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Abstract

In 1969, P. Deligne and D. Mumford compactified the moduli
space of curves Mg,n. Their compactification Mg,n is a projective
algebraic variety, and as such it has an underlying analytic struc-
ture. Alternatively, the quotient of the augmented Teichmüller
space by the action of the mapping class group gives a compact-
ification of Mg,n. We put an analytic structure on this quotient
and prove that with respect to this structure, the compactification
is canonically isomorphic (as an analytic space) to the Deligne–
Mumford compactification Mg,n.

Introduction

Let Mg,n be the moduli space of curves of genus g with n marked
points, where 2 − 2g − n < 0. The Deligne–Mumford compactification,
denoted as Mg,n, compactifies Mg,n. This space was introduced in [13]
by P. Deligne and D. Mumford, and it is a projective algebraic variety
[35, 36]. It has a certain universal property in the algebraic category: it
is a coarse moduli space for the stable curves functor (see Section 0.1).

One can alternatively consider the moduli space Mg,n from an an-
alytic point of view in the context of Teichmüller theory. Let S be a
compact oriented topological surface of genus g, and let Z ⊂ S be a
finite set of cardinality n. Consider the Teichmüller space T(S,Z); it is
a complex manifold of dimension 3g − 3 + n, and the mapping class
group Mod(S,Z) acts on it. The action is properly discontinuous but
not free in general. The quotient of T(S,Z) by this action can be iden-
tified with Mg,n; in this way, Mg,n inherits the structure of a com-
plex orbifold. In [4], W. Abikoff introduced the augmented Teichmüller

space, which we denote as T̂(S,Z). This space is the ordinary Teichmüller
space T(S,Z) with a stratified boundary attached (see Section 2); the
augmented Teichmüller space has no manifold structure. The mapping
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class group Mod(S,Z) also acts on T̂(S,Z), and we define the quotient

M̂(S,Z) := T̂(S,Z)/Mod(S,Z) to be the augmented moduli space. This
space is a compactification of Mg,n.

The main question that motivates this article is this: How do Mg,n

and M̂(S,Z) compare? In [26], W. Harvey proved that they are home-
omorphic. We wish to compare these spaces in the analytic category.
Since Mg,n is a compact algebraic variety, it has an underlying ana-
lytic structure. However, the augmented moduli space is a priori just
a topological space. It cannot inherit an analytic structure from the

augmented Teichmüller space, since T̂(S,Z) has no analytic structure. A
large part of this work is devoted to endowing the augmented moduli
space with an analytic structure, so that with respect to this analytic
structure it is a coarse moduli space for the stable curves functor (in
the analytic category). We then prove that as an analytic space, the
Deligne–Mumford compactification is also a coarse moduli space for the
stable curves functor (in the analytic category), establishing that Mg,n

and M̂(S,Z) are canonically isomorphic.

0.1. Coarse moduli spaces. Let AnalyticSpaces and Sets denote
the category of complex analytic spaces and the category of sets, re-
spectively. Consider the functor SCg,n : AnalyticSpaces → Sets that
associates to an analytic space A, the set of isomorphism classes of
flat proper families of stable curves of genus g with n marked points,
parametrized by A. Our principal result is that with respect to the ana-

lytic structure we will put on M̂(S,Z), it is a coarse moduli space in the
following sense.

Theorem. There exists a natural transformation

η : SCg,n → Mor(•,M̂(S,Z))

with the following universal property: for every analytic space Y together
with a natural transformation ηY : SCg,n → Mor(•, Y ), there exists a

unique morphism F : M̂(S,Z) → Y such that for all analytic spaces A,
the following diagram commutes.

Mor(A,M̂(S,Z))

F∗

��

SCg,n(A)

η
77♥♥♥♥♥♥♥♥♥♥♥♥

ηY
((◗◗

◗◗
◗◗

◗◗
◗◗

◗◗

Mor(A,Y )

Remark 0.1. As mentioned above, as an algebraic space the Deligne–
Mumford compactification Mg,n has the above universal property in the
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algebraic category. We wish to compare the underlying analytic struc-

ture of Mg,n with the analytic structure we will put on M̂(S,Z); Mg,n

has the structure of a complex orbifold (see [28, 47]). We will prove the

theorem above for the augmented moduli space M̂(S,Z), and then we will

exhibit an analytic isomorphism M̂(S,Z) → Mg,n.

The analytic structure we will give M̂(S,Z) comes from an intermediate

quotient of T̂(S,Z) that is a complex analytic manifold; this is the key of
our construction.

The space T̂(S,Z) is a union of strata SΓ corresponding to multicurves
Γ on S − Z. For the multicurve Γ ⊂ S − Z, define

UΓ :=
⋃

Γ′⊆Γ

SΓ′ ,

and denote by ∆Γ the subgroup of Mod(S,Z) generated by the Dehn
twists around elements of Γ. Then ∆Γ acts on UΓ, and we prove that the
quotientQΓ := UΓ/∆Γ is a complex manifold. Moreover,QΓ parametrizes
a Γ-marked flat proper family of stable curves (see Section 5), and it is
universal for this property.

0.2. Outline. We discuss stable curves in Section 1, the augmented
Teichmüller space in Section 2, proper flat families of stable curves in
Section 3, and an important vector bundle in Section 4. We define the
notion of Γ-marking for a proper flat family of stable curves in Section
5 and discuss Fenchel–Nielsen coordinates for families of stable curves
in Section 6. We use Fenchel–Nielsen coordinates to show that QΓ is a
topological manifold of dimension 6g−6+2n and discuss the Γ-marked
family it parametrizes in Section 7. We then address the analytic struc-
ture of QΓ in Section 10, but this is really a corollary of the discussions
in Section 8 and Section 9; these sections along with Section 10 are the
heart of the paper. To give QΓ a complex structure, we manufacture
a map Φ : PΓ → QΓ coming from a plumbing construction (where PΓ

is a particular complex manifold) in Section 8. Both QΓ and PΓ are
stratified spaces, where the strata are complex manifolds, and they are
indexed by Γ′ ⊆ Γ. Proving that Φ is locally injective is a significant
challenge. The sequence of arguments proceeds as follows:

• We first prove that Φ : PΓ → QΓ is continuous.
• We then prove that Φ respects the strata and that the restriction
is analytic; that is for all Γ′ ⊆ Γ, the restriction PΓ′

Γ → QΓ′

Γ is
analytic.

• We ultimately prove that Φ is a local homeomorphism. This follows
from a strata-by-strata induction argument involving properness,
the inverse function theorem applied to the map Φ restricted to
strata of PΓ, and a monodromy computation.
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The universal property of QΓ is proved in Section 10, and a description
of the cotangent bundle of QΓ is given in Section 11.

The space M̂(S,Z) will acquire its analytic structure from QΓ (only
locally as we need different Γ’s in different places). Its local structure
is especially nice (for an analytic space): the space is locally isomorphic
to a quotient of a subset of Cn by the action of a finite group (that is,

it is a complex orbifold). The universal property of M̂(S,Z) is proved
in Section 12. Finally, in Section 13 we obtain an isomorphism between

M̂(S,Z) and Mg,n in the category of analytic spaces.
We conclude with an appendix explaining how our complex structure

on M̂(S,Z) relates to that obtained by C. Earle and A. Marden [15].

The quotient M̂(S,Z): a bit of history. The space M̂(S,Z) was first
introduced by W. Abikoff [1, 2, 3, 4]. Over the past 40 years, many
mathematicians have studied degenerating families of Riemann surfaces
in the context of augmented Teichmüller space and augmented moduli
space; among them are L. Bers [8, 9], V. Braungardt [10], E. Arbarello,
M. Cornalba, and P. Griffiths [6], C. Earle and A. Marden [15], J. Harris
and I. Morrison [23], W. Harvey [26], V. Hinich and A. Vaintrob [30],
F. Herrlich [28], F. Herrlich and G. Schmithüesen [29], I. Kra [37], H.
Masur [42], J. Robbin and D. Salamon [47], M. Wolf and S. Wolpert
[48], and S. Wolpert [49, 50, 51, 52, 53, 54, 55, 56, 57].

In [26], W. Harvey proved that the Deligne–Mumford compactifi-

cation Mg,n and the augmented moduli space M̂(S,Z) are homeomor-
phic. In [10], V. Braungardt proved that in the category of locally
ringed spaces, the Deligne–Mumford compactification Mg,n and the

augmented moduli space are isomorphic (thereby establishing thatMg,n

and the augmented moduli space are isomorphic as analytic spaces); this
construction was repeated in [29] by F. Herrlich and G. Schmithüesen.
Specifically, the authors begin with Mg,n as a locally ringed space and

consider normal ramified covers X → X/G ≈ Mg,n. Braungardt showed

that among these covers is a universal one, T g,n, which is a locally ringed

space. It is proved in [10] and [29] that this space T g,n is homeomorphic
to the augmented Teichmüller space, and this homeomorphism identifies
the group G with the mapping class group. The book [6] is an excellent
comprehensive resource that contains current algebro-geometric and an-
alytic results about Mg,n.
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Epstein, G. Muller, F. Herrlich, D. Testa, A. Knutson, and O. Antoĺın-
Camarena for many useful discussions. Thanks to X. Buff for the proof
of Lemma 9.6. And special thanks to S. Wolpert for sharing his valuable
insights and helpful comments on an early version of this manuscript.
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1. Stable curves

A curve X is a reduced 1-dimensional analytic space. A point x ∈ X
is an ordinary double point if it has a neighborhood in X isomorphic to
a neighborhood of the origin in the curve of equation xy = 0 in C2. We
will call such points nodes.

Definition 1.1. Suppose thatX is a connected compact curve, whose
singularities are all nodes. Denote by N the set of nodes, and choose
Z ⊂ X some finite set of smooth points, of cardinality |Z|. Then (X,Z)
is called a stable curve if all the components of X−Z−N are hyperbolic
Riemann surfaces.

Proposition 1.2. If (X,Z) is a stable curve, then the hyperbolic area
of X − Z −N is given by

Area(X − Z −N) = 2π
(
2 dimH1(X,OX )− 2 + |Z|

)
.

The number dimH1(X,OX ) is called the arithmetic genus of the
curve; the proposition above says it could just as well have been defined
in terms the quantities Area(X −Z −N) and |Z|. The geometric genus

of the curve is the genus of the normalization X̃ .

Figure 1. On the left is a torus with one marked point
and a multicurve Γ = {γ} drawn in grey. In the center
is a stable curve obtained from the torus by collapsing
γ to the grey node. On the right is the normalization of
the stable curve in the center; it is a sphere with three
marked points, where the black point comes from the
marked point on the torus, and the two grey marked
points come from separating the node of the stable curve.
The arithmetic genus of the stable curve in the middle
is 1, while its geometric genus is 0.

Proof. We require the following lemma for the proof of Proposition
1.2.

Lemma 1.3. Let Y be a compact, (not necessarily connected) Rie-
mann surface, and let P ⊂ Y be finite, with Y − P hyperbolic. Then

Area(Y − P ) = −
∫

Y−P
κ dA = −2πχ(Y − P ) = −2π

(
χ(Y )− |P |

)

= −2π
(
2χ(OY )− |P |

)
,
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where κ = −1 is the curvature.

Proof. The first equality is due to the fact that Y − P is hyperbolic,
so κ = −1; the second equality is the Gauss–Bonnet theorem, the third
equality comes from the fact that the Euler characteristic of a surface
with a point removed is equal to the Euler characteristic of the orig-
inal surface minus 1, and the fourth equality is a consequence of the
Riemann–Roch theorem (see Proposition A10.1.1 in [33], for example).

Note that the Gauss–Bonnet theorem applies to compact surfaces
with boundary, and we have applied it to Riemann surfaces with cusps;
we can cut off a cusp by an arbitrary short horocycle of geodesic curva-
ture 1, so the integral of the geodesic curvature over the horocycle tends
to 0 as the cut-off tends to the cusp, and thus in the limit the formula
applies to such surfaces. q.e.d.

We now prove Proposition 1.2. Denote by π : X̃ → X the normal-
ization of X. It is a standard fact from analytic geometry that if X

is a reduced curve, then its normalization X̃ is smooth. We will write

Ñ = π−1(N) and Z̃ = π−1(Z). In our particular case, the singularities

are ordinary double points, and the normalization X̃ just consists of

separating them. Thus the natural map X̃ − Z̃ − Ñ → X −Z −N is an
isomorphism, so

Area(X − Z −N) = Area
(
X̃ − Z̃ − Ñ

)
,

and by Lemma 1.3 we have

Area
(
X̃ − Z̃ − Ñ

)
= −2π

(
2χ(O

X̃
)− |Z| − 2|N |

)
;

note that |Ñ | = 2|N |, and |Z̃| = |Z|.
The short exact sequence of sheaves

0 −→ OX(−N) −→ OX −→
⊕

x∈N

Cx −→ 0

leads to the long exact sequence of cohomology groups

0 −→ H0
(
X,OX(−N)

)
−→ H0(X,OX ) −→

⊕

x∈N

Cx

−→ H1
(
X,OX(−N)

)
−→ H1(X,OX ) −→ 0,

so we find

χ(OX) = χ
(
OX(−N)

)
+ |N |,

by taking alternating sums of the dimension.
For every open set U ⊆ X,

π∗ : OX(−N)(U) −→ OX̃

(
−Ñ

)(
π−1(U)

)



THE DELINGE–MUMFORD COMPACTIFICATION 267

is an isomorphism. Using the Čech construction of cohomology, we would
now like to conclude that

(1) π∗ : H i
(
X,OX(−N)

)
−→ H i

(
X̃,O

X̃

(
−Ñ

))

is an isomorphism. However, this is not quite true. Using the fact that
noncompact open sets are cohomologically trivial, the isomorphism in
Line 1 follows from Leray’s theorem (see Theorem A7.2.6 in [33]), and
this isomorphism implies

χ
(
OX(−N)

)
= χ

(
OX̃

(
−Ñ

))
.

The exact sequence

0 −→ OX̃(−N) −→ OX̃ −→
⊕

x∈N

Cx −→ 0

gives

χ(OX̃) = χ
(
OX̃

(
−Ñ

))
+ 2|N |.

Putting everything together, we have the following string of equalities:

Area(X − Z −N) = −2π
(
2χ(OX̃ )− |Z| − 2|N |

)

= −2π
(
2χ
(
OX̃(−Ñ)

)
− |Z|+ 2|N |

)

= −2π
(
2χ
(
OX(−N)

)
− |Z|+ 2|N |

)

= −2π
(
2χ(OX )− 2|N | − |Z|+ 2|N |

)

= −2π
(
2− 2 dim

(
H1(X,OX )

)
− |Z|

)
,

and the proposition is proved. Note that the case where N = ∅ corre-
sponds exactly to the statement of Lemma 1.3. q.e.d.

Let S be a compact oriented topological surface of genus g, and let
Z ⊂ S be finite.

Definition 1.4. Let Γ = {γ1, . . . , γn} be a set of simple closed curves
on S−Z, which are pairwise disjoint. The set Γ is amulticurve on S−Z if
for all i ∈ [1, n], γi is not homotopic to γj for j 6= i and every component
of S − γi that is a disk contains at least two points of Z.

We now introduce some notation. The multicurve Γ = {γ1, . . . , γn} is
a set of curves on S −Z. To refer to the corresponding subset of S −Z,
we use the notation

(2) [Γ] =

n⋃

i=1

γi ⊂ S − Z.

We say that the multicurve Γ is contained in the multicurve ∆ if every
γ ∈ Γ is homotopic in S − Z to a curve δ ∈ ∆, and we write Γ ⊆ ∆.
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The multicurve Γ is maximal if Γ ⊆ ∆ implies that Γ = ∆.

Proposition 1.5. A multicurve Γ on S − Z is maximal if and only
if the multicurve Γ has 3g − 3 + |Z| components.

Proof. This result is standard and follows from a quick Euler charac-
teristic computation. q.e.d.

We will denote by S/Γ the topological space obtained by collapsing
the elements of Γ to points.

Definition 1.6. A marking for a stable curve (X,ZX) by (S,Z) is a
continuous map φ : S → X such that

• φ(Z) = ZX , and
• there exists a multicurve Γ ⊂ (S,Z) such that φ induces an orientation-
preserving homeomorphism φ∗ : (S/Γ, Z) → (X,ZX ).

We will sometimes refer to φ : S → X as a Γ-marking of the stable
curve (X,ZX) by (S,Z) when we wish to emphasize the multicurve Γ
that was collapsed.

Figure 2. On the left is the topological surface S with
two marked points in the set Z. There is a multicurve Γ
drawn on S−Z. On the right is the stable curve X with
two marked points in the set ZX and three nodes in the
set NX . The marking φ : (S,Z) → (X,ZX) collapses the
curves of Γ to the points of NX .

Remark 1.7. We will define a Γ-marking of a family of stable curves
in Section 5. It is essential to realize that this is NOT a family of Γ-
markings.

Proposition 1.8. Let φ be a marking of (X,ZX ) by (S,Z) as defined
above. Then the topological genus of S is equal to the arithmetic genus
of X.
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Proof. Let g be equal to the topological genus of S. Since φ is a mark-
ing of (X,ZX) by (S,Z), there exists a multicurve Γ = {γ1, . . . , γn} ⊂
S − Z so that φ induces a homeomorphism φ∗ : (S/Γ, Z) → (X,ZX).
Complete Γ to a maximal multicurve on S − Z; that is, add a collec-
tion of curves {γn+1, . . . , γn+m} to Γ so that {γ1, . . . , γn+m} forms a

maximal multicurve, called Γ̃ on the surface S − Z. This multicurve Γ̃
has 3g − 3 + |Z| components (Proposition 1.5), and it decomposes the
surface S − Z into 2g − 2 + |Z| topological pairs of pants. Note that

n⋃

i=1

φ∗(γi) = NX , the set of nodes of X,

and for i ∈ [n + 1, n + m], φ∗(γi) is a simple closed curve on X −
ZX −NX . For i ∈ [n+ 1, n +m], replace each φ∗(γi) with the geodesic
in its homotopy class, δi. The set of geodesics ∆ := ∪δi decomposes
X − ZX −NX into 2g − 2 + |Z| cusped hyperbolic pairs of pants. Each
cusped hyperbolic pair of pants has area 2π, so

Area(X − ZX −NX) = 2π(2g − 2 + |Z|).
Together with Proposition 1.2, we obtain

2π(2g − 2 + |Z|) = 2π
(
2 dimH1(X,OX )− 2 + |ZX |

)
.

Since |Z| = |ZX |, we conclude that g = dimH1(X,OX), the arithmetic
genus of X. q.e.d.

Proposition 1.9. Let (X,ZX) be a stable curve. Then the group of
conformal automorphisms of (X,ZX ), Aut(X,ZX ), is finite.

This is a standard result that can be found in [23]. It is essentially
due to the fact that each connected component of the complement of
the nodes in X is hyperbolic. We now present a rigidity result.

Proposition 1.10. Let (X,ZX ) be marked by (S,Z). If α : (X,ZX) →
(X,ZX ) is analytic such that the diagram

(X,ZX)

α

��

(S/Γ, Z)

φ
66❧❧❧❧❧❧❧❧❧❧❧❧❧

φ
((❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘

(X,ZX)

commutes up to homotopy, then α is the identity.

We refer the reader to Proposition 6.8.1 in [33] for a proof of this
statement.
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2. The augmented Teichmüller space

Let S be a compact, oriented surface of genus g, and Z ⊂ S be a

finite set of n points, where 2 − 2g − n < 0. We define T̂(S,Z) in the
following way.

Definition 2.1. The augmented Teichmüller space of (S,Z), T̂(S,Z),
is the set of stable curves, together with a marking φ by (S,Z), up to
an equivalence relation ∼:
φ1 : S → X1 and φ2 : S → X2 are ∼-equivalent if and only if there
exists a complex analytic isomorphism α :

(
X1, φ1(Z)

)
→
(
X2, φ2(Z)

)
,

a homeomorphism β : (S,Z) → (S,Z), which is the identity on Z and
which is isotopic to the identity relative to Z such that the diagram

(S,Z)
φ1

//

β

��

(
X1, φ1(Z)

)

α

��

(S,Z)
φ2

//
(
X2, φ2(Z)

)

commutes, and

α ◦ φ1|Z = φ2|Z .
Remark 2.2. The map β sends the multicurve collapsed by φ1 to

the multicurve collapsed by φ2, and these multicurves are isotopic (by
definition).

The “set” of stable curves does not exist, but we leave this set theo-
retic difficulty to the reader.

We now need to put a topology on T̂(S,Z). This requires a modification
of the standard annulus (or collar) Aγ around a geodesic γ on a complete
hyperbolic surface [11, 33]. Recall that these are still defined when the
“length of the geodesic becomes 0”; i.e., there is a “standard annulus” or
collar around a node, where in this case the standard annulus is actually
a union of two punctured disks, bounded by horocycles of length 2.

A neighborhood of an element τ0 ∈ T̂(S,Z) represented by a home-

omorphism φ0 : (S/Γ0, Z) →
(
X0, φ0(Z)

)
consists of τ ∈ T̂(S,Z) rep-

resented by homeomorphisms φ : (S/Γ, Z) →
(
X,φ(Z)

)
where X is a

stable curve, Γ is a subset (up to homotopy) of Γ0, and the curves in
the homotopy classes of

φ(γ), γ ∈ Γ0 − Γ

are short. Moreover, away from the nodes and short curves, the Riemann
surfaces are close; the problem is to define just what this means.

It is tempting to define “away from the short curves” to mean “on the
complement of the standard annuli around the short curves,” but this
does not work. In a pair of pants with two or three cusps, the boundaries
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of the standard annuli are not all disjoint; see Figure 3. Thus on a curve
with nodes, the complements of the standard annuli do not always form
a manifold with boundary. To avoid this problem, it is convenient to
define the trimmed annuli around closed geodesics.

Figure 3. A pair of pants with two cusps. The collars
around the cusps are shaded in grey; they are bounded
by horocycles of length 2 and touch at a point.

Let γ be a simple closed geodesic on a complete hyperbolic surface,
and let Aγ be the standard annulus around γ. The trimmed annulus A′

γ

is the annulus of modulus

ModA′
γ =

(ModAγ)
3/2

(ModAγ)1/2 + 1
,

bounded by a horocycle, around the same curve or node. The formula
may seem a little complicated;

m 7→ m3/2

m1/2 + 1

is chosen so that it is a C∞-function of m, so that

0 <
m3/2

m1/2 + 1
< m, and

(
m− m3/2

m1/2 + 1

)
→ ∞ as m→ ∞.

Give T̂(S,Z) the topology where an ǫ-neighborhood Uǫ ⊂ T̂(S,Z) of the
class of φ0 : S/Γ0 → X0 consists of the set of elements represented by
maps φ : S/Γ → X such that

• up to homotopy, Γ ⊆ Γ0,
• the geodesic in the homotopy classes of φ(γ), γ ∈ Γ0 − Γ all have
length less than ǫ,
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• there exists a (1 + ǫ)-quasiconformal map

α :
(
X − φ(Z)−A′

Γ(X − φ(Z))
)
−→

(
X0 − φ0(Z)−A′

Γ0
(X − φ0(Z))

)
,

where A′
Γ(X − φ(Z)) ⊂ X − φ(Z) is the collection of trimmed

annuli about the geodesics in the homotopy classes of the curves
of φ(Γ) in X − φ(Z).

An alternative description of the topology of T̂(S,Z) can be given in terms
of Chabauty limits and the topology of representations into PSL(2,R);
this can be found in [26], and similar descriptions can be found in [53],
and [54].

2.1. The strata of augmented Teichmüller space. Let Γ be a mul-

ticurve on S−Z. Denote by S̃Γ the differentiable surface where S is cut
along Γ, forming a surface with boundary, and then components of the
boundary are collapsed to points. Inasmuch as a topological surface has

a normalization, S̃Γ is the normalization of S/Γ. On this surface, we will

mark the points Z̃ corresponding to Z, and the points Ñ corresponding
to the boundary components (two points for each element of Γ). The

surface S̃Γ might not be connected; in this case,

T(S̃Γ,Z̃∪Ñ)

is the product of the Teichmüller spaces of the components. The space

Figure 4. On the left is the surface (S,Z), with the
multicurve Γ drawn on S−Z (see Figure 2). In the center
is the surface (S/Γ, Z), where the components of Γ have

been collapsed to points. The surface (S̃Γ, Z̃ ∪ Ñ) is on
the right; note that it is disconnected. In this case, the

Teichmüller space of (S̃Γ, Z̃ ∪ Ñ) is the product of two
Teichmüller spaces: one corresponding to a torus with
three marked points, and one corresponding to a sphere
with five marked points.

T̂(S,Z) is the disjoint union of strata SΓ, one stratum for each homotopy
class of multicurves. (In this case, homotopy classes and isotopy classes
coincide; see [17]). A point belongs to SΓ if it is represented by a map
φ : S → X that collapses a multicurve in the homotopy class of Γ.
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The space SΓ is canonically isomorphic to the Teichmüller space of

the pair (S̃Γ, Z̃∪ Ñ). The minimal strata, which correspond to maximal
multicurves, are points.

By Theorem 6.8.3 in [33], every stratum parametrizes a family of

Riemann surfaces with marked points corresponding to Z̃ ∪ Ñ . But we
can also think of it as parametrizing a family of curves with nodes,

by gluing together the pairs of points of Ñ corresponding to the same
γ ∈ Γ.

Example 2.3. For τ in the upper-half plane H, let Λτ ⊂ C be the
lattice Z ⊕ τZ, and define S := C/Λi = C/(Z ⊕ iZ), define Z := {0}
in S, and define Xτ := C/Λτ . Then the Teichmüller space T(S,Z) can
be identified with H where the Riemann surface Xτ is marked by the
homeomorphism φ : (S,Z) → (X,φ(0)), induced by the real linear map

φ̃ : C → C, given by φ̃(1) = 1, and φ̃(i) = τ .
If τ is in a small horodisk based at p/q, then qτ − p is close to 0. Let

n,m ∈ Z so that nq + mp = 1. Then a new basis of the lattice Λτ is
given by

Λτ =< n+mτ,−p+ qτ > .

The augmented Teichmüller space T̂(S,Z) is H ∪ (Q ∪ {∞}); if τ is in

Figure 5. On the left is a picture of the lattice Λτ ⊂ C

for some τ in a small horodisk based at p/q = 2/5. Note
that qτ − p is close to 0. On the right is a blow up of a
fundamental domain for the lattice Λτ ; a new basis for
the lattice is given by −p+qτ ∼ 0 and n+mτ ∼ 1/q. The
geodesic γ joining 1/(2q) to 1/(2q) − p + qτ is short; it
is drawn in the middle of the parallelogram on the right.
This curve corresponds to the curve of slope −q/p on
(S,Z).

a small horodisk based at p/q, then the curve of slope −q/p on S − Z
is getting short. The boundary stratum {p/q} corresponds to collapsing

the multicurve of slope −q/p on (S,Z). The topology of T̂(S,Z) is the
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ordinary topology on H, and a neighborhood of p/q ∈ Q is the union of
{p/q} and a horodisk based at p/q.

We define the mapping class group Mod(S,Z) to be the group of iso-
topy classes of orientation-preserving homeomorphisms (S,Z) → (S,Z)
that fix Z pointwise (sometimes called the pure mapping class group).

Evidently, Mod(S,Z) acts on T̂(S,Z) by homeomorphisms: for f repre-
senting an element [f ] ∈ Mod(S,Z), the action is given by f · (X,φ) :=
(X,φ ◦ f).

Recall that an action G × X → X is properly discontinuous if ev-
ery point of X has a neighborhood U such that the set of g ∈ G with

(g · U) ∩ U 6= ∅ is finite; the action of Mod(S,Z) on T̂(S,Z) is not prop-
erly discontinuous, as can be seen in Example 2.3, where Mod(S,Z) ≈
SL(2,Z).

Definition 2.4. Let Γ be a multicurve on S − Z. We define the
following groups:

• Mod(S,Z,Γ) is the subgroup of Mod(S,Z) consisting of those
mapping classes which have representative homeomorphisms h :
(S,Z) → (S,Z), such that for all γ ∈ Γ, h([γ]) = [γ], and such
that h fixes each component of S − [Γ].

• Mod(S/Γ, Z) is the group of isotopy classes of homeomorphisms
S/Γ → S/Γ that fix Z pointwise, fix the image of each γ ∈ Γ in
S/Γ, and map each component of S − Γ to itself.

• ∆Γ is the subgroup of Mod(S,Z) generated by Dehn twists around
the elements of Γ.

The group Mod(S/Γ, Z) is the pure Teichmüller modular group of
the Teichmüller space

T(S̃Γ,Z̃∪Ñ).

This defines a homomorphism

Ψ : Mod(S,Z,Γ) → Mod(S/Γ, Z).

Proposition 2.5. The homomorphism Ψ is surjective, and its kernel
is the subgroup ∆Γ ⊂ Mod(S,Z,Γ).

Proof. The surjectivity comes down to the (obvious) statement that
the identity on the boundary of an annulus extends to a homeomorphism
of the annulus, and the computation of the kernel follows from the (less
obvious) fact that any two such extensions differ by a Dehn twist. We
leave the details to the reader. q.e.d.

Proposition 2.6. Let τ ∈ SΓ, and let g ∈ Mod(S,Z,Γ). The follow-
ing are equivalent:

1) g · τ = τ ,

2) for all neighborhoods U ⊆ T̂(S,Z) of τ , we have g(U) ∩ U 6= ∅, and
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3) g ∈ Ψ−1
(
Aut

(
X,φ(Z)

))
.

Proof. The equivalence (1) ⇐⇒ (2) is obvious, and the equivalence
(2) ⇐⇒ (3) follows from the fact that the stabilizer of τ ∈ SΓ in
Mod(S/Γ, Z) is the group of automorphisms of (X,ZX) where the Γ-
marking (S,Z) → (X,ZX ) represents τ . q.e.d.

Corollary 2.7. Every τ ∈ SΓ has a neighborhood U ⊆ T̂(S,Z) for
which the set of g ∈ Mod(S,Z) such that (g · U) ∩ U 6= ∅ is a finite
union of cosets of the group ∆Γ.

Proof. This follows immediate from Proposition 2.6 and from Propo-
sition 2.5. q.e.d.

3. Families of stable curves

Consider the locus

C := {(x, y, t) ∈ C3 : xy = t} ∩ {(x, y, t) ∈ C3 : |x| < 4, |y| < 4, |t| < 1}.
Denote by ρ : C → D the map ρ : (x, y, t) 7→ t, and write Ct = ρ−1(t).
Note that C0 is the union of the axes in the bidisk of radius 4.

Definition 3.1 is a precise way of saying that a family p : A → B of
curves with nodes parametrized by B is flat if it looks locally in A like
the family ρ : C → D.

Definition 3.1. Let B be an analytic space. A flat family of curves
with nodes, parametrized by B is an analytic space A together with a
morphism p : A→ B such that for every a ∈ A there is a neighborhood
U of a, a neighborhood V of p(a), a map ψ : V → D and an isomorphism

ψ̃ : U → ψ∗C such that the diagram

U
ψ̃

//

p
!!❈

❈❈
❈❈

❈❈
❈❈

ψ∗C //

��

C

ρ

��
V

ψ
// D

commutes.
We call such a pair ψ : V → D, ψ̃ : U → ψ∗C a plumbing fixture at the

point a (we borrowed the terminology from S. Wolpert, who borrowed
it from D. Mumford).

Remark 3.2. We did not require that 0 should be in the image of ψ.
This allows for the fibers of p to be double points, but also to be smooth
points; in a neighborhood of such points the morphism p is smooth, i.e.,
there exist local coordinates with parameters.

Definition 3.1 of a flat family of stable curves is equivalent to the
standard definition of flat (see [7, 34]). It brings out the fact that “flat”
means that the fibers vary “continuously.”
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Definition 3.3. Let p : X → T be a proper flat family of curves with
nodes; let N ⊂ X be the set of nodes. Let σ1, . . . , σm : T → X −N be
holomorphic sections with disjoint images; set Σ := ∪σi(T ) and Σ(t) :=
∪σi(t). We will write X(t) = p−1(t). Then (p : X → T,Σ) is a proper
flat family of stable curves if the fibers (X(t),Σt) are stable curves for
all t ∈ T .

Example 3.4. The subset of X ⊂ C3 defined by the equation

y2 = x(x− 1)(x− t)

with the projection p(x, y, t) = t is a flat family of elliptic curves. Two
of the fibers have nodes: p−1(0) and p−1(1).

As defined, this is not a flat proper family of stable curves: to get
one we need to take the projective closure of the fibers, written (using
homogeneous coordinates in P2) as the subset of P2 × C of equation

x0x
2
2 = x1(x1 − x0)(x1 − tx0)

with the projection p([x0 : x1 : x2], t) = t and the section σ(t) = ([0 :
1 : 0], t). In that case the smooth fibers are elliptic curves with a marked
point. The non-smooth fibers are X(0) and X(1); they are copies of P1

with two points identified, and a third point marked.

We now present an example of a family which is not flat.

Example 3.5. Consider the map pr1 : C3 → C, given by projection
onto the first factor (x, y, z) 7→ x. Let B ⊂ C3 be the union of the
xy-plane and the z-axis, and consider the map

f := pr1|B : B → C.

Each fiber is a curve with nodes; this family is parametrized by C, but
the family is not flat; the fiber above 0 is the union of the y-axis and the
z-axis, whereas the fiber above every other point is just the y-axis.

3.1. The vertical hyperbolic metric. Let (p : X → T,Σ) be a
proper flat family of stable curves, and define X∗ := X − N − Σ to
be the open set in the total space consisting of the complement of the
marked points and the nodes. The projection p : X∗ → T is smooth (but
not proper, of course), so there is a vertical tangent bundle V → X∗.
Denote by V (t) the set of vectors tangent to X∗(t), and by V the union
of all the V (t).

Since each (X(t),Σ(t)) is stable, X∗(t) has a hyperbolic structure.
This defines for each t a metric ρt : V (t) → R; in a local coordinate z on
X∗(t) we would write ρt = ρt(z)|dz|. We will call such functions V → R

vertical metrics.
Theorem 3.6 is obviously of fundamental importance. Although it

readily follows from results in Section 1 of [51], we provide our own
proof.
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Theorem 3.6. The metric map ρ : V → R is continuous.

Before giving the proof, we present three examples illustrating why
Theorem 3.6 might be problematic, and why it might be true anyway.
The first two examples are similar in nature.

Example 3.7. Consider the family

X = D× D− {(0, 0)} with p(t, z) = t.

The fibers are hyperbolic, and the vertical metric is

ρt =

{
2|dz|
1−|z|2

if t 6= 0,
|dz|

|z| log |z| if t = 0.

Example 3.8. Consider the family

X = {(t, z) ∈ D×C : |zt| < 1 for t 6= 0,

and |z| < 1 for t = 0} with p(t, z) = t.

The fibers are hyperbolic for this example as well, and the vertical metric
is

ρt =

{
2|t||dz|
1−|tz|2 if t 6= 0,
2|dz|
1−|z|2

if t = 0.

Evidently, ρt is not continuous at t = 0 in either example. It might
seem that our families X∗ → T are similar, especially to the first ex-
ample: we have removed the nodes and marked points, leaving punc-
tures. We will see that our “proper flat” assumption prevents this sort
of pathology. For instance, in our model family {xy = t} the problem
disappears as discussed in the next example.

Example 3.9. Recall the space

C =
{
(x, y, t) ∈ C3 : xy = t and |x| < 4, |y| < 4, |t| < 1

}
,

and set p : C → D to be p(x, y, t) = t. Let C∗ be C with the origin
removed. The map p : C∗ → D is smooth with all fibers hyperbolic,
giving a vertical metric ρt.

For t 6= 0, the metric ρt is the hyperbolic metric on Ct; the projection
of Ct onto the x-axis identifies Ct with the annulus{

x ∈ C :
|t|
4
< |x| < 4

}
.

To compute the metric ρt on this annulus, we push forward the metric
from the universal cover to find that

ρt =
π

cos
(
π
log |x|−log

√
|t|

log 16−log |t|

)
|x|(log 16− log |t|)

=
1

|x| log(4/|x|)
log |t|

log(|t|/16) + o

(
1

log(1/|t|)

)
.
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(This formula is also established in [12], [51] and [53]). The limit of ρt
as t→ 0 exists on the x-axis and on the y-axis (away from the origin);
these limits are

ρ0 =
|dx|

|x| log(4/|x|) and ρ0 =
|dy|

|y| log(4/|y|) ,

i.e., on each it is precisely the hyperbolic metric of the punctured disk.

Proof of Theorem 3.6. For this proof, we use the Kobayashi-metric
description of the Poincaré metric:

If Y is a hyperbolic Riemann surface, then the unit ball ByY ⊂ TyY
for the Poincaré metric is

ByY =

{
1

2
γ′(0) | γ : D → Y analytic, γ(0) = y

}
.

In light of this description, the following two statements say the Poincaré
ball at points of X∗(t0) cannot be much bigger or much smaller than
the balls in nearby fibers X∗(t), proving Theorem 3.6.

Choose x ∈ X∗(t0), and a C∞-section s : T → X∗ with s(t0) = x.
Claim 1. For all r < 1, there exists a neighborhood T ′ ⊂ T of t0 such
that for every analytic f : D → X∗(t0) there exists a continuous map
F : T ′×Dr → X commuting with the projections to T ′ and analytic on
each {t}×Dr, such that F (t, 0) = s(t) and F (t0, z) = f(z) when |z| < r.
Claim 2. For all r < 1 and for all sequences ti tending to t0, all
sequences of analytic maps fi : D → X∗(ti) with fi(0) = s(ti) have a
subsequence that converges uniformly on compact subsets of D to an
analytic map f : D → X∗(t0).

The key fact to prove these claims is that when a node “opens,” it
gives rise to a short geodesic, surrounded by a fat collar, and hence every
point outside the collar is very far from the geodesic.

Let us set up some notation. For each node c ∈ N(t0), choose disjoint
plumbing fixtures

ψc : Vc → D, ψ̃ : Uc → ψ∗C

at c, which do not intersect Σ. Let Vc,ǫ ⊆ T and Uc,ǫ ⊆ X be the subsets
corresponding to

|xc| < 4ǫ, |yc| < 4ǫ, |tc| < ǫ2.

Define

Vǫ :=
⋃

c

Vc,ǫ, Xǫ := p−1(Vǫ), and X ′
ǫ := Xǫ −

⋃

c

Uc,ǫ.

The family p : Xǫ → Vǫ is differentiably a proper smooth family of
manifolds with boundary, so there exists a C∞-trivialization

Φ : Vǫ ×X ′
ǫ(t0) → X ′

ǫ

that is the identity on {t0} × X ′
ǫ(t0). Furthermore, we can choose the

trivialization so that s and all the sections σi ∈ Σ are horizontal.
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Proof of Claim 1. Choose r′ with r < r′ < 1, and an analytic map
f : D → X∗(t0) with f(0) = x. Then for ǫ sufficiently small, f(Dr′) ⊆ X ′

ǫ

since the nodes are infinitely far away from x.
The map G : Vǫ × Dr′ → Xǫ given by

G(t, z) = Φ(t, f(z))

is a C∞-map, unfortunately not analytic on the fibers {t} × Dr′ , but
quasiconformal for a Beltrami form µ(t) such that ‖µ(t)‖ → 0 as t→ t0.

Thus by the Riemann mapping theorem we can choose a continuous
map

H : Vǫ × Dr′ → Vǫ × Dr′

quasiconformal on the fibers, with H(t, 0) = (t, 0), and for each t maps
the standard complex structure on Dr′ to the µ(t)-structure. Moreover,
we can choose H to be arbitrarily close to the identity on Vǫ′ × Dr for
ǫ′ < ǫ sufficiently small. Note that H is the inverse of a solution of the
Beltrami equation.

Now the map F (t, z) = G(H(t, z)) is the map required by Claim 1.
Proof of Claim 2. Choose r < 1. For sufficiently small ǫ and sufficiently
large i we have fi(Dr) ⊆ X ′

ǫ(ti) for the same reason as above: points in
Uc,ǫ are far away from s(ti).

We can therefore consider the sequence of maps gi : Dr → X ′
ǫ(t0)

given by
gi(z) := pr2(Φ

−1(ti, fi(z))).

As above, these maps are not conformal, but they are quasiconformal
with quasiconformal constant tending to 1 as i→ ∞. Moreover gi(0) = x
for all i. As such, the sequence i 7→ gi has a subsequence converging
uniformly on compact subsets of Dr, and the limit is our desired f :
D → X∗(t0).

4. An important vector bundle

While ordinary differentials have residues at simple poles, quadratic
differentials have residues at double poles. More particularly, the residue
of dz2(a/z2+O(1/z)) is equal to a, and this number is well-defined (with
respect to changing coordinates).

Let (p : X → T,Σ) be a proper flat family of stable curves of genus
g, with n marked points. Let E(t) be the vector space of meromorphic
quadratic differentials on X(t), holomorphic on X∗(t), and with at most
simple poles at the points of Σ(t) and at most double poles at N(t) with
equal residues at the pairs of points corresponding to the same node.

Proposition 4.1. We have for all t ∈ T , dimE(t) = 3g − 3 + n.

For a rough dimension count: collapsing a curve of Γ and separating
the double points decreases the count by 3; allowing double poles at the
corresponding points increases the dimension by 4; and imposing equal
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residues decreases the dimension by 1. Altogether, 3g − 3 + n has de-
creased by 3, then increased by 4, then decreased by 1 and hence remains
unchanged. It isn’t quite clear that these changes are independent; the
following sheaf-theoretic argument shows that they are.

Fix some t ∈ T , and omit it from our notation. That is, we write
X = X(t), with nodes N = N(t), and marked points Σ = Σ(t).

Recall our notation for the normalization (see Section 1),

π : X̃ → X, Ñ := π−1(N), and Σ̃ := π−1(Σ).

Proof. Consider the short exact sequence of sheaves

0 → Ω⊗2

X̃
(Ñ + Σ̃) → Ω⊗2

X̃
(2Ñ + Σ̃) → CÑ

Σ̃
→ 0,

where the (2Ñ + Σ̃) indicates that we allow double poles at the points

of X̃ corresponding to the nodes, and we allow at most simple poles

at the points of Σ̃. This short exact sequence gives the following exact
sequence of cohomology groups

0 → H0
(
Ω⊗2

X̃
(Ñ + Σ̃)

)
→ H0

(
Ω⊗2

X̃
(2Ñ + Σ̃)

)
→ CÑ

Σ̃

→ H1
(
Ω⊗2

X̃
(Ñ + Σ̃)

)
→ · · ·

Lemma 4.2. The cohomology group H1
(
Ω⊗2

X̃
(Ñ + Σ̃)

)
is 0.

Proof. The proof is essentially by Serre duality:

H1
(
Ω⊗2

X̃
(Ñ + Σ̃)

)
is dual to H0

(
T⊗2

X̃
⊗ΩX̃

(
−Ñ − Σ̃

))
,

which is isomorphic to

H0
(
TX̃

(
−Ñ − Σ̃

))
;

this is just the space of holomorphic vector fields on X̃ that vanish at

points of Ñ and Σ̃.

If X̃ has genus 0, then |Ñ | + |Σ̃| > 3 as X must be a stable curve.

Then any vector field on X̃ would have to vanish on Ñ∪Σ̃, which means
it is necessarily the zero vector field.

If X̃ has genus 1, then any holomorphic vector field is constant. Since

X is a stable curve, |Ñ |+ |Σ̃| > 1, and this vector field must vanish on

Ñ ∪ Σ̃. Such a vector field is identically zero.

If X̃ has genus greater than 1, there are no nonzero holomorphic
vector fields. The result now follows. q.e.d.

We have a short exact sequence

0 → H0
(
Ω⊗2

X̃
(Ñ + Σ̃)

)
→ H0

(
Ω⊗2

X̃
(2Ñ + Σ̃)

)
→ CÑ

Σ̃
→ 0.
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The quantity we seek is

dim
(
H0
(
Ω⊗2

X̃
(2Ñ + Σ̃)

))
= dim

(
H0
(
Ω⊗2

X̃
(Ñ + Σ̃)

))
+ dim

(
CÑ
Σ̃

)
.

Evaluating the sum on the right yields
[(∑

i

3g(X̃i)− 3

)
+ |Ñ |+ |Σ̃|

]
+ |Ñ | = −3

2
χ(X̃) + 4|N |+ |Σ|

= −3

2
(χ(S) + 2|N |) + 4|N |+ |Σ|

= −3

2
(2− 2g) + |N |+ |Σ|

= 3g − 3 + |N |+ |Σ|,

where the first sum is taken over all connected components i of X̃, g(X̃i)

is the genus of X̃i, and S is a topological surface which marks X (see
Proposition 1.2).

Imposing the condition that the quadratic differentials must have

equal residues at points of Ñ that correspond to the same node, the
dimension count drops by |N |, and we obtain

dim
(
H0
(
Ω⊗2

X̃
(2Ñ + Σ̃)

))
= 3g − 3 + |Σ| = 3g − 3 + n,

as desired. q.e.d.

In view of Proposition 4.1, it is extremely tempting to think that the
vector spaces E(t) are the fibers of a vector bundle over T . This is indeed
the case, but we have found it surprisingly difficult to prove. We cannot
put parameters in the argument above, because one cannot normalize
families of curves.

We derive it from Grauert’s direct image theorem found in [20] (alter-
natively in [14]), and a result characterizing locally free sheaves among
coherent sheaves. If F is a coherent sheaf on an analytic space Z, de-
fine the “fiber dimension” dimF(z) to be the dimension of the finite-
dimensional space H0(F⊗OZ

Cz) where Cz is the sky-scraper sheaf sup-
ported at z whose sections are C viewed as an OZ -module by evaluating
functions at z. Then F is locally free if and only if

z 7→ dim
(
H0(F ⊗OZ

Cz)
)

is constant. In that case, F is naturally the sheaf of sections of a vector
bundle whose fibers are the spaces H0(F ⊗OZ

Cz).
To use these results, we need to build the sheaf F on X defined as

follows. Restricted to the smooth part X∗, it is the tensor square of the
sheaf of relative differentials Ω⊗2

X∗/T (Σ), i.e., quadratic differentials on

the fibers with at most simple poles on the marked points (which are
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the images of the sections σi ∈ Σ). Within a plumbing fixture (ψ : V →
D, ψ̃ : U → ψ∗C) it is the space of multiples of ψ̃∗ω, where

ω :=
1

4

(
dx

x
− dy

y

)2

,

by analytic functions on U , that is, by elements of OX(U). (This sheaf
F is thoroughly discussed in [58]).

Recall the locus

C =
{
(x, y, t) ∈ C3 : xy = t and |x| < 4, |y| < 4, |t| < 1

}
.

Lemma 4.3. In the coordinates (t, x) on C − {(x, y, t) | x = t = 0}
the restriction of ω to vertical tangent vectors is dx2/x2, and in the
coordinates (t, y) on C − {(x, y, t) | y = t = 0}, the restriction of ω to
vertical tangent vectors is dy2/y2.

Proof. On C, vertical tangent vector fields are written (v,w, 0) satis-
fying

yv + xw = 0.

Let us work in the coordinates (t, x), valid except on the y-axis when
t = 0. In these coordinates, for t 6= 0, the quadratic form ω evaluates
on the vector field (v,w, 0) to give

1

4

(
v

x
− w

y

)2

=
1

4

(
v

x
+
yv

xy

)2

=
(v
x

)2
.

Thus ω restricts on the x-axis to the quadratic differential dx2/x2, and
an identical computation shows that it restricts to the y-axis as dy2/y2.

q.e.d.

It follows that on U ∩X∗ and restricted to vertical tangent vectors,
the sheaves Ω⊗2

X∗/T (Σ) and the sheaf of multiples of ω coincide, so our

sheaf F is well-defined, and on each X(t) it is the sheaf of quadratic
differentials, holomorphic except that they are allowed simples poles at
the Σ(t) and double poles with equal residues at N(t).

This is clearly a coherent sheaf in X, and since p : X → T is proper,
p∗F is a coherent sheaf on T . We saw in Proposition 4.1 that the fibers
have constant dimension, so p∗F is locally free, i.e., it is the sheaf of
sections of an analytic vector bundle, which we denote as Q2

X/T , and we

have proven the following theorem.

Theorem 4.4. The space Q2
X/T is an analytic vector bundle over T .

5. Γ-marked families

Recall that a marking for a stable curve (X,ZX ) by (S,Z) is a contin-
uous map φ : S → X such that φ(Z) = ZX , and such that there exists a
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multicurve Γ ⊂ (S,Z) so that φ induces an orientation-preserving home-
omorphism φ∗ : (S/Γ, Z) → (X,ZX ). To emphasize that the multicurve
Γ has been collapsed, we refer to φ : S → X as a Γ-marking of the stable
curve (X,ZX ) by (S,Z). In this section, we introduce the notion of a
Γ-marking for a proper flat family of stable curves. It is essential to note
that a Γ-marking of a family p : X → T is not a family of Γ-markings;
we cannot patch Γ-markings of the fibers together to form a marking
of the family, as there are monodromy obstructions. Instead, we adopt
the following approach.

Definition 5.1. Let S be an oriented topological surface, Z ⊂ S a
finite subset, and Γ be a multicurve on S − Z. For every subset Γ′ ⊆
Γ, define Homeo(S,Z,Γ,Γ′) to be the group of orientation-preserving
proper homeomorphisms of S − [Γ′] that fix Z pointwise, map each
component of S − [Γ′] to itself (fixing the boundary setwise), and are
homotopic rel Z to some composition of Dehn twists around elements
of Γ− Γ′.

Definition 5.2. Let (p : X → T,Σ) be a proper flat family of stable

curves, and define the space MarkΓT (S,Z;X) together with the map

p(S,Γ) : MarkΓT (S,Z;X) → T

in the following way. The fiber above a point t ∈ T is the quotient of
the space of Γ′-markings φ : (S,Z) → (X(t),Σ(t)) for some Γ′ ⊆ Γ, so
that φ maps the components of Γ′ to nodes of X(t).

We quotient this set by the following equivalence relation: two such
markings φ1, φ2 are equivalent if there exists h ∈ Homeo(S,Z,Γ,Γ′)
such that φ1 is homotopic to φ2 ◦ h on S − [Γ′], where the homotopy is
among maps that are proper homeomorphisms S − [Γ′] → X∗(t).

The space MapT (S,X) of maps of S to a fiber of p carries the compact-
open topology, and after restricting and quotienting, gives the topology
of MarkΓT (S,Z;X).

In the case where Γ = ∅, the space Mark∅T (S,Z;X) is the set of
isotopy classes of homeomorphisms of (S,Z) to a fiber of p. Of course, if
any of the fibers of p have nodes, then the corresponding fiber of p(S,Γ)
is empty.

Example 5.3. Consider the flat family of curves p : X → C given
by the projective compactification (the closure in P2 × C) of

X := {(x, y, t) ∈ C2 × C | y2 = (x− 1)(x2 − t)}, p : (x, y, t) 7→ t.

This is a family of stable curves of genus 1, with one marked point (at
infinty). Let S be the curve X(1/4), let Z = {∞}, and let the multi-
curve Γ consist of the single curve γ on S − Z that is one of the two
lifts of the circle |x| = 3/4 (the two lifts are homotopic). The fibers of
MarkΓT (S,Z;X) are as follows:
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The fiber above t = 0 consists of a single point: there are homeomor-
phisms

(X(1/4)/Γ, {∞}) → (X(0), {∞}),
and any two differ by precomposition by a power of Dγ , the Dehn twist
around γ. The same is true of the fiber above t = 1.

But for all t 6= 0, 1, the fiber is a discrete set consisting of the homo-
topy classes of simple closed curves on (X(t), {∞}). In fact, the space
MarkΓT (S,Z;X) is a covering space of C−{0, 1}. This covering space is
highly nontrivial: its monodromy around 0 is the Dehn twist Dγ around
γ, but the monodromy around a loop encircling 1 is a Dehn twist around
a different curve that intersects γ at a single point.

Theorem 5.4. Let (p : X → T,Σ) be a proper flat family of stable
curves. The map p(S,Γ) has discrete fibers, and there is a unique local

section through every point in MarkΓT (S,Z;X).

Proof. We first prove that p(S,Γ) has discrete fibers. A space is discrete
if its points are open, so we must show that the points of

MarkΓT (S,Z;X)(t) := p−1
(S,Γ)(t)

are open. That is, every Γ′-marking φ : (S,Z) → (X(t),Σ(t)) has a
neighborhood in the space of Γ′-markings of X(t) such that every mark-
ing in the neighborhood is equivalent to φ by the Definition 5.2.

Define
X ′(t) := X(t)−

⋃

c∈N(t)∪Σ(t)

Ac,

where Ac is the standard collar around c. The neighborhood of φ we
will choose is

{
φ′ : (S,Z) → (X(t),Σ(t)) | dX∗(t)(φ(y), φ

′(y)) < r

for all y ∈ φ−1(X ′(t))
}
,

where r is radius of injectivity of X ′(t) inside

X∗(t) := X(t)−N(t)− Σ(t)

and dX∗(t) is the hyperbolic metric on this space.

For all y ∈ φ−1(X ′(t)), there exists a unique shortest geodesic γy
on X∗(t) joining φ(y) to φ′(y). We will parametrize this geodesic at
constant speed, so it takes time 1 to get from φ(y) to φ′(y). Since the
inclusion X ′(t) →֒ X(t) is a homotopy equivalence, the map y 7→ γy can
be uniquely extended to all of S − [Γ′], fixing the points of Z, and as y
approaches [Γ′], the curve γy approaches the corresponding node inN(t),
and as y approaches z ∈ Z, the curve γy approaches the corresponding
point φ(z) ∈ Σ(t).

Then the maps
φ|S−[Γ′] and φ′|S−[Γ′]
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are homotopic by the homotopy
(3)(
S − Z − [Γ′]

)
× [0, 1] → S − Z − [Γ′] given by (y, s) 7→ φ−1(γy(s)).

At all times s the map in Line 3 is a proper map S − (Z ∪ [Γ′]) →
S − (Z ∪ [Γ′]), and it can be extended to Z by the identity.

We now proceed with the proof that there is a section through every
point in the space MarkΓT (S,Z;X). Choose t0 ∈ T and a neighborhood
T ′ ⊆ T of t0 sufficiently small so that for t′ ∈ T ′ all nontrivial curves γ(t′)
in (X(t′),Σ(t′)), that are homotopic to points in p−1(T ′) are homotopic
to nodes of (X(t0),Σ(t0)).

Choosing T ′ smaller if necessarily, we may assume that there is a num-
ber l0 such that for all t′ ∈ T ′, the simple closed curves on (X(t′),Σ(t′))
of length less than l0 are precisely those homotopic to points in p−1(T ′).
Then the complements of the trimmed annuli around these curves form
a manifold with boundary Trim(XT ′) ⊆ X, and p : Trim(XT ′) → T ′ is a
proper smooth submersion of manifolds with boundary, hence differen-
tiably locally trivial, via a trivialization that makes the sections Σ ⊂ X
horizontal.

We must show that for every t′ ∈ T ′ and every f : (S,Z) → (XT ′(t′),
Σ(t′)) representing an element of p−1

(S,Γ)(t
′) there exists a section

σf : T ′ → MarkΓT ′(S,Z;X)|T ′

coinciding at t′ with the class of f .
There exists a homeomorphism

hf : T ′ ×
(
S − f−1

(
A′

Γ′(X(t′))
))

−→ Trim(XT ′),

and the diagram

T ′ ×
(
S − f−1(A′

Γ′

(
X(t′))

)) hf
//

pr1

##❍
❍❍

❍❍
❍❍

❍❍
❍❍

❍❍
❍❍

❍❍
❍❍

❍

Trim(XT ′)

p

||②②
②②
②②
②②
②②
②②
②②
②②
②②
②

T ′

commutes.
For any fixed t′′ ∈ T ′, the restriction of hf to t

′′×
(
S−f−1

(
A′

Γ′(X(t′′))
))

can be extended to t′′×S. The homotopy class of the extension is unique
up to precomposition by a Dehn twist around elements of Γ′. We cannot
choose this extension continuously with respect to the parameter t′′, as
there are monodromy obstructions; this does not matter. In any case,
all extensions define the same element of p−1

(S,Γ)(t
′′); this constructs our

section σf . q.e.d.
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Definition 5.5. A Γ-marking of such a family p : X → T by (S,Z)
is a section of the map p(S,Γ).

Remark 5.6. Let (p : X → T,Σ) be a smooth proper family of
curves. Grothendieck in [21] insisted on the difference between defining
a marking as a homotopy class of topological trivializations S × T →
X and as a section of pS : Mark∅T (S,Z;X) → T . It is clear that a
marking in the first sense induces a marking in the second sense, but the
converse is not so obvious. It is perfectly imaginable that T could have
a cover T = T1 ∪ T2 and that there are trivializations above T1 and T2
that are fiber-homotopic above T1 ∩ T2 but that there is no trivialization
above T . Then the trivializations above T1 and T2 induce sections of
pS : Mark∅T1(S,Z;X|T1) → T1 and pS : Mark∅T2(S,Z;X|T2) → T2 that
coincide on T1 ∩ T2.

Grothendieck further saw (his precise sentence is “Il semble qu’on
doive pouvoir montrer très élémentairement”) that the condition for the
two definitions to coincide is that the group of diffeomorphisms of S ho-
motopic to the identity be contractible, and that this was also equivalent
to the contractibility of Teichmüller space; this program was carried out
by Earle and Eells [16]. So informally, one can define a marking of a
smooth family as a fiber-homotopy class of trivializations.

If (p : X → T,Σ) is a proper flat family of stable curves, no such
simplistic approach is possible, and we must use sections as in Definition
5.5. Even locally, there is usually no map S×T → X giving a Γ-marking
of each fiber of p.

5.1. A criterion for Γ-markability. Example 5.3 is not Γ-markable
for any multicurve Γ ⊂ S − Z; there are monodromy obstructions. We
present necessary and sufficient conditions that ensure that a family
(p : X → T,Σ) is markable.

Proposition 5.7. Let (p : X → T,Σ) be a proper flat family of stable
curves. Then the family (p : X → T,Σ) is markable if and only if there
exists a closed subset X ′ ⊆ X, containing Σ, such that each component
of X(t) −X ′(t) is homeomorphic either to an annulus or to two discs
intersecting at a point, and such that p : X ′ → T is a trivial bundle of
surfaces with boundary, making Σ horizontal.

Proof. If (p : X → T,Σ) is Γ-markable for some multicurve Γ on a
surface (S,Z), we can take X ′(t) to be the complement of the “appro-
priately modified” trimmed annuli around the curves of Γ. We modify
a trimmed annulus in the following way: instead of removing annuli of
modulus m/(2 + 2m1/2) from both ends of the standard annulus as in
Section 2, we remove annuli of modulus m/(2 + 2m) from both ends.
In this case, the boundary of these new trimmed annuli are horocycles
of length 1; in particular, the length of the horocycles is greater than 0
and less than 2.
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For the converse, choose t0 ∈ T . Let S′ = X ′(t0), and manufacture S
by gluing annuli to S′, one for each component of X(t0)−X ′(t0). Since
these components all have exactly two boundary components, there is
a natural way to do this. The multicurve Γ for the marking is made up
of the core curves of the annuli.

Since X ′ → T is trivial, we can find a homeomorphism Φ : S′ × T →
X ′ commuting with the projections to T . For each t ∈ T , we can extend

Φ(t) : S′ × {t} → X ′(t)

to a Γ-marking S×{t} → X(t) that, on each annulus of S−S′ is either
a homeomorphism or collapses the corresponding curve to a point. This
extension is only well-defined up to a Dehn twist but gives a well-defined
element of MarkΓT (S,Z;X)(t). q.e.d.

Remark 5.8. Let γ1 and γ2 be two simple closed curves on S − Z
that intersect, such that there is no multicurve Γ ⊂ S −Z that contains
simple closed curves δ1 and δ2 where δ1 is homotopic to γ1 (rel Z) and
δ2 is homotopic to γ2 (rel Z). Let (X1, Z1) be a stable curve marked by
(S,Z) so that φ1 : (S,Z) → (X1, Z1) collapses {γ1} to the node of X1,
and let (X2, Z2) be a stable curve marked by (S,Z) so that φ2 : (S,Z) →
(X2, Z2) collapses {γ2} to the node of X2. Let p : X → T be a proper
flat family of stable curves. If (X1, Z1) and (X2, Z2) are fibers of p, then
the family p : X → T is not Γ-markable, for any multicurve Γ ⊂ S−Z.

We will see that any family constructed via plumbing (see Section 8)
will be Γ-markable, by construction.

6. Fenchel–Nielsen coordinates for families of stable curves

Let (S,Z) be a surface with marked points, Γ a multicurve on S−Z,
and let (p : X → T,Σ) be a Γ-marked family of stable curves.

For all γ ∈ Γ, define the function lγ : T → R as follows: let the
homeomorphisms φt : (S,Z) → (X(t),Σ(t)) represent the Γ-marking
of (X(t),Σ(t)), and let lγ(t) be the hyperbolic length of the geodesic
on (X(t),Σ(t)) in the homotopy class of φt(γ); if φt collapses γ, then
lγ(t) = 0. Note that φt is only defined up to Dehn twists around elements
of Γ, but the homotopy class of φt(γ) is unchanged by such a Dehn twist,
so we define the map lγ : T → R given by t 7→ lγ(t). In this way, we use
the Γ-marking of (p : X → T,Σ) to define the length function lγ for the
family.

If γ is not collapsed by φt, and if we choose appropriate basepoints,
we can define a twist map

τγ : (T − {t ∈ T : lγ(t) = 0}) → R given by t 7→ τγ(t),

where τγ(t) is the “twist displacement” (displacement is with respect
to the basepoints—the maps τγ are somewhat unnatural because we
must choose basepoints. A fairly careful treatment of these coordinates



288 J.H. HUBBARD & S. KOCH

is in Chapter 7, Section 6, of [33], in [5], in [11], and in [49]). However,
changing the marking φt by a power of a Dehn twist around γ changes
the twist displacement τγ(t) by some integer multiple of lγ(t); the mon-
odromy prevents us from using the Γ-marking of (p : X → T,Σ) to
define the twist displacement τγ for the family. However, we can modify
the twist map, removing this ambiguity in the following proposition.

Complete Γ to a maximal multicurve Γ̃.

Proposition 6.1. For all γ ∈ Γ̃,

1) the map lγ : T → R is continuous, and
2) the map τγ/lγ : (T − {t ∈ T : lγ(t) = 0}) −→ R/Z is well-defined

and continuous.

Proof. The fact that lγ is continuous is a consequence of the fact
that there is a unique geodesic in the homotopy class of γ (allowing for
degenerate geodesics) and Theorem 3.6.

When γ ∈ Γ, the map τγ is only defined up to an integral multiple of
lγ , and therefore τγ/lγ is well-defined as long as lγ is nonzero. Continuity
of τγ/lγ also follows from the fact that there is a unique geodesic in the
homotopy class of γ (allowing for degenerate geodesics) and Theorem
3.6. q.e.d.

Proposition 6.1 implies that the map FNγ : T → C defined by

FNγ(t) = lγ(t)e
2πiτγ (t)/lγ (t)

is well-defined and continuous.

Remark 6.2. Suppose that T is an analytic manifold. Then in par-
ticular it is a differentiable manifold, and it makes sense to ask whether
the Fenchel–Nielsen coordinates are differentiable. It turns out that they
are not, and the question of whether they can be modified to be differ-
entiable is rather delicate; see [48].

7. The space QΓ

This section introduces the main actor, the spaceQΓ. This is the space

that will eventually give M̂(S,Z) its analytic structure. Recall that the
subgroup ∆Γ of Mod(S,Z) is generated by Dehn twists about the curves
γ ∈ Γ.

Consider the space

UΓ :=
⋃

Γ′⊆Γ

SΓ′ ⊆ T̂(S,Z).

Then the subgroup ∆Γ ∈ Mod(S,Z) acts on UΓ and fixes SΓ pointwise.

Definition 7.1. The space QΓ is the quotient

QΓ := UΓ/∆Γ
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with the quotient topology inherited from T̂(S,Z).

Let Γ be a multicurve on S − Z. Recall S̃Γ from Section 2; it is
the topological surface where S is cut along Γ, forming a surface with
boundary, and then components of the boundary are collapsed to points.

On this surface, we mark the points Z̃ corresponding to Z, and the

points Ñ corresponding to the boundary components (two points for

each element of Γ). The surface S̃Γ might not be connected; in this
case,

T(S̃Γ,Z̃∪Ñ)

is the product of the Teichmüller spaces of each component. In this way
the stratum SΓ is a “little” Teichmüller space hence a complex manifold.

7.1. The strata of QΓ. Let us denote by QΓ′

Γ the image of the stratum

SΓ′ in QΓ. Each QΓ′

Γ is the quotient of SΓ′ by ∆Γ.
The subgroup ∆Γ is a free abelian group on Γ; in particular,

∆Γ = ∆Γ−Γ′ ⊕∆Γ′ .

The group ∆Γ′ acts trivially on SΓ′ , and ∆Γ−Γ′ acts freely since all its
elements except the identity are of infinite order, and any element of
the mapping class group that fixes a point is of finite order. It also acts
properly discontinuously, since the entire Teichmüller modular group
does. Thus the strata

QΓ′

Γ = S ′
Γ/∆Γ−Γ′

are all manifolds.
The space QΓ′

Γ parametrizes a smooth family of curves

p̃Γ
′

Γ : X̃Γ′

Γ → QΓ′

Γ

with a marking by the surface (S̃Γ′
, Z̃∪Ñ) determined up to Dehn twists

around elements of Γ− Γ′. If we identify the pairs of marked points of

X̃Γ′

Γ corresponding to the elements of Γ′, we obtain a proper flat family

(pΓ
′

Γ : XΓ′

Γ → QΓ′

Γ ,Σ)

of stable curves (in this case, topologically locally trivial; none of the
double points is being “opened”).

Let us denote by αγ , γ ∈ Γ′ the analytic section

QΓ′

Γ → XΓ′

Γ

of pΓ
′

Γ going through the double point corresponding to γ.

Example 7.2. We revisit the case of the torus with one marked point,
as discussed in Example 2.3. That is, let S = C/Λi, let Z = {0}, and let
Xτ = C/Λτ , where Λτ is the lattice generated by 1 and τ , where Im(τ) >
0. The augmented Teichmüller space of (S,Z) is H ∪ (Q ∪ {∞}), where
the curve of slope p/q on S corresponds to the boundary component
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−q/p ∈ T̂(S,Z), as discussed in Example 2.3. Let Γ = {γ} be a multicurve
on S − Z where γ is the curve corresponding to slope 0/1. The set

UΓ = S∅ ∪ Sγ = H ∪ {∞},
and the group ∆Γ is the subgroup of Mod(S,Z) generated by a Dehn twist
about the curve γ; it is isomorphic to Z, generated by the translation
z 7→ z + 1. Thus

QΓ = (H ∪ {∞}) /Z = D, given by z 7→ e2πiz.

The stratum H maps to D∗, and the stratum {∞} maps to 0. Notice
that QΓ is a complex manifold.
7.2. A natural Γ-marking. By the universal property of Teichmüller
space, each fiber of the universal curve

X̃Γ
Γ → T(S̃Γ,Z̃∪Ñ)

comes with a homotopy class of maps

φ : (S̃Γ, Z̃ ∪ Ñ) → (X̃Γ
Γ (t),Σ(t)).

This induces a Γ-marking, well-defined up to Dehn twists around the
curves of Γ, such that the following diagram commutes:

(S,Z) //

%%❏
❏❏

❏❏
❏❏

❏❏
❏

(XΓ
Γ (t),Σ(t))

(S/Γ, Z)

77♣♣♣♣♣♣♣♣♣♣♣

7.3. The topology of QΓ. Complete Γ to a maximal multicurve Γ̃.
On each stratum QΓ′

Γ , we define the map

FNΓ′

Γ : QΓ′

Γ −→ (R+ ×R)Γ̃−Γ × CΓ,

where the Γ′ coordinates in CΓ are exactly those that are 0. The follow-
ing theorem can be found in [5] and [25].

Theorem 7.3. The map

FNΓ : QΓ −→ (R+ × R)Γ̃−Γ × CΓ

given by FNΓ′

Γ on the stratum QΓ′

Γ is a homeomorphism.

Proof. The map

UΓ −→ (R+ × R)Γ̃−Γ × CΓ

is continuous and open, and the map FNΓ is bijective. Additionally, the
diagram

UΓ
//

''◆
◆◆

◆◆
◆◆

◆◆
◆◆

QΓ

ww♣♣♣
♣♣
♣♣
♣♣
♣♣

(R+ × R)Γ̃−Γ × CΓ
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commutes, and the theorem follows. q.e.d.

Corollary 7.4. The space QΓ is a topological manifold of dimension
6g − 6 + 2|Z|.

8. Plumbing coordinates

It is unfortunately quite difficult to visualize the complex structure
of QΓ in the Fenchel–Nielsen coordinates. Instead, we will use plumbing
coordinates. Our treatment of plumbing coordinates coincides with that
in Section 2 of [42], as well as that in Section 2 of [51].

8.1. The set up. Recall that Ct is the part of the curve of equation
xy = t in C3 where |x| < 4, |y| < 4, so that C0 is the corresponding part
of the union of the axes.

Choose u0 ∈ QΓ
Γ. Since X̃

Γ
Γ is smooth over QΓ

Γ, there exist locally
“local coordinates with parameters”: families of analytic charts φu :

D → X̃Γ
Γ (u) that vary analytically with u. This is true in particular

near the pair of sections α̃′
γ , α̃

′′
γ of p̃ΓΓ corresponding to the node coming

from γ: for each such pair of sections, we can choose φ′γ,u, φ
′′
γ,u, so that

φ′γ,u(0) = α̃′
γ(u), φ′′γ,u(0) = α̃′′

γ(u).

We use these to map one branch through a node to the x-axis, and the
other to the y-axis.

More formally, there exists a neighborhood U of u0 in QΓ
Γ, disjoint

neighborhoods Wγ ⊆ XΓ
Γ of αγ(U), and isomorphisms

ψγ :Wγ → U × C0

commuting with the projections to U . We may choose the Wγ disjoint
from Σ.

Remark 8.1. Smoothness only gives coordinates with parameters lo-
cally, hence the restriction to an open U ⊆ QΓ

Γ. It would be nice if we
could take U = QΓ

Γ and not a proper subset. Unfortunately, this is not
possible: it contradicts [32], since it would allow us to find sections of

p̃ΓΓ : X̃Γ
Γ → QΓ

Γ disjoint from the the given sections.

8.2. The complex manifold PΓ. Let PΓ = U × DΓ. The space PΓ is
of course a complex manifold, and it is a union of strata

PΓ =
⋃

Γ′⊆Γ

PΓ′

Γ ,

where

PΓ′

Γ = {(u, t) ∈ U × DΓ | tγ = 0 ⇐⇒ γ ∈ Γ′}.
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8.3. The plumbed family. The space PΓ naturally parametrizes a
proper flat family of curves YΓ whose fiber above (u, t) is constructed
as follows.

Let X ′
Γ be the part of XΓ

Γ where we have removed the parts of all the
Wγ where |x| ≤ 2, |y| ≤ 2 (in some plumbing fixture); W ′

γ is Wγ with
the same part removed.

Then

YΓ(u, t) =


X ′

Γ(u) ⊔
⊔

γ∈Γ

Ctγ


 / ∼,

where ∼ identifies

(4) w ∈W ′
γ(u) to





(
ψγ,1(w),

tγ
ψγ,1(w)

)
∈ Ctγ if ψγ,1(w) 6= 0,(

tγ
ψγ,2(w)

, ψγ,2(w)
)
∈ Ctγ if ψγ,2(w) 6= 0,

and ψγ,1 and ψγ,2 are the two coordinates of ψγ . This construction is
illustrated in Figure 6.

Figure 6. Two views of plumbing: The picture on the
left shows the identifications given in Equation 4 to cre-
ate the surface YΓ(u, t). For t 6= 0, Ct is an annulus of
modulus 1

2π log
16
|t| . The picture on the right is a different

representation of the same plumbing construction around
a node of X ′

Γ(u).

9. The coordinate Φ

The curves YΓ(u, t) were defined to fit together to form a proper flat
family of curves parametrized by PΓ with analytic sections Σ.

Let Γ̃ be a maximal multicurve on S − Z containing Γ. Then using

the marking of XΓ
Γ (u0) defined in Section 7.2, all the curves Γ̃− Γ have
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well-defined homotopy classes on all YΓ(u, t), as do the curves of Γ,
except that they may be collapsed to points.

As such, the Fenchel–Nielsen coordinates

(lγ , τγ), γ ∈ Γ̃− Γ; lγe
2πiτγ/lγ , γ ∈ Γ

are well-defined on PΓ and define a map Φ : PΓ → QΓ.

Proposition 9.1. The map Φ is continuous.

Proof. This follows immediately from Theorem 3.6. q.e.d.

Proposition 9.2. The map Φ respects the strata: it maps PΓ′

Γ to QΓ′

Γ

for all Γ′ ⊆ Γ, and as a map PΓ′

Γ → QΓ′

Γ it is analytic.

Proof. The fact that the strata are respected is obvious. The analytic-
ity of the restriction to the strata follows from the universal property of
Teichmüller spaces: since the normalization of the family YΓ is a proper
smooth family of curves over each stratum, it is classified by an analytic
map to the corresponding Teichmüller space. q.e.d.

The main point of this paper is to show that the map Φ is a lo-
cal homeomorphism, giving us local charts on QΓ. Since domain and
range are manifolds of the same dimension, by invariance of domain,
it is enough to show that it is locally injective. We will get the local
injectivity by a three-step argument involving properness, invertibility
of an appropriate derivative, and a monodromy argument.

9.1. Part one: properness.

Lemma 9.3. Every (u,0) ∈ PΓ has a neighborhood V such that Φ
restricted to V is a proper map to an open subset V ′ of QΓ.

Proof. Let Sρ be the sphere of radius ρ around (u,0) in PΓ. Then
Φ(u,0) /∈ Φ(Sρ) because Φ respects the strata and is the identity on
PΓ
Γ , so that

Φ(Sρ) ∩ QΓ
Γ ⊆ QΓ

Γ

but Φ is the identity on QΓ
Γ. It follows that (u,0) /∈ Φ−1(Φ(Sρ)).

Let V ′ be the component of QΓ − Φ(Sρ) containing Φ(u,0), and let
V be the component of PΓ − Φ−1(Φ(Sρ)) containing (u,0). Since the

image of a connected set is connected, Φ maps V to V ′, and since V is
compact, V → V ′ is proper. q.e.d.

Any proper map from an oriented manifold to an oriented manifold
has a degree; if it is a local homeomorphism it is a covering map. If
we can show that the map Φ : V → V ′ is a local homeomorphism of
degree 1, we will be done. The hard part is showing that it is a local
homeomorphism. The standard method for proving such a statement
involves the Implicit Function Theorem. Since we don’t yet know that
QΓ is a smooth manifold, we will have to work stratum by stratum.
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9.2. Part two: local injectivity on strata. The restriction Φ : PΓ′

Γ →
QΓ′

Γ is a map of analytic manifolds and can be differentiated. We will
show that, sufficiently close to (u,0), the derivative of this map is an iso-
morphism, or rather (equivalently), we will show that the coderivative

of Φ : PΓ′

Γ → QΓ′

Γ is an isomorphism.
This coderivative consists of evaluating elements of the cotangent

space of QΓ′

Γ (that we know to be appropriate quadratic differentials) on

tangent vectors to PΓ′

Γ (which we know also, since it is the tangent space

to U×DΓ). In Proposition 9.4, we find a basis of T(u,t)PΓ′

Γ , and in Section
9.4, we introduce the quadratic differentials qγ that will be used to build

our basis of T⊤
Φ(u,t)QΓ′

Γ (see Proposition 9.9). In Line (9) of Section 9.6,

we compute the matrix with respect to these bases, ultimately proving
that Φ is locally invertible at (u, t) for ‖t‖ sufficiently small.

Since ∆Γ−Γ′ acts freely on SΓ′ , the cotangent space to QΓ′

Γ is the same
as the cotangent space to the “little” Teichmüller space corresponding
to the stratum SΓ′ .

This means

T⊤
Φ(u,t)QΓ′

Γ = Q1(Y ∗
Γ (u, t)),(5)

the space of integrable holomorphic quadratic differentials on Y ∗
Γ (u, t),

the space YΓ(u, t) with the marked points and the nodes removed.
These quadratic differentials are meromorphic on the normalized curve

ỸΓ(u, t), holomorphic except for at most simple poles at the marked
points and the pairs of points corresponding to the nodes.

9.3. The basis of T(u,t)PΓ′

Γ . Since T(u,0)PΓ
Γ = TΦ(u,0)QΓ

Γ, we can choose

a basis of T(u,0)PΓ
Γ made up of Beltrami forms µj , 1 ≤ j ≤ dimQΓ

Γ on
Y ∗
Γ (u,0). By a theorem of Häıssinsky in [22], we may assume that the
µj are carried by the part of YΓ(u,0), which is outside the part of each
plumbing fixture where |xγ |, |yγ | ≤ 2.

Since this part of YΓ(u,0) is also part of all YΓ(u, t), these Beltrami

forms can be viewed as vectors in T(u,t)PΓ′

Γ .

The remaining tangent vectors of our basis are the ∂/∂tγ , γ ∈ Γ−Γ′.
(Recall that γ ∈ Γ − Γ′ means that tγ 6= 0). We summarize this in
Proposition 9.4.

Proposition 9.4. The following set is a basis of T(u,t)PΓ′

Γ :

 ⋃

γ∈Γ−Γ′

∂/∂tγ


 ∪




dimQΓ
Γ⋃

j=1

µj


 .

Proof. This is obvious, since PΓ′

Γ is open in QΓ
Γ × DΓ−Γ′

. q.e.d.

(This treatment can also be found in Section 7 of [42], Sections 5.4,
5.4T, 5.4S of [51], and Chapter 3 of [53]).
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9.4. The quadratic differentials qγ. For each γ ∈ Γ−Γ′, the cotan-

gent space T⊤
Φ(u,t)QΓ′

Γ contains quadratic differentials qγ defined as fol-

lows.
The space

Ah := {z ∈ C : |Im(z)| < h}/Z
is an annulus of modulus 2h; it carries the quadratic differential dz2,
which is invariant under reflection and translation, i.e., under maps
z 7→ ±z + 1.

For each γ ∈ Γ− Γ′, set

hγ(u, t) =
π

2 lγ(u, t)
.

There exists a covering map

πγ(u, t) : Ahγ(u,t) → Y ∗
Γ (u, t)

such that the image of a generator of the fundamental group of the
annulus is a curve homotopic to γ. This covering map is unique up to
translation and sign. Thus the quadratic differential

qγ(u, t) := (πγ(u, t))∗ dz
2

is a well-defined element of Q1(Y ∗
Γ (u, t)). As pointed out to us by S.

Wolpert, the quadratic differential qγ(u, t) was first studied by H. Pe-
tersson in [44, 45], and there is an extensive amount of literature about
it: [18], [19], [27], [46], [43], [49], [50], [52], [54], [55], [56], and [57].

We require the following continuity statement. See Lemma 4.4 in [55]
for a related result.

Proposition 9.5. The map (u, t) 7→ qγ(u, t) extends continuously to
a section of the bundle Q2

YΓ/PΓ
constructed in Theorem 4.4.

Proof. Choose a neighborhood V of (u0, t0) in PΓ, and choose a con-
tinuous section s : V → YΓ such that for all (u, t) ∈ V , the point s(u, t)
belongs to the boundary curve of the standard annulus around the ge-
odesic in the homotopy class of γ. Such a section exists because the
standard collar has a limit as t → t∞: the standard collar around a
node (bounded by two horocycles of length 2).

For each (u, t) ∈ V there are unique −∞ ≤ b(u, t) < 0 < a(u, t) <∞
and unique covering maps

(6) π̃γ,(u,t) : {z ∈ C | b(u, t) < Im(z) < a(u, t)}/Z → Y ∗
Γ (u, t)

with π̃γ,(u,t)(0) = s(u, t). (The new covering map π̃γ,(u,t) is just the old
covering map πγ(u, t) precomposed with a translation. This was done
to keep the points we are considering in Y ∗

Γ (u, t) from marching off to
the nodes. By normalizing in this new way, we keep these points in a
bounded region of Y ∗

Γ (u, t)).
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The new covering maps π̃γ,(u,t) map the circle corresponding to R to
the homotopy class of γ. In fact, the circle then maps isometrically to
one boundary curve of the standard collar around γ.

By Theorem 3.6, everything varies continuously with respect to (u, t):
the functions a(u, t), b(u, t) (but b(u, t) will tend to −∞ if tγ → 0; we
can check that a(t) converges to 1/2 as tγ → 0), the hyperbolic metric
of the region defined in Equation 6, and the map π̃γ,(u,t). Thus

qγ(u, t) = (π̃γ,(u,t))∗dz
2

also varies continuously.
Now we need to check that in the limit as tγ → 0, the quadratic

differential qγ(u, t) acquires double poles at the node corresponding to
γ with equal residues on the two branches. To this end, we require the
following lemma from complex analysis.

Lemma 9.6. For all ǫ > 0 there exists M such that all analytic
injective homotopy-equivalences f : Ah → C/Z satisfy

∣∣f ′ − 1
∣∣ < ǫ

on Ah−M .

Proof. This follows from the compactness of univalent mappings.
Choose ǫ > 0, and use compactness to find r > 0 such that for all
univalent functions g : D → C such that g(0) = 0, g′(0) = 1 we have

∣∣∣∣
w

g(w)
− 1

∣∣∣∣ ≤ ǫ for |w| < r.

We can take M = 1/r. Indeed, lift f : Ah → C/Z to f̃ mapping the

band of height h to C and satisfying f̃(z + 1) = f̃(z) + 1. Of course

f ′ = f̃ ′. Define

g(w) :=
r
(
f̃(z + w/r)− f̃(z)

)

f̃ ′(z)
.

This map g does satisfy g(0) = 0, g′(0) = 1, and it is univalent on the
unit disk if z is distance at least 1/r from the boundary of the band.

Note that g(r) = r/f̃ ′(z). Thus

|f ′(z) − 1| = |f̃ ′(z)− 1| =
∣∣∣∣
r

g(r)
− 1

∣∣∣∣ < ǫ.

q.e.d.

We will apply Lemma 9.6 to the inclusions

Ctγ →֒ Ahγ(u,t) ⊆ C/Z.



THE DELINGE–MUMFORD COMPACTIFICATION 297

Let x and y be coordinates on Ctγ so xy = tγ . It follows that the
pushforward of

1

4

(
dx

x
− dy

y

)2

converges, uniformly on compact subsets to dz2, by Lemma 9.6 and by
the fact that it is dz2 in the coordinate z described in Section 4.

Since dz2 − (πγ(u, t))
∗(πγ(u, t))∗dz

2 differs from dz2 in the L1 norm
by a uniformly bounded quantity (in fact, by at most 1), it follows that
the limit of qγ as tγ → 0 is a quadratic differential with double poles at
the nodes and equal residues since it differs on a neighborhood of the
node from the pushforward of

1

4

(
dx

x
− dy

y

)2

by an integrable quadratic differential. (Similar statements and argu-
ments can be found in Lemma 2.2 of [52], Lemma 4.3 of [55], Proposi-
tion 6 of [57], and [31]). q.e.d.

The following result is Proposition 7.1 of [42]; it is also in Chapter 3 of
[53]. See also Lemma 2.6 of [52].

Proposition 9.7. For a fixed u ∈ QΓ
Γ,

‖2πtγ · Φ∗qγ(u, t)− dtγ‖Y ∗
Γ
(u,t) ∈ o(1).

Proof. To compare Φ∗qγ and dtγ , we need to represent ∂/∂tγ by an
infinitesimal Beltrami form. For 0 < |t| < 1, the map

w 7→ (
√
te2πiw,

√
te−2πiw)

induces an isomorphism of

A 1

4π
log 16

|t|
:=

{
w ∈ C : |Im(w)| < 1

4π
log

16

|t|

}
/Z

onto the “arc of hyperbola” |x| < 4 and |y| < 4 in the model Ct.
Set ht :=

1
4π log 4

|t| , and set w := u+iv; the region |v| < ht corresponds

in the model Ct to the region |x|, |y| < 2. The map

φ : w = (u+ iv) 7→





w + 1
4πi log

s
t if v ≥ h,t

w + 1
4πi

v
ht

log s
t if |v| < ht,

w − 1
4πi log

s
t if v 6 −ht.

induces a quasiconformal homeomorphism Ct → Cs compatible with
the gluing involved in the plumbing construction, i.e., the x-coordinates
should be equal when the y coordinate is small, and the y-coordinates
should be equal when the x-coordinate is small. In fact, compatibility
with the gluing implies the first and last cases above, and the central
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one is a possible interpolation (or rather several, for different branches
of the logarithm). We find that its Beltrami form is

∂φ

∂φ
=

log s
t

4πht − log s
t

dw

dw
,

and so the infinitesimal Beltrami form representing ∂/∂t is its derivative
with respect to s, evaluated when s = t, that comes out to be

µt :=
∂

∂t
=

1

4πhtt

dw

dw
.

This pairs with dz2 on the annulus Aht to give 1/(2πt).
Unfortunately, this isn’t quite what we want: we want to pair µt

thought of as a Beltrami form on YΓ(u, t), carried by the region |x|, |y| <
2 of Ct in the plumbing fixture corresponding to γ, with qγ .

We lift to Aπ/lγ(u,t) viewed as the covering space of Y ∗
Γ (u, t) where γ

is the only closed curve. One lift of Ct to this annular cover is an annulus

C̃t embedded in Aπ/lγ (u,t) by a homotopy equivalence, and the others
are all naturally embedded in the annuli of modulus 1 at the ends of
Aπ/lγ(u,t).

Call z the coordinate of Aπ/lγ(u,t). By the definition of qγ we have a

choice of pairing π∗γqγ with π∗γµt on C̃t or of pairing dz2 with π∗γµt on
all the inverse images of Ct. We will do the latter because the inverse

images other than C̃t are contained in the annuli of height 1 at both
ends of Aπ/lγ(u,t) and as such contribute at most 1

2πhtt
(one for each

end) to the pairing.

Now for the main term, the pairing over C̃t, which we will write as

1

4πhtt

∫

C̃t

(
dw

dw
− dz

dz

)
dz2 +

1

4πhtt

∫

C̃t

dz

dz
dz2.

In the last integral, there exist constants K1,K2 independent of t such
that

Aπ/lγ (u,t)−K1
⊆ C̃t ⊆ Aπ/lγ(u,t)−K2

,

and so
1

4πhtt

∫

C̃t

dz

dz
dz2 =

1

2πt
+O

(
1

htt

)
.

Finally, for the term ∫

C̃t

(
dw

dw
− dz

dz

)
dz2

we choose ǫ > 0 and find the M in Lemma 9.6. On the complement C̃ ′
t

of the annuli of modulus M , we have
∣∣∣∣∣

∫

C̃′
t

(
dw

dw
− dz

dz

)
dz2

∣∣∣∣∣ ≤ ǫ
1

4π
log

16

|t| .
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The remainder, the integral over the annuli at the end is bounded by
an almost round circle and is the union of two annuli, one of which has
modulus M and the other is independent of t, so their area is bounded
by some constant M ′ and the total integral is bounded by

4M ′

2π|t|ht
.

Putting all this together, we find that∫

Y ∗
Γ
(u,t)

µtqγ =
1

2πt
(1 + o(1)).

as required. q.e.d.

9.5. The basis of T⊤
Φ(u,t)QΓ′

Γ . Our basis will consist of the elements

tγ · Φ∗qγ(u, t) for γ ∈ Γ− Γ′, and appropriate qj(u, t) defined below.
The qγ(u, t), γ ∈ Γ − Γ′ are linearly independent for ‖t‖ sufficiently

small, since their supports are very nearly disjoint, in different plumbing
fixtures. (This fact is implied by the more general statement of Theorem
3.7 in [49]; see also Lemma 2.6 of [52]).

The qj are a bit harder to define. There is a natural “projection” map

Πγ : Q1(Y ∗
Γ (u, t)) → Lγ(u, t)

onto the line Lγ(u, t) ⊂ Q1(Y ∗
Γ (u, t)) spanned by qγ(u, t), defined as

follows.
For any q(u, t) ∈ Q1(Y ∗

Γ (u, t)), the quadratic differential (πγ(u, t))
∗

q(u, t) on Ahγ(u,t) can be developed as a Fourier series

(7) (πγ(u, t))
∗q(u, t) =

(
∞∑

n=−∞

bne
2πiz

)
dz2,

and we set
Πγ(u, t)(q(u, t)) := b0qγ(u, t).

Note that this is not a projector: it is not the identity on Lγ(u, t) (though
it is very nearly so when tγ is small).

The following proposition can be found in Section 7 of [42] and Chap-
ter 3 of [53].

Proposition 9.8. The map Πγ(u, t) extends continuously to the fiber
of the vector bundle Q2

YΓ/P
Γ′
Γ

above (u,0), to the residue of such a qua-

dratic differential at the node corresponding to γ.

Proof. Recall the map

A 1

4π
log 16

|t|
→ Ct given by z 7→ (

√
te2πiz ,

√
te−2πiz).

This maps transforms dz2 into dx2/x2, and hence the constant term of
the Fourier series in Equation 7 into the coefficient of dx2/x2, which
tends to the residue as tγ → 0. q.e.d.
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Define the map

(8) Π(u, t) : (Q1(Y ∗
Γ (u, t)))

Γ−Γ′ −→ CΓ−Γ′

given by prγ ◦Π(u, t) = Πγ(u, t).

The evaluation of the kernel of Π(u, t) on T(u,t)PΓ
Γ is a perfect pairing

when t = 0 by Proposition 9.8 and the limit of the kernel consists of
integrable quadratic differentials Q1(Y ∗

Γ (u,0)). So for ‖t‖ sufficiently

small, evaluation of the kernel of Π(u, t) on T(u,t)PΓ
Γ is still a perfect

pairing. As a consequence, there is a dual basis to the µj (see Proposition
9.4); call these elements of the dual basis qj(u, t).

We summarize this discussion in Proposition 9.9, which is included
in Proposition 7.1 of [42] and Proposition 1 of [53].

Proposition 9.9. The following set is a basis of T⊤
Φ(u,t)QΓ′

Γ :


 ⋃

γ∈Γ−Γ′

tγ · Φ∗qγ(u, t)


 ∪




dimQΓ
Γ⋃

j=1

qj(u, t)


 .

9.6. Local injectivity. We get a matrix by evaluating our basis vec-
tors of T⊤

Φ(u,t)QΓ′

Γ from Proposition 9.9 on our basis vectors of T(u,t)PΓ′

Γ

from Proposition 9.4. This matrix has a limit as t → 0, which is the
triangular matrix

tγ · Φ∗qγ(u, t) qj(u, t)
∂/∂tγ 1 ⋆
µj 0 1

(9)

Since this matrix is invertible, the map Φ : PΓ′

Γ → QΓ′

Γ is locally invert-
ible at (u, t) for ‖t‖ sufficiently small.

Corollary 9.10. Every (u, t) ∈ PΓ′

Γ with ‖t‖ sufficiently small has a

neighborhood V ′ such that V := Φ(V ′) is open in QΓ′

Γ and Φ : V ′ → V
is a homeomorphism.

9.7. Part three: The conclusion of the proof. Choose (u0,0) ∈
QΓ

Γ = PΓ
Γ , a neighborhood V of (u0,0) in QΓ, and let V ′ be the compo-

nent of Φ−1(V ) ⊆ PΓ containing (u0,0). We may choose V sufficiently
small so that Φ : V ′ → V is proper (Lemma 9.3) and at every point
(u, t) ∈ V ′ the derivative of Φ is injective on the tangent space to the
maximal stratum containing (u, t). For later purposes, suppose that in
Fenchel–Nielsen coordinates, V is a product of intervals and disks cen-
tered at 0, corresponding to the curves in Γ.
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List the elements of Γ as Γ = {γ1, . . . , γn}, and set Γi := Γ −
{γ1, . . . , γi}. We have the following commutative diagram:

P
Γ
Γ

Φ

��

�

�

// PΓ
Γ ∪ P

Γ
1

Γ

Φ

��

�

�

// · · ·
�

�

// PΓ
Γ ∪ · · · ∪ P

Γ
i

Γ

Φ

��

�

�

// · · ·
�

�

// PΓ
Γ ∪ · · · ∪ P

∅
Γ

Φ

��
Q

Γ
Γ

�

�

// QΓ
Γ ∪Q

Γ
1

Γ

�

�

// · · ·
�

�

// QΓ
Γ ∪ · · · ∪ Q

Γ
i

Γ

�

�

// · · ·
�

�

// QΓ
Γ ∪ · · · ∪ Q

∅
Γ

The spaces in the top row should be intersected with V ′, and those in
the bottom row should be intersected with V . We will show by induction
on i that the vertical maps are homeomorphisms. To start the induction,
note that this is true for i = 0 since Φ : PΓ

Γ → QΓ
Γ is the identity.

To simplify notation, let us write

Pi
Γ := (PΓ

Γ ∪ · · · ∪ PΓi

Γ ) ∩ V ′ and Qi
Γ := (QΓ

Γ ∪ · · · ∪ QΓi

Γ ) ∩ V.
So suppose the statement is true for some i < n. Then the map

Φ : Pi
Γ → Qi

Γ

is a homeomorphism by the inductive hypothesis, and the map

Φ : PΓi+1

Γ ∩ V ′ → QΓi+1

Γ ∩ V
is proper (Lemma 9.3) and a local homeomorphism (Corollary 9.10),
and hence it is a covering map, so

Φ : Pi+1
Γ → Qi+1

Γ

is a ramified covering map, possibly ramified along Pi
Γ. We need to show

that it is not ramified; i.e., we must show that the monodromy is trivial,
so that the degree is 1.

This is a purely topological issue, and we can use Fenchel–Nielsen
coordinates in Qi+1

Γ ; recall that V was chosen so that in Fenchel–Nielsen
coordinates it is a product of intervals and disks centered at the origin:
Drγ , γ ∈ Γ.

In Fenchel–Nielsen coordinates Qi
Γ ⊆ Qi+1

Γ is defined by the equation

l(γi+1) = 0, so that Qi+1
Γ −Qi

Γ is a product of intervals, disks, and one
punctured disk, and its fundamental group is isomorphic to Z.

Figure 7 shows that letting tγi+1
go around the circle |tγi+1

| = ρ cor-
responds to performing one Dehn twist around γi+1; hence in Fenchel–
Nielsen coordinates the twist coordinate has made exactly one turn. So
the generator of the fundamental group of Qi+1

Γ −Qi
Γ lifts as a loop to

Pi+1
Γ − Pi

Γ, showing that the monodromy is trivial.
We have ultimately proven the following theorem.

Theorem 9.11. Every (u, t) ∈ PΓ with ‖t‖ sufficiently small has a
neighborhood V ′ such that V := Φ(V ′) is open in QΓ and Φ : V ′ → V
is a homeomorphism.
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Figure 7. On the left is the annulus Cη, where η = tγi+1
.

As tγi+1
moves in the circle |tγi+1

| = ρ, the annulus Cη
is affected by one Dehn twist; this is represented by the
picture on the right. The grey line on the left is twisted
once around the annulus to become the grey curve on
the right.

We have proven that for ‖t‖ sufficiently small, the map Φ : PΓ → QΓ

is a homeomorphism in a neighborhood of (u, t). It is not true, however,
that the map Φ : PΓ → QΓ is a global homeomorphism; the map is not
globally injective (see [30] for an example illustrating this).

10. The complex structure of QΓ and the universal property

Let (S,Z) be an oriented compact topological surface S, with a fi-
nite subset of marked points Z. We will prove by induction on |Γ| the
following result.

Theorem 10.1. For every multicurve Γ on S − Z, there exists

1) a complex manifold structure on QΓ,
2) a proper flat family pΓ : XΓ → QΓ of stable curves with sections

σi : QΓ → X∗
Γ,

and
3) a Γ-marking φΓ of the family pΓ : XΓ → QΓ by (S,Z).
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This family is universal for these properties in the category of ana-
lytic spaces: for any proper flat family (p : X → T,Σ) of stable curves
parametrized by an analytic space T , and with a Γ-marking φ by (S,Z),
there exists a unique analytic map f : T → QΓ such that X is isomor-
phic to f∗XΓ by an isomorphism that transforms f∗φΓ to φ.

Proof. We will prove this by induction on the cardinality |Γ| of Γ. The
case n = 0, corresponding to Γ = ∅, is precisely the universal property
of Teichmüller space.

So suppose the result is true for all m < n, and suppose that |Γ| = n.
Step 1. The analytic structure of QΓ. At points of QΓ

Γ, we use the
maps Φ : V ′ → V constructed in Theorem 9.11 as charts. Any point
v ∈ QΓ −QΓ

Γ belongs to some stratum QΓ′

Γ .

There is a natural map ΨΓ′

Γ : QΓ′ → QΓ, which consists precisely of
quotienting by ∆Γ−Γ′ .

We can easily understand how this group acts on QΓ′ in Fenchel–

Nielsen coordinates. With respect to any maximal multicurve Γ̃ on S−Z
containing Γ, the factor corresponding to γ ∈ Γ − Γ′ in the Fenchel–
Nielsen description of QΓ′ (see Section 6) is of the form R+ × R, and
the Dehn twist around γ gives the map

(lγ , τγ) 7→ (lγ , τγ + lγ).

Thus ∆Γ−Γ′ acts freely (without fixed points) and properly discontinu-

ously on QΓ′ . In particular, the map ΨΓ′

Γ is a covering map of its image,
which is an open subset of QΓ containing v. We choose as a chart at v
a section of ΨΓ′

Γ over a neighborhood of v contained in the image.
We now have charts at every point, and we have to show that the

transition functions are analytic. Clearly the only difficulty is when v is
in the image of a Φ : V ′ → V , as in Theorem 9.11, and also in the image
of ΨΓ′

Γ . The space V ′ parametrizes a proper flat family of stable curves
YΓ together with a Γ-marking by (S,Z). Since the curves of Γ− Γ′ are
not collapsed at v, the point v has a neighborhood V ′′ above which the
marking can be promoted to a Γ′-marking by (S,Z) and as such induces

and analytic mapping V ′′ → QΓ′ that is a section of ΨΓ′

Γ . This proves
that on V ′′ the complex structures coincide.
Step 2. The universal curve above QΓ. This is practically identical
to the argument above.

For any Γ′ ⊆ Γ, the group ∆Γ−Γ′ acts on XΓ′ compatibly with the
action on QΓ′ (it takes a stable curve to the same stable curve by the
identity, changing the marking by the appropriate Dehn twists). The

quotient by this action is the curve parametrized by the image of ΨΓ′

Γ
in QΓ.

We have already constructed the curve YΓ over V ′, hence over V by
definition, and again by the universal property these curves are canon-
ically isomorphic where they are both defined.
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Step 3. The Γ-marking by (S,Z). Again this is more or less obvious.
The curve pΓ′ : XΓ′ → QΓ′ comes with a Γ′-marking by (S,Z), and
when we quotient by ∆Γ−Γ′ we identify points whose markings differ
by Dehn twists around elements of Γ− Γ′, constructing a Γ-marking by
(S,Z) on the quotient.

The curve YΓ came with a Γ-marking by (S,Z), and it is clear that on
overlaps these agree because the identification consisted of promoting a
Γ-marking to a Γ′-marking and using the universal property.
Step 4. The universal property. Let X → T be a proper flat fam-
ily of stable curves, with a Γ marking by (S,Z), parametrized by a
connected analytic space T .

Choose a maximal multicurve Γ̃ on S − Z containing Γ. Then there
are Fenchel–Nielsen coordinates

FNΓ : T → (R+ × R)Γ̃−Γ × CΓ,

and these induce a continuous map f : T → QΓ.
There are two cases to consider: either the image of T is contained

in QΓ
Γ or it isn’t. In the first case, f is analytic because of the universal

property of the Teichmüller space SΓ, since QΓ
Γ = SΓ.

In the second case, f is analytic on T − f−1(QΓ
Γ). But then it is

analytic on T by the removable singularity theorem: it is continuous
and analytic except on a set of codimension at least 1. q.e.d.

11. The cotangent bundle of QΓ

Our description of the cotangent bundle to QΓ is not quite satisfac-
tory; it is not as complex-analytic as one would like, largely because the
sections qγ of Q2

YΓ/PΓ
are presumably not analytic, just continuous (see

Proposition 9.5).
In particular, Q2

YΓ/PΓ
is not the cotangent bundle, however tempting

it might be to think it is, because qγ is a section of Q2
YΓ/PΓ

, but since

2πtγ ·Φ∗qγ ∼ dtγ (Proposition 9.7) is a section of the cotangent bundle,
we see that qγ has a pole when tγ = 0.

This suggests another candidate for the cotangent bundle. Consider
the divisor D ⊂ PΓ defined by

∏

γ∈Γ

tγ = 0.

Associated to this divisor is the invertible sheaf of OPΓ
(−D) of analytic

functions that vanish on D, itself the sheaf of sections of a line bundle
LD. The cotangent bundle might be Q2

YΓ/PΓ
⊗ LD.

But this isn’t right either: sections of that bundle pair to 0 with the
Beltrami forms µj defined in Section 9.3.
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So we are compelled to give a more esoteric description. The bundle
Q2
YΓ/PΓ

is naturally the direct sum E ⊕K of two sub-bundles: the sub-

bundle E spanned by the qγ , γ ∈ Γ, and the kernel K of Π (see Line
8).

A restatement of Proposition 9.9 is the following result.

Theorem 11.1. In a neighborhood of QΓ
Γ, the identification of T⊤QΓ

with Q2
YΓ/PΓ

over Q∅
Γ extends to an isomorphism

T⊤QΓ → K ⊕ (E ⊗ LD).

Corollary 11.2. The coderivative of the inclusion QΓ
Γ →֒ QΓ is given

by the projection

K ⊕ (E ⊗ LD) → Q1(Y ∗
Γ (u,0)).

In particular, at a point (u,0) ∈ PΓ
Γ , K(u,0) is the space of inte-

grable quadratic differentials on Y ∗
Γ (u,0), precisely the cotangent space

Q1(Y ∗
Γ (u,0)) of the stratum QΓ

Γ at Φ(u,0), and the coderivative of the
inclusion is the projection

K ⊕ (E ⊗ LD) → Q1(Y ∗
Γ (u,0)).

Indeed, the sections of (E ⊗ LD)(u,0) evaluate to 0 on the vectors µj
tangent to the stratum.

12. The main theorem

12.1. The universal property of M̂(S,Z). To summarize, Theorem
10.1 asserts that the analytic manifold QΓ represents the functor of Γ-
marked proper flat families of stable curves (in the category of analytic
spaces). More precisely, let (S,Z) be a topological surface of genus g
with n marked points, and let Γ be a multicurve on S −Z. Let SCΓ be
the functor

SCΓ : AnalyticSpaces → Sets

that associates to a complex analytic space A, the set of isomorphism
classes of flat, proper, Γ-marked families of stable curves of genus g with
n marked points, parametrized by A. Then the morphism of functors
from Mor(•,QΓ) to SCΓ given by pullback of the universal curve above
QΓ is an isomorphism of functors. The universal property of QΓ leads to

the universal property of M̂(S,Z); we now spell this out. We will prove
the following

Theorem 12.1. There exists a natural transformation η : SCg,n →
Mor(•,M̂(S,Z)) with the following universal property: for every ana-
lytic space Y together with a natural transformation ηY : SCg,n →
Mor(•, Y ), there exists a unique morphism F : M̂(S,Z) → Y such that
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for all analytic spaces A, the following diagram commutes:

(10) Mor(A,M̂(S,Z))

F∗

��

SCg,n(A)

η
77♥♥♥♥♥♥♥♥♥♥♥♥

ηY
((◗◗

◗◗
◗◗

◗◗
◗◗

◗◗

Mor(A,Y )

Proof. Step 1. The analytic structure of M̂(S,Z).

There is a natural map of topological spaces πΓ : QΓ → M̂(S,Z). The

union of the images of QΓ → M̂(S,Z) over all multicurves Γ ⊂ S − Z

covers M̂(S,Z). Choose a ζ ∈ M̂(S,Z), and let ζ̃ be an inverse image of ζ
in QΓ.

The subgroup of the mapping class group of Mod(S,Z) stabilizing Γ
as a set acts on QΓ, by precomposition.

Proposition 12.2. The point ζ̃ has a neighborhood invariant under

Aut(XΓ(ζ̃)). The quotient of that neighborhood by this group of auto-

morphisms maps by a homeomorphism to M̂(S,Z).

Proof. This follows from Proposition 2.6. q.e.d.

Corollary 12.3. This gives M̂(S,Z) the structure of an analytic orb-
ifold.

This group of automorphisms also operates on the restriction of the
universal curve to this open set. This operation is not fixed point free
and constructs an “orbifold family” over an orbifold base, which will not

be a bundle in general. Above ζ will be the quotient XΓ(ζ̃)/Aut(XΓ(ζ̃)).

However, there is no proper flat family parametrized by M̂(S,Z), which

is why M̂(S,Z) is only a coarse moduli space.

Step 2. The natural transformation η.
Now suppose that (p : X → T,Σ) is a proper flat family of curves of

genus g with n sections (with images disjoint from the nodes, as usual).
For each t ∈ T there is a Γ-marking by (S,Z), φ : (S/Γ, Z) →

(X(t),Σ(t)). By Theorem 5.4, t has a neighborhood V such that the
family pV : p−1(V ) → V has a unique Γ-marking extending φ (as a
proper flat family, of course). As such, there is a unique analytic map-
ping fV : V → QΓ such that fV is isomorphic (as a Γ-marked family)

to f∗XΓ. The composition with the projection πΓ : QΓ → M̂(S,Z) gives

an analytic map V → M̂(S,Z).
Any two markings of X(t) differ by an element of the mapping class

group. As such, different choices of markings lead to the same mapping
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V → M̂(S,Z). It is then clear that any two such mappings V1, V2 →
M̂(S,Z) agree on V1 ∩ V2, so they all fit together to give a well-defined

morphism T → M̂(S,Z). This constructs a natural transformation

η : SCg,n → Mor(•,M̂(S,Z)).

Step 3. The universal property of M̂(S,Z).

Suppose ηY is a natural transformation

ηY : SCg,n → Mor(•, Y );

we need to construct a map F∗ : M̂(S,Z) → Y such that Diagram 10

commutes. Choose v ∈ M̂(S,Z), and point ṽ ∈ QΓ for an appropriate
multicurve Γ on S − Z such that πΓ(ṽ) = v. There then exists a neigh-

borhood V ⊂ M̂(S,Z) and a component Ṽ ⊂ QΓ of π−1
Γ (V ) such that

πΓ : Ṽ → V is a finite regular ramified cover, with covering group G the
group of automorphisms of XΓ(ṽ).

An element g ∈ G can be viewed as an automorphism

[g] : p−1
Γ (Ṽ ) → p−1

Γ (Ṽ ).

The natural transformation associates to the family p−1
Γ (Ṽ ) → Ṽ a map

Ṽ → Y , and since the family of curves

[g] ◦ p−1
Γ (Ṽ ) → Ṽ

is an isomorphic family, it associates to it the same map Ṽ → Y . Thus

the map Ṽ → Y is invariant under the group G and induces a morphism
V → Y .

The entire construction is functorial, so maps on different subsets V ⊂
M̂(S,Z) coincide and fit together to define a mapping F∗ : M̂(S,Z) → Y .

q.e.d.

13. Comparing M̂(S,Z) and Mg,n

Let S be a compact oriented surface of genus g, and Z ⊂ S a fi-

nite subset. Then the points of M̂(S,Z) and Mg,n correspond exactly to
the isomorphism classes of stable curves, analytic and algebraic, respec-
tively. But all compact analytic curves have a unique algebraic struc-
ture by the Riemann existence theorem. As such, there is a unique set-

theoretic map F : Mg,n → M̂(S,Z) such that if t ∈ Mg,n corresponds to
an algebraic stable curve Xt, then F (t) corresponds to the underlying
analytic curve Xan

t . The map F is obviously bijective.

Theorem 13.1. The map F is induced by an analytic isomorphism

Man
g,n → M̂(S,Z).
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Proof. Since F is globally defined, it is enough to prove that it is
locally an analytic isomorphism.

According to [40] and [6], there exists an algebraic manifold M̃g,n, a
Galois covering map

π : M̃g,n → Mg,n,

and a proper flat family of stable curves p̃g,n : X̃g,n → M̃g,n. Denote by
G the (finite) Galois group. This family represents the functor of stable
curves with Prym structure (of some appropriate level).

Choose t ∈ Mg,n, and a neighborhood U of t in Man
g,n such that above

Ũ := p̃−1
g,n(U) the family X̃g,n has a Γ-marking invariant under G for an

appropriate multicurve Γ on S − Z (see Theorem 5.4).
By the universal property of QΓ, there exists an analytic mapping

f : Ũ → QΓ that classifies X̃g,n with this marking. The image of f
is open. Moreover, the image of f is invariant under a subgroup of

Mod(S,Z) isomorphic to G. Since bothMan
g,n and M̂(S,Z) are isomorphic

to the quotients by G, we see that f induces an isomorphism from U to

an open subset of M̂(S,Z). q.e.d.

As a consequence of Theorem 13.1, we have the following universal prop-
erty of Mg,n in the analytic category (see Remark 0.1).

Corollary 13.2. The analytic space Man
g,n is a coarse moduli space

for the stable curves functor in the analytic category.

The corollary above is well-known; in fact, one may obtain this result
in the language of Kuranishi families and stacks; see [6].

Appendix: The geometric coordinates of Earle and Marden

This appendix refers mainly to work of C. Earle and A. Marden in
[15]. One might also see the following works: [12], [42], [51], [53], [38],
[39], and [59].

In [15], C. Earle and A. Marden have an alternative approach to
the construction of QΓ that is quite different from ours: it is based
on Kleinian groups and quasiconformal techniques. However, the two
constructions lead to the same space. In this section, we give a summary
of their construction in our language, and prove that their space is the
same as ours, using the universal property of our QΓ (Theorem 10.1).

Let (S,Z) be a topological surface, and let Γ ⊂ S−Z be a multicurve.
Choose a point u0 ∈ SΓ, and find a group G such that its regular set
can be written as

Ω(G) = Ω+(G) ∪Ω−(G),

where Ω−(G) is connected and simply connected, and such that the quo-
tient Ω−(G)/G represents a fixed point in Teichmüller space of (S∗, Z)
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and Ω+(G)/G represents the point u0. Here S
∗ denotes the conjugate

surface of S.
Such groups exist in the boundary of the Bers slice in the space of

quasi-Fuchsian groups based on (S,Z), by putting a Beltrami form on
the varying component to squeeze the curves of Γ down to nodes. The
limit of this squeezing exists by the compactness of the Bers slice. Such
groups can also be constructed directly by the combination theorems of
Maskit [41].

Further, for u in a neighborhood U ⊆ SΓ of u0, choose a family of
G-invariant Beltrami forms µu on Ω−(G) such that Ω−(G)(µu)/G rep-
resents u. We can choose the Beltrami forms µu to depend analytically
on u.

Each γ ∈ Γ corresponds to a conjugacy class of parabolic elements
of G, as does each element of Z ⊂ S. Let Gγ be a conjugate of G in
PSL(2,C), putting a fixed point of some element of the conjugacy class
corresponding to γ at ∞ and conjugating that parabolic to z 7→ z + 1.
Denote the conjugating map as ϕγ : G→ Gγ . Using the Beltrami forms
µu, we can similarly construct Gγ(u), with parabolic fixed points at ∞,
depending analytically on u.

The spaces Ω−(Gγ(u)) fit together to form a smooth family of curves
parametrized by u. This family is not proper; it has pairs of punctures
corresponding to γ, and it has punctures corresponding to elements of
Z. It can be made canonically into a proper family by filling in these
punctures and identifying in pairs the points corresponding to elements
of γ. Doing this for all γ ∈ Γ constructs a proper flat family of stable
curves isomorphic to XΓ

Γ (see Section 7.1).
The nodes are opened as follows. There exists a R > 0 so that the

limit sets of all of Gγ(u) are contained in {|Im(z)| < R}. For each fixed
γ ∈ Γ, define < Gγ(u), τγ > to be the group generated by Gγ(u) and
the translation z 7→ z + τγ , where Im(τγ) > R. By a theorem of Maskit
[41], this group is discrete. The group

ϕ−1
γ (< Gγ(u), τγ >)

gives an enrichment of the group G(u) by some parabolic element τ̃γ .
Doing this construction for all γ ∈ Γ yields a family of groups <
G(u), τ̃γ , γ ∈ Γ >. Since each of the groups Gγ(u) contains z 7→ z + 1,
< Gγ(u), τγ > depends only on u and tγ := e2πiτγ , where tγ lives in a
disk of radius ρ := e−2πR.

We are going to have to give a description of the limit sets of these
groups. The limit sets consist of bands, well-separated when R is large
and invariant by z 7→ z + 1. Although the bands themselves contain
further bands, the region between the bands contains copies of the limit
set of G(u), spaced τγ apart. The region between corresponds to annuli
associated to the element γ.
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The quotient of Ω−(< G(u), τ̃γ , γ ∈ Γ >)/G gives a family of smooth
Riemann surfaces if tγ 6= 0 (without any nodes). Essentially by the same
plumbing construction as ours, Earle and Marden construct a family
parametrized by U × (Dρ)

Γ.
Moreover, this family is Γ-marked. It is the passage from τγ to tγ

where one loses information about Dehn twists. So by the universal
property of QΓ (Theorem 10.1), there is an analytic map of U×(Dρ)

Γ to

QΓ. Since the tangent space to U×(Dρ)
Γ is the same as the tangent space

to PΓ, the lift of this map to PΓ is an isomorphism in a neighborhood
of u.

References

[1] W. Abikoff, Moduli of Riemann surfaces, A crash course on Kleinian groups
(Lectures at a Special Session, Annual Winter Meeting, Amer. Math. Soc., San
Francisco, Calif., 1974), Springer, Berlin, 1974, pp. 79–93. Lecture Notes in
Math., Vol. 400, MR0402032 (53 #5855).

[2] ———, On boundaries of Teichmüller spaces and on Kleinian groups. III, Acta
Math. 134 (1975), 211–237, MR0435452 (55 #8412).

[3] ———, Augmented Teichmüller spaces, Bull. Amer. Math. Soc. 82 (1976), no. 2,
333–334, MR0432919 (55 #5898).

[4] ———, Degenerating families of Riemann surfaces, Ann. of Math. (2) 105
(1977), no. 1, 29–44, MR0442293 (56 #679).

[5] ———, The real analytic theory of Teichmüller space, Lecture Notes in Mathe-
matics, vol. 820, Springer, Berlin, 1980, MR590044 (82a:32028).

[6] E. Arbarello, M. Cornalba & P.A. Griffiths, Geometry of algebraic curves, Vol-
ume II, Grundlehren der Mathematischen Wissenschaften [Fundamental Prin-
ciples of Mathematical Sciences], vol. 268, Springer, Heidelberg, 2011, with a
contribution by Joseph Daniel Harris, MR2807457 (2012e:14059).
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