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BLOCH’S CONJECTURE FOR CATANESE

AND BARLOW SURFACES

Claire Voisin

À la mémoire de Friedrich Hirzebruch

Abstract

Catanese surfaces are regular surfaces of general type with pg =
0. They specialize to double covers of Barlow surfaces. We prove
that the CH0 group of a Catanese surface is equal to Z, which
implies the same result for the Barlow surfaces.

0. Introduction

In this paper, we establish an improved version, in the surface case,
of the main theorem of [27] and use it in order to prove the Bloch con-
jecture for Catanese surfaces. We will also give a conditional application
(more precisely, assuming the variational Hodge conjecture) of the same
method to the Chow motive of low degree K3 surfaces.

Bloch’s conjecture for 0-cycles on surfaces is the following:

Conjecture 0.1. (cf. [7]) Let Γ ∈ CH2(Y ×X), where Y is smooth
projective and X is a smooth projective surface. Assume that [Γ] :
H2,0(X) → H2,0(Y ) vanishes. Then

Γ∗ : CH0(Y )alb → CH0(X)alb

vanishes.

Here [Γ] ∈ H4(Y ×X,Q) is the cohomology class of Γ and

CH0(Y )alb := Ker (CH0(Y )hom
albY→ Alb(Y )).

Particular cases concern the situation where Γ is the diagonal of a
surface X with pg = 0. Then Γ∗ = IdCH0(X)alb , so that the conjecture
predicts CH0(X)alb = 0 for such a surface. This statement is known to
hold for surfaces which are not of general type by [9], and for surfaces
of general type, it is known to hold by Kimura [17] if the surface X
is furthermore rationally dominated by a product of curves (cf. [5] for
many such examples). Furthermore, for several other families of surfaces
of general type with q = pg = 0, it is known to hold either for the general
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member of the family (eg. the Godeaux surfaces, cf. [28]), or for specific
members of the family (for example the Barlow surface [4]).

A slightly more general situation concerns surfaces equipped with
the action of a finite group G. This has been considered in the paper
[27], where the following theorem concerning group actions on com-
plete intersection surfaces is proved: Let X be a smooth projective va-
riety with trivial Chow groups (i.e., the cycle class map CHi(X)Q →
H2n−2i(X,Q), n = dimX is injective for all i). Let G be a finite group
acting on X and let E be a G-equivariant rank n− 2 vector bundle on
X which has “enough” G-invariant sections (for example, if the group
action is trivial, one asks that E is very ample). Let π ∈ Q[G] be a pro-
jector. Then π gives a self-correspondence Γπ with Q-coefficients (which
is a projector) of the G-invariant surfaces Sσ = V (σ), σ ∈ H0(X,E)G

(cf. Section 1). We use the notation

H2,0(Sσ)
π := Im ([Γπ]∗ : H2,0(Sσ) → H2,0(Sσ)),

CH0(Sσ)
π
Q,hom := Im ([Γπ]∗ : CH0(Sσ)Q,hom → CH0(Sσ)Q,hom)).

Theorem 0.2. Assume that the smooth surfaces Sσ = V (σ), σ ∈
H0(E)G satisfy H2,0(Sσ)

π = 0. Then we have CH0(Sσ)
π
Q,hom = 0.

Note that the Bloch conjecture has been recently proved in [15] and
[30] by completely different methods for finite group actions on surfaces
that in most cases do not fit at all in the above geometric setting, namely
finite order symplectic automorphisms of aK3 surfaceX. For these sym-
plectic automorphisms, one considers the cycle ∆X − 1

|G|

∑
g∈G Graph g,

which acts as the identity minus the projector onto the G-invariant part;
it is proved in [30] (the case of involutions) and [15] (the higher order
case) that it acts as 0 on CH0(X)hom (in fact on the whole of CH0)
according to Conjecture 0.1.

Theorem 0.2 is rather restrictive geometrically, due to the fact that
not only do we consider 0-sets of sections of a vector bundle, but also we
impose this very ampleness assumption on the vector bundle. Our first
result in this paper is a relaxed version of this theorem, which works
in a much more general geometric context and will be applicable in
particular to the case of Catanese surfaces.

Let S → B be a smooth projective morphism with two dimensional
connected fibers, where B is quasi-projective. Let Γ ∈ CH2(S×BS)Q be
a codimension 2 cycle, which provides a relative 0-self correspondence
of S over B. For t ∈ B, let Γt := Γ|St×St

be the restricted cycle, with

cohomology class [Γt] ∈ H4(St × St,Q). We have the actions

Γt∗ : CH0(St)Q → CH0(St)Q, [Γt]
∗ : H i,0(St) → H i,0(St).

Theorem 0.3. Assume the following:
(1) The fibers St satisfy h1,0(St) = 0 and [Γt]

∗ : H2,0(St) → H2,0(St)
is equal to zero.
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(2) A non-singular projective (equivalently any non-singular projec-
tive) completion S ×B S of the fibered self-product S ×B S is rationally
connected.

Then Γt∗ : CH0(St)hom → CH0(St)hom is nilpotent for any t ∈ B.

This statement is both weaker and stronger than Theorem 0.2 since
on the one hand the conclusion only states the nilpotence of Γt∗, and not
its vanishing, while on the other hand the geometric context is much
more flexible and the assumption on the total space of the family is
much weaker.

In fact the nilpotence property is sufficient to imply the vanishing in a
number of situations which we describe below. The first situation is the
case where we consider a family of surfaces with h2,0 = h1,0 = 0. Then
we get the following consequence (the Bloch conjecture for surfaces with
q = pg = 0 under assumption (2) below):

Corollary 0.4. Let S → B be a smooth projective morphism with
two dimensional connected fibers, where B is quasi-projective. Assume
the following:

(1) The fibers St satisfy H1,0(St) = H2,0(St) = 0.
(2) A projective completion (or, equivalently, any projective comple-

tion) S ×B S of the fibered self-product S ×B S is rationally connected.
Then CH0(St)hom = 0 for any t ∈ B.

We refer to Section 1, Theorem 1.6 for a useful variant involving group
actions, which allows one to consider many more situations (cf. [27] and
Section 2 for examples).

Remark 0.5. The proof will show as well that we can replace as-
sumption (2) in these statements by the following one:

(2’) A (equivalently, any) smooth projective completion S ×B S of
the fibered self-product S ×B S has trivial CH0 group.

However, it seems more natural to put a geometric assumption on
the total space since this is in practice much easier to check.

In the second section of this paper, we will apply these results to
prove Bloch’s conjecture 0.1 for Catanese surfaces (cf. [11], [25], [10]).
Catanese surfaces can be constructed starting from a 5 × 5 symmetric
matrix M(a), a ∈ P11, of linear forms on P3 satisfying certain conditions
(cf. (3)) making their discriminant invariant under the Godeaux action
(4) of Z/5Z on P3. The general quintic surface V (a) defined by the
determinant of M(a) has 20 nodes corresponding to the points x ∈ P3

where the matrix M(a, x) has rank 3, and it admits a double cover S(a)
which is étale away from the nodes, and to which the Z/5Z-action lifts.
Then the Catanese surface Σ(a) is the quotient of S(a) by this lifted
action.
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Catanese surfaces have a 4-dimensional moduli space. For our pur-
pose, the geometry of the explicit 11-dimensional parameter space de-
scribed in [25] is in fact more important than the structure of the moduli
space.

Theorem 0.6. Let Σ be a Catanese surface. Then CH0(Σ) = Z.

The starting point of this work was a question asked by the authors
of [10]: They needed to know that the Bloch conjecture holds for a
simply connected surface with pg = 0 (e.g., a Barlow surface [3]) and
furthermore, they needed it for a general deformation of this surface.
The Bloch conjecture was proved by Barlow [4] for some Barlow surfaces
admitting an extra group action allowing to play on group theoretic
arguments as in [16], but it was not known for the general Barlow
surface.

Theorem 0.6 implies as well the Bloch conjecture for the Barlow sur-
faces, since the Barlow surfaces can be constructed as quotients of cer-
tain Catanese surfaces admitting an extra involution, namely that the
determinantal equation defining V (a) has to be invariant under the ac-
tion of the dihedral group of order 10 (cf. [25]). The Catanese sur-
faces appearing in this construction of Barlow surfaces have only a 2-
dimensional moduli space. It is interesting to note that we get the Bloch
conjecture for the general Barlow surface via the Bloch conjecture for
the general Catanese surface, but that our strategy does not work di-
rectly for the Barlow surface, which has a too small parameter space
(cf. [11], [25]).

The third section of this paper applies Theorem 0.3 to prove a condi-
tional result on the Chow motive of K3 surfaces which can be realized
as 0-sets of sections of a vector bundle on a rationally connected variety
(cf. [20], [21]). Recall that the Kuga-Satake construction (cf. [18], [13])
associates to a polarized K3 surface S an abelian variety K(S) with the
property that the Hodge structure on H2(S,Q) is a direct summand
of the Hodge structure of H2(K(S),Q). The Hodge conjecture predicts
that the corresponding degree 4 Hodge class on S ×K(S) is algebraic.
This is not known in general, but this is established for K3 surfaces
with large Picard number (cf. [19], [23]). The next question concerns
the Chow motive (as opposed to the numerical motive) of these K3
surfaces. The Kuga-Satake construction combined with the Bloch con-
jecture implies that the Chow motive of a K3 surface is a direct sum-
mand of the Chow motive of its Kuga-Satake variety. In this direction,
we prove the following Theorem 0.7: Let X be a rationally connected
variety of dimension n and let E → X be a rank n−2 globally generated
vector bundle satisfying the following properties:

(i) The restriction map H0(X,E) → H0(z,E|z) is surjective for gen-
eral z = {x, y} ⊂ X.
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(ii) The general section σ vanishing at two general points x, y deter-
mines a smooth surface V (σ).

We consider the case where the surfaces S = V (σ) are algebraic K3
surfaces. For example, this is the case if detE = −KX , and the surfaces
S = V (σ) for general σ ∈ H0(X,E) have irregularity 0. Almost all
general algebraic K3 surfaces of genus ≤ 20 have been described this
way by Mukai (cf. [20], [21]), where X is a homogeneous variety with
Picard number 1. Many more examples can be constructed starting from
an X with Picard number ≥ 2.

Theorem 0.7. Assume the variational Hodge conjecture in degree 4.
Then the Chow motive of a K3 surface S as above is a direct summand
of the Chow motive of an abelian variety.

Remark 0.8. The variational Hodge conjecture for degree 4 Hodge
classes is implied by the Lefschetz standard conjecture in degrees 2 and
4. It is used here only to conclude that the Kuga-Satake correspondence
is algebraic for any S as above. Hence we could replace the variational
Hodge conjecture by the Lefschetz standard conjecture or by the as-
sumption that the cohomological motive of a general K3 surfaces S
in our family is a direct summand of the cohomological motive of an
abelian variety. The content of the theorem is that we then have the
same result for the Chow motive.

As a consequence of this result, we get the following (conditional)
corollaries.

Corollary 0.9. With the same assumptions as in Theorem 0.7, let S
be a member of the family of K3 surfaces parameterized by P(H0(X,E)),
and let Γ ∈ CH2(S×S) be a correspondence such that [Γ]∗ : H2,0(S) →
H2,0(S) is zero. Then Γ∗ : CH0(S)hom → CH0(S)hom is nilpotent.

Remark 0.10. Note that there is a crucial difference between Theo-
rem 0.3 and Corollary 0.9: In Corollary 0.9, the cycle Γ is not supposed
to exist on the general deformation St of S. (Note also that the result in
Corollary 0.9 is only conditional since we need the Lefschetz standard
conjecture, or at least we need to know that the Kuga-Satake correspon-
dence is algebraic for general St, while Theorem 0.3 is unconditional!)

Corollary 0.11. With the same assumptions as in Theorem 0.7, the
transcendental part of the Chow motive of any member of the family of
K3 surfaces parameterized by P(H0(X,E)) is indecomposable, that is,
any submotive of it is either the whole motive or the 0-motive.

Acknowledgments. I thank Christian Böhning, Hans-Christian Graf
von Bothmer, Ludmil Katzarkov and Pavel Sosna for asking me the
question whether general Barlow surfaces satisfy the Bloch conjecture
and for providing references on Barlow versus Catanese surfaces.



154 C. VOISIN

1. Proof of Theorem 0.3 and some consequences

This section is devoted to the proof of Theorem 0.3 and its conse-
quences (Corollary 0.4 or its more general form Theorem 1.6).

The proof will follow essentially the idea of [27]. The main novelty in
the proof lies in the use of Proposition 1.3. For completeness, we also
outline the arguments of [27], restricted to the surface case.

Consider the codimension 2-cycle

Γ ∈ CH2(S ×B S)Q.

Assumption (1) tells us that the restricted cycle Γt := Γ|St×St
is

cohomologous to the sum of a cycle supported on a product of (not nec-
essarily irreducible curves) in St and of cycles pulled-back from CH0(St)
via the two projections. We deduce from this (cf. [27, Prop. 2.7]):

Lemma 1.1. There exist a codimension 1 closed algebraic subset
C ⊂ S, a codimension 2 cycle Z on S×BS with Q-coefficients supported
on C ×B C, and two codimension 2 cycles Z1, Z2 with Q-coefficients on
S, such that the cycle

Γ−Z − p∗1Z1 − p∗2Z2

has its restriction to each fiber St×St cohomologous to 0, where p1, p2 :
S ×B S → S are the two projections.

This lemma is one of the key observations in [27]. The existence of the
data above is rather clear after a generically finite base change B′ → B
because it is true fiberwise. The key point is that, working with cycles
with Q-coefficients, we can descend to B and hence do not in fact need
this base change, which would ruin assumption (2).

The next step consists in passing from the fiberwise cohomological
equality

[Γ−Z − p∗1Z1 − p∗2Z2]|St×St
= 0 in H4(St × St,Q)

to the following global vanishing:

Lemma 1.2. (cf. [27, Lemma 2.12]) There exist codimension 2 al-
gebraic cycles Z ′

1, Z
′
2 with Q-coefficients on S such that

[Γ−Z − p∗1Z
′
1 − p∗2Z

′
2] = 0 in H4(S ×B S,Q).

The proof of this lemma consists in the study of the Leray spectral
sequence of the fibration p : S ×B S → B. We know that the class
[Γ−Z − p∗1Z1 − p∗2Z2] vanishes in the Leray quotient H0(B,R4p∗Q) of
H4(S ×B S,Q). It follows that it is of the form p∗1α1 + p∗2α2, for some
rational cohomology classes α1, α2 on S. One then proves that αi can
be chosen to be algebraic on S.

The new part of the argument appears in the following proposition:
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Proposition 1.3. Under assumption (2) of Theorem 0.3, the follow-
ing hold :

(i) The codimension 2 cycle Z ′ := Γ−Z−p∗1Z
′
1−p∗2Z

′
2 is algebraically

equivalent to 0 on S ×B S.
(ii) The restriction to the fibers St × St of the cycle Z ′ is a nilpo-

tent element (with respect to the composition of self-correspondences) of
CH2(St × St)Q.

Proof. We work now with a smooth projective completion S ×B S.

Let D := S ×B S \ S ×B S be the divisor at infinity. Let D̃
j
→ S ×B S

be a desingularization of D. The codimension 2 cycle Z ′ extends to a
cycle Z ′ over S ×B S. We know from Lemma 1.2 that the Hodge class
[Z ′] ∈ H4(S ×B S,Q) satisfies

[Z ′]|S×BS = [Z ′] = 0 in H4(S ×B S,Q)

and this implies by [31, Prop. 3] that there is a degree 2 Hodge class α

on D̃ such that
j∗α = [Z ′] in H4(S ×B S,Q).

By the Lefschetz theorem on (1, 1)-classes, α is the class of a codimension

1 cycle Z ′′ of D̃ and we conclude that

[Z ′ − j∗Z
′′] = 0 in H4(S ×B S,Q).

We use now assumption (2) which says that the variety S ×B S is
rationally connected. It has then trivial CH0, and so any codimension
2 cycle homologous to 0 on S ×B S is algebraically equivalent to 0 by
the following result due to Bloch and Srinivas [8]:

Theorem 1.4. Let X be a smooth projective variety with CH0(X)
supported on a surface Σ ⊂ X. Then codimension 2 cycles on X which
are homologous to zero are algebraically equivalent to zero.

We thus conclude that Z ′ − j∗Z
′′ is algebraically equivalent to 0 on

S ×B S, hence that Z ′ = (Z ′ − j∗Z
′′)|S×BS is algebraically equivalent

to 0 on S ×B S.
(ii) This is a direct consequence of (i), using the following nilpotence

result proved independently in [26] and [29]:

Theorem 1.5. On any smooth projective variety X, self-correspond-
ences Γ ∈ CHn(X × X)Q which are algebraically equivalent to 0 are
nilpotent for the composition of correspondences.

q.e.d.

Proof of Theorem 0.3. Using the same notations as in the previous steps,
we know by Proposition 1.3 that under assumptions (1) and (2), the
self-correspondence

Z ′
t = Γt −Zt − p∗1Z

′
1,t − p∗2Z

′
2,t(1)
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on St with Q-coefficients is nilpotent. In particular, the morphism it
induces at the level of Chow groups is nilpotent. On the other hand,
recall that Zt is supported on a product of curves in St × St, hence
acts trivially on CH0(St)Q. Obviously, both cycles p∗1Z

′
1,t, p

∗
2Z

′
2,t act

trivially on CH0(St)Q,hom. Hence the self-correspondence Z ′
t acts as Γt

on CH0(St)Q,hom, and Γt∗ acting on CH0(St)Q,hom is also nilpotent.
q.e.d.

Let us now turn to our main application, namely Corollary 0.4, or
a more general form of it which involves a family of surfaces St with
an action of a finite group G and a projector π ∈ Q[G]. Writing such
a projector as π =

∑
g∈G agg, ag ∈ Q, such a projector provides a

codimension 2 cycle

Γπ
t =

∑

g

agGraph g ∈ CH2(St × St)Q,(2)

with actions

Γπ
t
∗ =

∑

g

agg
∗

on the holomorphic forms of S, and

Γπ
t ∗ =

∑

g

agg∗

on CH0(St)Q. Denote respectively CH0(St)
π
Q,hom the image of the pro-

jector Γπ
t ∗ acting on CH0(St)Q,hom and H2,0(St)

π the image of the pro-
jector Γπ

t
∗ acting on H2,0(St).

Theorem 1.6. Let S → B be a smooth projective morphism with
two dimensional connected fibers, where B is quasi-projective. Let G be
a finite group acting in a fiberwise way on S and let π ∈ Q[G] be a
projector. Assume the following:

(1) The fibers St satisfy H1,0(St) = 0 and H2,0(St)
π = 0.

(2) A smooth projective completion (or, equivalently, any smooth pro-
jective completion) S ×B S of the fibered self-product S×BS is rationally
connected.

Then CH0(St)
π
Q,hom = 0 for any t ∈ B.

Proof. The group G acts fiberwise on S → B. Thus we have the
universal cycle

Γπ ∈ CH2(S ×B S)Q

defined as
∑

g∈G agGraph g, where the graph is taken over B. Since by

assumption the action of [Γπ]∗ on H2,0(St) is 0, we can apply Theorem
0.3 and conclude that Γπ

t∗ is nilpotent on CH0(St)Q,hom. On the other
hand, Γπ

t∗ is a projector onto CH0(St)
π
Q,hom. The fact that it is nilpotent

implies thus that it is 0, hence that CH0(St)
π
Q,hom = 0. q.e.d.
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2. Catanese and Godeaux surfaces

Our main goal in this section is to check the main assumption of The-
orem 1.6, namely the rational connectedness of the fibered self-product
of the universal Catanese surface, in order to prove Theorem 0.6.

We follow [11], [25]. Consider the following symmetric 5× 5 matrix

Ma =




a1x1 a2x2 a3x3 a4x4 0
a2x2 a5x3 a6x4 0 a7x1
a3x3 a6x4 0 a8x1 a9x2
a4x4 0 a8x1 a10x2 a11x3
0 a7x1 a9x2 a11x3 a12x4




(3)

depending on 12 parameters a1, . . . , a12 and defining a symmetric bi-
linear (or quadratic) form q(a, x) on C5 depending on x ∈ P3. This
is a homogeneous degree 1 matrix in the variables x1, . . . , x4, and the
vanishing of its determinant gives a degree 5 surface V (a) in P3 that
generically has its singularities consisting of ordinary nodes at those
points x = (x1, . . . , x4) where the matrix has rank only 3. We will de-
note by T the vector space generated by a1, . . . , a12 and B ⊂ P(T ) the
open set of parameters a satisfying this last condition.

The surface V (a) is invariant under the Godeaux action of Z/5Z on
P3, given by

g∗xi = ζ ixi, i = 1, . . . , 4,

where g is a generator of Z/5Z and ζ is a primitive fifth root of unity.
This follows either from the explicit development of the determinant
(see [25], where one monomial is incorrectly written: x1x

2
2x

2
4 should

be x1x
2
3x

2
4) or from the following argument that we will need later on:

Consider the following linear action of Z/5Z on C5:

g′(y1, . . . , y5) = (ζy1, ζ
2y2, . . . , ζ

5y5).(4)

Then one checks immediately that

q(a, x)(g′y, g′y′) = ζq(a, gx)(y, y′),(5)

so that the discriminant of q(a, x), as a function of x, is invariant under
the action of g.

The Catanese surface Σ(a) is obtained as follows: There is a natural
double cover S(a) of V (a), which is étale away from the nodes, and
parameterizes the rulings in the rank four quadric Q(a, x) defined by
q(a, x) for x ∈ V (a). The action of Z/5Z on V (a) lifts naturally to an
action on the double cover S(a), and we define Σ(a) as the quotient of
S(a) by Z/5Z.

We will need later on the following alternative description of S(a),
which also explains the natural lift of the Z/5Z-action on S(a): Note first
of all that the quadrics Q(a, x) pass through the point y0 = (0, 0, 1, 0, 0)
of P4.
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Lemma 2.1. For the general point (a, x) ∈ P(T ) × P3 such that
x ∈ V (a), the quadric Q(a, x) is not singular at the point y0.

Proof. It suffices to exhibit one pair (a, x) satisfying this condition,
and such that the surface V (a) is well-defined, that is the discriminant
of q(a, x), seen as a function of x, is not identically 0. Indeed, the family
of surfaces V (a) is flat over the base near such a point, and the result for
the generic pair (a, x) will then follow because the considered property
is open on the total space of this family.

We choose (a, x) in such a way that the first column of the matrix
(3) is 0, so that x ∈ V (a). For example, we impose the conditions:

a1 = 0, a2 = 0, x3 = 0, x4 = 0.

Then the quadratic form q(a, x) has for matrix



0 0 0 0 0
0 0 0 0 a7x1
0 0 0 a8x1 a9x2
0 0 a8x1 a10x2 0
0 a7x1 a9x2 0 0




It is clear that y0 is not a singular point of the corresponding quadric if
a8x1 6= 0. On the other hand, for a satisfying a1 = 0, a2 = 0, and for a
general point x = (x1, . . . , x4), the matrix of q(a, x) takes the form




0 0 a3x3 a4x4 0
0 a5x3 a6x4 0 a7x1

a3x3 a6x4 0 a8x1 a9x2
a4x4 0 a8x1 a10x2 a11x3
0 a7x1 a9x2 a11x3 a12x4.




It is elementary to check that this matrix is generically of maximal rank.
q.e.d.

It follows from this lemma that for generic a and generic x ∈ V (a), the
two rulings ofQ(a, x) correspond bijectively to the two planes through y0
contained in Q(a, x). Hence for generic a, the surface S(a) is birationally
equivalent to the surface S′(a) parameterizing planes passing through
y0 and contained in Q(a, x) for some x ∈ P3 (which then lies necessarily
in V (a)). It follows from formula (5) that S′(a), which is a surface
contained in the Grassmannian G0 of planes in P4 passing through y0,
is invariant under the Z/5Z-action on G0 induced by (4). Hence there
is a canonical Z/5Z-action on S′(a) which is compatible with the Z/5Z-
action on V (a), and this immediately implies that the latter lifts to an
action on the surface S(a) for any a ∈ B.

The Catanese surface has been defined as the quotient of S(a) by
Z/5Z. In the following, we are going to apply Theorem 1.6, and will thus
work with the universal family S → B of double covers S(a), a ∈ B,



BLOCH’S CONJECTURE FOR CATANESE AND BARLOW SURFACES 159

with its Z/5Z-action defined above, where B ⊂ P11 is the Zariski open
set parameterizing smooth surfaces S(a).

We prove now:

Proposition 2.2. The universal family S → B has the property
that the fibered self-product S ×B S has a rationally connected smooth
projective compactification.

Proof. By the description given above, the family S → B of sur-
faces S(a), a ∈ B, maps birationally to an irreducible component of the
following variety

W = {(a, x, [P ]) ∈ P(T )× P3 ×G0, q(a, x)|P = 0},(6)

by the rational map that, to a general point (a, x), x ∈ V (a), and a choice
of ruling in the quadric Q(a, x), associates the unique plane P passing
through y0, contained in Q(a, x) and belonging to the chosen ruling. It
follows that S ×B S maps birationally by the same map (which we will
call Ψ) onto an irreducible component W 0

2 of the following variety

W2 :={(a, x, y, [P ], [P ′]) ∈ P(T )× P3 × P3 ×G0 ×G0,(7)

q(a, x)|P = 0, q(a, y)|P ′ = 0}.

Let E be the vector bundle of rank 5 on G0 whose fiber at a point [P ]
parameterizing a plane P ⊂ P4 passing through y0 is the space

H0(P,OP (2)⊗ Iy0).

The family of quadrics q(a, x) on P4 provides a 12 dimensional linear
space T of sections of the bundle

F0 := pr∗1OP3(1)⊗ pr∗3E ⊕ pr∗2OP3(1)⊗ pr∗4E

on
Y0 := P3 × P3 ×G0 ×G0,

where as usual the pri’s denote the various projections from Y0 to its
factors. For a point a ∈ T , the corresponding section of F0 is equal
to (q(a, x)|P , q(a, x

′)|P ′) at the point (x, x′, [P ], [P ′]) of Y0. Formula (7)
tells us that W2 is the zero set of the corresponding universal section of
the bundle

pr′1
∗
OP(T )(1) ⊗ pr′2

∗
F0

on P(T ) × Y0, where the pr′i are now the two natural projections from
P(T )× Y0 to its summands. Note that W 0

2 has dimension 15, hence has
the expected codimension 10, since dimP(T )× Y0 = 25.

There is now a subtlety in our situation: It is not hard to see that
T generates generically the bundle F0 on Y0. Hence there is a “main”
component of W2 that is also of dimension 15, and is generically fibered
into P1’s over Y0. This component is not equal to W 0

2 for the following
reason: If one takes two general planes P, P ′ through y0, and two general
points x, x′ ∈ P3, the conditions that q(a, x) vanishes identically on P
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and q(a, x′) vanishes identically on P ′ implies that the third column of
the matrix M(a) is identically 0, hence that the point y0 generates in
fact the kernel of both matrices M(a, x) and M(a, x′). On the other
hand, by construction of the map Ψ, generically along ImΨ ⊂ W 0

2 , the
point y0 is a smooth point of the quadrics Q(a, x) and Q(a, x′).

The following lemma describes the component W 0
2 .

Lemma 2.3. Let Φ : W 0
2 → Y0 = P3×P3×G0×G0 be the restriction

to W 0
2 of the second projection P(T )× Y0 → Y0.

(i) The image ImΦ is a hypersurface D which admits a rationally
connected desingularization.

(ii) The generic rank of the evaluation map restricted to D:

T ⊗OD → F0|D

is 9. (Note that the generic rank of the evaluation map T ⊗ OY0
→ F0

is 10.)

Proof. We already mentioned that the map Φ ◦ Ψ cannot be dom-
inating. Let us explain more precisely why, as this will provide the
equation for D: Let [P ], [P ′] ∈ G0 and x, x′ ∈ P3. The condition that
(x, x′, P, P ′) ∈ Φ(W 0

2 ) = Im (Φ ◦Ψ) is that for some a ∈ P(V ),

q(a, x)|P = 0, q(a, x′)|P ′ = 0(8)

and furthermore that y0 is a smooth point of both quadrics Q(a, x) and
Q(a, x′).

Let e, f ∈ P be vectors such that y0, e, f form a basis of P , and
choose similarly e′, f ′ ∈ P ′ in order to get a basis of P ′. Then among
equations (8), we get

q(a, x)(y0, e) = 0, q(a, x)(y0, f) = 0,(9)

q(a, x′)(y0, x
′)(y0, e

′) = 0, q(a, x′)(y0, f
′) = 0.

For fixed P, P ′, x, x′, these equations are linear forms in the variables
a3, a6, a8, a9 and it is not hard to see that they are linearly independent
for a generic choice of P, P ′, x, x′, so that (9) implies that a3 = a6 =
a8 = a9 = 0. But then, looking at the matrix M(a) of (3) we see that y0
is in the kernel of Q(a, x) and Q(a, x′). As already mentioned, the latter
does not happen generically along ImΨ, and we deduce that Im (Φ ◦Ψ)
is contained in the hypersurface D where the four linear forms (9) in
the four variables a3, a6, a8, a9 are not independent.

We claim that D is rationally connected. To see this we first prove
that it is irreducible, which is done by restricting the equation f of D
(which is the determinant of the (4× 4) matrix whose columns are the
linear forms (9) written in the basis a3, a6, a8, a9) to a subvariety Z of
Y0 of the form Z = P3 × P3 × C × C ′ ⊂ Y0, where C, C ′ are curves in
G0.
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Consider the following 1 dimensional families C ∼= P1, C ′ ∼= P1 of
planes passing through y0:

Pt =< e1, λe2 + µe4, e3 >, t = (λ, µ) ∈ P1 ∼= C,

P ′
t′ =< e5, λ

′e2 + µ′e4, e3 >, t′ = (λ′, µ′) ∈ P1 ∼= C ′.

The equations (9) restricted to the parameters t, t′, x, x′ give the follow-
ing four combinations of a3, a6, a8, a9 depending on λ, µ, x, x′:

a3x3, λa6x4 + µa8x1, a9x
′
2, λ′a6x

′
4 + µ′a8x

′
1.

Taking the determinant of this family gives

f|Z = x3x
′
2(λµ

′x4x
′
1 − λ′µx′4x1).

The hypersurface in Z = P3 × P3 × C × C ′ defined by f|Z has three
irreducible components, which belong respectively to the linear systems

|pr∗1OP3(1)|, |pr∗2OP3(1)|,

|pr∗1OP3(1)⊗ pr∗2OP3(1)⊗ pr∗3OP1(1) ⊗ pr∗4OP3(1)|,

where the pri’s are now the projections from Z = P3 × P3 × P1 × P1 to
its factors.

As the restriction map from PicY0 to PicZ is injective, we see that if
D was reducible, it would have an irreducible component in one of the
linear systems

|p∗1OP3(1)|, |p∗2OP3(1)|,

|p∗1OP3(1)⊗ p∗2OP3(1)⊗ p∗3OP1(1)⊗ p∗4OP3(1)|,

where the pi’s are now the projections from Y0 = P3 × P3 × G0 × G0

to its factors. In particular, its restriction to either any P3 × {x′} ×
{[P ]}×{[P ′]} or any {x}×P3×{[P ]}×{[P ′]} would have an irreducible
component of degree 1.

That this is not the case is proved by considering now the case where

P =< e1 + e2, e4 + e5, e3 >, P ′ =< e1 + e4, e2 + e5, e3 > .

Then the four linear forms in (9) become

a3x3 + a6x4, a8x1 + a9x2, a3x
′
3 + a8x

′
1, a6x

′
4 + a9x

′
2.

One can immediately check that for generic choice of x′, the quadratic
equation in x given by this determinant has rank at least 4, and in
particular is irreducible. Hence the restriction of f to P3×{x′}×{[P ]}×
{[P ′]} has no irreducible component of degree 1, and similarly for {x}×
P3 × {[P ]} × {[P ′]}.

Rational connectedness of D now follows from the fact that the pro-
jection on the last three summands of Y0, restricted to D,

p : D →֒ Y0 → P3 ×G0 ×G0,
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has for general fibers smooth two-dimensional quadrics, as shows the
computation we just made. Hence D admits a rationally connected
smooth projective model, for example by [14].

We already proved that Im (Φ ◦ Ψ) ⊂ D. We will now prove that
Im (Φ ◦ Ψ) contains a Zariski open subset of D and also statement ii).
This is done by the following argument which involves an explicit com-
putation at a point a0 ∈ P(T ) where the surface V (a) becomes very
singular but has enough smooth points to conclude.

We start from the following specific matrix :

M0 =




x1 0 x3 0 0
0 x3 x4 0 0
x3 x4 0 x1 0
0 0 x1 x2 0
0 0 0 0 x4




(10)

We compute detM0 = −x4x3x
3
1−x1x2x

3
4−x4x2x

3
3. The surface V (a0)

defined by detM0 is rational and smooth at the points

x = (1,−
1

2
, 1, 1), x′ = (1,−

2

9
, 2,−1).(11)

For each of the corresponding planes P and P ′ contained in Q(a0, x),
Q(a0, x

′) respectively and passing through y0, we have two choices. We
choose the following:

P :=< y0, e, f >, e = e1 + e2 − 2e4, f = e2 − e4 +

√
−
1

2
e5,(12)

P ′ =< y0, e
′, f >, e′ = 4e1 − e2 − 9e4, f ′ = e2 + e4 +

4

3
e5.

(We use here the standard basis (e1, . . . , e5) of C5, so that y0 = e3.)
The vector e− e3 (resp. e′ − 2e3) generates the kernel of q(a0, x) (resp.
q(a0, x

′)). As the quadrics q(a0, x) and q(a0, x
′) have rank 3 and the

surface V (a0) is smooth at x and x′, the points (x, [P ]), (x′, [P ′]) deter-
mine smooth points of the surface S(a0). Even if the surface S(a0) is
not smooth, so that a0 6∈ B, the universal family S → B extends to a
smooth non-proper map p : Se → Be ⊂ P(T ) near the points (a0, x, [P ])
and (a0, x

′, [P ′]). Furthermore the morphism Ψ is well defined at the
points (a0, x, P ), (a0, x

′, P ′), since the point y0 is not a singular point
of the quadric Q(a0, x) or Q(a0, x

′).
We claim that the map

Φ ◦Ψ : Se ×Be Se → Y0 = P3 × P3 ×G0 ×G0

has constant rank 13 near the point

((a0, x, [P ]), (a0, x
′, [P ′])) ∈ Se ×Be Se.
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This implies that the image of Φ ◦ Ψ is of dimension 13, which is the
dimension of D, so that ImΦ ◦Ψ has to contain a Zariski open set of D
since D is irreducible. This implies that ImΦ = D as desired.

To prove the claim, we observe that it suffices to show the weaker
claim that the rank of

(Φ ◦Ψ)∗ : TSe×BeSe → TY0
(13)

is equal to 13 at the given point ((a0, x, [P ]), (a0, x
′, [P ′])). Indeed, as

Se ×Be Se is smooth at the point ((a0, x, [P ]), (a0, x
′, [P ′])), the rank of

the differential in (13) can only increase in a neighborhood of ((a0, x, [P ]),
(a0, x

′, [P ′])) and on the other hand, we know that it is not of maximal
rank at any point of S ′×B′ S ′, since Im (Φ◦Ψ) ⊂ D. Hence it must stay
constant near ((a0, x, [P ]), (a0, x

′, [P ′])).
We now compute the rank of (Φ ◦ Ψ)∗ at the point ((a0, x, [P ]),

(a0, x
′, [P ′])). Note that the birational map Ψ : Se ×Be Se → W2 is

a local isomorphism near the point ((a0, x, [P ]), (a0, x
′, [P ′])), because it

is well defined at this point and its inverse too. This argument proves
that not only W 0

2 but also W2 is smooth of dimension 15 near the point
(a0, x, x

′, [P ], [P ′]). Hence it suffices to compute the rank of the differ-
ential

Φ∗ : TW2,(a0,x,x′,[P ],[P ′]) → TY0,(x,x′,[P ],[P ′])(14)

of the map Φ : W2 → Y0 at the point (a0, x, x
′, [P ], [P ′]).

Recalling that W2 is defined as the zero set of the universal section
σuniv of the bundle

pr′1
∗
OP(T )(1) ⊗ pr′2

∗
F0

on P(T ) × Y0, the tangent space of W2 at the point (a0, x, x
′, [P ], [P ′])

is equal to

Ker (dσuniv : TP(T ),a0 × TY0,(x,x′,[P ],[P ′]) → F0,(x,x′,[P ],[P ′])).

Clearly the differential dσuniv restricted to TP(T ),a0 is induced by the
evaluation map

ev(x,x′,[P ],[P ′]) : T → F0,(x,x′,[P ],[P ′])(15)

at the point (x, x′, [P ], [P ′]) of Y0. On the other hand, the differential
dσuniv restricted to the tangent space TY0,(x,x′,[P ],[P ′]) is surjective be-
cause the variety S(a0)×S(a0) is smooth of codimension 4 and isomor-
phic via Φ to V (σuniv(a0)) near (x, x

′, [P ], [P ′]). It follows from this that
the corank of the second projection

Φ∗ : Ker dσuniv = TW2,(a0,x,x′,[P ],[P ′]) ⊂ TP(T ),a0 ⊕ TY0,(x,x′,[P ],[P ′])

→ TY0,(x,x′,[P ],[P ′])

is equal to the corank of the map dσuniv : TP(T ),a0 → F0,(x,x′,[P ],[P ′])),
that is, to the corank of the evaluation map ev(x,x′,[P ],[P ′]) of (15).
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In particular, the rank of Φ∗ in (14) is equal to 13 if and only if
the rank of the evaluation map evx,x′,[P ],[P ′] is equal to 9, which is our
statement (ii).

In conclusion, we proved that (i) is implied by (ii) and that (ii) itself
implied by (ii) at the given point (x, x′, [P ], [P ′]) of (11), (12). It just
remains to prove that the rank of ev(x,x′,[P ],[P ′]) is equal to 9 at this
point, which is done by the explicit computation of the rank of the
family of linear forms in the ai given by

q(a, x)(y0, e), q(a, x)(y0, f), q(a, x)(e, e), q(a, x)(f, f),

q(a, x)(e, f), q(a, x′)(y0, e
′), q(a, x′)(y0, f

′), q(a, x′)(e′, e′),

q(a, x′)(f ′, f ′), q(a, x′)(e′, f ′).

These forms are the following:

a3 + a6 − 2a8, a6 − a8 −
1

2

√
−
1

2
a9, a1 + a5 − 2a10 − a2 − 4a4,

a5 −
a10
2

−
a12
2

+ 2

√
−
1

2
a7 − 2

√
−
1

2
a11,

−
a2
2

− a4 + a5 +

√
−
1

2
a7 − a10 − 2

√
−
1

2
a11

8a3 + a6 − 9a8, −a6 + a8 −
8

27
a9,

16a1 + 2a5 − 18a10 +
16

9
a2 + 72a4,

2a5 −
2

9
a10 −

16

9
a12 +

8

3
a7 +

16

3
a11,

−
8

9
a2 − 4a4 − 2a5 −

4

3
a7 + 2a10 − 24a11.

One can immediately check that the rank of this family is 9. q.e.d.

It follows from Lemma 2.3 that W 0
2 (or rather a smooth projective

birational model of W 0
2 ) is rationally connected, since a Zariski open set

of W 0
2 is a P2-bundle over a Zariski open set D0 of D that is smooth

and admits a rationally connected completion. Hence S ×B S is also
rationally connected, as it is birationally equivalent to W 0

2 . q.e.d.

We get by application of Theorem 1.6 the following statement (cf.
Theorem 0.6):

Corollary 2.4. The Catanese surface Σ(a) has CH0 equal to Z.

Proof. Indeed, the surface Σ(a) has h1,0 = h2,0 = 0 (cf. [11]) which

means equivalently that the surface S(a) introduced above has h2,0inv =
0 where “inv” means invariant under the Z/5Z-action, which by the
(birational) description we gave of the family S of surfaces is clearly
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defined on S. The result is then a consequence of Theorem 1.6 applied
to the projector πinv onto the Z/5Z-invariant part, which shows that

CH0(Σ(a))Q,hom = CH0(S(a))
πinv

Q,hom = 0

and from Roitman’s theorem [24] which says that CH0(Σ(a)) has no
torsion. q.e.d.

Corollary 2.5. The Barlow surface Σ′(b) has CH0 equal to Z.

Proof. Indeed, the Barlow surface Σ′(b) is a quotient of the Catanese
surface Σ(b) by an involution, hence CH0(Σ

′(b)) →֒ CH0(Σ(b)) since
CH0(Σ

′(b)) has no torsion by [24]. q.e.d.

3. On the Chow motive of complete intersection K3 surfaces

Let S be a K3 surface. The Hodge structure on H2(S,Z) is a weight
2 polarized Hodge structure with h2,0 = 1. In [18], Kuga and Satake
construct an abelian variety K(S) associated to this Hodge structure.
Its main property is the fact that there is a natural injective morphism
of weight 2 Hodge structures:

H2(S,Z) → H2(K(S),Z).

Such a morphism of Hodge structures in turn provides, using Künneth
decomposition and Poincaré duality a Hodge class

αS ∈ Hdg4(S ×K(S))

where Hdg4(X) denotes the space of rational Hodge classes on X.
This class is not known in general to satisfy the Hodge conjecture,

that is, to be the class of an algebraic cycle. This is known to hold
for Kummer surfaces (see [19]), and for some K3 surfaces with Picard
number 16 (see [23]). The deformation theory of K3 surfaces, and more
particularly the fact that any projective K3 surface deforms to a Kum-
mer surface, combined with the global invariant cycle theorem of Deligne
[12], imply the following result (cf. [13], [2]):

Theorem 3.1. Let S be a projective K3 surface. There exist a con-
nected quasi-projective variety B, a family of projective K3 surfaces
S → B, a family of abelian varieties K → B, (where all varieties are
quasi-projective and all morphisms are smooth projective), and a Hodge
class

η ∈ Hdg4(S ×B K),

such that:

1) for some point t0 ∈ B, St0
∼= S;

2) for any point t ∈ B, Kt
∼= K(St) and ηt = αSt;

3) for some point t1 ∈ B, the class ηt1 is algebraic.
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Here by “Hodge class η” we mean that the class η comes from a
Hodge class on some smooth projective compactification of S ×B K.

The existence of the family is an algebraicity statement for the Kuga-
Satake construction (see [13]), which can then be done in family for K3
surfaces with given polarization, while the last item follows from the fact
that the locally complete such families always contain Kummer fibers
S′ for which the class αS′ is known to be algebraic.

Corollary 3.2. [2] The Hodge class αS is “motivated.”

This means (cf. [2]) that this Hodge class can be constructed via alge-
braic correspondences from Hodge classes on auxiliary varieties, which
are either algebraic or obtained by inverting Lefschetz operators. In
particular the class αS is algebraic if the standard Lefschetz conjecture
holds.

Corollary 3.3. Assume the variational form of the Hodge conjecture
holds, or assume the Lefschetz standard conjecture in degrees 2 and 4.
Then the class αS is algebraic for any projective K3 surface S.

Indeed, the variational Hodge conjecture states that in the situation
of Theorem 3.1, if a Hodge class η on the total space has an algebraic
restriction on one fiber, then its restriction to any fiber is algebraic. In
our situation, it will be implied by the Lefschetz conjecture for degree
2 and degree 4 cohomology on a smooth projective compactification of
S ×B K.

From now on, we assume that the Kuga-Satake correspondence αS is
algebraic for a general projective K3 surface S of genus g (which means
by definition that S comes equipped with an ample line bundle of self-
intersection 2g − 2). We view the class αS as an injective morphism of
Hodge structures

αS : H2(S,Q) → H2(K(S),Q)(16)

and use a polarization h of K(S) to construct an inverse of αS by the
following lemma (which can be proved as well by the explicit description
K(S) as a complex torus and its polarization, cf. [18]). In the following,
H2(S,Q)tr denotes the transcendental cohomology of S, which is defined
as the orthogonal complement of the Néron-Severi group of S.

Lemma 3.4. Let h = c1(H) ∈ H2(K(S),Q) be the class of an ample
line bundle, where S is a very general K3 surface of genus g. Then there
exists a nonzero rational number λg such that the endomorphism

tαS ◦ (hN−2∪) ◦ αS : H2(S,Q) → H2(S,Q)

restricts to λgId on H2(S,Q)tr, where N = dimK(S) and

tαS : H2N−2(K(S),Q) → H2(S,Q)

is the transpose of the map αS of (16) with respect to Poincaré duality.
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Proof. The composite tαS ◦ hN−2 ◦ αS is an endomorphism of the
Hodge structure on H2(S,Q). As S is very general, this Hodge structure
has only a one dimensional Q-vector space of algebraic classes, generated
by the polarization, and its orthogonal is a simple Hodge structure with
only the homotheties as endomorphisms. We conclude that tαS ◦h

N−2 ◦
αS preserves H2(S,Q)tr and acts on it as an homothety with rational
coefficient (which is thus independent of S). It just remains to show
that it does not act as zero on H2(S,Q)tr . This follows from the second
Hodge-Riemann bilinear relations, which say that for ω ∈ H2,0(S), ω 6=
0 we have

〈ω, tαS(h
N−2 ∪ αS(ω))〉S = 〈αS(ω), h

N−2 ∪ αS(ω)〉K(S)

which is > 0 because αS(ω) 6= 0 in H2,0(K(S)). Hence tαS(h
N−2 ∪

αS(ω)) 6= 0. q.e.d.

We now start from a rationally connected variety X of dimension n,
with a vector bundle E of rank n− 2 on X, such that

−KX = detE(17)

and the following properties hold:

For general x, y ∈ X, and for general σ ∈ H0(X,E ⊗ Ix ⊗ Iy), the

(18)

zero locus V (σ) is a smooth connected surface with 0 irregularity.

The surfaces V (σ) are then smoothK3 surfaces, since they have a trivial
canonical bundle by (17). Let L be an ample line bundle on X, inducing
a polarization of genus g on the K3 surface Sσ := V (σ) for σ ∈ B ⊂
P(H0(X,E)).

We now prove:

Theorem 3.5. Assume the Kuga-Satake correspondence αS is alge-
braic, for the general K3 surface S with such a polarization. Then, for
any σ ∈ B, the Chow motive of Sσ is a direct summand of the motive
of an abelian variety.

Let us explain the precise meaning of this statement. The algebraicity
of the Kuga-Satake correspondence combined with Lemma 3.4 implies
that there is a codimension 2 algebraic cycle

ZS ∈ CH2(S ×K(S))Q

with the property that the cycle ΓS defined by

ΓS = tZS ◦ hN−2 ◦ ZS ∈ CH2(S × S)Q

has the property that its cohomology class [Γ] ∈ H4(S × S,Q) induces
a nonzero homothety

[Γ]∗ = λId : H2(S,Q)tr → H2(S,Q)tr,(19)
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which can be equivalently formulated as follows: Let us introduce the
cycle ∆S,tr, which in the case of a K3 surface is canonically defined, by
the formula

∆S,tr = ∆S − oS × S − S × oS −
∑

ij

αijCi × Cj,(20)

where ∆S is the diagonal of S, oS is the canonical 0-cycle of degree 1
on S introduced in [6], the Ci form a basis of (PicS) ⊗ Q = NS(S)Q,
and the αij are the coefficients of the inverse of the matrix of the inter-
section form of S restricted to NS(S). This corrected diagonal cycle is
a projector and it has the property that its action on cohomology is the
orthogonal projector H∗(S,Q) → H2(S,Q)tr . Formula (19) says that
we have the cohomological equality

[Γ ◦∆S,tr] = λ[∆S,tr] in H4(S × S,Q).(21)

A more precise form of Theorem 3.5 says that we can get in fact such
an equality at the level of Chow groups:

Theorem 3.6. Assume the Kuga-Satake correspondence αS is alge-
braic, for a general K3 surface with such a polarization. Then, for any
σ ∈ B, there is an abelian variety Aσ, and cycles Z ∈ CH2(Sσ ×Aσ)Q,

Z ′ ∈ CHN ′

(Aσ × Sσ)Q, N
′ = dimAσ, with the property that

Z ′ ◦ Z ◦∆S,tr = λ∆S,tr(22)

for a nonzero rational number λ.

The proof will use two preparatory lemmas. Let B ⊂ P(H0(X,E))
be the open set parameterizing smooth surfaces Sσ = V (σ) ⊂ X. Let
π : S → B be the universal family, that is:

S = {(σ, x) ∈ B ×X, σ(x) = 0}.(23)

The first observation is the following:

Lemma 3.7. Under assumption (18), the fibered self-product S ×B S
is rationally connected (or rather, admits a smooth projective rationally
connected completion).

Proof. From (23), we deduce that

S ×B S = {(σ, x, y) ∈ B ×X ×X, σ(x) = σ(y) = 0}.(24)

Hence S ×B S is Zariski open in the following variety:

W := {(σ, x, y) ∈ P(H0(X,E)) ×X ×X, σ(x) = σ(y) = 0}.

In particular, as it is irreducible, it is Zariski open in one irreducible
component W 0 of W .

Consider the projection on the two last factors:

(p2, p3) : W → X ×X.
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Its fibers are projective spaces, so that there is only one “main” irre-
ducible component W 1 of W dominating X×X and it admits a smooth
rationally connected completion since X ×X is rationally connected.

Assumption (18) now tells us that at a general point of W 1, the first
projection p1 : W → B is smooth of relative dimension 4. It follows that
W is smooth at this point which belongs to both components W 0 and
W 1. Thus W 0 = W 1 and S ×B S ∼=birat W

0 admits a smooth rationally
connected completion. q.e.d.

The next step is the following lemma:

Lemma 3.8. Assume the Kuga-Satake correspondence αS is alge-
braic for the general polarized K3 surface of genus g. Then there exist
a rational number λ 6= 0, a family A → B of polarized N ′-dimensional
abelian varieties, with relative polarization L and a codimension 2 cycle

Z ∈ CH2(S ×B A)Q

such that for very general t ∈ B, the cycle

Γt :=
tZt ◦ c1(Lt)

N ′−2 ◦ Zt ◦∆tr,t

satisfies:

[Γt] = λ[∆tr,t] ∈ H4(St × St,Q).(25)

In this formula, the term c1(Lt)
N ′−2 is defined as the self-correspond-

ence of At that consists of the cycle c1(Lt)
N ′−2 supported on the diago-

nal of At. We also recall that the codimension 2-cycle ∆tr,t ∈ CH2(St×
St)Q is the projector onto the transcendental part of the motive of St.
The reason why the result is stated only for the very general point t is
the fact that due to the possible jump of the Picard group of St, the
generic cycle ∆tr,η does not specialize to the cycle ∆tr,t at any closed
point t ∈ B, but only at the very general one. In fact, the statement
is true at any point, but the cycle ∆tr,t has to be modified when the
Picard group jumps.

Proof of Lemma 3.8. By our assumption, using the countability of rel-
ative Hilbert schemes and the existence of universal objects parame-
terized by them, there exist a generically finite cover r : B′ → B, a
universal family of polarized abelian varieties

K → B′, LK ∈ PicK

and a codimension 2 cycle Z ′ ∈ CH2(S ′ ×B′ K)Q, where S
′ := S ×B B′,

with the property that

[Zt] = αSt in H4(St ×K(St),Q)(26)

for any t ∈ B′. Furthermore, by Lemma 3.4, we know that there exists
a nonzero rational number λg such that for any t ∈ B′, we have

tαSt ◦ (h
N−2∪) ◦ αSt = λgId : H2(St,Q)tr → H2(St,Q)tr,(27)
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where as before N is the dimension of K(St), and ht = c1(LK|Kt
). We

now construct the following family of abelian varieties on B (or a Zariski
open set of it)

At =
∏

t′∈r−1(t)

Kt′ ,

with polarization given by

Lt =
∑

t′∈r−1(t)

pr∗t′(LK,t′),(28)

where prt′ is the obvious projection fromAt =
∏

t′∈r−1(t) Kt′ to its factor

Kt′ , and the following cycle Z ∈ CH2(S ×B K)Q, with fiber at t ∈ B
given by

Zt =
∑

t′∈r−1(t)

(IdSt , prt′)
∗Z ′

t′ .(29)

In the last formula, we use of course the identification

S ′
t′ = St, r(t

′) = t.

It just remains to prove formula (25). Combining (28) and (29), we get,
again using the notation ht = c1(Lt) ∈ H2(At,Q), ht′ = c1(LK,t′) ∈
H2(Kt′ ,Q):

[Γt]
∗ = (

∑

t′∈r−1(t)

[(prt′ , IdSt)
∗(tZ ′

t′)]
∗) ◦ (

∑

t′′∈r−1(t)

pr∗t′′(ht′′))
N ′−2

∪ ◦(
∑

t′′′∈r−1(t)

(IdSt , prt′′′)
∗[Z ′

t′′′ ]
∗) ◦ πtr,t : H

∗(St,Q) → H∗(St,Q).

Note that N ′ = dimAt = ♮(r−1(t))N = deg (B′/B) N . We develop the
product above, and observe that the only nonzero terms appearing in
this development come from taking t′ = t′′′ and putting the monomial

pr∗t′(ht′))
N−2 ∪t′′ 6=t′ pr

∗
t′′(ht′′))

N

in the middle term. The other terms are 0 due to the projection for-
mula. Let us explain this in the case of only two summands K1, K2 of
dimension r with polarizations l1, l2 and two cycles Zi ∈ CH2(S ×Ki)
giving rise to a cycle of the form

(IdS , pr1)
∗Z1 + (IdS , pr2)

∗Z2 ∈ CH2(S ×K1 ×K2),

where the pri’s are the projections from S ×K1 ×K2 to Ki: Then we
have

[(pr1, IdS)
∗tZ1]

∗ ◦ (l1 + l2)
2r−2 ∪ ◦[(IdS , pr2)

∗Z2]
∗ = 0 :

H2(S,Q)tr → H2(S,Q)tr
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by the projection formula and for the same reason

[(pr1, IdS)
∗tZ1]

∗ ◦ (l1 + l2)
2r−2 ∪ ◦[(IdS , pr1)

∗Z1]
∗

= [(pr1, IdS)
∗tZ1]

∗ ◦
∑

0≤k≤r

(
2r − 2

k

)
(lk1 l

2r−2−k
2 ) ∪ ◦[(IdS , pr1)

∗Z1]
∗

=
proj.

formula

(
2r − 2

r

)
deg (lr2) [Z1]

∗ ◦ lr−2
1 ∪ ◦[tZ1]

∗ : H2(S,Q)tr → H2(S,Q)tr.

We thus get (as the degrees deg (hNt′ ) of the polarizations ht′ on the
abelian varieties Kt′ are all equal):

[Γt]
∗ = M(deg (hNt′ ))

deg (B′/B)−1(
∑

t′∈r−1(t)

[tZ ′
t′)]

∗) ◦ hN−2
t′ ∪ ◦[Z ′

t′ ]
∗) ◦ πtr,t :

H∗(St,Q) → H∗(St,Q),

where M is the multinomial coefficient appearing in front of the mono-
mial xN−2

1 xN2 . . . xNdeg (B′/B) in the development of

(x1 + . . .+ xdeg (B′/B))
Ndeg (B′/B)−2.

By (26) and (27), we conclude that

[Γt]
∗ = M(deg (hNt′ ))

deg (B′/B)−1deg (B′/B)λgπtr,t :

H∗(St,Q) → H∗(St,Q),

which proves formula (25) with λ = M(deg (hNt′ ))
deg (B′/B)−1deg (B′/B)λg.

q.e.d.

Proof of Theorem 3.6. Consider the cycle Z ∈ CH2(S×BA)Q of Lemma
3.8, and the cycle Γ ∈ CH2(S ×B S)Q

Γ := ∆tr ◦
tZ ◦ c1(L)

N ′−2 ◦ Z ◦∆tr(30)

where now c1(L) is the class of L in CH1(A) and we denote by c1(L)
N−2

the relative self-correspondence of A given by the cycle c1(L)
N−2 sup-

ported on the relative diagonal of A over B (it thus induces the in-
tersection product with c1(L)

N−2 on Chow groups). Furthermore the
composition of correspondences is the relative composition over B, and
∆tr is the generic transcendental motive (which is canonically defined
in our case, at least after restricting to a Zariski open set of B) obtained
as follows: Choose a 0-cycle oη of degree 1 on the geometric generic fiber
Sη and choose a basis L1, . . . , Lk of PicSη. We have then the projector
∆alg,η ∈ CH2(Sη)Q defined as in (20) using the fact that the intersec-
tion pairing on the group of cycles < oη , Sη, Li > is nondegenerate.
The transcendental projector ∆tr,η is defined as ∆Sη

− ∆alg,η. This is
a codimension 2 cycle on Sη ×

C(B) Sη but it comes from a cycle on

S ′′ ×B′′ S ′′ for some generically finite covers B′′ → B, S ′′ = S ×B B′′,
and the latter can be finally pushed-forward to a codimension 2-cycle
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on S ×B S, which one checks to be a multiple of a projector, at least
over a Zariski open set of B.

The cycle Γ satisfies (25), which we rewrite as

[Γ′
t] = 0 in H4(St × St,Q),(31)

where Γ′ := Γ− λ∆tr.
Lemma 3.7 tells us that the fibered self-product S × S is rationally

connected. We can thus apply Theorem 0.3 and conclude that Γ′
t ∈

CH2(St × St)Q is nilpotent. It follows that Γt = λ∆tr,t + Nt, where
λ 6= 0 and Nt is a nilpotent cycle in St × St having the property that

∆tr,t ◦Nt = Nt ◦∆tr,t = Nt.

We conclude immediately from the standard inversion formula for λ I+
N , with N nilpotent and λ 6= 0, that there exists a correspondence
Φt ∈ CH2(St × St)Q such that

Φt ◦ Γt = ∆tr,t in CH2(St × St)Q.

Recalling now formula (30):

Γt := ∆tr,t ◦
tZt ◦ c1(Lt)

N ′−2 ◦ Zt ◦∆tr,t,

we proved (22) with

Z ′ = Φt ◦∆tr,t ◦
tZt ◦ c1(Lt)

N ′−2.

q.e.d.

Let us finish by explaining the following corollaries. They all follow
from Kimura’s theory of finite dimensionality (cf. [17]) and are a strong
motivation to establish the Kuga-Satake correspondence at a Chow the-
oretic level rather than cohomological one. We summarize Kimura’s re-
sults as follows:

Theorem 3.9. (i) Abelian varieties have a finite dimensional motive,
and thus any motive which is a direct summand in the motive of an
abelian variety is finite dimensional (in Kimura sense).

(ii) For any finite dimensional motive, self-correspondences homolo-
gous to 0 are nilpotent.

Our first corollary is the following:

Corollary 3.10. With the same assumptions as in Theorem 3.5, for
any σ ∈ B, any self-correspondence of Sσ which is homologous to 0 is
nilpotent. In particular, for any finite group action G on Sσ and any
projector π ∈ Q[G], if H2,0(Sσ)

π = 0, then CH0(Sσ)
π
Q,hom = 0.

Proof. The first statement follows from Theorem 3.5 and Theorem 3.9.
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In the case of a finite group action, we consider as in the previous
section the self-correspondence Γπ. It is not necessarily homologous to
0, but as it acts as 0 on H2,0(S), its class can be written as

[Γπ] =
∑

i

αi[Ci]× [C ′
i] + α[x× Sσ] + β[Sσ × x] in H4(Sσ × Sσ,Q)

for some rational numbers α, β, αi, curves Ci, C
′
j, and given point x on

Sσ. Then we have

[Γπ −
∑

i

αiCi × C ′
i − αx× Sσ − β Sσ × x] = 0 in H4(Sσ × Sσ,Q),

from which we conclude by Kimura’s theorem 3.9 that the self-corre-
spondence

Z := Γπ −
∑

i

αiCi × C ′
i − αx× Sσ − β Sσ × x ∈ CH2(Sσ × Sσ)Q

is nilpotent. It follows that Z∗ : CH0(Sσ)Q,hom → CH0(Sσ)Q,hom is
nilpotent. Since it is equal to

Γπ
∗ : CH0(Sσ)Q,hom → CH0(Sσ)Q,hom,

which is the projector on CH0(Sσ)
π
Q,hom, we conclude that

CH0(Sσ)
π
Q,hom = 0.

q.e.d.

Corollary 3.11. With the same assumptions as in Theorem 3.5, the
transcendental part of the Chow motive of any member of the family of
K3 surfaces parameterized by P(H0(X,E)) is indecomposable, that is,
any submotive of it is either the whole motive or the 0-motive.

Proof. Recall that the transcendental motive of Sσ is Sσ equipped
with the projector πtr defined in (20). Let now π ∈ CH2(Sσ × SΣ)Q
be a projector of the transcendental motive of Sσ, that is, π ◦ πtr =
πtr ◦ π = π. Since h2,0(Sσ) = 1, π∗ acts either as 0 or as Id on
H2,0(Sσ). In the first case, Ker (π∗)|H2(S,Q)tr is a sub-Hodge structure

with (2, 0)-component equal to H2,0(S). Its orthogonal complement is
then contained in NS(Sσ)Q, which implies that π∗ = 0 on H2(S,Q)tr.
In the second case, we find similarly that π∗ = Id on H2(S,Q)tr. Since
π = πtr ◦ π = π ◦ πtr, it follows that π∗ acts either by 0 or as πtr on
H∗(S,Q). Hence the cohomology class of either π or πtr − π is equal to
0, from which we conclude by Theorems 3.5 and 3.9 that π or πtr − π
is nilpotent. As both are projectors, we find that π = 0 or πtr = 0 in
CH2(Sσ × Sσ)Q. q.e.d.
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