones.

The existence of d(f) follows immediately from the previous propo-
sition. If d(f) =∞, then by definition all the weak limits must be zero.
If d(f) ∈ S, then Lemma 2.11 implies that for i large, |∇f |L∞(Bi) ≤
K||f ||i−1 ≤ Kλ−2d(f)||f ||i for some constant K > 0 depending only on
n and κ. It then follows that [f ]i converges strongly by sequence. Simi-
lar to the proof of the above proposition, any such limit F must satisfy
λ−2d(f)||Λ2.F ||L2(B∞) = λ−d(f)||Λ.F ||L2(B∞) = ||F ||L2(B∞). Again by
Lemma 3.6, F must be homogeneous of charge d(f).

Remark 3.9. The above arguments should be compared with clas-
sical monotonicity formulas for elliptic equations over cones. The dif-
ference is that in our situation we are not exactly working on cones,
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and this is the place we need to use the rigidity of the holomorphic
spectrum S.

Notice at this stage we cannot rule out the case d(f) = +∞. But later
we will do this after establishing the relation with algebraic geometry,
see Remark 3.21. Using the estimate in Lemma 2.11, it is easy to see
that we have other characterizations

d(f) = lim
r→0

(log r)−1 log sup
Br(p)

|f(x)|

= lim
r→0

(log r)−1 log sup
∂Br(p)

|f(x)|.(3.1)

Hence the number d(f) can be viewed as the vanishing order of f at
p ∈ Z, measured by the limit Kähler–Einstein metric. We will use it
to study the algebraic geometry of tangent cones. For this purpose we
need an extension of Proposition 3.7 and Corollary 3.8.

Definition. Suppose we are given a finite dimensional space P of
holomorphic functions defined on a neighborhood of p. Let m = dimP .
An adapted sequence of bases consists of a basis {G1

i , · · · , Gm
i } of P for

all large i, such that the following holds:

• For all a, ||Ga
i ||i = 1; if a �= b, then limi→∞

∫
Bi

Ga
iG

b
i = 0;

• For i large and for all a, Λi.G
a
i−1 = μiaG

a
i + pai for μia ∈ C, and

pai in the linear span C〈G1
i , · · · , Ga−1

i 〉, with ||pai ||i → 0;
• There are numbers d1, · · · , dm ∈ S with d1 ≤ d2 ≤ · · · ≤ dm, such
that μia → λda ; Moreover, pai ∈ C〈Gb

i |b ≤ a, db = da〉.
By definition for f ∈ C〈Gb

i |a1 ≤ b ≤ a2〉 we have d(f) ∈ [da1 , da2 ].

Now suppose we are given such a space P with an adapted sequence
of bases.

Lemma 3.10. {[Ga
i ]} converges strongly by sequence to an L2 or-

thonormal set of homogeneous functions of charge exactly {da}, on the
tangent cones.

We prove this by induction. For a = 1 this is clear by Corollary
3.8. Now we assume the conclusion is true for all b ≤ a − 1. Sup-
pose for a subsequence {β} ⊂ {i}, [Ga

β ] converges weakly to a limit

G, on B∞ ⊂ C(Y ). By passing to a further subsequence we may as-
sume [Ga

β−1] also converges weakly to a limit G′ on B∞. Then by the

second and the third item in the above definition, Λ.G′ = λdaG. By
Lemma 2.11, Λβ .[G

a
β−1] converges uniformly to Λ.G′. It then follows

that ||G||L2(B∞) = λ−da ||Λ.G′||L2(B∞) = limi→∞ λ−da ||Λβ .[G
a
β−1]||β ≥

1. So [Ga
β ] converges strongly to G. Similarly one can show

λ−2da ||Λ2.G||L2(B∞) = λ−da ||Λ.G||L2(B∞) = 1, hence G must be homo-

geneous of charge da by Lemma 3.6. By Lemma 2.16, G is L2 orthogonal
to the limits of [G1

β ], · · · , [Ga−1
β ].
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If we choose another adapted sequence of bases, say {Ha
i }, then by

definitions for each i, {Ga
i } and {Ha

i } differ by an action of an element
in U(m). So a simple consequence of the above lemma is that the set
with multiplicity d(P ) = {d1, · · · , dm} is independent of the choice of
the adapted sequence of bases.

Proposition 3.11. For any d̄ /∈ S, we can find i0 = i0(d̄, P ) such
that for all j > i ≥ i0, and any holomorphic function f defined on Bi,

if f /∈ P and ||Πi+1f ||i+1 ≥ λd̄||Πif ||i, then ||Πj+1f ||j+1 > λd̄||Πjf ||j .
Here Πj(f) denotes the L2 orthogonal projection of f |Bj

to the orthog-
onal complement of P |Bj

.

Suppose not, then we may find a subsequence {β} ⊂ {i}, and holo-
morphic functions fβ on Bβ with

||Πβ+1fβ||β+1 ≥ λd̄||Πβfβ||β ,
||Πβ+2fβ||β+2 ≤ λd̄||Πβ+1fβ||β+1.

We can normalize so that ||Πβ+1fβ||β+1 = 1. By passing to a subse-
quence we may obtain weak limits on the ball B∞ in some tangent cone
C(Y ):

F = lim
β→∞

Πβfβ, F
′ = lim

β→∞
Πβ+1fβ, F

′′ = lim
β→∞

Πβ+2fβ,

with ||F ||L2(B∞) ≤ λ−d̄, ||F ′||L2(B∞) ≤ 1, and ||F ′′||L2(B∞) ≤ λd̄. Now

we write the L2 orthogonal decomposition on Bβ+1

Λβ+1.Πβfβ = Πβ+1fβ + hβ+1,

where hβ+1 is in P . By Lemma 3.10, and by passing to a subsequence,
we may assume that both {Ga

β} and {Ga
β+1} converge to the same or-

thonormal set {G1, · · · , Gm} on B∞, and that hβ+1 converges strongly
to a limit h ∈ C〈G1, · · · , Gm〉. By Lemma 2.16 we know F and F ′ are
both orthogonal to C〈G1, · · · , Gm〉, so is Λ.F ′, by the homogeneity of
G1, · · · , Gm. Since Λ.F = F ′ + h, we must have h = 0, and F ′ = Λ.F
with ||F ′||L2(B∞) = ||Λ.F ||L2(B∞) ≥ 1. Similarly F ′′ = Λ.F ′. Then we
obtain a contradiction, as in the proof of Proposition 3.7.

Proposition 3.12. Suppose P is given as above. Given a holomor-
phic function f defined on a neighborhood of p. Suppose f /∈ P , then

1) The limit

lim
i→∞

(log λ)−1 log(||Πi+1f ||i+1/||Πif ||i)
is either +∞ or a well-defined number in S. We denote this by
dP (f);

2) If dP (f) ∈ S, then P̂ = P ⊕C〈f〉 also admits an adapted sequence

of bases, with d(P̂ ) = d(P ) ∪ {dP (f)}.
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As before, the existence of dP (f) follows directly from Proposition
3.11. Now suppose dP (f) ∈ S. We write Λi.Πi−1f = Πif+hi. Then for

fixed ε > 0, for all i large, ||Πi−1f ||i−1 ≤ Cλ−dP (f)−ε||Πif ||i. So passing
to a subsequence {β} ⊂ {i} we can take weak limits C−1

α Παf → F ,
C−1
α Πα−1f → F ′ and C−1

α hα → h, where Cα = ||Παf ||α. Then we
have F = Λ.F ′ + h. Similar to the proof of Proposition 3.11 we know
h = 0 and F is homogeneous, with ||F ||L2(B∞) = ||Λ.F ′||L2(B∞) = 1. In
particular, this implies that Fi := [Πif ]i converges strongly by sequence
to a homogeneous holomorphic function of charge dP (f).

Now we write

(3.2) Λi.Fi−1 = γiFi +

m∑
a=1

τiaG
a
i .

By the above discussion we know γi → λd(f), and τia → 0 for all a.

Claim. We can find eia → 0, for all a with da �= d(f), such that if
we replace Fi by Fi+

∑
a:da �=d(f) eiaG

a
i , then we can assume that in (3.2)

τia = 0 if da �= d(f).

Given this we let a0 be the biggest integer so that da0 ≤ d(f), then we

define Ĝa
i = Ga

i for a ≤ a0, Ĝ
a0+1
i = [Fi]i, and Ĝa

i = Ga−1
i for a ≥ a0+1.

Then it is easy to check {Ĝa
i } is an adapted sequence of bases for P̂ .

To prove the claim we let b be the biggest number so that db �=
dP (f). Replacing Fi by Fi + eibG

b
i , then we obtain the new sequence of

coefficients τ̃ib. In order that τ̃ib vanishes for all i we need

γieib = μibei−1,b + τib.

By assumption, limi→∞ μib = λdb �= λdP (f), hence by the lemma below
we can choose the desired sequence {eib} for large i, with eib → 0. The
claim follows by induction on b.

Lemma 3.13. Given three sequences of complex numbers γi, μi, τi,
with limits γ, μ, τ , respectively. Suppose τ = 0, and |γ| �= |μ|, then
we can find a sequence ei → 0 such that for all i sufficient large, the
equation γiei − μiei−1 = τi holds.

The proof is elementary. If γ = 0 or μ = 0 then ei is uniquely
determined and in this case it is easy to see ei → 0. So we may assume
γμ �= 0. Since we are only interested in large i, without loss of generality
we may assume for all i ≥ 0, |γi| ≥ |γ|/2 and |μi| ≥ |μ|/2.

Case I: |γ| > |μ|. Then again without loss of generality we may
assume there is a δ > 0 such that for all i ≥ 0, |γi| ≥ (1 + δ)|μi|. Set
e0 = 0, and define ei inductively for i > 0. Then we have

|ei| ≤
i∑

j=1

(1 + δ)j−i|γj |−1|τj |.
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For any fixed l, we have

|ei| ≤ 2(1 + δ)l−i|γ|−1 max
j≤l

|τj |+ 2|γ|−1(1 + δ)δ−1 sup
j≥l+1

|τj|.

It follows easily from this that ei → 0.

Case II: |γ| < |μ|. In this case we simply define for each i ≥ 0,

ei = −
∞∑
k=1

k−1∏
j=1

(
γi+j

μi+j
)μ−1

i+k|τi+k|.

By similar arguments as in the previous case we know for all i, this
series is absolutely convergent, and ei → 0. It is also direct to check
this sequence {ei} satisfies the desired equation. This finishes the proof
of Lemma 3.13.

3.3. Local tangent cones. Given a tangent cone C(Y ) ∈ Cp, we de-
note by Aut(C(Y )) the group of holomorphic transformations of C(Y )
that commute with the T action generated by the Reeb vector field. We
choose C(Y ) such that the dimension of Aut(C(Y )) is minimal among
all the tangent cones in Cp, and we fix a subsequence {α} ⊂ {i} that
realizes the convergence to C(Y ). As usual we denote the coordinate
ring of C(Y ) by R(C(Y )) =

⊕
d∈S Rd(C(Y )). For simplicity we write

elements of S in an increasing order as 0 = d0 < d1 < · · · , and we
denote μk = dimRdk(C(Y )), which by Theorem 3.3 is independent of
the choice of C(Y ).

Denote by Op the local ring of holomorphic functions defined in a
neighborhood of p ∈ Z. For d ∈ S, we let Ik be the subspace of Op

consisting of functions with d(f) ≥ dk. This defines a filtration

(3.3) Op = I0 ⊃ I1 ⊃ I2 ⊃ · · · .
By (3.1) this is a filtration of ideals in Op, and it is multiplicative in the
sense that IjIk ⊂ Il whenever dl ≤ dj + dk. Let Rp be the associated
graded ring

Rp =
⊕
k≥0

Ik/Ik+1.

Proposition 3.14. For all k ≥ 0, we can find a decomposition Ik =
Ik+1 ⊕ Jk, such that dimJk = μk, and Jk admits an adapted sequence
of bases with d(Jk) = {dk}.

The proof is by induction on k. We first define J0 to be the space
of constant functions. Now we assume the conclusion holds for all j ≤
k − 1. Let J be the set of all finite dimensional subspaces J ⊂ Ik
which satisfy J ∩ Ik+1 = 0, and which admit an adapted sequence of
bases with d(J) = {dk}. It is clear by definition that dimJ ≤ μk for
all J ∈ J . Let Jk ∈ J be a maximal element. Now we prove that
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dim Jk = μk. Suppose not, then by passing to a subsequence {β} ⊂
{α} we obtain an orthonormal limit set of homogeneous holomorphic
functions G1, · · · , Gp on B∞ ⊂ C(Y ) of charge dk, with p < μk. Now we
pick a function f in Rdk(C(Y )) with ||f ||L2(B∞) = 1, that is orthogonal

to C〈G1, · · · , Gp〉. Then by Proposition 2.9 for β large we may find
a sequence of holomorphic functions fβ defined on Bβ that converges
uniformly to f as β →∞.

Denote P =
⊕

j≤k Jj . Then by Propositions 3.7 and 3.11, we see that

for β large, d(fβ) ≤ dk and dP (fβ) ≤ dk. Fix β0 large and let F = fβ0
.

By Proposition 3.12 we obtain an adapted sequence of bases on P̂ =
P
⊕

C〈F 〉 with d(P̂ ) = d(P ) ∪ {dP (F )}. This implies dP (F ) = dk, for
otherwise, by taking limits, we obtain a contradiction with the induction
hypothesis that dim Jj = μj for all j ≤ k − 1. From the definition
of adapted sequence of bases, we also have d(F ) = dk, i.e., F ∈ Ik,
and, moreover, (Jk

⊕
C〈F 〉) ∩ Ik+1 = 0. It follows that Jk

⊕
C〈F 〉 ∈

J , which is strictly bigger than Jk. Contradiction. This proves that
dim Jk = μk.

To finish the induction step it suffices to prove that Ik = Ik+1
⊕

Jk.
Given any f ∈ Ik and sufficiently large β, by rescaling and by adding
some element in Jk, we may assume that ||f ||β = 1 and f is orthogonal
to Jk in L2(Bβ). Then by Proposition 3.12 we obtain a sequence of
adapted bases on Jk

⊕
C〈f〉. Similar as above, using the fact that

dim Jk = μk, we know dJk(f) > dk. This implies f ∈ Ik+1
⊕

Jk, and
hence finishes the proof of Proposition 3.14.

Now we fix D large so that R(C(Y )) is generated by ED(C(Y )).
Denote N = dimED(C(Y )). An orthonormal basis of ED(C(Y )) defines
an equivariant embedding Φ : C(Y ) → CN . Let Gξ be the group of

linear transformations of CN that commute with the T action, and let
Kξ = Gξ ∩ U(N).

Let k0 = max{k ≥ 0|dk < D}, and denote P =
⊕

0<k≤k0
Jk. By

Proposition 3.14 we may fix an adapted sequence of bases of P , which
defines for i large a holomorphic map Fi : Bi → CN , such that the
subsequence Fα converges uniformly to Φ (up to the Kξ action). Similar
to the proof of Proposition 2.12, we may assume Fi is generically one-
to-one for all i.

Let Sk be the space of homogeneous polynomials onCN with weighted
degree dk, and let Vk be the kernel of the obvious map Sk → Rdk(C(Y )).
Fix a splitting Sk = Vk

⊕
Qk, then we may identify Qk with Rdk(C(Y )).

Let Tk,α be the subspace of Op consisting of the pull back of functions
in Qk by Fα.

Lemma 3.15. Given any k, for α large we have Ik = Tk,α
⊕

Ik+1.

By the multiplicative property of the filtration we have Tk,α ⊂ Ik.
By Proposition 3.7, it is easy to see that for α large dimTk,α ≥ μk and
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Tk,α ∩ Ik+1 = 0. On the other hand, by Proposition 3.14 dim Ik/Ik+1 =
μk. So the lemma follows.

Lemma 3.15 implies that the ring Rp is finitely generated by⊕
k≤k0

Ik/Ik+1. Let W be the affine variety Spec(Rp). Rp has the

same grading as R(C(Y )), so W admits a natural action of T, with the
same Hilbert function as C(Y ). The chosen adapted sequence of bases
of P over Bi then defines a sequence of equivariant embeddings of W
into CN , and we call the image Wi.

By general theory (see, for example, [21]), there is a multi-graded
Hilbert scheme Hilb, which is a projective scheme parameterizing po-
larized affine schemes in CN invariant under the T action and with
fixed Hilbert function determined by {μk}. Therefore, Wi (for all large
i) and C(Y ) define points [Wi] and [C(Y )] in Hilb. The group Gξ acts
naturally on Hilb, so that all [Wi] are in the same Gξ orbit.

Proposition 3.16. [Wα] converges to [C(Y )] in Hilb, up to Kξ

action.

By passing to subsequence and by varying Φ by an element in Kξ, we
may fix the ambiguity of Kξ action and assume that Fα converges to Φ.
Fix an arbitrary metric || · ||∗ on Sk. Given an element f ∈ Vk, for α
large we write F ∗

αf = gα + F ∗
αhα for gα ∈ Ik+1 and hα ∈ Qk. We claim

that ||hα||∗ → 0. For otherwise by rescaling we may assume ||hα||∗ = 1,
and gα + F ∗

αhα = CαF
∗
αf with Cα uniformly bounded. Then passing to

a subsequence we may assume gα and hα converge uniformly to g and
h, respectively. They satisfy g + h = 0 and ||h||∗ = 1. In particular,
g is a non-zero homogeneous function of charge dk. By Proposition
3.7 this would imply for α sufficiently large that d(gα) ≤ dk. This is
a contradiction. Now we define fα = f − hα ∈ Sk. It satisfies that
F ∗
αfα ∈ Ik+1, so fα vanishes on Wα, and fα converges to f in Sk. Now

we do the same for a basis of Vk for all k ≤ k1, where k1 is chosen so
that any ideal of C[x1, · · · , xN ] defining an element in Hilb is generated
by the homogeneous pieces of degree at most k1. It then follows that
[C(Y )] is the limit of [Wα] in Hilb.

Since the universal family over Hilb is flat and normality is an open
condition in a flat family (see, for example, [1]), it follows that W is
normal variety. Recall for all C(Y ′) ∈ Cp, a choice of orthonormal basis

of ED(C(Y ′)) determines a holomorphic map Φ′ : C(Y ′)→ CN .

Lemma 3.17. There is a neighborhood U of C(Y ) in Cp such that
for all C(Y ′) ∈ U , Φ′(C(Y ′)) is normal.

Otherwise we choose a sequence C(Ys) converging to C(Y ) such that
the image Φs(C(Ys)) is not normal. By modifying Φs by elements in
Kξ, we may assume Φs(C(Ys)) converges to F (C(Y )). Now for each s,
we can find Ds big so that R(C(Ys)) is generated by elements of charge
at most Ds. Choose a subsequence {β} ⊂ {i} so that Bβ converges to
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the unit ball in C(Ys). Then we can argue as above replacing D by Ds

and N by Ns = dimEDs(C(Ys)), and assume Wβ converges to C(Ys) as

affine varieties in some CNs , i.e., the convergence is taken in a different
multi-graded Hilbert scheme. Projecting down to CN , we see that Wβ

converges to Fs(C(Ys)) locally as complex analytic spaces. Now since
Hilb is compact, by passing to a subsequence we may also assume [Wβ ]
converges to a limit [Σs] in Hilb. It then follows that the underlying
reduced complex analytic space of Σs is the same as Φs(C(Ys)). So
Σs converges to C(Y ) locally as complex analytic spaces in CN . Now
using the compactness of Hilb again by passing to a subsequence we
may assume [Σs] converges to a limit [Σ], whose underlying reduced
complex analytic space coincides with C(Y ). On the other hand, since
C(Y ) is normal and [Σ] and [C(Y )] have the same Hilbert function,
it follows that [Σ] = [C(Y )]. This implies by openness of normality
again that Σs is normal for s large. In particular, we know Φs(C(Ys))
is normal. Contradiction.

Now we prove Theorem 1.3. By making U even smaller, we may
assume by Proposition 2.12 that Φ′ is generically one-to-one and so by
Lemma 3.17 Φ′ is an embedding. In particular, C(Y ′) also defines an
element [C(Y ′)] in Hilb. From the construction [21], Hilb is a sub-
scheme of a certain projective space P, and the action of Gξ extends to
P(V ). It follows easily from the definition that the stabilizer of [C(Y )] ∈
Hilb is isomorphic to Aut(C(Y )) which by Proposition 4.9, is reductive.
So we can write Aut(C(Y )) = KC, for a compact group K.

As in [16] (Proof of Proposition 1), we can find an equivariant slice
for the action. Namely, there is a projective subspace P

′ = P(Cv ⊕ S),
where v is a vector in V lying over [C(Y )] and S is a KC invariant
subspace of V which is transverse to the Gξ orbit of [C(Y )]. Let O be
the Gξ orbit of [W ], and O′ = O ∩ P

′. Notice by general theory the

closure O′ is a (possibly reducible) algebraic variety. By Proposition
3.16 we know [C(Y )] ∈ O. So from the construction of P′ in [16] we can
find a small neighborhood U of [C(Y )] in P, such that each component
of O′ ∩ U is contained in a single KC orbit. Moreover, any point in
O∩U is in the Gξ orbit of a point in O′∩U . In particular, [C(Y )] ∈ O′.

Suppose C(Y ′) ∈ Cp is close to C(Y ), then we may assume [C(Y ′)] ∈
O∩U . By the above discussion we may find g ∈ Gξ such that g.[C(Y ′)] ∈
O′ ∩U . We claim [C(Y )] is in the closure of the KC orbit of g.[C(Y ′)].
Indeed, since [C(Y )] is fixed by KC, we may reduce to the linear ac-
tion on S, and this becomes the well-known fact that if x ∈ S is such

that 0 ∈ KC.x, then for any y ∈ KC.x, we have 0 ∈ KC.y (the
point is that 0 is a closed KC orbit, and any KC invariant polyno-
mial on S vanishing at y must also vanish at 0). The claim implies that
[C(Y )] and [C(Y ′)] are in the same Gξ orbit, for otherwise we would
have dimAut(C(Y )) > dimAut(C(Y ′)), which contradicts our choice of
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C(Y ). By the uniqueness of Ricci-flat Kähler cone metric (Proposition
4.8) on C(Y ), it follows that [C(Y )] and [C(Y ′)] are isomorphic as affine
varieties with a Ricci-flat Kähler cone metric, and so are indeed in the
same Kξ orbit. Theorem 1.3 then follows from the connectedness of Cp.

Remark 3.18. The precise meaning of Theorem 1.1 is that any two
tangent cones are isomorphic as affine algebraic varieties endowed with
a Ricci-flat Kähler cone metric. Notice by the discussion of Section
2.2 each tangent cone is also given a polarization, which is a priori not
unique from the definition. It seems an interesting question to further
examine the limiting polarization, in particular, the U(1) connection.
We leave this for future study.

A consequence of the above argument, using the Hilbert–Mumford
criterion, is that there is a one parameter subgroup λ(t) of Gξ, such
that [C(Y )] = limt→0 λ(t).[W ]. In terms of the language of K-stability,
we may say there is a test configuration for W , with central fiber C(Y ),
in the sense of [12].

Now we study the meaning ofW in terms of the local complex analytic
geometry of Z at p. First we recall the notion of a weighted tangent cone.
Let (w1, · · · , wm) ∈ (R+)m be a weight vector, and assign any monomial
za11 · · · zamm with weight

∑
i aiwi. For any holomorphic function f defined

in a neighborhood of 0 ∈ Cm, we let w(f) be the smallest weight among
all monomials in the Taylor expansion of f . Suppose (X, 0) is a germ
of a complex analytic set in Cm. Consider the weight filtration

O0 = Fe0 ⊃ Fe1 ⊃ · · · ,
where Fek consists of the restriction of holomorphic functions f on
a neighborhood of 0 with w(f) ≥ ek. The associated graded ring
R(F) =

⊕
k≥0Fek/Fek+1

is naturally isomorphic to C[x1, · · · , xm]/I,
where I is the ideal generated by weighted homogeneous polynomial
functions f on Cm such that f |X is equal to the restriction of a germ
of analytic function g with w(g) > w(f), i.e., f is the initial term of a
defining equation of X at 0 (with respect to the above weight). There-
fore, Spec(R(F)) defines a polarized affine sub-scheme inCm, with Reeb
vector field ξ =

∑
aRe(iwaza∂za). We call it the weighted tangent cone

of (X, 0). Notice if all the weights are equal, then Spec(R(F)) is the
Zariski tangent cone of X at 0, which is independent of the choice of
analytic embedding. In general, however, the weighted tangent cone
depends on the choice of the analytic embedding, but it is invariant
under the action of Gξ. In particular, in our situation above for the
obvious weight vector, the weighted tangent cones of (Fi(Bi), 0) are all
isomorphic.

Proposition 3.19. W is isomorphic to the weighted tangent cone of
(Fi(Bi), 0) in CN , with respect to the weight determined by the T action.
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Without loss of generality we may assume i = 1. We define a natural
map from C[x1, · · · , xN ] to Rp, that sends a polynomial f with w(f) =
dk to the subspace Ik/Ik+1. This is well-defined since d(F ∗

1 f) ≥ w(f)
by (3.1). It also descends to a map τ : R(F) → Rp. By Lemma 3.15 τ
is surjective. So it suffices to show τ is also injective. For this we need

a lemma. Let Õ be the sheaf of holomorphic functions on F1(B1). For

simplicity of notation we view Õ0 as a subspace of Op via the obvious
map.

Lemma 3.20. There is a function d′ = d′(d) that grows linearly as

d → ∞, such that if a holomorphic function f ∈ Õ0 satisfies f ∈ Id,

then f ∈ m
d′
0 , where m0 is the maximal ideal in Õ0.

Given this, suppose f ∈ Fdk ∩ Ik+1, then using Lemma 3.15 for α
large we can write

f = f1 + f2 + · · ·+ fl + gl,

with fl ∈ Tl,α ⊂ Fdk+l
and gl ∈ Idk+l

. By Lemma 3.20 and the fact that
all the weights are positive we know if we make l sufficiently large, then
gl ∈ Fdk+1

. This shows the map τ is injective and finishes the proof of
Proposition 3.19.

It remains to prove Lemma 3.20. In CN we define ||x||2 =
(
∑

a |xa|2/wa)1/2. From the definition of the adapted sequence of bases
it is easy to see that for any ε > 0 small, there is a constant Cε > 0,
such that for all x ∈ B1

Cε||F1(x)||1+ε ≤ dZ(x, p) ≤ Cε||F1(x)||1−ε.

So if f ∈ Id then we have |f(x)| ≤ C ′
ε||x||d−2εd for some constant C ′

ε >

0. Now we first blow up F (B1) at 0 and then let B̂ be a resolution

of singularities of the blown-up. Let π : B̂ → F (B1) be the natural
projection map, then by general theory π−1

m0 = O(−∑
biEi) where Ei

are the exceptional divisors over 0, and bi are positive integers. Clearly
on compact sets of CN , ||x|| is Hölder equivalent to the Euclidean norm,
so using the above estimate of f we see that π∗f has vanishing order
at least Cd along each Ei for some constant C > 0. Hence the lemma
follows.

Remark 3.21. By the Krull intersection theorem
⋂

d≥0m
d
0 = 0, so

using Lemma 3.20 we have
⋂

k≥0 Ik = 0. In particular, this implies that

d(f) is indeed finite for any non-zero function f ∈ Op.

From Proposition 3.19 we obtain a flat family of complex analytic
spaces with central fiber W and general fiber F1(B1). Using openness of
normality again it follows that F1(B1) is normal. Since F1 is generically
one-to-one, we conclude that F1 is a holomorphic equivalence.

To sum up, we have achieved the following:
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• There is a unique tangent cone C(Y ) of Z at p, as an affine alge-
braic variety together with a Ricci-flat Kähler cone metric.

• There is a polarized affine variety W , obtained as a weighted tan-
gent cone of Z at p under some local holomorphic embedding.

• There is a test configuration for W as a polarized affine algebraic
variety, with central fiber C(Y ).

Further discussion. In algebraic geometry, it is a classical fact that
the Zariski tangent cone is an intrinsic object associated to a germ of
singularity. The above weighted tangent cone W is usually not the same
as the Zariski tangent cone, but we expect that both W and C(Y ) are
also intrinsic invariants of a local algebraic singularity. Notice as in
[37], [33], a test configuration for W can also be viewed as a filtration
on the co-ordinate ring of W . In terms of the notion of K-stability for
polarized affine varieties formulated in [12], and suppose the results of
[2, 8, 9, 10] extend to this case, we can say W is K-semistable and C(Y )
is K-stable. So we see some similarity between the above picture and
the well-known Harder–Narasimhan filtration/Jordan–Hölder filtration
for holomorphic vector bundles. This also motivates the following:

Conjecture 3.22. The filtration (3.3) and the polarized affine vari-
eties W and C(Y ) are uniquely determined by the germ of the analytic
singularity p. In particular, they are independent of the Kähler–Einstein
metric on Z defining them.

One can also formulate a corresponding algebro-geometric conjecture
characterizing W and C(Y ) in terms of K-stability.

It is an interesting question to understand these for explicit algebraic
singularities. Here we discuss two classes of examples. First we consider
a class of isolated hypersurface singularities. For n ≥ 2 and k ≥ 1, we
denote by Xn

k the hypersurface in Cn+1 (n ≥ 2) with defining equation

xk+1
0 + x21 + · · · + x2n = 0. The origin 0 is the unique singular point,

and the germ at 0 is usually called an n dimensional Ak singularity. We
divide the range of (n, k) into three categories:

I = {(n, k)|n = 2}
⋃
{(n, k)|n = 3, k ≤ 2}

⋃
{(n, k)|k = 1};

II = {(n, k)|n = 3, k ≥ 4}
⋃
{(n, k)|n = 4, k ≥ 3};

III = {(3, 3)}
⋃
{(4, 2)}.

Under the above embedding in Cn+1, Xn
k is naturally a polarized affine

variety with respect to the obvious weight (2, k + 1, · · · , k + 1). By
[18, 25], there is a compatible Ricci-flat Kähler cone metric on Xn

k if
and only if (n, k) belongs to I. When n = 2 this is the flat orbifold cone.
When k = 1 this is the n-dimensional Stenzel’s cone.

Now suppose our limit space (Z, p) is locally analytically isomorphic
to (Xn

k , 0). Let C(Y ) be the tangent cone at p, and W be the affine
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variety obtained as above. The question is to describe W and C(Y ).
Our conjectural picture depends on the range of (n, k):

1) (n, k) ∈ I. Naturally one expects that W and C(Y ) are both
the known Ricci-flat Kähler metric with the standard Reeb vector
field.

2) (n, k) ∈ II. In this case, Hein–Naber [23] constructed a Calabi–
Yau metric in a neighborhood of 0 in Xn

k , with the tangent cone

at 0 given by Xn
∞. Here Xn

∞ is the hypersurface in Cn+1 defined
by x21 + · · · + x2n = 0, endowed with the product of the n − 1
dimensional Stenzel cone and the flat metric on C. We expect
that in general W and C(Y ) are both isomorphic to Xn

∞.
3) (n, k) ∈ III: These are critical cases, and we expect W is isomor-

phic to Xn
k , but C(Y ) is isomorphic to Xn

∞.

We make some simple observations that support this picture. It
is not hard to see that under the natural embedding into Cn+1, the
Ricci-flat Kähler cone metric on Xn

∞ has weight vector given by w =
(1, 2n−1

n−2 , · · · , 2n−1
n−2 ). If we consider the standard embedding of Xn

k in

Cn+1, then one sees that the weighted tangent cone with respect to w
is given by Xn

∞ exactly when (n, k) ∈ II. In the case (n, k) ∈ III, Xn
k is

itself a polarized affine variety with respect to w, so it is natural to hope
that Xn

k degenerates to Xn
∞ by another C∗ action that is equivariant

with respect to w (which is obvious to find). With slightly more work,
one can show that when (n, k) ∈ I, the tangent cone can never be Xn

∞.
In general it still remains an algebro-geometric question to verify the
above expectations. We leave this for future work. Notice by Proposi-
tion 2.14 if p is a smooth point of Z (in the complex-analytic sense), then
both W and C(Y ) are isomorphic to Cn (with the standard weight),
but to our knowledge even in this case a purely algebro-geometric proof
of this fact is still lacking.

For another class of examples, we suppose (Z, p) is toric, i.e., there is
an effective action of an n-dimensional torus T n on Z that fixes p and
preserves the limit metric and complex structure. This happens when
(Z, p) is a toric Q-Fano variety (by the uniqueness of Kähler–Einstein
metrics [3]). There are interesting examples appearing on the boundary
of the compactification of moduli spaces of smooth Fano manifolds (cf.
[32]). Let ΔZ be the moment polytope of Z. In this case one can see
that the above discussion can be made in a T n-equivariant manner. In
particular, both W and C(Y ) are also toric. Moreover, there is a T n-
invariant neighborhood U of p, and a holomorphic embedding of U into
some CN such that the T n action extends to a diagonal action on CN ,
and W is realized as a weighted tangent cone of U at p. The fact that W
is normal implies that the Reeb vector field of W indeed lies in the Lie
algebra of T n. In particular, as an affine toric variety, W is isomorphic
to the natural toric tangent cone TpZ of Z at p, with moment polytope
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given by the Euclidean tangent cone of ΔZ at p. Similarly one can show
that C(Y ) is also isomorphic to W as polarized affine varieties. It seems
possible that one can further adapt the results in [27] to this situation,
and determine the Reeb vector field of C(Y ) inside the Reeb cone, in
terms of the geometry of TpZ.

3.4. Tangent cones at infinity. Now we turn to tangent cones at
infinity. The results will be mostly parallel to the case of local tangent
cones. Let (Z, p) be a Gromov–Hausdorff limit of a sequence of spaces in
K(n, κ, V ), and we assume Z is non-compact, i.e., the rescaling factors

ai →∞. Again fix λ = 1/
√
2, and let (Zi, pi) be the rescaling of (Z, p)

by λi this time. A tangent cone at infinity is a Gromov–Hausdorff limit
of a convergent subsequence of (Zi, pi). It is clear that a tangent cone
itself is also a Gromov–Hausdorff limit of spaces in K(n, κ, V ) with the
rescaling factors tending to infinity. Let C∞ be the set of all tangent
cones at infinity. These are independent of the choice of base point p.

It is straightforward to adapt the results of Section 2.3 and Section
3.1 to show that any tangent cone C(Y ) ∈ C∞ is a polarized affine
algebraic variety with coordinate ring R(C(Y )) =

⊕
k≥0Rdk(C(Y )),

and the holomorphic spectrum S = {dk} is independent of C(Y ). We
also have analogous results to Section 3.2, with almost identical proofs.
For the convenience of readers we write down the statements here, and
only point out the part of proof that is different from the case of local
tangent cones. We adapt the notations at the beginning of Section 3.2,
except the natural inclusion map is now given by Λi : Bi → Bi+1.

Proposition 3.23. For any given d̄ /∈ S, we can find i0 = i0(d̄) such
that for all j > i ≥ i0 and any non-zero holomorphic function f defined

on Bj , if ||f ||j ≤ λ−d̄||f ||j−1, then ||f ||i < λ−d̄||f ||i−1.

As in (3.1), given a holomorphic function f on Z, we can define the
order of growth at infinity by

(3.4) d(f) = lim
r→∞

(log r)−1 sup
Br(p)

log |f(x)|.

Similar to the proof of Corollary 3.8, this is well-defined and one can
show d(f) ∈ S ∪ {+∞}. Now let R(Z) be the ring of all holomorphic
functions f on Z with polynomial growth (i.e., with d(f) < +∞).

Given a finite dimensional subspace P ⊂ R(Z) with dimension m.
We can similarly define the notion of an adapted sequence of bases. It
consists of a basis {G1

i , · · · , Gm
i } of P for all large i, such that the

following holds:

• For all a, ||Ga
i ||i = 1; if a �= b, then limi→∞

∫
Bi

Ga
iG

b
i = 0;

• For i large and all a, Λi.G
a
i+1 = μiaG

a
i + pai for μia ∈ C, and

pai ∈ C〈G1
i , · · · , Ga−1

i 〉, with ||pai ||i → 0;
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• There are numbers d1, · · · , dm ∈ S with d1 ≤ d2 ≤ · · · ≤ dm, such
that μia → λda ; Moreover, pai ∈ C〈Gb

i |b ≤ a, db = da〉.
Again for f ∈ C〈Gb

i |a1 ≤ b ≤ a2〉 we have d(f) ∈ [da1 , da2 ]. We also
define d(P ) = {d1, · · · , dm}.

Proposition 3.24. For any d̄ /∈ S, we can find i0 = i0(d̄, P ) such
that for all j > i ≥ i0, and any holomorphic function f defined on Bj , if

f /∈ P and ||Πjf ||j ≤ λ−d̄||Πj−1f ||j−1, then ||Πif ||i < λ−d̄||Πi−1f ||i−1.
Here Πj(f) denotes the L2 orthogonal projection of f |Bj

to the orthog-
onal complement of P |Bj

.

Proposition 3.25. Given a holomorphic function f ∈ R(Z). Sup-
pose f /∈ P , then the following limit:

− lim
i→∞

(log λ)−1 log(||Πi+1f ||i+1/||Πif ||i)
is a well-defined element in S∪{+∞}, which we denote by dP (f). More-

over, if dP (f) ∈ S, then P̂ = P ⊕C〈f〉 also admits an adapted sequence

of bases, with d(P̂ ) = d(P ) ∪ {dP (f)}.
Now we fix a tangent cone C(Y ) ∈ C∞, and a subsequence {α} ⊂ {i}

such that Bα converges to the unit ball B in C(Y ). For d ∈ S, we
denote by Id the space of holomorphic functions f on Z with d(f) ≤ d.
Again we list elements in S with increasing order 0 = d0 < d1 < · · · ,
and denote μk = dimRdk(C(Y )). Then we define a filtration of R(Z)

(3.5) 0 = I0 ⊂ I1 ⊂ I2 ⊂ · · · ,
and correspondingly a graded ring

R∞(Z) =
⊕
k≥0

Ik+1/Ik.

The difference from (3.3) is that the inclusion direction is reversed.

Proposition 3.26. For all k ≥ 0, we can find a decomposition
Ik+1 = Ik ⊕ Jk, such that dim Jk = μk, and Jk admits an adapted
sequence of bases with d(Jk) = {dk}.

The proof is similar to Proposition 3.14, except a new technical point
due to the fact that a priori Ik may be empty for k ≥ 1 so we need
to construct global holomorphic functions in the meantime. Again we
prove by induction on k. Let J0 be the space of constant functions.
Now we assume the conclusion holds for all j ≤ k− 1. Let J be the set
of all finite dimensional subspaces J ⊂ Ik which satisfy J ∩ Ik−1 = 0,
and which admit an adapted sequence of bases with d(J) = {dk}. By
definition of adapted sequence of bases we have for all such J that
dim J ≤ μk. Let Jk ∈ J be a maximal element. Now we prove that
dim Jk = μk. Suppose not, then by passing to a subsequence {β} ⊂
{α} we obtain an orthonormal limit set of homogeneous holomorphic
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functions G1, · · · , Gp on B∞ ⊂ C(Y ) of charge dk, with p < μk. Now we
pick a function f in Rdk(C(Y )) with ||f ||L2(B∞) = 1, that is orthogonal

to C〈G1, · · · , Gp〉. Then by Proposition 2.9 for β large we may find
a sequence of holomorphic functions fβ defined on Bβ that converges
uniformly to f as β →∞.

Denote P =
⊕

j≤k Jj . By Proposition 3.23 and 3.24, we can find

ε > 0 small and β0 > 0 such that if β > β1 > β0 then ||fβ1+1||β1+1 ≤
λ−dk−ε||fβ1

||β1
, and ||Πβ1+1fβ1+1||β1+1 ≤ λ−dk−ε||Πβ1

fβ1
||β1

. So, in
particular, by using a diagonal sequence argument we may assume fβ
converges to a limit F over any fixed size ball, with d(F ) ≤ dk and
dP (F ) ≤ dk. In particular, F ∈ Ik. From this point, the proof proceeds
identically the same as Proposition 3.14, and we skip it here.

Now we proceed to prove Theorem 1.4. Choose k0 so that dk0 > D
and R(C(Y )) is generated by ED(C(Y )), and a sequence of adapted
bases for Jk for all k ≤ k0. Using these we define maps Fi : Z → CN

for i sufficiently large with Fi(pi) = 0, where N = dimED(C(Y )).
As in Lemma 3.15, one then proves that R(Z) is generated by⊕
k≤k0

Jk and R∞(Z) is generated by
⊕

k≤k0
Ik+1/Ik. The chosen

adapted bases of Jk for k ≥ k0 then realizes Spec(R(Z)) as an affine va-

riety Z̃i in CN . It is clear that Fi(Z) ⊂ Z̃i. We claim that Fi(Z) = Z̃i.

Notice by definition R(Z) is an integral domain, so Z̃i is reduced and

irreducible. Thus it suffices to prove that dim Z̃i = dimZ. For this we

notice that dim Ik =
∑k

j=0Rdj ≤ Cdnk , so the dimension of polynomial

functions on Z̃i with the usual degree at most d is also bounded by Cdn,
and hence dim Z̃i ≤ n.

Now we can follow the same arguments as in Section 3.3 to show
that Fi is indeed a holomorphic embedding, and, furthermore, there is a
unique tangent cone C(Y ) at infinity. This finishes the proof of Theorem
1.4. Moreover, one can obtain an algebro-geometric description of the
tangent cone at infinity, similar to Section 3.3. However, in general one
would not expect a naive intrinsic algebro-geometric characterization of
W and C(Y ) in terms of the affine algebraic variety underlying Z. As a
simple example, we go back to Xn

1 . For the Stenzel metric we know the
tangent cone at infinity is Xn

1 itself. Since we are reversing the direction
here, it does admit a weighted tangent cone at infinity isomorphic to
Xn

∞, so a priori Xn
1 could admit a Calabi–Yau metric with tangent cone

at infinity given by Xn
∞. This is also suggested by the construction

of [23].

4. Appendix: Futaki and Matsushima theorem for polarized

affine varieties

In this section, we denote by Z a tangent cone in the setting of Section
2.3. The goal here is to prove Proposition 2.21, and some other related
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results. Recall we have proved that Z is a polarized affine variety, en-
dowed with a weak Ricci-flat Kähler cone metric. We fix an equivariant
embedding of Z into CN . The Reeb vector field ξ0 generates a holo-
morphic action of a compact torus T on Z, which fixes the vertex of
Z. Moreover, the action extends to CN , through an embedding of T
into the standard diagonal torus TN . In particular, if we denote by
t the Lie algebra of T, then t is naturally a subspace of RN . Denote
t
+ = t ∩ (R+)N , then ξ0 ∈ t

+.
By Lemma 2.5 in [22], there is a smooth family of TN -invariant

Kähler cone metrics ωξ on CN \ {0}, parametrized by ξ ∈ (R+)N , such

that for ξ1 = (1, · · · , 1), ωξ1 is the standard flat metric on CN , and for
all ξ, ωξ has Reeb vector field ξ (called the type I deformation of ωξ1).

Being a cone we have ωξ =
1
4dd

cr2, where r is the distance function to
the vertex with respect to ωξ. For all ξ, the link {r = 1} is identified the

unit sphere SN−1 in CN , with the standard CR structure. For ξ ∈ t
+,

ωξ restricts to a T invariant Kähler cone metric on Z. Let Y = Z∩SN−1.
Notice Y is in general different from, but naturally homeomorphic, to
the link of Z with respect to the Ricci-flat cone metric ω̂.

We define

V (ξ) =

∫
Z
e−r2/2(ddcr2)n.

Up to multiplication by a dimensional constant, V (ξ) is the same as
the volume of Y computed using the restriction of the metric ωξ. For

simplicity of notation we will denote the measure dμ = e−r2/2(ddcr2)n.
Let η = dc log r be the dual one-form of ξ. It is T-invariant, and satisfies
Lr∂rη = 0.

Lemma 4.1.

(4.1) dV (δξ) = −n
∫
Z
η(δξ)dμ,

(4.2) HessV (δξ, δ′ξ) = n(n+ 1)

∫
Z
η(δξ)η(δ′ξ)dμ.

In particular, V (ξ) is strictly convex on t
+.

This is proved in [28] under the assumption that Z \ {0} is smooth.
We will perform the calculation on the cone Z, from which it is evident
that the appearance of singularities does not cause essential difficulties.

We work on CN \ {0}, and denote the variation by δ(r2) = r2φ.
Taking the variation of the equation Lr∂rr

2 = 2r2, we obtain

(4.3) dcφ(ξ) = −2η(δξ).
By definition the right hand side is radially invariant. It follows that
|φ(r)| ≤ C| log r|. Similarly |∇φ(r)| ≤ Cr−1| log r|. We compute the
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first variation

dV (δξ) =

∫
Z
e−r2/2(−1

2
r2φ(ddcr2)n + nddc(r2φ)(ddcr2)n−1)

= −
∫
Z

1

2
r2φdμ+

n

2
d(r2)dc(r2φ)e−r2/2(ddcr2)n−1.

The second equality involves integration by parts. This can be verified
by lifting to a T-equivariant resolution Z ′ (see [24] for the existence
of such a resolution), and using the above estimate of φ and |∇φ| on
CN \ {0}.

Note for one-forms α, β on CN \ {0}, we have

(4.4) nα ∧ β ∧ (ddcr2)n−1 =
1

4
〈α, Jβ〉(ddcr2)n.

Applying (4.4) with α = dr, and β = dc(r2φ), we obtain

dV (δξ) =
1

4

∫
Z
dcφ(δξ)r2dμ.

Using (4.3) and the fact that η(δξ) is r-invariant, this proves (4.1).
Now consider a new variation δ′ξ and accordingly δ′(r2) = r2ψ. Then

− 1

n
HessV (δξ, δ′ξ) =

∫
Z

1

2
dcψ(δξ)dμ −

∫
Z

1

2
r2ψη(δξ)dμ

+

∫
Z
η(δξ)e−r2/2nddc(r2ψ)(ddcr2)n−1

= I + II + III.

As above we use integration by parts to get

III = −n
∫
Z
d(η(δξ))ψdc(r2)e−

r2

2 (ddcr2)n−1

− n

∫
Z
r2d(η(δξ))dcψe−

r2

2 (ddcr2)n−1

+
n

2

∫
Z
η(δξ)e−r2/2d(r2)r2dcψ(ddcr2)n−1

+ 2n

∫
Z
r2ψη(δξ)drdcr(ddcr2)n−1.

Applying (4.4) we see the first term in III vanishes since η(δξ) is r-
invariant, the third term equals −1

2

∫
X η(δξ)η(δ′ξ)r2dμ, and the last

term in III equals 1
2

∫
Z r2ψη(δξ)dμ. For the second term in III, we write

r2d(η(δξ)) = d(r2η(δξ)) − η(δξ)d(r2).

Notice that Lδξ(r
2η) = 0, so

(4.5) d(r2η(δξ)) = −ιδξd(r2η) = −1

2
ιδξdd

cr2.
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So applying (4.3) and (4.4) we see

− n

∫
Z
r2d(η(δξ))dcψe−r2/2(ddcr2)n−1

= −1

2

∫
Z
dcψ(δξ)dμ −

∫
Z
η(δξ)η(δ′ξ)dμ.

Therefore,

III= − 1

2

∫
Z
dcψ(δξ)dμ−

∫
Z
η(δξ)η(δ′ξ)(1+

1

2
r2)dμ+

1

2

∫
Z
r2ψη(δξ)dμ.

Adding together I, II, III, and using the fact that η(δξ) and η(δ′ξ) are
r-invariant, we get (4.2).

Finally, to see V (ξ) is strictly convex, it suffices to show that if η(δξ)
vanishes on X, then δξ = 0. This follows from (4.5).

Lemma 4.2. V (ξ)/Vn is a rational function with rational coefficients
in the components of ξ, where Vn is the volume of the round sphere
S2n−1 ⊂ Cn.

This is again proved in [28] under the assumption that Z \ {0} is
smooth. For ξ ∈ R, we define the index character

F (ξ, t) =
∑
α∈Γ∗

e−〈α,ξ〉t dimHα,

where Hα denotes the space of holomorphic functions on Z with weight
α under the T action.

It is shown in [12] that there is an asymptotic expansion (for |t| � 1)

F (ξ, t) =
a0(ξ)(n − 1)!

tn
+

a1(ξ)(n − 2)!

tn−1
+ . . . ,

where a0(ξ) > 0 is a rational function in ξ with rational coefficients. In
particular, a0(ξ) depends smoothly on ξ. We claim that a0(ξ) = cnV (ξ)
where cn is a universal dimensional constant. Since both functions are
continuous it suffices to prove this for a rational vector ξ, in which case
one can use the Riemann–Roch theorem for orbifolds (or more precisely,
Deligne–Mumford stacks) to obtain that a0(ξ) = 1

(n−1)!

∫
V c1(L)

n−1,

where V is the quotient orbifold and L is the descended ample orbi-
line bundle. It follows from a similar calculation as in the smooth case
that the latter can be computed using Chern–Weil theory, and we get
a0(ξ) = cnV (ξ). This proves the lemma.

Lemma 4.3. There are an integer l and a parallel section s of K l
Z ,

such that (s⊗ s̄)1/l = ω̂n.

Suppose Z is the Gromov–Hausdorff limit of a sequence (Xi, L
ai
i ,

aiωi, pi) in K(n, κ, V ) with ai →∞. For simplicity of notation we only
prove the case λ = −1, so that Li = KXi

. The proof of the other cases
is similar. By the main results of [17], we may find an integer l and
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C > 0, and holomorphic sections si ∈ H0(Xi,K
l
Xi
) with |si(pi)| = 1

and
∫
Xi
|si|2 ≤ C. By the gradient estimate for holomorphic sections

(Proposition 2.1 in [17]) there is a constantD > 0 such that |∇ωi
si|L∞ ≤

D. Now after we rescale the manifold Xi by a factor ai, while fixing
the Hermitian metric on KXi

(determined by the volume form of ωi)

and the corresponding Chern connection, we have |∇aiωi
si|L∞ ≤ a−1

i D.
Then it follows by passing to a subsequence that si converges locally
uniformly to a section s of K l

Zreg which, over the regular part Zreg, is
parallel with respect to the Chern connection defined by the volume
form of ω̂. Multiplying by a constant we may assume (s ⊗ s̄)1/l = ω̂n.
Similar to the proof of Proposition 4.15 in [17] this implies that Z has
log terminal singularities so K l

Z is a well-defined line bundle, with a

global section s satisfying (s⊗ s̄)1/l = ω̂n.

Remark 4.4. This lemma is the only place where we need to restrict
our study to the smaller set K(n, κ, V ) rather than K(n, κ). We expect
the lemma to hold in greater generality and we leave this for future
study.

As in [22], we focus our attention on a hyperplane section in t
+.

Since s is parallel on Z, we have Lξ0s = ias for some a ∈ R. Since

(s ⊗ s̄)1/l = ωn and Lr∂rω = 2ω, it follows that a = nl. Similarly, for
any ξ ∈ t, Lξs = ic(ξ)s for some linear function c : t→ R. Since T acts

on the bundle K l
Z , it is not hard to see that c has rational coefficients.

Now we define

H = {ξ ∈ t
+|c(ξ) = nl}.

By Lemma 4.2, V |H is also a rational function with rational coefficients.

Denote ω = ωξ0 , and h = − log |s|2/lω . Then

Ric(ω) = −i∂∂̄ logωn = −i∂∂̄h.
Consider a tangent vector δξ ofH. By (4.5) we have δξ = 1

2J∇(r2η(δξ)).
So

LJδξh = −Δ(r2η(δξ)) +
2

l
c(δξ),

and

(4.6) dV (δξ) =
1

2

∫
Z
r2η(δξ)dμ = −1

2

∫
Z
LJδξhdμ.

Proposition 4.5 (Futaki Theorem). ξ0 is a critical point of V |H .

Given this Proposition, it follows that ξ0 is a critical point of a set of
polynomial equations with rational coefficients. Now Lemma 4.1 implies
the Hessian of V |H is non-degenerate, so ξ0 is indeed an isolated critical
point on H ⊗C. Then Proposition 2.21 follows from an observation in
[28]. For completeness we provide a detailed argument here.
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Lemma 4.6. Suppose X = (x1, · · · , xr) ∈ Cr is an isolated zero of
a system of polynomial equations with rational coefficients, then each xi
is an algebraic number.

Suppose this fails, without loss of generality we may assume {x1, · · · ,
xt} is a maximal algebraically independent subset of {x1, · · · , xr}. Then
for any {x′1, · · · , x′t} such that {x1, x′1, · · · , xt, x′t} is algebraically inde-
pendent we can find an element τ ∈ Gal(C/Q) such that τ(xi) = x′i.
Here Gal(C/Q) denotes the group of field automorphisms of C that fix
elements in Q. Clearly for any fixed δ > 0 we may assume |xi − x′i| < δ
for all i ≤ t. Now let gt+1(x) be the minimal polynomial of xt+1 over
Q(x1, · · · , xt). If we choose x′i(i = 1, · · · , t) as above, then we can find
x′t+1 ∈ C such that |x′t+1 − xt+1| = ε(δ) and τ(gt+1)(x

′
t+1) = 0, where

ε(δ) tends to zero as δ tends to zero. Now since gt+1(xt+1) = 0, we can
choose σt+1 ∈ Gal(C/Q(x1, · · · , xt)) such that τt+1 = τ◦σt+1 sends xt+1

to x′t+1. Then we can proceed by induction to find for all j ≥ t+ 2, an
x′j ∈ C with |x′j − xj | ≤ ε(δ), an element σj ∈ Gal(C/Q(x1, · · · , xj−1))

such that τj = τj−1 ◦σj sends xj to x′j. It follows that X
′ = (x′1, · · · , x′r)

is also a zero of the same system of polynomial equations. Let δ → 0,
we see that X is not an isolated zero, contradiction.

If Z is smooth, then the expression (4.6) is the usual Futaki-invariant
adapted to Kähler cones. The crucial fact is that this is independent of
the choice of the Kähler cone metric on Z with fixed Reeb vector field.
Hence we can compute it using the Ricci-flat cone metric, and derive
the vanishing of (4.6). In general Z is singular. We will use the results
of pluripotential theory to prove Proposition 4.5.

Notice that on Y we have a Reeb foliation by ξ0, a contact 1-form
η, and a transverse Kähler structure ωT = 1

2dη (strictly speaking, a

Kähler current near the singular part of Y ), all induced from SN−1.
Let H be the space of bounded transverse Kähler potentials, i.e., the
space of basic (i.e., T-invariant), bounded, upper semi-continuous func-
tions on Y that is transversely pluri-subharmonic with respect to ωT .
As usual such a Kähler potential φ gives rise to a transverse Monge–
Ampère measure, which together with the form η, defines a T-invariant
measure (dη + ddcφ)n−1 ∧ η on Y . In the smooth case this agrees
with the Riemannian volume form of the Sasaki structure defined by
η + dcφ.

On the other hand, the above holomorphic section s on Z defines a
volume form Ω on the smooth part of Y by (s⊗ s̄)1/l|Y = dr ∧Ω. So Ω
determines a T-invariant measure on Y , which we also denote by Ω. An
element φ in H then defines a T-invariant measure Ωφ = e−φΩ on Y .

Let r̂ be distance function to the vertex, defined by the metric ω̂.
Write r̂ = reφ for some T-invariant function φ on Z, then the fact
that ω̂ and ω have the same Reeb vector field implies that φ is also
r-invariant. So we may view φ as an element in H. One then checks
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that (dη + ddcφ)n−1 ∧ η = CΩφ for a positive constant C. So it defines
a weak transverse Kähler–Einstein metric.

As in [10], we define the Ding functional

D(φ) = I(φ)− log

∫
Y
Ωφ,

where

I(φ) = − 1

nV (ξ0)

n−1∑
i=0

∫
Y
φ(dη)i ∧ (dη + ddcφ)n−1−i ∧ η,

and the terms are made sense in terms of the usual pluri-potential the-
ory.

Now given δξ, let ft be the family of holomorphic transformations of
Z generated by Jδξ, and we denote by φ(t) the corresponding family
of transverse Kähler potentials. Then a direct calculation (similar to
Lemma 12 in [10]) shows that

(4.7)
d

dt
D(φ(t)) = −

∫
Z
LJδξhdμ.

Notice the right hand side is independent of t. Just as in [4], given
φ0, φ1 ∈ H, one can find a bounded geodesic φ(t)(t ∈ [0, 1]) in H con-
necting φ0 and φ1. The key property we need is

Proposition 4.7. D is convex along φ(t).

It is straightforward to check that in our setting φ is a critical point of
D. Then Proposition 4.7 implies that D is bounded below on H. Then
Proposition 4.5 follows from (4.7) and (4.6).

Therefore, we are, finally, reduced to prove Proposition 4.7. We also
state two related results that is used in Section 3. Let Aut(Z) be the
group of holomorphic transformations of Z that preserves ξ0; in the
notation of Section 3, this is a subgroup of Gξ0 that fixes [Z] in Hilb.
The following results were proved in [4] and [10] for Kähler–Einstein
Q-Fano varieties.

Proposition 4.8 (Bando–Mabuchi theorem). Ricci-flat Kähler cone
metric on Z with Reeb vector field ξ0 is unique up to the action of the
identity component of Aut(Z).

Proposition 4.9 (Matsushima theorem). Aut(Z) is reductive.

Propositions 4.7, 4.8 and 4.9 can be proved using arguments analo-
gous to the appendix of [10], with the main technical input from [4] and
[3]. We will only sketch below the key points that require extra care in
our setting.

Remark 4.10. In the three dimensional case, we proved in [17] that
Y is a five dimensional Sasaki–Einstein orbifold, hence in that case all
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the above results can be alternatively obtained by direct computations
similar to the case of smooth Sasaki–Einstein manifolds.

(1). One difference in our setting is that we do not have a “resolution
of singularities” for Sasaki manifolds or affine cones. Notice Lemma
4.3 implies that Z has log terminal singularities. We can find a TC,k-
equivariant log resolution of singularities π : Z ′ → Z (cf. [24]), with
simple normal crossing exceptional divisors Ei. So KZ′ = π∗KZ +∑

i aiEi with ai > −1 for all i. Let E1, · · · , Es be the set of exceptional
divisors that do not lie over the vertex (the other exceptional divisors are
irrelevant). By construction we may assume the resolution is obtained
by a sequence of blow-ups of the ambient space CN at smooth TC-
invariant subvarieties. Let P be the corresponding ambient space after
blowing up and let Y ′ = π−1(Y ). It follows that Y ′ is naturally a
smooth submanifold of P . Let η′ = π∗η, ξ′ = π∗ξ, and ω′ = π∗ω, then
we obtain an induced foliation on Y ′, and (η′, ξ′, ω′) is a degenerate
Sasaki structure on Y ′. It is in general not possible to deform this to a
genuine Sasaki structure.

But for our purpose we only need to deal with the transverse geo-
metric properties of the foliation. By general theory, we find for all
i = 1, · · · , s, a rational number ai > 0 and a Hermitian metric hi on the
transverse holomorphic line bundle Ei|Y ′ with curvature form ωi, such
that ω′

ε = ω′ − ε
∑

i aiωi is a transverse Kähler form on Y ′ for all ε > 0
sufficiently small. We fix such an ε ∈ Q.

We write −KZ′ = −π∗KZ−E+Δ′, where E and Δ are both effective,
E has integer coefficients and Δ′ has coefficients in (0, 1). For simplicity
we denote by KY ′ and KY the transverse canonical line bundles on Y ′

and Y , respectively. Then we have −KY ′ = −π∗KY − E + Δ′. Let
L = K−1

Y ′ ⊗ E, then L is isomorphic to −π∗KY +Δ′.

(2). We need a version of “transverse Hodge decomposition theorem”
for basic forms, i.e., forms α on Y ′ satisfying ιξ′α = 0 and Lξ′α = 0.
One can define a transverse Hodge ∗ operator acting on basic forms,
using the transverse volume form ω′

ε. Globally we use the L2 inner
product defined by ω′

ε and η′. Using the fact that dη′ is basic, one sees
that the formal adjoint d∗ of d is indeed given by −∗d∗. Then it is easy
to work locally in the leaf space and develop the relevant elliptic theory
for the basic Laplacian operator. One can also work out the analog for
∂̄ operator.

(3). One needs to check the local construction of pluripotential theory
works well in our setting. For example, we need to approximate bounded
pluri-subharmonic functions by a decreasing sequence of smooth func-
tions which are almost pluri-subharmonic. The results of [4] use the
construction of Blocki–Kolodziej, which depends on the choice of cut-
off functions. Notice we do not have T-invariant cut-off functions on
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Y ′ in general, but we can first do the construction using an arbitrary
cut-off function, then take average over T.

(4). We need a version of the Kawamata–Viehweg vanishing that
Hn,1(Y ′, L) = 0. Note we may write L = (−π∗KY − ε

∑
i aiEi) + Δ′′,

such that −π∗KY − ε
∑

i aiEi admits a Hermitian metric of positive
transverse curvature and Δ′′ still has coefficients in (0, 1). Then we
may apply the proof of Demailly [14]. For the convenience of readers
we provide here a detailed analytic proof in the case of compact Kähler
manifolds, from which it is straightforward to extend to our setting,
using the above transverse Hodge theory.

Lemma 4.11. Let X be a compact n dimensional Kähler manifold
and L be a holomorphic line bundle over X. Suppose we can write
L⊗k = L′ ⊗ [F ], where L′ is ample, and [F ] is the line bundle defined
by an effective divisor F =

∑
ciFi with normal crossing support and

k−1ci ∈ (0, 1). Then we have Hn,q(X,L) = 0 for any q ≥ 1.

To prove this we choose a smooth Hermitian metric h′ on L′ with
curvature ω > 0. Fix defining sections si of Fi. These define a singular
Hermitian metric hF on [F ] which is smooth away from ∪Fi, and with
curvature

∑
i aiδFi

, where δFi
is the current of integration along Fi.

Together with h′ this defines a singular Hermitian metric h0 on L with
iFh0

≥ k−1ω as currents. Given a smooth Hermitian metric h̃ on [F ],

for ε ∈ (0, 1] we obtain a smooth Hermitian metric hF (1 + εhF h̃
−1) on

[F ]. Together with h′ this gives rise to a family of Hermitian metrics
hε on L, that increase to h0 as ε tends to zero. Then a calculation (cf.
Lemma 16, [10]) shows that iFhε

≥ k−1ω−f2
ε ω for a smooth function fε

satisfying 0 ≤ fε ≤ C and fε converges to 0 uniformly on any compact
subset of X \ ∪Fi.

Given u ∈ Ωn,q(X,L) with ∂̄u = 0, by the Kodaira–Nakano formula
([15]) we have

q−1(Δ∂̄u, u)ε ≥ k−1||u||2ε − ||fεu||2ε ,
where the subscript ε denotes the L2 inner product is defined in terms
of ω and hε. By standard elliptic theory, the operator q−1Δ + f2

ε has
an inverse Gε with ||Gεu||2ε ≤ k||u||2ε ≤ kq−1||u||20. So we can write

u = q−1∂̄∂̄∗Gεu+ q−1∂̄∗∂̄Gεu+ f2
εGεu.

Since ||Gεu||2ε is uniformly bounded and fε ≤ C, it follows that ||∂̄∗Gεu||2ε
is uniformly bounded. This implies that ||∂̄∗Gεu||21 is also uniformly
bounded. By passing to a subsequence we may assume that as ε → 0,
∂̄∗Gεu converges weakly to a limit v in L2. Since ∂̄u = 0, we have

u = q−1∂̄∂̄∗Gεu+Π(f2
ε Gεu),
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where Π denotes the L2 orthogonal projection to Ker∂̄, defined in
terms of the metric hε. Write wε = Π(f2

ε Gεu), then ||wε||2ε is uni-
formly bounded, so it converges weakly to a limit w in L2. Moreover,
since hε converges to h0 locally uniformly away from ∪Fi, ||w||20 <
lim infε→0 ||wε||2ε . It then follows that u = q−1∂̄v + w. We claim
||w||20 = lim(w,wε)ε. Indeed, writing hε = h1Hε (ε ∈ [0, 1]) for a positive
function Hε, then

(w,wε)ε =

∫
〈w,wε〉h1

Hε.

Since ||wε||2ε is uniformly bounded, we have wεH
1/2
ε converges weakly in

L2 to wH
1/2
0 . So ∫

〈w,wε〉h1
H1/2

ε H
1/2
0 → ||w||20.

On the other hand, since Hε ≤ H0 and Hε converges to H0 away from
∪Fi, we have

|
∫
〈w,wε〉h1

H1/2
ε (H1/2

ε −H
1/2
0 )|2

≤ ||wε||2ε
∫
|w|2h0

H0(H
1/2
ε H

−1/2
0 − 1)2 → 0.

This proves the claim. Finally, we have

(w,wε)ε = (w, f2
ε Gεu)ε ≤ ||f2

ε w||2ε ||Gεu||2ε ≤ ||f2
ε w||20||Gεu||2ε → 0,

where the last inequality uses the fact that fε converges to zero uni-
formly on compact subset of X \ ∪Fi. So w = 0, and u = q−1∂̄v.
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