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CALABI-YAU THEOREM AND HODGE-LAPLACIAN
HEAT EQUATION IN A CLOSED
STRICTLY PSEUDOCONVEX CR MANIFOLD
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Abstract

In this paper, we address the Calabi-Lee conjecture for pseudo-
Einstein contact structure via the CR Poincaré-Lelong equation.
Then we confirm the Calabi-Yau Theorem via Hodge-Laplacian
heat flow in a closed strictly pseudoconvex CR (2n + 1)-manifold
(M, 0) for n > 2. With its applications, we affirm a partial an-
swer of the CR Frankel conjecture in a closed spherical strictly
pseudoconvex CR (2n + 1)-manifold.

Dedicated to the memory of Professor Jianguo Cao

1. Introduction

In his celebrated paper [21], Yau established several related results
which are of fundamental importance in the study of Kahler manifolds.
These results have to do with the existence of Kahler metrics with cer-
tain special properties on compact Kahler manifolds. In order to achieve
this goal, Yau reduced the problem to questions about some nonlinear
partial differential equations of Monge-Ampere type and then solved
them by a continuity method involving a priori estimates. More pre-
cisely, Yau established the following Calabi-Yau Theorem.

Proposition 1.1. ([21]) Let (X, wg) be a compact Kihler manifold of
complex dimension m with a Kdhler class [wo] € H*(X,R)UH (X, C).
Given any form Q representing the first Chern class c¢1(X), there exists
a unique Kdhler metric w € [wg] such that

Ric(w) = Q.

In particular if ¢1(X) = 0, there exists a unique Kdhler metric w € [wo]
such that Ric(w) = 0.

By the well-known 99-Lemma (see, e.g., [18]) in Kihler geometry,
this is equivalent to finding a solution ¢ of the complex Monge-Ampere
equation

i
(wo + %a&p)m = efw6”
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where f is unique after normalizing to [ X(ef — 1wy’ = 0.

In the present paper, we study the CR analogue of the Calabi-Yau
Theorem in a closed strictly pseudoconvex CR (2n + 1)-manifold (M, 6)
(see the next section for basic notions in pseudohermitian geometry).
The pseudohermitian Ricci tensor and the torsion tensor on TVOM are
defined by

Ric(X,Y) = RogX°Y?,
Tor(X,Y) =i(Az5X°YF — A XYP),

where X = X°Z,, Y = YPZ;, R.3 = Ry7,3. The Tanaka-Webster

scalar curvature is R = R, = hoB R, 5. Before going any further, let us
recall some definitions.

Definition 1.1. ([16]) A contact form 6 on a closed strictly pseu-
doconvexr CR (2n + 1)-manifold (M, 0) is said to be pseudo-Einstein for
n > 2 if the pseudohermitian Ricci tensor RaE is proportional to the
Levi form haE’ i.e.,

_Rp _
o — Ehaﬁ

where R = hO‘BRaE is the Tanaka-Webster scalar curvature of (J,6).

R

The pseudo-Einstein condition is less rigid than the Einstein condition
in Riemannian geometry. Indeed, the CR contracted Bianchi identity no
longer implies R to be a constant due to the presence of pseudohermitian
torsion for n > 2,

Ro55 = Ra —i(n—1)Aas 5.

Note that any contact form on a closed strictly pseudoconvex 3-manifold
is actually pseudo-Einstein (since the pseudohermitian Ricci tensor has
only one component R,).

Next we define the real first Chern class ¢ (TH(M)) for the holo-
morphic subbundle T719M in (M, 6).

Definition 1.2. ([16]) Let (M,0) be a closed strictly pseudoconvex
CR (2n + 1)-manifold. We define the first Chern class c¢;(TY'M) €
H?(M,R) for the holomorphc tangent bundle T*OM by
dwa®] = =—[Ra® a0t N 0P] = —

o) = = [Ra% ap 107] = L[5

7

C1 (Tl’OM) = 5
T

with
v =R50" N0” + Anpat N O — Acpab N0
which is the purely imaginary two-form.

Then we have the following result.
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Proposition 1.2. ([16]) For any pseudo-Einstein manifold (M?"+1, )
with n > 2, the first Chern class c¢i (T M) of TYOM is represented by

7 = =5 d(R0).

Here ~ s globally exact and hence represents the trivial cohomology
class:
1,0 _
C1 (T M ) =0.
In view of Proposition 1.1 and Proposition 1.2, we have the corre-

sponding CR Calabi-Lee conjecture ([16], [4]) in a closed strictly pseu-
doconvex CR (2n 4 1)-manifold (M, ) for n > 2 as follows.

Conjecture 1.1. (Calabi-Lee Conjecture) Given any closed 2-form
® representing the first Chern class c1 (T M) in a closed strictly pseu-
doconvex CR (2n + 1)-manifold (M,6), there exists a unique contact

structure 0 € [0] such that
Ricz(X,Y) = ®(X,Y)
for all X, Y € ker 6. More precisely, it is equivalent to
(1.1) Ricg(X,Y) = ®(X,Y) = Ric(X,Y) + do(X,Y)

for some purely imaginary 1-form o = (O‘EHB — 0,0%) + i0¢f. In par-
ticular if c1(TYOM) = 0, there erxists a unique pseudo-Einstein contact
structure 0 € [0] such that

R
n

We observe that as in the Calabi conjecture for compact Kéahler man-
ifolds, it is natural to work on a fixed Kihler class due to the 99-Lemma.
However, we do not have the analogue 9,0,-Lemma, in the CR case. In-
stead, we work on a fixed contact class. More precisely, it is proved
(Theorem 3.1) that § = 2@ is a pseudo-Einstein contact structure if
and only if u is the solution of

(1.2) MX,Y)=®(X,Y) = Rice(X,Y) + do(X,Y).

1
(n+2)(u,p +ug,) = B3 — E[(n +2)Apu + Rlh, 3.

Some of well-known results (Theorem 4.1) for the CR Calabi-Lee con-
jecture were derived by J. Lee ([16]) and Cao and the second author
([3]) via the elliptic method.

In this paper, we derive the following CR, Calabi-Yau Theorem via
CR Hodge-Laplacian heat equation.

Theorem 1.1. Let (M, 0) be a closed strictly pseudoconvex CR (2n-+
1)-manifold with c1(TY°M) = 0 for n > 2. Then there is a smooth real-
valued function u solving

1 Rd

(r—R) with r:fM g
n+ 2 Jas dpe

Au =
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u also satisfies the following identities:
(’I’L + 2)(ua§ + uﬁa) = RQE — Ehaﬁ
and
1
(1.3) (n+2)(u,5 +ug,) = R,5— E[(n +2)Apu+ Rlh, 3.

Hence €2“0 is a pseudo-Einstein contact structure. In addition, if R is
constant, then u is constant and

R

h

In general, it is difficult to see when a CR manifold has the vanishing
first Chern class ¢;(T%°M). By applying the CR version of Bochner-
type identity due to Mok-Siu-Yau [17] in the case of Kéhler manifolds,
we derive the following result (also Corollary 5.1):

Theorem 1.2. Let (M, J,0) be a closed strictly pseudoconvexr CR
(2n + 1)-manifold of positive pseudohermitian bisectional curvature and

Aory,a =0

for each .. Then there exists a smooth real-valued function u such that
1
(n+2)(u,5 +uz,) = R5— E[(n +2)Apu + Rlh 3.
Hence €2“8 is a pseudo-Einstein contact structure.

As an application of Theorem 1.1, we can affirm a partial answer of
the CR Frankel conjecture in a closed spherical strictly pseudoconvex
CR (2n + 1)-manifold for n > 2.

Conjecture 1.2. (CR Frankel Conjecture) A simply connected closed
strictly pseudoconvex CR (2n+1)-manifold (M, J,0) of positive pseudo-
hermitian bisectional curvature is globally CR equivalent to a standard
CR sphere (S*"F1 J, 5) in C"+1 with the induced CR structure J and

the standard contact form 6.

Definition 1.3. ([6]) Let (M, 0) be a closed strictly pseudoconvex CR
(2n + 1)-manifold with n > 2; we call a CR structure J spherical if the
Chern curvature tensor
(1.5)

Coarxeg = RBEAER— —5[Rpahaz + Raxahps + 65 Rz + 05 Rs]
+m[5§h}f + (y):'\{hﬁﬁ]
vanishes identically.

Remark 1.1. 1. Note that Comxg = 0. Hence Cgays is always van-
ishing for n = 1.
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2. We observe that the spherical structure is CR invariant and a
closed spherical CR (2n + 1)-manifold (M, J) is locally CR equivalent
to (821 ).

3. ([14)) In general, a spherical CR structure on a (2n+1)-manifold is
a system of coordinate charts into S*™ 1 such that the overlap functions
are restrictions of elements of PU(n + 1,1). Here PU(n + 1,1) is the
group of complex projective automorphisms of the unit ball in C™1 and
the holomorphic isometry group of the complex hyperbolic space CH".

Now we may state the second main theorem in this paper.

Theorem 1.3. Let (M, J,0) be a simply connected, closed spherical
strictly pseudoconvex CR (2n+1)-manifold of positive constant Tanaka-
Webster scalar curvature with c1(TY°M) = 0 for n > 2. Then M is CR
equivalent to the standard CR sphere (S*"+1, J. , 5)

Note that in [6], Chern and Ji proved a generalization of the Riemann
mapping theorem: If Q is a bounded simply connected domain in C**!
and its connected smooth boundary 9€) has a spherical CR structure,
then it is biholomorphic to the unit ball and M = 0f) is the standard
CR (2n + 1)-sphere.

However, it is shown ([3, Proposition 3.2 and Lemma 3.1]) that
c1(THOM) = 0 if M is the boundary of a smooth, bounded strictly
pseudoconvex domain in a complete Stein manifold V**! for n > 2.
Hence Theorem 1.3 implies the following result.

Corollary 1.1. Let (M, J,0) be the smooth simply connected spheri-
cal boundary of a bounded strictly pseudoconvexr domain 2 in a complete
Stein manifold V™" for n > 2. Assume that (M, J,0) has positive con-
stant Tanaka- Webster scalar curvature. Then M is CR equivalent to the
standard CR sphere (S*"*1,J,0). In particular, any simply connected
closed spherical CR hypersurface of positive constant Tanaka- Webster
scalar curvature in C"T' is CR equivalent to the standard CR sphere
(S27+1 J.8) forn > 2.

Furthermore, Proposition 5.1 implies that there is a smooth real-
valued function u such that 2“6 is a pseudo-Einstein contact structure
if (M,0) is a closed spherical CR (2n + 1)-manifold of positive pseu-
dohermitian bisectional curvature for n > 2. Hence from Theorem 1.3
again, we have

Corollary 1.2. Any simply connected closed spherical CR (2n + 1)-
manifold (M, J,0) of positive pseudohermitian bisectional curvature and
constant Tanaka- Webster SEalar curvature is CR equivalent to the stan-
dard CR sphere (S*"*1,J,8) for n > 2.

It is conjectured that any simply connected closed spherical CR, 3-
manifold (M, J,0) of positive constant Tanaka-Webster scalar curvature

is CR equivalent to the standard CR sphere (S3,.J,6).
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The paper is organized as follows. In section 2, we introduce some
basic materials in a pseudohermitian (2n + 1)-manifold. In section 3, we
address the Calabi-Lee conjecture for pseudo-Einstein contact structure
via Poincaré-Lelong equation. In section 4, we prove the CR Calabi-
Yau Theorem via the Hodge-Laplacian heat equation. Finally, some ap-
plications on the CR Frankel conjecture for a closed spherical strictly
pseudoconvex (2n + 1)-manifold are derived in section 5.
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2. Preliminary

We first give a brief introduction to pseudohermitian geometry (see
[16] for more details). Let (M, &) be a (2n + 1)-dimensional, orientable,
contact manifold with contact structure £, dimg £ = 2n. A CR structure
compatible with ¢ is an endomorphism J : § — & such that J? = —1.
We also assume that J satisfies the following integrability condition:
If X and Y are in &, then so is [JX,Y] + [X,JY] and J([JX,Y] +
[X,JY]) = [JX,JY] — [X,Y]. A CR structure J can extend to £QC
and decomposes é®C into the direct sum of THOM and T%'M which
are eigenspaces of J with respect to eigenvalues ¢ and —i, respectively.
A pseudohermitian structure compatible with £ is a CR structure J
compatible with £ together with a choice of contact form 6. Such a
choice determines a unique real vector field T transverse to &, which
is called the characteristic vector field of 6, such that (7)) = 1 and
L0 =0 or di(T,-) =0.

Let {T, Z,, Zs} be a frame of TM ® C, where Z, is any local frame
of T, Zy = Z, € T%', and T is the characteristic vector field. Then
{6,0%,0%}, which is the admissible coframe dual to {T', Z,, Z5}, satisfies

d = ih,z0% N 67,

for some hermitian matrix of functions (h,5). We call {#} an admissible
coframe for 6. Moreover, we say (M, 0) is a (strictly pseudoconvex) CR
manifold if the hermitian matrix (haﬁ-) is positive definite. We always
assume it through this paper.

A complex-valued g-form 7 is said to be of type (g,0) if T%!|n =0,
and type (0, q) if T%°|n = 0. The canonical bundle Kj; is the complex
line bundle of (n+1, 0)-forms. The Levi form Ly := (, ) is the Hermitian
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form on 70 defined by
(Z,W) = —i(d0,Z N\W)
or B
Lo(U®Z4a, VP Z5) = hogUVP.
We use the matrix h,z in the usual way to raise and lower indices:

A® 5= h,5A%. We can extend (, ) to T%! by defining (Z, W) =

(Z,W) for all Z,W € T'9. The Levi form induces naturally a Hermitian
form on the dual bundle of 719, also denoted by (, ), and hence on all
the induced tensor bundles.

The pseudohermitian connection of (J,0) is the connection V on
TM ® C (and extended to tensors) given in terms of a local frame
Zo € T by

VZo=ws’®2Zs, ViZs=uws’®Z5 VI =0,

where w,? are the 1-forms uniquely determined by the following equa-
tions:

doP = 0% ANw.® + 0N TP,
(2.1) i
Ta NOY =0, waﬁ + wﬁ‘a = dhag.

We can write 7, = AOCB@B with A, = Apq. The curvature of the
Tanaka-Webster connection, expressed in terms of the coframe {6 =
6,602,607}, is

Hga = HB‘O_‘ = dwga — w57 N wyo‘,

o = 11,0 = Iy? = 115° = 11,° = 0.

Webster showed that IIg* can be written
(2.2)
Hg* = R3®ps0P N O7 + W5®,0° N O — W07 NGO +ibg AT — iTg A 02,

where the coefficients satisfy
Rgaps = Ropop = Rapop = Rpaps, Weay = Wias-
It is useful to note that contraction of (2.2) yields
(2.3) IL,* = dwa® = Rps0” N7 + W * 0P A0 — W 5,67 A 6.

We will denote components of covariant derivatives with indices pre-
ceded by a comma; thus write A,g,. The indices {0,c, @} indicate
derivatives with respect to {T,Z,, Z5}. For derivatives of a function,
we will often omit the comma, for instance,

Pa = Za(p, PaB = ZBZQQD - an(ZB)Z«/(,D, Yo = T(')D
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for a (smooth) function ¢. The tangential Cauchy-Riemann operator dy
is defined locally as Oy = po.0%, and 0y is the complex conjugate of
Op such that dyp = pa8®. Then the formal adjoint of 0, on functions
(with respect to the Levi form and the volume form du = 6 A (df)™)
is 0y = —0p. Here 0y is the divergence operator that takes (1,0)-forms
to functions by 0y(040%) = 04,* and 0y(058%) = 0x,%. In general, we
define an L? inner product by

(w, C):/ <w, (>0AN(dI)"
M
for any (0, g)-form w, ¢ on M. Here < w, ¢ >= wg,..&,¢* % with
w = Walmaqeal A A Haq and < = (almaqeal VANRAN Gaq.
The formal adjoint 52 of 0y is given by

@y, ¢) = (w, i)

for any (0, ¢)-form ¢ and (0, ¢ + 1)-form @ on M.
For a function ¢, the subgradient V; is defined locally by Vyp =
©*Z o + ©*Z5. The sub-Laplacian Ay on functions is defined as

App = —(0a™ + 0a").
The Kohn-Rossi Laplacian [, on functions is defined by
O = 20,0pp = (Ap + inT)p = —205°
and is defined on (0, ¢)-forms by
Oy = 2(8,05 + 00y,
3. Pseudo-Einstein contact structure and Poincaré-Lelong
equation

In this section, we address the Calabi-Lee conjecture for pseudo-
Einstein contact structure via the CR Poincaré-Lelong equation (3.8).
Let {#*} be an admissible coframe for 6 with

d = ih,56° A 6°.
Then it is convenient to work with the coframe {5‘3‘ = 0%+ 2iu*0} which
is admissible for 6 = %6 with
47 = i, 50 7 5.
Thus
(3.1) hog=e"h,z5.
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Theorem 3.1. Let (M, 0) be a closed strictly pseudoconver CR (2n+
1)-manifold with a fized contact class [0] and 0 € [0] with 6 = e*. Then

0 = €0 is a pseudo-Einstein contact structure if and only if u is the
solution of

(32)  (u+ug) = ﬁmaﬁ - %[(n +2)Apu + Rlh g}

Proof. Let ® be a closed 2-form representing the first Chern class
c1(TYPM) as we have introduced before. We need to find a contact

structure 6 such that
Ric(X,Y) = ®(X,Y)

for all X,V € ker . It is natural to choose 6 in a fixed contact class 0]
with 6 = 2“6 . It follows from [16, Lemma 2.4] that

(33) R,3=R.5— (n+2)(uz+uz,) + A —2(n+1)|Vul*Jh3.
Next we choose a purely imaginary 1-form
0 = —(n+2)(uz0” — uat®) — i[Ayu — 2(n + 1)|Vul?]6.
Then
do = {~(n+2)(u,5+uz,)+[Apu—2(n+1)[Vul?|h,5}0°A0°  mod 6

and

(3.4) Ric(X,Y) = Ric(X,Y) + do(X,Y).
Now if 6 = €240 is a pseudo-Einstein contact structure, then
~ R~

But for = €20, we have ([16])
(3.6) R=e 2[R+ 2(n+ 1)Apu — 2n(n + 1)|Vul?].
Therefore, it follows from (3.1), (3.3), (3.5), and (3.6) that

(33
1
(n+2)(u,5 +uz,) = R.5 — E[(n +2)Apu + Rlh, 3.
q.e.d.

Remark 3.1. By [16], if u is a CR-pluriharmonic function, then
there exists a smooth function ¢ on M such that
uag = QOhaB
Note that Ug, = Uyg — iuohoﬁ. Hence U,g + ug, = 2u,z — tuph,z =

af

(2¢ — iuo)haﬁ. Now if 0 is pseudo-Einstein, it follows from (3.3) that

P _
R =c7[= = (n+2)(2p — iup) + (Ayu — 2(n + DI Vul) b5
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and 0 is also pseudo-Einstein.

Define
dy = 0 +5b and d% = 1(5(, — 8;,)
Thus
dpdfy = i(0p0p — OpDp)
and

dyd§u = i[9y (uz0”) — Dp(uab®)]
(3.7) = i[(ug, 0% A %) — (uaBHB A 0%)]
= i(ugg + uyz)0% A 6P,
It follows from Theorem 3.1 that
Corollary 3.1. Let (M, ) be a closed strictly pseudoconvex CR (2n+

1)-manifold with a fized contact class [0] and 0 € 0] with 6 = €2“0. Then

0 = €20 is a pseudo-FEinstein contact structure if and only if u is the
solution of the CR Poincaré-Lelong equation

C ? 1 [e% A
(3.8)  dpd§u= ) {Ry5 — ~[(n+2)Apu+ Rlho530% A 0°
which is equivalent to
1 = 1
c R o _po B8 _ -
(3.9) drdyu CET) {ZRQBG A6 - [(n+2)Apu + R]dO}.

4. CR Hodge-Laplacian heat equation

In this section, we will derive the CR analogue of the Calabi-Yau
Theorem via the so-called CR Hodge-Laplacian heat equation. We first
define the CR Hodge-Laplacian

Apg = —(dudy + dydm)

with dj; = 0 + 3,. We know that a k-form w can be decomposed
uniquely as

w=wi;+0Aw
with w1 = Z|I|+‘I’|:k fIJIHI A 01, and Wy = Z|I|+‘I’|:k—1 9171/91 VAN 9'[/.
Thus

(4.1) d(w1 + 0 A LUQ) = (del + (d@) VAN LUQ) A (Tw1 — dHLUQ).

Furthermore )
2 =0y = y0, + 0,0, =0
and
d3; = 0y0y + 040y = —Te(dh)
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with e(df)w = df A w. Straightforward computation ([19]) yields
Ap = —%(Db + Op).
Lemma 4.1. For any (1,1)-form ¢ with ¢ = waEHO‘ A 93, we have
(Auv),5 = —Ap,5+ 2R - 50z — (R 5%y + Ryt 3)-
Here Dpog = ~(Vaf 5 + VaBiry)-

Proof. Direct computation ([8], [15]) shows that

1 .
5O0¥)as = —Vaszy — 2050 ~ Ragustsm + Bypthey

and
1 — .
5 (6¥)ag = ~Yag oy T 20050 — Rayug¥ve + Royyg:
The conclusion of this lemma follows immediately. q.e.d.

We will work on the so-called CR Hodge-Laplacian heat equation on
M x [0, 00)
0
(42) an(l‘7t> = AHU($7t)'

It follows from Lemma 4.1 that the equation (4.2) is equivalent to the
CR Lichnerowicz-Laplacian heat equation:

0
for any (1,1)-form n(z,t) = n,50% A 65,
Lemma 4.2. For any dg-closed (1,1)-form n, we have
drdy(An) = Apn.
Here N is the trace operator.

Proof. We first compute

dud§(An) = S(dudj An—d§dg An) B
= %i[(@bab — 8{,8{,) AN — (8;,8;, — abab) AN 77].

Recall that ([19])
A, &) =i, and [A, 9y = —id;.
Thus .
Ny — By A1 = Dy 1

and since dyn = 0 = Oy,

O An = —z’gz n.
Similarly, we have _

Oy A =10} 1.
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Finally, these computations imply that
dads(An) = =3[, + 035 )n + (BsDy, + 005 )]
= —(BoTyn + %I5n)
~[(0s3y, + Dy06)n + (0605 + Oy 0b)7]
= —1(Om+Tm)
= A HN-
This completes the proof of the lemma. g.e.d.

Now we are in a position to discuss the heat equation for the CR
Hodge-Laplacian. This approach was initiated by Ni and Tam ([20]) for
Kahler manifolds. Here we generalize it to the sub-Riemannian setting.
The heat equation associated with a subelliptic differential operator is
a very interesting subject which was studied by many mathematicians
extensively in the past 20 years; see, e.g., Beals, Greiner, and Stanton
([1]) and Beals, Gaveau, and Greiner ([2]).

Theorem 4.1. Let (M, 0) be a closed strictly pseudoconvex CR (2n+
1)-manifold. Suppose the following are true:
(i) There is a real (1,1)-form n(x,t) satisfying
{ gn(z.t) = Apn(e,t), M x[0,00)
n(z,0) = p(z).
Here p(z) = ip,50% A 08 is a real d-closed (1,1)-form with Puf =

ﬁ{RaE — whogt and v = [ Rdp/ [\ du such that n(x,t) is du-
closed and

(4.4) tlig‘lo n(z,t) =0.
(it) There is a smooth real-valued function u solving Ayu = —tr(p,3) =
%H(r — R) and a solution v(z,t) of
%fu(az,t) = —Ay(z,t), M x[0,00)
v(z,0) = u(z)
and
(4.5) tliglo dpdgv(z,t) = 0.
Then
1 1 3
c _ = _\po B8
dpgdyu = )] {R,3 - [(n +2)Apu + Rlh, 510" N 67,

Proof. Define
¢($, t) = tr(%g(% t))

Then
{ Go(x,t) = tr(Fm,a(
¢(,0) z

z,t)) = tr(AHT/)QB = _Ab¢(x7t)7
0)) = tr(paz(x))-

|
~
=
—~
3
Q
isy
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Consider ,
w(z,t) = —/ o(z, s)ds.
0
Thus
0
(46) aw($vt) = —¢($,t) = —W(%B(%t))
and
t t 8
Bywlat) = [ Muotes)ds = [ 2 ot s
0 0 83
Hence
(47) %w(‘r7 t) = —Ab'w(l', t) - tr(paﬁ(x))a
w(z,0) = 0.
Let
v(x,t) = u(z) — w(z,t).
Then
Gz, t) = Apw(z,t) +tr(p,g(e))
= —Apu(z,t) + Ayu(z) +tr(p,z(z))
= —AbT)(az,t).
It follows that
8 ~ ~
E'U(.Z’,t) = —Ab?}(w,t),
(48) { v(x,0) = wu(z).
Finally by maximum principle, we have
(4.9) v(x,t) =0(z,t) = u(x) —w(z,t).
By applying Lemma 4.2, we compute
L(n+dgdyw) = Apn+ dpds(Zw)
= Apn—dgdy(An
= 0.
But at £t =0,

N+ dgdyw = p.
This implies

N+ dgdyw =p
and

n+dpdyu —dgdyv = p
for all t > 0. But
tllglo n(xz,t) =0= tliglo dpdyv(z,t).

Therefore
(4.10) dgdiu = p.
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Note that -
drdgu = i(ug, +u,z)0% A 6°
and ‘
"R _
n+2) [ b
It follows from (4.10) that

r=Mn+2)Au+R

r _
= — —h_=]6% A 6°.

and then
i 1 =
c, _ v = _1po 153
dpdyu = (n+2){Ra6 n[(n+2)Abu+R]ha6}9 AP,
The proof of the theorem is therefore complete. q.e.d.

In general, if condition (4.4) does not hold, we still have a real (1,1)-
form

]
(n+2)
with the following property:

Jim (,1) = (12 (@) + 05, (2))0% A 67

Corollary 4.1. Let (M, ) be a closed strictly pseudoconver CR (2n+

1)-manifold. Then there is a smooth real-valued function u solving Apu =

n%rz(r — R) such that

1 (o) o0
(n+2)(ug, + uyp) = Ry — —[(n +2)Apu+ Rlhyg — (15 + 13,

with
Noz + NMaa = 0.

In the following, we will investigate situations when 772% + 77%‘; =

0. More precisely, we are able to derive the following CR, analogue of
Calabi-Yau Theorem via the Hodge-Laplacian parabolic equation which
recaptures well-known results by the elliptic method due to Cao-Chang
([4]) and Lee ([16]).

Theorem 4.2. Let (M, 0) be a closed strictly pseudoconvex CR (2n-+
1)-manifold for n > 2. Assume that

(i) (M, 0) is the smooth boundary of a bounded strongly pseudo-convex
domain Q in a complete Stein manifold V"L, or

(ii) (M,0) has positive pseudohermitian Ricci curvature with
c1(THOM) = 0.

Then there is a smooth real-valued function u solving Apyu = n%rz(r —
R) and r = [,; Rdp,/ [y, dp such that

C . T (0% B
(n+2)dndfu = i{Ryp — —ho5}0° A 0"
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and
. 1 3
(n+ 2)dndiu = i{R,5 = —[(n+2)Apu + Rlho530% A 0°.
Hence €?“8 is a pseudo-Einstein contact structure.
Proof. In order to apply Theorem 4.1, we need to justify (4.4) and
(4.5). We first note that
1 . = 7
plz) = m{magea AOP — —do}

is an dy-closed (1,1)-form. Since M is closed, then n(z,t) is also dy-
closed. If ¢y (T*OM) = 0, there exists a global imaginary one-form

(4.11) o(x) = Jg(x)ﬁﬁ — 0o(2)0 4 iop(x)6

on M such that

(4.12) dwa®(x) = do(x).

Thus ([16])

(4.13) R 5(z) =05 ,(2) + 0,5(x) — 00(x)h,5(2).

It follows from (4.1) that

(n + 2)p(z) = id5 — (o0 + %)d@ — iy — dy((oo + %)9)

with _
5(z) = (050° — 7a0%).
Thus
n(xz,t) = dglé(z,t) + k(z,t)]
with
Sz, t) = i[lg(m,t)eg —lo(z,t)0%)] and  k(z,t) = k(x,t)6.
Here
77(357 0) = p(.%') = dH[(S(x7 O) + ’%(‘Tv 0)]
and
(4.14) 5(z,0) = ilog6” — 0a8%)] ; K(z,0) = —(o0 + %)9.
Now

AHU($7t) = %77(337t) = dH[%5($vt)) + %K’($vt)]
and since dgn(z,t) =0,

Hence

(4.15) %5(:5, t) = —diydd(z,t) + 8
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with d0 =0 and 6 = 610 4 5001 for real-valued (1,0)-form 60 and
(0,1)-form 6(%1) which implies
(4.16) 0,00 =0 and 9,07 =0.

On the other hand, if dg (f(z,t)8) = 0, then we have 0 = d(f(z,t)0) =
f(x,t)df which implies f(z,t) = 0. Thus
(4.17) %(/ﬂ(:ﬂ,t)) = —dydgr(z,t).

(i) (M,0) is the smooth boundary of a bounded strongly pseudo-
convex domain € in a complete Stein manifold V"*! for n > 2. By
a theorem of Kohn ([15], [3]), (4.16) implies that there is a smooth
real-valued function g on M such that

& = i(gg0” — ga0®).
Since ng: 0, we have
950 T 9,5 =0
and then
Abg =0.
Therefore g is constant and
(4.18) 5=0.

(ii) Let (M, 0) be a closed strictly pseudoconvex CR (2n+-1)-manifold
of positive pseudohermitian Ricci curvature. It follows from ([15]) that
(4.19) 30D = igz0% 4O
with Db’y(o’l) = 0. Since the pseudohermitian Ricci curvature is positive,
by Lee’s result ([16, Proposition 6.4]), we have

7(0’1) = 0.

Then B
5O = ig g7,
Similarly, we have
10 = g0
Hence

(4.20) 5= i(gEHE — gab®)

and again 6 = 0 as in (i). Now from (4.15) and (4.17), we have
9 "

§5(x,t) = —dydpd(z,t)

and

9 .
Eﬁ(m, t) = —dydgr(x,t).
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Thus
= _2(dH5( 7t)7 Ho(r, ))
= =2 [y lldrd(=, )\!2 u
and ;
& Ju lls(@ )[Pdp = —Z(dEdHﬁ(fv,t),/f(zx,t))
= =2 [y ldur(z,t)|[dp.
Therefore
Jim n(z,t) = 0.
Similarly,
d
G [ lPdi= =2 [ ol P
M M
and then
tliglo dpdyv(z,t) =0.
The proof of the theorem is therefore complete. g.e.d.

Now we will express § in the following general form.

Lemma 4.3. Let (M, 0) be a closed strictly pseudoconver CR (2n+1)-
manifold for n > 2. Assume that § is a smooth real-valued one-form with

dié = 0.
Then _ _
6= Z‘(’YEHB - ’Yoeea)
and
(421) ’}/aﬁ + ’)/Eﬂ =0.
Here

Oy(730%) = 0 = Op(7a0%).
Proof. Since dyé = 0, it follows from (4.19) and (4.20) that
5 =i(g50” — ga0®) + (50" — 7a0®)
with Opy D = 0 = Tyy™10. Again from dyé = 0 and (4.16), we have
30O 4 9,610 = 0.
But 601 = igg@g + i’yBHE and 6(10) = —1ga0® — iv.0“. Then
0= 8(,5(0’1) + 555(1’0) = Z'[(gga + gag) + (’YEQ + ’YOC’E)]QO‘ A 93.
Therefore
(980 + 908) T (15,0 +Vap5) =0

and
_Ab.g + Ye,a + Yo, = 0.
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On the other hand, 0,y(®Y) = 0 implies that
Ya,a =0 ="Yaa-
Thus
Apg =0
and g is constant. Moreover, we have
Vo5 + Vo = 0.

This is exactly (4.21) and the conclusion of the lemma follows immedi-
ately. q.e.d.

Remark 4.1. Theorem 4.2 is a special case of Lemma 4.3 where
O = 0 = ~10),

In general, if 8 is non-vanishing with ng = 0, then

(4.22)
0G0, 3.0y = 5 [ l8(a 0l

- _2/ ldud(z, ¢)|du — 2(8(x, 1), 8(x,t)).
M

We will work on the case of

(6(x,t), d(z,t)) =0

with dgd = 0.
We first consider the special case with

0o = Pa
for a smooth real-valued function . Then
dwy,® = do

with

0= 3307 — Pab® + iooh = i(—d§; 3 + oob).
On the other hand, it follows from (4.14) and (4.13) that

(n+2)p(@) = dn[5(x,0) = (x,0)] = dnd§z# — (00 + ~)6.

Hence

(4.23) 0(x,t) = dye(x,t)
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with ¢(z,0) = @. By Lemma 4.3 and ;7% = 0 = 0,719, we have
527(0’1) =0= 0{:7(1’0) and then

(0(a,1), 8, 1)) = (i(150” ~7a6%), i(Bop — Dpp))
= —([0,(150") — 3, (7a8") — O (158”) + O} (e8], )
= ([0, (150") + 8, (726, ¢)
=0.
On the other hand, it follows from (4.14) and (4.13) that
Rop = @ga+ Pap — 00hag
and then
R = —Ab& — noy.
Hence
PhatPap = Boptoohyp
= Ry5— 5 (M@ + R)h 5

: __9
Taking u = w75, we have

1
(n+2) (5 + u5,) = Ry — —[(n+2)Asu+ b3

and €26 is a pseudo-Einstein contact structure.

Let H (9 be the space of smooth harmonic (0, ¢)-forms with (9 =
Ker(Op). Tt is of finite dimension in a closed strictly pseudoconvex CR
(2n + 1)-manifold (M, 0) with 1 < ¢ <n—1and n > 2. Then for any
(0,1)-form w, we have the following Hodge-type decomposition ([15],

[5]):

(4.24) w = 9,0,¢ B 9,05¢ & HOVw
and
(4.25) W = 0,0,C ® 0 0pC D HODw

for some (0, 1)-form (.

Lemma 4.4. Let (M, 0) be a closed strictly pseudoconver CR (2n+1)-
manifold for n > 2. Assume that

dw,® =do with o= 1(0393 — 0,0%) +iopb

and 3
i(o507) € (HOV)L

Then there is a smooth real-valued function u such that €246 is a pseudo-
FEinstein contact structure.
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Proof. Again, it suffices to show that

(0(z,t), O(z,t)) =0
if -
Z'(O'EHB) = 51,52(0 + 5:51)(0
with (0, 1)-form (p.
Now from Lemma 4.3, (4.24), (4.25), and Oyy(®1) = 0 = Tyy10),

(6(z,t), 6(z,1))

= (i(758° —7a8), i(5567 — 8a6))

= (50" = %a0%, Dp5C + FDuC + 040;C + 95 94C)

= i(150°, 0b0y¢ + 0p06¢) — i(1a0”, ;< + 3;0C)

=i(vg0%, 90,0) +i(v30°, 0,06C) — i(1ab®, B0;C) — i(vab®, O}0xC)
=0.

Here we have used the fact that (2-5393) = D40, C+0,,0pC and (—ida0%) =

005 ¢ + 9;9C with ((z,0) = (o(x) and o5(z,0) = og(x). q.e.d.
Now we are in a position to prove the main theorem, Theorem 1.1 :

Proof. 1t suffices to show that

(0(x,t), O0(x,t)) =0

under

(4.26) %5(90, t) = —diydyd(z,t) + 6

with ng: 0. We first define H be the subspace of H(®D as
H = {Z(’YEHE) € 7‘[(0’1) ’ "Yaﬁ + ’YB@ = O}

It follows from Lemma 4.3 that for i(’ygﬂg) € H, the real-valued one-
form

§ = i(750° — a0

satisfying
dgd = 0.
Note that if §(z,t) € H, then
dH%S(:E, t)=0
and
23@ t)ye H
ot ’

Hence, for the real one-form d(z,t) = z'((?B(:E,t)HE — O (z,t)0%) with
65(2,0) = oz(x) as in (4.26), we may assume that

(i05(x,1)0°) = Bp0,¢ © B, 05¢ & HOV (i656°)
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with
(4.27) HOD (i6,67) L H.
This also implies
—(i0a(x,1)0%) = 8305 C ® 8 B¢ & HYO (—ibq (2, 1)0%)
with
(4.28) HLO) (—ig, (2, 1)0%) L H.
Thus from Lemma 4.4, (4.27), and (4.28), we have

(6(z,t), 6(z,1))

= (7507 — 7, i(05(x,1)07 — da(2,1)0))

= (i750°, D0,C + 0,04 + HOV(i650%) + 0,05 + ;¢
+HI0(i6,6%)) — (i7a0%, 0s0yC + 0,06¢ + H OV (i056°)
+0,05C + 0505C + H10) (i6,60%))

= (irg0°, HOD(io507) + 110 (i6,6%))
—(ia0%, HOD(i6307) + H10 (i5,,6%))

= (ivg07, HOD(i650%)) — (i7ad*, HIO(i6,0%))

= 0.

This completes the proof of Theorem 1.1. g.e.d.

5. The CR Frankel conjecture

In this section, we provide a partial answer of the CR Frankel conjec-
ture in a closed spherical strictly pseudoconvex CR (2n + 1)-manifold.
We start with the proof of Theorem 1.3:

Proof. Tt follows from the contracted Bianchi identity ([16, (2.11)])

(5.1) R,5" = Ro —i(n —1)Aag”.
On the other hand, from (1.4) of Theorem 1.1, we have
(5.2) Ryp = 3ihgp

if R is the positive constant Tanaka-Webster scalar curvature. This and
(5.1) imply

(5.3) Aug? =0

for all @ and n > 2. Since J is spherical, it follow from (1.5) and (5.2)
that
(5.4)
Rgaxe = ni_g (hgahxs + haahss + 5%%6 + 6$ has)
~ ) 95 e + 03hsal
25 [hgwhaz + haahgs) + m [0 haz + 05 hss)-
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Now by [16, (2.7)] and (5.4),
(5.5)

Z'Aa“/ﬁhﬂg + iAaV’EhpB - iAap,EhVE - Z'Ao‘ﬂfh'yﬁ - Raﬁ/ﬁn/ - Raﬁ’vﬁﬁ -

Contracting both sides by h*7,
(5.6) inAy, 5+ iAay 505 — Ay, 500 — iAay”h.5 = 0.
But from (5.3),

(5.7) Aoy 705 = Aapﬁéf/ N A‘thﬁ = A5 A0y =0
Hence

for all a7y, 8. Again by [16, (2.15)],
Aapp7 — Aapzs = ithssAapo + Ra" gy Arp + Ry gy Aax
and from (5.8),
Aap,py = they Aapo + Ra" gy Awp + Bp" gy Aan-
Contracting both sides by h?7,

Aapr’ = inAapo + Ra™ Ay + Ry A
= nAapo + RarA"p + Ry Ay
= inAap70 + khaEAEp + khpEAEa
= indapo + 2k Aq,.

Here k := %. That is,
(5.9) Ao o” = inAay0 + 2k Any
for all o, 7. Next we claim that
(5.10) inAay,0 =
Again from [16, (2.9)],

Ay = Aarp = thpgAaro = ih g Aapo + ROJBPEAE“/ - RaEWAEP
and from (5.8),

nk
T n+l AO"Y'

Z'hpEAa%O — ihyBAap,O + RO!BPEAE’Y _ Raﬁ—ygAEp —0

Contracting both sides by hpB,
’L'TLAQ%O — ’L'(S,?Aap,o + RappgAE»Y — RapfygAEp = 0.
Hence
Z(TL — 1)1406»%() + ROC&AU»Y - Rap»YEAo—p =0
and thus
i(n —1)Aqy0 + kAay — Ra’+5A%, = 0.
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On the other hand,

k

R’ ye A%, = n+2

[haphoz + hyphas] A7,
k
N )
2%
Th1er

(80P + 62 haz] A%,

All these imply

i(n—1)Aayo + 21kAay =0

for n > 2. Thus (5.10) follows. Next, from (5.9) and (5.10), we obtain

Aar,o” = inAay0 + 2kAay = 2k A,

We integrate both sides with A%Y to get

Z—ﬁk fM Ea,'y |‘404’Y|2dlu + fM Ea,'y,a |Aa%0|2d,u = 0.

Thus
Aqy = 0.
Moreover, it follows from (5.4) that

R
o = —— v [hpahas + nahss|.
Rpgax n(n+1)[ﬁ 3o + haahss]

Hence (M, 0) is a simply connected, closed spherical CR (2n + 1)-
manifold of positive constant pseudohermitian bisectional curvature with
vanishing torsion. It follows from ([14]) that M is CR equivalent to the
standard CR sphere. q.e.d.

In general, it is difficult to determine if a manifold has the vanishing
first Chern class ¢ (T%°M). By applying the CR version of Bochner-
type identity due to Mok-Siu-Yau ([17]) in case of Ké&hler manifolds, we
are able to characterize it for a closed spherical CR (2n + 1)-manifold
of positive pseudohermitian bisectional curvature.

Proposition 5.1. Let (M, J,0) be a closed spherical CR (2n + 1)-
manifold of positive pseudohermitian bisectional curvature for n > 2.
There is a smooth real-valued function u solving

Ju Rdp
Jurdu

1
Apu = n+2(r—R) with r =
u also satisfies the following identities:
r

(’I’L—l— 2)(ua§ —l—’LLBa) = RQE — Ehaﬁ

1
(n+2)(u,5 +ug,) = B3 — E[(n +2)Apu + Rlh, 3.
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Hence § = 20 is a pseudo-Finstein contact structure. In addition, if

R is constant, then u is constant and
R
RQE - ;haﬁ

Proof. Define
r

(5.11) UO!B = RQB—(TI—FQ)(UOCE-FUEOC)— ;hag
for r with Ayu = n%rz(r — R). Note that tr(v,3) = vaa = 0 = Vaa.
Next we apply the CR version of Bochner-type identity to estimate
the following:
(5.12)
Apllvggl* = Ap(v,50a8)
= (VagVas)xx + (VapTas)xa
= UgpaxlaB T Vapaalas t VapxVas T Vagialos T 2Vapalasx
+ 21}0556&5)\
> ’UQE)\Xwaﬁ + ’UQEXAﬁaB + COHj.
Note that
() = — (R ~—"h 160 p 0P
P (n+2)" @ p s
is a real-valued dp-closed (1,1)-form. We may rewrite v = iv,z0% A 67
as a real-valued (1, 1)-form. Locally v, 5 =w 5+ wgz, — &
smooth function w. But w 7+ w3z, = 2w 5 — iwoh,z, which implies

h oB for some

_ . r _
UQBUEB = (2’[1)703 — zwohaB — ﬁhag)’l)aﬁ
. r_ _
= 2w 508 — (fwo + E)Uaa = 2w ,3Vag.
To apply CR Bochner-type identity to estimate
VaBaxUas T VagaaTap + Conj

in the last term of the right hand side of (5.12), we may assume that
v,5 = v 5 for some smooth function v (say the same notation).
More precisely, we will derive the following pointwise estimates:

(5.13), (5.14), (5.15), and (5.16).
(i) First from ([16, Lemma 2.3.]),
UaBax = (”aAB — ih}@’l}ao — Raﬁ/\BUP)X
=V\aBx ~ P\gUaox — Bapngxlo — Bapnglox
and
VyaBx = Vrarg T ih/\BAXﬁfupa — ih,\xAngpa
+ ihaﬁAxﬁva — ihaXAprpA.
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Hence
VaBax = UradB — BUa0x — Bopag Ve — Ropagtox
+ ih)\BAxﬁvpa — ih)\XAEpvpa + ihaBAXpUpA — ihaXAgﬁvp)\.
Since T'r(v,3) =0

VyaXF =Ur3aB T (th xvao + RAanUp)E
= Z'ha;v)\og + R/\ﬁaXBUP + RAan,B”ﬁBv
and we obtain
(5.13)
VaBax = XV — Va0 T Bapax BV T paxtes — Rapap Ve
— R 555V T thygAx;vpa — ih/\XAprpa + th,5Ax;Von
— ihaXAEpUpA'
(ii) Again from ([16, Lemma 2.3.]),
Ui
= (Ugxp T tho5A55Vp — ih 3 Ag50p)A
= (UXaE + ihaXUOE + ihaBAXﬁUP — ihaXAEﬁUP)A

= UXaB + ihaX,UOE)\ + ihaEAXﬁ,)\UP + ihaEAXﬁUP)\ — ihaXABﬁ,AUP

— ihaXABp”PA
and
VxaBr = Yxand — YgUxa0 = B ppatpa — Bosgatox
=Unxa5 + (—ih xAxpvs + ih,\anpvﬁ)g
- ihxﬁ”iao — RXpEAUﬁa — RapEAUpX'
We have
(5.14)

VaBan = MaxVopn — thygVUsao — B3 500 — Bopgatox
— ihaXAAp,EUﬁ — ihaXAApva + ihAXAap,EUﬁ + ih)\XAapva
+ ihaEAXﬁ’)\fup + ihaBAXﬁUpA — ihaXABﬁ’)\fup — ihaXABﬁ”pA

=1h,xvo5n — hygV0xa — Bxaatea — Boggavx
— z'haXA)\pﬁvp — ihaXAApvﬁg + ih)\XAap,va + ih)\XAapva
+ ihaEAXp’)\fup + ihaEAXpUpA — ihaXABﬁ’)\fup — ihaXABp”pA
+ ihABAXp,aUﬁ + Z.h)\EAXﬁUpa + ih)\BAapvxﬁ + ihABAap,XUﬁ-

Here we have used the following commutation relation:

UXa0 = Y30a — AapUXp - Aap,X’Uﬁ
= (vgx — AXﬁvp)a - AapUXp - Aap,X’Uﬁ

= Voxa — AXﬁ,aUP B AXﬁUPa - AO‘PUXﬁ - Aap,xvﬁ‘
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(iii) By the same method as in (i) and (ii), we have
Vg = Uarg — thgaAxpUs + ihaa AgpUs)y
=Tyapx — aygx + (—ihgaAr,Us + ihaa AgpUs)x
=Uxang T il gaUxa0 + BypsxUpm + 1,550
— ihxaTygx + (—ihga AT + ihaa Ag,T5)y
and
Vyang = (T30 + (z‘hAanﬁﬁp —ih,xAapUp)
=ihxa Az, sUp + thawAx,Ups — thyxAap,8Up — thyx AapUps-
Hence
(5.15)
Vgpax = z‘hﬁxmao — th%BX + Rwﬁﬂpa + Rapﬁxmp
+ ihxaAs; g0 + ihaa Az;0pp — ihy5Aap, a0, — ihyx AarUps
— ihga Ay, U5 — thgaAxUs +ihaaAg, xUp + thaa AgeUsy
= ih gxUoxa — ihaaTygx + Rpaxlom + RapsxOp
+ ihxaAx; g0p + ihaa Ax;0pp — ihy 5 Aap,g0p — i)y Aazlps
—ihga Ay, U — thga AU + ihaaAg,xUp + thaa Ag,Usy
— ihgy Axpals — thgy AxpUsa — ihgy AapUap — thgy AapaT).
Here we have used the following commutation relation:
Txao = Voxa — Axpa¥s — AxpTpa — AapUrp — Aap T,
(iv) Finally,
Uapan = (Tang + ihgaTao — B x300)
=TUxapn T thgxUaon — Ry x5 \Up — By 35U
and
Uxapr = Uxang — thgnAngUsa + ihyx ApoUpa — ihga AngUsy + thag AgpTsy .
But
TSang = Unap — aalxos + (B5,5.05) -
Hence

(5.16)
EaﬁX)\ = ihﬁxﬁa())\ - Z'hx\aﬁmﬁ - RﬁpXﬁ,)\ﬁﬁ - RﬁpXBﬁp)\
+ RXpa)\,BEﬁ + RXpa/\Eﬁg
— thgxAxgUpa + ihyx AppUpa — thga AUz + ihxaAgpUsy.
Since v wf s hermitian symmetric, after a unitary change of the ad-

missible coframe, V5 = a;003, a; is real and v;; = 0 at a point. Now
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combing all computations as in (5.13), (5.14), (5.15), and (5.16) at that
particular point, we have

(5.17)
U oanbas + VaganVap + VasaxUap T Vaganlas

= [Ry 00,505 — BpapaUnlVag + [Bosan gt — BasapavelVas
+ [Rmaxvpgﬁag + RApﬁiﬁpavaﬁ] — [Rpaﬁxﬁﬁ)\vaﬁ + RpaﬁxﬁﬁAvaE]
+ [ihAXAap’Evpﬁag — ih)\XAa—p,gﬁpvaE]

=[inAgpm — ihsaA,,5]05v,5 + Conj
+ [inA,, gupVas] + Conj + Z R sp5(a0 — ag)

a,B8
= [inAapm — iA,, 3]Tpta + Conj
a

2

+ Z[inAaP,avpaa] + Conj + Z R s55(a0 — ag)?.
« O‘vﬁ

Here we have used R \x = Ry;.x, h,5 = 0,3, and tr(v,5) = 0.

At a point, it follows from ([13]) that there exists a contact form 6
which is conformal to 6 with

Aaﬁ = Aaﬁ and RO&E’YS = Raﬁ,yg
such that
(5.18) Agpa =0

for each o (we will prove this claim later).
All together, we have at any fixed point

(5.19) Apllvggll® =D Ri(ai —a)* >0

if (M, 0) is a closed strictly pseudoconvex CR (2n + 1)-manifold of posi-
tive pseudohermitian bisectional curvature. Now applying the maximal
principle to (5.19), we have

a; = aj
at a point for all 4, j. However, since T'r(v aE) = 0, this implies v wp =0
and then
r
RO&E — (’I’L + 2)(%{5 + uﬁa) — Ehaﬁ =0
on M. Furthermore, we have

r=(n+2)Ayu+ R.

Hence

(.5 + uz) = ﬁ{}zaﬁ _ %[(n +2) A+ Rlh 5
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Finally, we give a proof of (5.18). First it follows from [13, Theorem

3.1 and Lemma 3.11] for m = 3 that there exists a contact form 6 which
is conformal to 6 with

(5.20) R=R and Anp = ﬁaﬁ and R 5= Eaﬁ

such that

(5.21) Ra=0, R, =0 and Ayp5=0

at a point. Since M is spherical, it follows from (5.20) that
Ropys = Rapys

at a point as well. In the following, we drop ~ without any confusion.
By [16, (2.7)] ,

Z'Aa'y,BhPE + Z'Aa'\/,ﬁhpg — Z.Aocp,g
Contracting both sides by h*?,

inA,, 5+ iAayz05 —iA,,500 —iAaph 5 =0 (R g — Rg )
and from (5.21),

(5.22) mAa%B =h (Raﬁpﬁﬁ Raﬁvﬁ,p)
at a point. Next for each o« = 3, since M is spherical, it follows from
(5.21) that
1

Roapoy = msRownhps + Rpayhoo + 06 Rpgy + 05 Rag )

hys —iAapoh. s = R

B =~ YaBpgy T Raﬁvﬁ,p‘

and

= 1
2 h° Roapsy = ——=

By similar computation we have

[nRozy + Ramy + By + Razy] = Razy-

b
n+2
Hence from (5.22) and (5.24),

(5.24) h*? Roaz,p = [Rowy + Byaol-

b
+2
But from the Bianchi identity ([16, (2.10)]) and (5.21),

Raa;y — R-yapé = Z’Afyp’phaa - iAap’ph»Ya =0

inAaya = Raay — [Roay + Ryaal-

and then

(5.25) inAgy s = —

n -+ 2
for each a. But again from [13, (3.12)], for each a,

0= Z(?’L + Z)Aa%a + Raa,'y + R’ya,a

Rozy

and then
(5.26) i(n+2)Aaya + 2R = 0.
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Thus from (5.25) and (5.26),

nAay, ke

n
a — _EAOC’)/

and
Aory,a =0
for each «. This is (5.18). q.e.d.

Then Corollary 1.2 follows from Proposition 5.1 and Theorem 1.3.
As a byproduct of Proposition 5.1, we have

Corollary 5.1. Let (M, J,0) be a closed strictly pseudoconvexr CR
(2n + 1)-manifold of positive pseudohermitian bisectional curvature and

Aa%a =0

for each «. There is a smooth real-valued function u solving Au =

%H(T_R) andr = [\, Rdp,/ [, dp such that

T

(n+ 2)('&&3 +UBQ) = Rag — n oB

and then
1
(n+2)(uy5 +uz,) = Ry5— E[(n +2)Apu + Rlh, 3.
Hence €*0 is a pseudo-Einstein contact structure.

Proof. In fact, it follows from (5.17) that (5.19) holds if (M,0) is a
closed strictly pseudoconvex CR (2n + 1)-manifold of positive pseudo-
hermitian bisectional curvature and

Aory,a =0

for each a. Then we finish the proof of the lemma. q.e.d.
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