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THE RIEMANNIAN SECTIONAL CURVATURE

OPERATOR OF THE WEIL-PETERSSON METRIC

AND ITS APPLICATION
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Abstract

Fix a number g > 1, let S be a close surface of genus g, and let
Teich(S) be the Teichmüller space of S endowed with the Weil-
Petersson metric. In this paper we show that the Riemannian
sectional curvature operator of Teich(S) is non-positive definite.
As an application we show that any twist harmonic map from
rank-one hyperbolic spaces HQ,m = Sp(m, 1)/Sp(m) · Sp(1) or

HO,2 = F−20

4
/SO(9) into Teich(S) is a constant.

1. Introduction

Let S be a closed surface of genus g where g > 1, and Tg be the
Teichmüller space of S. Tg carries various metrics that have respective
properties. For example, the Teichmüller metric is a complete Finsler
metric. The McMullen metric, Ricci metric, and perturbed Ricci met-
ric have bounded geometry [16, 17, 18]. The Weil-Petersson metric is
Kähler [1] and incomplete [5, 26]. There are also some other metrics
on Tg like the Bergman metric, Caratheodory metric, Kähler-Einstein
metric, Kobayashi metric, and so on. In [16, 17], the authors showed
that some metrics listed above are comparable. In this paper we focus
on the Weil-Petersson case. Throughout this paper, we let Teich(S) de-
note Tg endowed with the Weil-Petersson metric. The geometry of the
Weil-Petersson metric has been well studied in the past decades. One
can refer to Wolpert’s recent nice book [29] for details.

The curvature aspect of Teich(S) is very interesting, which plays an
important role in the geometry of Weil-Petersson metric. This aspect
has been studied over the past several decades. Ahlfors in [1] showed
that the holomorphic sectional curvatures are negative. Tromba [24] and
Wolpert [27] independently showed the sectional curvature of Teich(S)
is negative. Moreover, in [27] the author proved the Royden’s conjec-
ture, which says that the holomorphic curvatures are bounded above
by a negative number that only depends on the topology of the sur-
face, by establishing the curvature formula (see theorem 2.4). Wolf in
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[25] used harmonic tools to give another proof of this curvature for-
mula. After that, people has been applying this formula to study the
curvature of Teich(S) in more detail. For example, in [21] Schumacher
showed that Teich(S) has strongly negative curvature in the sense of Siu
(see [22]) which is stronger than negative sectional curvature. Huang in
[10] showed there is no negative upper bound for the sectional cur-
vature. In [15] Liu-Sun-Yau also used Wolpert’s curvature formula to
show that Teich(S) has dual Nakano negative curvature, which says
that the complex curvature operator on the dual tangent bundle is pos-
itive in some sense. For some other related problems one can refer to
[3, 10, 11, 16, 17, 23, 28, 30].

Let X ∈ Teich(S). We can view X as a hyperbolic metric on S. One
of our purposes in this paper is to study the Riemannian sectional cur-
vature operator of Teich(S) at X. The method in this paper is highly
influenced by the methods in [15, 21, 27], which essentially applied
the curvature formula, the Cauchy-Schwarz inequality and the positiv-
ity of the Green function for the operator (∆ − 2)−1, where ∆ is the
Beltrami-Laplace operator on X. What we need more in this paper is
the symmetry of the Green function for (∆ − 2)−1.

Before giving any statements let us state some neccessary background.
Let X be a point in Teich(S), and TX Teich(S) be the tangent space that
is identified with the harmonic Beltrami differentials at X. Assume that
{µi}

3g−3
i=1 is a basis for TX Teich(S), and ∂

∂ti
is the vector fields corre-

sponding to µi. Locally, ti is a holomorphic coordinate around X; let
ti = xi+ iyi. (x1, x2, . . . , x3g−3, y1, y2, . . . , y3g−3) gives a real smooth co-
ordinate around X. Since Teich(S) is a Riemannian manifold, it is nat-
ural to define the curvature tensor on it, which is denoted by R(·, ·, ·, ·).
Let T Teich(S) be the real tangent bundle of Teich(S) and ∧2T Teich(S)
be the wedge product of two copies of T Teich(S). The curvature opera-
tor Q is defined on ∧2T Teich(S) byQ(V1∧V2, V3∧V4) = R(V1, V2, V3, V4)
and extended linearly, where Vi are real vectors. It is easy to see that Q
is a bilinear symmetric form (one can see more details in [12]).

Now we can state our first result.

Theorem 1.1. Let S = Sg be a closed surface of genus g > 1 and
Teich(S) be the Teichmüller space of S endowed with the Weil-Petersson
metric. And let J be the almost complex structure on Teich(S) and Q
be the curvature operator of Teich(S). Then, for any X ∈ Teich(S), we
have

(1) Q is non-positive definite, i.e., Q(A,A) ≤ 0 for all A ∈
∧2TX Teich(S).

(2) Q(A,A) = 0 if and only if there exists an element B in
∧2TX Teich(S) such that A = B − J ◦B

where J ◦B is defined in section 4.
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A direct corollary is that the sectional curvature of Teich(S) is nega-
tive [1, 24, 27]. Normally a metric of negative curvature may not have
non-positive definite curvature operator (see [2]).

In the second part of this paper we will study harmonic maps from
certain rank-one spaces into Teich(S). For harmonic maps, there are a
lot of very beautiful results when the target is either a complete Rie-
mannian manifold with non-positive curvature operator or a complete
non-positive curved metric space (see [6, 7, 31]). In particular, if the
domain is either the Quaternionic hyperbolic space or the Cayley plane,
different rigid results for harmonic maps were established in [9, 13, 19].
For harmonic maps into Teich(S), one can refer to the nice survey [8].
In this paper we establish the following rigid result.

Theorem 1.2. Let Γ be a lattice in a semisimple Lie group G which
is either Sp(m, 1) or F−20

4 , and Mod(S) be the mapping class group of
Teich(S). Then, any twist harmonic map f from G/Γ into Teich(S) with
respect to each homomorphism ρ : Γ → Mod(S) must be a constant.

The twist map f with respect to ρ means that f(γ ◦ Y ) = ρ(γ) ◦ f(Y )
for all γ ∈ Γ.

Plan of the paper. In section 2 we provide some necessary background
and some basic properties for the operator D = −2(∆−2)−1. In section
3 we establish the curvature operator formulas on different subspaces
of ∧2TX Teich(S) and show that the curvature operator is negative def-
inite or non-positive definite on these different subspaces. In section 4
we establish the curvature operator formula for Q on ∧2TX Teich(S) to
prove theorem 1.1. In section 5 we finish the proof of theorem 1.2.

Acknowledgments. This paper is part of the author’s thesis. The au-
thor is greatly indebted to his advisor, Jeffrey Brock, for his consistent
encouragement and support. He would like to thank George Daskalopou-
los for introducing this problem to the author and for many suggestions
and discussions to help finish this article. He also would like to thank
Zheng Huang, Georg Schumacher, Mike Wolf, and Scott Wolpert for
useful conversations and suggestions.

2. Notations and Preliminaries

2.1. Surfaces. Let S be a closed surface of genus g ≥ 2, M−1 denote
the space of Riemannian metrics with constant curvature −1, and X =
(S, σ|dz|2) be a particular element of M−1. Diff0, which is the group of
diffeomorphisms isotopic to the identity, acts by pullback on M−1. The
Teichmüller space Tg of S is defined by the quotient space

M−1/Diff0.
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The Teichmüller space has a natural complex structure, and its holomor-
phic cotangent space T ∗

XTg is identified with the quadratic differentials
Q(X) = ϕ(z)dz2 on X. The Weil-Petersson metric is the Hermitian
metric on Tg arising from the the Petersson scalar product

< ϕ,ψ >=

∫

S

ϕ · ψ

σ2
dzdz

via duality. We will concern ourselves primarily with its Riemannian
part gWP . Throughout this paper, we denote the Teichmüller space
endowed with the Weil-Petersson metric by Teich(S).

Setting D = −2(∆− 2)−1, where ∆ is the Beltrami-Laplace operator
on X, we have D−1 = −1

2(∆ − 2). The following property has been
proved in a lot of literature; for completeness, we still state the proof
here.

Proposition 2.1. Let D be the operator above. Then

(1) D is self-adjoint.
(2) D is positive.

Proof of (1). Let f and g be two real-valued smooth functions on X,
and u = Df , v = Dg. Then

∫

S

Df · gdA =

∫

S

u · (−
1

2
(∆ − 2)v)dA = −

1

2

∫

S

u · (∆ − 2)vdA

= −
1

2

∫

S

v · (∆− 2)udA =

∫

S

Dg · fdA,

where the equality in the second row follows from the fact that ∆ is
self-adjoint on closed surfaces. For the case that f and g are complex-
valued, one can prove it through the real and imaginary parts by using
the same argument.

Proof of (2). Let f be a real-valued smooth functions onX, and u = Df .
Then
∫

S

Df · fdA =

∫

S

u · (−
1

2
(∆− 2)u)dA = −

1

2

∫

S

(u · (∆u)− 2u2)dA

=
1

2
(

∫

S

|∇u|2 + 2u2dA) ≥ 0,

where the equality in the second row follows from the Stoke’s Theorem.
The last equality holds if and only if u = 0. That is, D is positive. For
the case that f is complex-valued, one can show it by arguing the real
and imaginary parts. q.e.d.

For the Green function of the operator −2(∆− 2)−1, we have

Proposition 2.2. Let D be the operator above. Then there exists a
Green function G(w, z) for D satisfying:
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(1) G(w, z) is positive.
(2) G(w, z) is symmetric, i.e, G(w, z) = G(z, w).

Proof. One can refer to [20] and [27]. q.e.d.

The Riemannian tensor of the Weil-Petersson metric. The
curvature tensor is given by the following. Let µα, µβ be two elements
in the tangent space at X, and

gαβ =

∫

X

µα · µβdA,

where dA is the area element for X.
Let us study the curvature tensor in these local coordinates. First of

all, for the inverse of (gij), we use the convention

gijgkj = δik.

The curvature tensor is given by

Rijkl =
∂2

∂tk∂tl
gij − gst

∂

∂tk
git

∂

∂tl
gsj.

Since Ahlfors showed that the first derivatives of the metric tensor
vanish at the base point X in these coordinates, at X we have

Rijkl =
∂2

∂tk∂tl
gij .(1)

By the same argument in Kähler geometry we have

Proposition 2.3. For any indices i, j, k, l, we have

(1) Rijkl = Rijkl = 0.

(2) Rijkl = −Rijlk.

(3) Rijkl = Rkjil.

(4) Rijkl = Rilkj.

Proof. These follow from formula (1) and the first Bianchi identity
(one can refer to [12]). q.e.d.

Now let us state Wolpert’s curvature formula, which is crucial in the
proof of theorem 1.1.

Theorem 2.4. (see [27]) The curvature tensor satisfies

Rijkl =

∫

X

D(µiµj) · (µkµl)dA+

∫

X

D(µiµl) · (µkµj)dA.
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Definition 2.5. Let µ∗ be elements ∈ TX Teich(S). Set

(ij, kl) :=

∫

X

D(µiµj) · (µkµl)dA.

We close this section by rewriting theorem 2.4 as follows,

Theorem 2.6.

Rijkl = (ij, kl) + (il, kj).

3. Curvature operator on subspaces of ∧T 2
X Teich(S)

Before we study the curvature operator of Teich(S), let us set some
neccessary notations. Let U be a neighborhood ofX and (t1, t2, . . . , t3g−3)
be a local holomorphic coordinate on U , where ti = xi + iyi(1 ≤ i ≤
3g− 3). Then (x1, x2, . . . , x3g−3, y1, y2, . . . , y3g−3) is a real smooth coor-
dinate in U . Furthermore, we have

∂

∂xi
=

∂

∂ti
+

∂

∂ti
,

∂

∂yi
= i(

∂

∂ti
−

∂

∂ti
).

Let T Teich(S) be the real tangent bundle of Teich(S) and ∧2T Teich(S)
be the exterior wedge product of T Teich(S) and itself. For any X ∈ U ,
we have

TX Teich(S) = Span{
∂

∂xi
(X),

∂

∂yj
(X)}1≤i,j≤3g−3

and

∧2T Teich(S) = Span{
∂

∂xi
∧

∂

∂xj
,
∂

∂xk
∧

∂

∂yl
,
∂

∂ym
∧

∂

∂yn
}.

Set

∧2T 1
X Teich(S) := Span{

∂

∂xi
∧

∂

∂xj
},

∧2T 2
X Teich(S) := Span{

∂

∂xk
∧

∂

∂yl
},

∧2T 3
X Teich(S) := Span{

∂

∂ym
∧

∂

∂yn
}.

Hence,

∧2TX Teich(S) = Span{∧2T 1
X Teich(S),∧2T 2

X Teich(S),∧2T 3
X Teich(S)}.

3.1. The curvature operator on ∧2T 1
X Teich(S). Let

∑

ij aij
∂
∂xi

∧ ∂
∂xj

be an element in ∧2T 1
X Teich(S), where aij are real. Set

F (z, w) =

3g−3
∑

i,j=1

aijµi(w) · µj(z).

The following proposition is influenced by theorem 4.1 in [15].
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Proposition 3.1. Let Q be the curvature operator and D = −2(∆−
2)−1, where ∆ is the Beltrami-Laplace operator on X. G is the Green
function of D, and

∑

ij aij
∂
∂xi

∧ ∂
∂xj

is an element in ∧2T 1
X Teich(S),

where aij are real. Then we have

Q(
∑

ij

aij
∂

∂xi
∧

∂

∂xj
,
∑

ij

aij
∂

∂xi
∧

∂

∂xj
)

=

∫

X

D(F (z, z) − F (z, z))(F (z, z) − F (z, z))dA(z)

− 2 ·

∫

X×X

G(z, w)|F (z, w))|2dA(w)dA(z)

+ 2 · ℜ{

∫

X×X

G(z, w)F (z, w)F (w, z)dA(w)dA(z)},

where F (z, w) =
∑3g−3

i,j=1 aijµi(w) · µj(z).

Proof. Since ∂
∂xi

= ∂
∂ti

+ ∂
∂ti

, from proposition 2.3,

Q(
∑

ij

aij
∂

∂xi
∧

∂

∂xj
,
∑

ij

aij
∂

∂xi
∧

∂

∂xj
)

=
∑

i,j,k,l

aijakl(Rijkl +Rijkl +Rijkl +Rijkl)

=
∑

i,j,k,l

aijakl(Rijkl −Rijlk −Rjikl +Rjilk)

=
∑

i,j,k,l

aijakl((ij, kl) + (il, kj)− (ij, lk)− (ik, lj)

− (ji, kl)− (jl, ki) + (ji, lk) + (jk, li)) (by theorem 2.6)

=
∑

i,j,k,l

aijakl(ij − ji, kl − lk)

+
∑

i,j,k,l

aijakl((il, kj) + (li, jk))

−
∑

i,j,k,l

aijakl((ik, lj) + (jl, ki)).

For the first term, from definition 2.5,
∑

i,j,k,l

aijakl(ij − ji, kl − lk)

=

∫

X

D(
∑

ij

aijµiµj −
∑

ij

aijµjµi)(
∑

ij

aijµiµj −
∑

ij

aijµjµi)dA(z)

=

∫

X

D(F (z, z) − F (z, z))(F (z, z) − F (z, z))dA(z).
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For the second term, after applying the Green function G we have

∑

i,l

aijakl((il, kj) + (li, jk)) = 2 · ℜ{
∑

i,l

aijakl((il, kj)}

= 2 · ℜ{

∫

X

D(
∑

i

aijµiµl)(
∑

k

aklµkµj)dA(z)}

= 2 · ℜ{

∫

X

∫

X

G(w, z)
∑

i

aijµi(w)µl(w)(
∑

k

aklµk(z)µj(z))dA(z)dA(w)}.

From the definition of F (z, w),

∑

i,j,k,l

aijakl((il, kj) + (li, jk))

= 2 · ℜ{

∫

X×X

G(z, w)F (z, w)F (w, z)dA(w)dA(z)}.

For the last term, we use an argument similar to that for the second
term.

∑

i,k

aijakl((ik, lj) + (ki, jl)) = 2 · ℜ{
∑

i,k

aijakl((ik, lj)}

= 2 · ℜ{

∫

X

D(
∑

i

aijµi

∑

k

aklµk)(µlµj)dA(z)}

= 2 · ℜ{

∫

X

∫

X

G(w, z)
∑

i

aijµi(w)
∑

k

aklµk(w)(µl(z)µj(z))dA(z)dA(w)}

From the definition of F (z, w),

∑

i,j,k,l

aijakl((ik, lj) + (ki, jl))

= 2 · ℜ{

∫

X×X

G(z, w)F (z, w)F (z, w)dA(w)dA(z)}

= 2 ·

∫

X×X

G(z, w)|F (z, w)|2dA(w)dA(z).

The conclusion follows from combining the three terms above. q.e.d.

Using the Green function’s positivity and symmetry,

Theorem 3.2. Under the same conditions in proposition 3.1, Q is
negative definite on ∧2T 1

X Teich(S).
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Proof. By proposition 3.1 we have

Q(
∑

ij

aij
∂

∂xi
∧

∂

∂xj
,
∑

ij

aij
∂

∂xi
∧

∂

∂xj
)

=

∫

X

D(F (z, z) − F (z, z))(F (z, z) − F (z, z))dA(z)

− 2 · (

∫

X×X

G(z, w)|F (z, w))|2dA(w)dA(z)

− ℜ{

∫

X×X

G(z, w)F (z, w)F (w, z)dA(w)dA(z)}).

For the first term, since F (z, z) − F (z, z) = 2iℑ{F (z, z)}, by the posi-
tivity of the operator D,

∫

X

D(F (z, z) − F (z, z))(F (z, z) − F (z, z))dA(z)

= −4 ·

∫

X

D(ℑ{F (z, z)})(ℑ{F (z, z)})dA(z) ≤ 0.

For the second term, using the Cauchy-Schwarz inequality,

|

∫

X×X

G(z, w)F (z, w)F (w, z)dA(w)dA(z)|

≤

∫

X×X

|G(z, w)F (z, w)F (w, z)|dA(w)dA(z)

≤

√

∫

X×X

|G(z, w)||F (z, w)|2dA(w)dA(z)

×

√

∫

X×X

|G(z, w)||F (w, z)|2dA(w)dA(z)

=

∫

X×X

G(z, w)|F (z, w)|2dA(w)dA(z),

since G is positive and symmetric (see proposition 2.2).
Combining these three terms, we get that Q is non-positive definite

on ∧2T 1
X Teich(S).

Furthermore, equality holds precisely when

Q(
∑

ij

aij
∂

∂xi
∧

∂

∂xj
,
∑

ij

aij
∂

∂xi
∧

∂

∂xj
) = 0;

that is, there exists a constant complex number k such that both of the
following hold:

{

F (z, z) = F (z, z),

F (z, w) = k · F (w, z).
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If we let z = w, we get k = 1. Hence, the last equation is equivalent to

∑

ij

(aij − aji)µi(w)µj(z) = 0.

Since {µi}i≥1 is a basis,

aij = aji.

This means
∑

ij aij
∂
∂xi

∧ ∂
∂xj

= 0. That is, Q is negative definite on

∧2T 1
X Teich(S). q.e.d.

3.2. The curvature operator on ∧2T 2
X Teich(S). Let bij be real and

∑

ij bij
∂
∂xi

∧ ∂
∂yj

∈ ∧2T 2
X Teich(S). Set

H(z, w) =

3g−3
∑

i,j=1

bijµi(w) · µj(z).

Using a similar computation in proposition 3.1, the formula for the
curvature operator on ∧2T 2

X Teich(S) is given as follows.

Proposition 3.3. Let Q be the curvature operator and D be the same
operator as shown in proposition 3.1. Let

∑

ij bij
∂
∂xi

∧ ∂
∂yj

be an element

in ∧2T 2
X Teich(S), where bij are real. Then we have

Q(
∑

ij

bij
∂

∂xi
∧

∂

∂yj
,
∑

ij

bij
∂

∂xi
∧

∂

∂yj
)

= −

∫

X

D(H(z, z) +H(z, z))(H(z, z) +H(z, z))dA(z)

− 2 ·

∫

X×X

G(z, w)|H(z, w))|2dA(w)dA(z)

− 2 · ℜ{

∫

X×X

G(z, w)H(z, w)H(w, z)dA(w)dA(z), }

where H(z, w) =
∑3g−3

i,j=1 bijµi(w) · µj(z).

Proof. Since ∂
∂xi

= ∂
∂ti

+ ∂
∂ti

and ∂
∂yi

= i( ∂
∂ti

− ∂
∂ti

), from proposi-

tion 2.3,
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Q(
∑

ij

bij
∂

∂xi
∧

∂

∂yj
,
∑

ij

bij
∂

∂xi
∧

∂

∂yj
)

= −
∑

i,j,k,l

bijbkl(Rijkl −Rijkl −Rijkl +Rijkl)

= −
∑

i,j,k,l

bijbkl(Rijkl +Rijlk +Rjikl +Rjilk).

= −
∑

i,j,k,l

bijbkl((ij, kl) + (il, kj) + (ij, lk) + (ik, lj) (by theorem 2.6)

+ (ji, kl) + (jl, ki) + (ji, lk) + (jk, li))

= −
∑

i,j,k,l

bijbkl(ij + ji, kl + lk)

−
∑

i,j,k,l

bijbkl((il, kj) + (li, jk))

−
∑

i,j,k,l

bijbkl((ik, lj) + (jl, ki)).

For the first term, from definition 2.5,

−
∑

i,j,k,l

bijbkl(ij + ji, kl + lk)

= −

∫

X

D(
∑

ij

bijµiµj +
∑

ij

bijµjµi)(
∑

ij

bijµiµj +
∑

ij

bijµjµi)dA(z)

= −

∫

X

D(H(z, z) +H(z, z))(H(z, z) +H(z, z))dA(z).

For the second term and the third term, using the same argument in
the proof of proposition 3.1, we have

∑

i,j,k,l

bijbkl((il, kj) + (li, jk))

= 2 · ℜ{

∫

X×X

G(z, w)H(z, w)H(w, z)dA(w)dA(z)}

and
∑

i,j,k,l

bijbkl((ik, lj) + (ki, jl))

= 2 ·

∫

X×X

G(z, w)|H(z, w)|2dA(w)dA(z).

Combining these three terms we get the proposition. q.e.d.
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Using the same method in theorem 3.2, one can prove the following
non-positivity result.

Theorem 3.4. Under the same conditions of proposition 3.3, then
Q is non-positive definite on ∧2T 2

X Teich(S), and the zero level subsets

of Q(·, ·) are {
∑

ij bij
∂
∂xi

∧ ∂
∂yj

; bij = −bji}.

Proof. Let
∑

ij bij
∂
∂xi

∧ ∂
∂yj

be an element in ∧2T 2
X Teich(S). From

proposition 3.3 we have

Q(
∑

ij

bij
∂

∂xi
∧

∂

∂yj
,
∑

ij

bij
∂

∂xi
∧

∂

∂yj
)

= −

∫

X

D(H(z, z) +H(z, z))(H(z, z) +H(z, z))dA(z)

− 2(·

∫

X×X

G(z, w)|H(z, w))|2dA(w)dA(z)

+ ·ℜ{

∫

X×X

G(z, w)H(z, w)H(w, z)dA(w)dA(z)}).

For the first term, since H(z, z) + H(z, z) = 2 · ℜ{H(z, z)}, by the
positivity of the operator D,

−

∫

X

D(H(z, z) +H(z, z))(H(z, z) +H(z, z))dA(z)

= −4

∫

X

D(ℜ{H(z, z)})(ℜ{H(z, z)})dA(z) ≤ 0.

For the second term, using the Cauchy-Schwarz inequality,

|

∫

X×X

G(z, w)H(z, w)H(w, z)dA(w)dA(z)|

≤

∫

X×X

|G(z, w)H(z, w)H(w, z)|dA(w)dA(z)

≤

√

∫

X×X

|G(z, w)||H(z, w)|2dA(w)dA(z)

×

√

∫

X×X

|G(z, w)||H(w, z)|2dA(w)dA(z)

=

∫

X×X

G(z, w)|H(z, w)|2dA(w)dA(z),

since G is positive and symmetric.
Combining these two terms, we get Q is non-positive on ∧2T 2

X Teich(S).
Using the same argument as in the proof of theorem 3.2,

Q(
∑

ij

bij
∂

∂xi
∧

∂

∂yj
,
∑

ij

bij
∂

∂xi
∧

∂

∂yj
) = 0
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if and only if there exists a constant complex number k such that both
of the following hold:

{

H(z, z) = −H(z, z),

H(z, w) = k ·H(w, z).

If we let z = w, we get k = −1. Hence, the last equation is equivalent
to

∑

ij

(bij + bji)µi(w)µj(z) = 0.

Since {µi}i≥1 is a basis,

bij = −bji.

q.e.d.

3.3. The curvature operator on ∧2T 3
X Teich(S). Let J be the almost

complex structure on Teich(S). Since {ti} is a holomorphic coordinate,
we have

J
∂

∂xi
=

∂

∂yi
J
∂

∂yi
= −

∂

∂xi
.

Since the Weil-Petersson metric is a Kähler metric, J is an isometry on
the tangent space. In particular we have

R(V1, V2, V3, V4) = R(JV1,JV2,JV3,JV4)

= R(JV1,JV2, V3, V4) = R(V1, V2,JV3,JV4),

where R is the curvature tensor and Vi are real tangent vectors in
TX Teich(S). Once can refer to [12] for more details.

Let C =
∑

ij cij
∂
∂yi

∧ ∂
∂yj

be an element in ∧2T 3
X Teich(S), where cij

are real. Set

K(z, w) =

3g−3
∑

i,j=1

cijµi(w) · µj(z).

Proposition 3.5. Let Q be the curvature operator, and
∑

ij cij
∂
∂yi

∧
∂

∂yj
be an element in ∧2T 3

X Teich(S). Then we have

Q(
∑

ij

cij
∂

∂yi
∧

∂

∂yj
,
∑

ij

cij
∂

∂yi
∧

∂

∂yj
)

=

∫

X

D(K(z, z) −K(z, z))(K(z, z) −K(z, z))dA(z)

− 2 ·

∫

X×X

G(z, w)|K(z, w))|2dA(w)dA(z)

+ 2 · ℜ{

∫

X×X

G(z, w)K(z, w)K(w, z)dA(w)dA(z)}.
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Proof. Since ∂
∂yi

= J ∂
∂xi

= J ∂
∂ti

+ J ∂
∂ti

and J is an isometry, by

proposition 2.3,

Q(
∑

ij

cij
∂

∂yi
∧

∂

∂yj
,
∑

ij

cij
∂

∂yi
∧

∂

∂yj
)

=
∑

i,j,k,l

cijckl(Rijkl +Rijkl +Rijkl +Rijkl)

= Q(
∑

ij

cij
∂

∂xi
∧

∂

∂xj
,
∑

ij

cij
∂

∂xi
∧

∂

∂xj
).

By proposition 3.1,

Q(
∑

ij

cij
∂

∂yi
∧

∂

∂yj
,
∑

ij

cij
∂

∂yi
∧

∂

∂yj
)

=

∫

X

D(K(z, z) −K(z, z))(K(z, z) −K(z, z))dA(z)

− 2 ·

∫

X×X

G(z, w)|K(z, w))|2dA(w)dA(z)

+ 2 · ℜ{

∫

X×X

G(z, w)K(z, w)K(w, z)dA(w)dA(z)}.

q.e.d.

Using the same argument as in the proof of theorem 3.2 one can show
that

Theorem 3.6. Let Q be the curvature operator as above, then Q is
a negative definite operator on ∧2T 3

X Teich(S).

4. Curvature operator on ∧2TX Teich(S)

Every element in ∧2TX Teich(S) can be represented by
∑

ij(aij
∂
∂xi

∧
∂

∂xj
+ bij

∂
∂xi

∧ ∂
∂yj

+ cij
∂
∂yi

∧ ∂
∂yj

).

Proposition 4.1. Let Q be the curvature operator. Then

Q(
∑

ij

aij
∂

∂xi
∧

∂

∂xj
+ bij

∂

∂xi
∧

∂

∂yj
+ cij

∂

∂yi
∧

∂

∂yj
,

∑

ij

aij
∂

∂xi
∧

∂

∂xj
+ bij

∂

∂xi
∧

∂

∂yj
+ cij

∂

∂yi
∧

∂

∂yj
)

= Q(
∑

ij

dij
∂

∂xi
∧

∂

∂xj
+ bij

∂

∂xi
∧

∂

∂yj
,
∑

ij

dij
∂

∂xi
∧

∂

∂xj
+ bij

∂

∂xi
∧

∂

∂yj
),

where dij = aij + cij .
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Proof. Since the almost complex structure J is an isometry and J ∂
∂xi

=
∂
∂yi

, we have

Q(
∂

∂xi
∧

∂

∂xj
,
∂

∂yi
∧

∂

∂yj
) = R(

∂

∂xi
,
∂

∂xj
,J

∂

∂xi
,J

∂

∂xj
)

= R(
∂

∂xi
,
∂

∂xj
,
∂

∂xi
,
∂

∂xj
)

and

Q(
∂

∂xi
∧

∂

∂yj
,
∂

∂yi
∧

∂

∂yj
) = R(

∂

∂xi
,
∂

∂yj
,J

∂

∂xi
,J

∂

∂xj
)

= R(
∂

∂xi
,
∂

∂yj
,
∂

∂xi
,
∂

∂xj
).

The conclusion follows by expanding Q and applying the two equa-
tions above. q.e.d.

If one wants to determine whether the curvature operator Q is non-
positive definite on ∧2TX Teich(S), by proposition 4.1 it is sufficient to
see ifQ is non-positive definite on Span{∧2T 1

X Teich(S),∧2T 2
X Teich(S)}.

Proposition 4.2. Let Q be the curvature operator,
∑

ij aij
∂
∂xi

∧ ∂
∂xj

be an element in ∧2T 1
X Teich(S), and

∑

ij bij
∂
∂xi

∧ ∂
∂yj

be an element in

∧2T 2
X Teich(S). Then we have

Q(
∑

ij

aij
∂

∂xi
∧

∂

∂xj
,
∑

ij

bij
∂

∂xi
∧

∂

∂yj
)

= i ·

∫

X

D(F (z, z) − F (z, z)) · (H(z, z) +H(z, z))dA(z)

− 2 · ℑ{

∫

X×X

G(z, w)F (z, w)H(z, w))dA(w)dA(z)}

− 2 · ℑ{

∫

X×X

G(z, w)F (z, w)H(w, z)dA(w)dA(z)}.

Proof. Since ∂
∂xi

= ∂
∂ti

+ ∂
∂ti

and ∂
∂yi

= i( ∂
∂ti

− ∂
∂ti

), by proposition 2.3,
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Q(
∑

ij

aij
∂

∂xi
∧

∂

∂xj
,
∑

ij

bij
∂

∂xi
∧

∂

∂yj
)

= (−i)
∑

i,j,k,l

aijbkl(−Rijkl +Rijkl −Rijkl +Rijkl)

= (−i)
∑

i,j,k,l

aijbkl(−Rijkl −Rijlk +Rjikl +Rjilk)

= (−i)
∑

i,j,k,l

aijbkl(−(ij, kl)− (il, kj)− (ij, lk)− (ik, lj)

+ (ji, kl) + (jl, ki) + (ji, lk) + (jk, li)) (by theorem 2.6)

= (−i)
∑

i,j,k,l

aijbkl(ji − ij, kl + lk)

+ (−i)
∑

i,j,k,l

aijbkl(−(il, kj) + (li, jk))

+ (−i)
∑

i,j,k,l

aijbkl(−(ik, lj) + (jl, ki)).

For the first term, by definition 2.5,

∑

i,j,k,l

aijbkl(ji − ij, kl + lk)

=

∫

X

D(
∑

ij

aijµiµj −
∑

ij

aijµiµj)(
∑

kl

bklµkµl +
∑

kl

bklµlµk)dA(z)

=

∫

X

D(F (z, z) − F (z, z))(H(z, z) +H(z, z))dA(z).

For the second term, since D is self adjoint, using the Green func-
tion G,

∑

i,l

aijbkl(−(il, kj) + (li, jk))

= 2i · ℑ{
∑

i,l

aijbkl(−(il, kj)}

= −2i · ℑ{

∫

X

D(
∑

i

aijµiµl)(
∑

k

bklµkµj)dA(z)}

= −2i · ℑ{

∫

X

∫

X

G(w, z)
∑

i

aijµi(w)µl(w)(
∑

k

bklµk(z)µj(z))dA(z)dA(w)}

= −2i · ℑ{

∫

X×X

G(z, w)F (z, w)H(w, z)dA(w)dA(z)}.
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For the last term,

∑

i,k

aijbkl(−(ik, lj) + (ki, jl)) = −2i · ℑ{
∑

i,k

aijbkl(ik, lj)}

= −2i · ℑ{

∫

X

D(
∑

i

aijµi

∑

k

bklµk)(µlµj)dA(z)}

= −2i · ℑ{

∫

X

∫

X

G(w, z)
∑

i

aijµi(w)
∑

k

bklµk(w)(µl(z)µj(z))dA(z)dA(w)}

= −2i · ℑ{

∫

X×X

G(z, w)F (z, w)H(z, w)dA(w)dA(z)}.

Combining these three terms above, we get the lemma. q.e.d.

The following proposition will give the formula for curvature operator
Q on Span{∧2T 1

X Teich(S),∧2T 2
X Teich(S)}. Setting

A =
∑

ij

aij
∂

∂xi
∧

∂

∂xj
, B =

∑

ij

bij
∂

∂xi
∧

∂

∂yj
,

on Span{∧2T 1
X Teich(S),∧2T 2

X Teich(S)}, we have

Proposition 4.3. Let Q be the curvature operator on Teich(S). Let
A =

∑

ij aij
∂
∂xi

∧ ∂
∂xj

and B =
∑

ij bij
∂
∂xi

∧ ∂
∂yj

. Then we have

Q(A+B,A+B) =

−4

∫

X

D(ℑ{F (z, z) + iH(z, z)}) · (ℑ{F (z, z) + iH(z, z)})dA(z)

−2

∫

X×X

G(z, w)|F (z, w) + iH(z, w))|2dA(w)dA(z)

+2 ℜ{

∫

X×X

G(z, w)(F (z, w) + iH(z, w))(F (w, z) + iH(w, z))dA(w)dA(z)},

where F (z, w) =
∑

3g−3

i,j=1
aijµi(w) · µj(z) and H(z, w) =

∑

3g−3

i,j=1
bijµi(w) · µj(z).

Proof. Since Q(A,B) = Q(B,A),

Q(A+B,A+B) = Q(A,A) + 2Q(A,B) +Q(B,B).



524 Y. WU

By proposition 3.1, proposition 3.3, and proposition 4.2 we have

Q(A+B,A+B)

= (

∫

X

D(F (z, z) − F (z, z))(F (z, z) − F (z, z))dA(z)

−

∫

X

D(H(z, z) +H(z, z))(H(z, z) +H(z, z))dA(z)

+ 2i ·

∫

X

D(F (z, z) − F (z, z))(H(z, z) +H(z, z))dA(z))

( − 2 ·

∫

X×X

G(z, w)|F (z, w))|2dA(w)dA(z)

− 2 ·

∫

X×X

G(z, w)|H(z, w))|2dA(w)dA(z)

− 4 · ℑ{

∫

X×X

G(z, w)F (z, w)H(z, w))dA(w)dA(z)})

( + 2 · ℜ{

∫

X×X

G(z, w)F (z, w)F (w, z)dA(w)dA(z)}

− 2 · ℜ{

∫

X×X

G(z, w)H(z, w)H(w, z)dA(w)dA(z)}

− 4 · ℑ{

∫

X×X

G(z, w)F (z, w)H(w, z)dA(w)dA(z)}).

The sum of the first three terms is exactly

−4

∫

X

D(ℑ{F (z, z) + iH(z, z)}) · (ℑ{F (z, z) + iH(z, z)})dA(z).

Just as |a + ib|2 = |a|2 + |b|2 + 2 · ℑ(a · b), where a and b are two
complex numbers, the sum of the second three terms is exactly

−2 ·

∫

X×X

G(z, w)|F (z, w) + iH(z, w))|2dA(w)dA(z).

For the last three terms, since

ℑ(F (z, w) ·H(w, z)) = −ℜ(F (z, w) · (iH(w, z))),

the sum is exactly

2 · ℜ{

∫

X×X

G(z, w)(F (z, w) + iH(z, w))(F (w, z) + iH(w, z))dA(w)dA(z)}.

q.e.d.

Furthermore, we have

Theorem 4.4. Under the same conditions as in proposition 4.3, Q
is non-positive definite on Span{∧2T 1

X Teich(S),∧2T 2
X Teich(S)}, and
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the zero level subsets of Q(·, ·) are {
∑

ij bij
∂
∂xi

∧ ∂
∂yj

; bij = −bji} in

Span{∧2T 1
X Teich(S),∧2T 2

X Teich(S)}.

Proof. Let us estimate the terms in proposition 4.3 separately. For
the first term, since D is a positive operator,

−

∫

X

D(ℑ{F (z, z) + iH(z, z)}) · (ℑ{F (z, z) + iH(z, z)})dA(z) ≤ 0.

For the third term, by the Cauchy-Schwarz inequality,

|

∫

X×X

G(z, w)(F (z, w) + iH(z, w))(F (w, z) + iH(w, z))dA(w)dA(z)|

≤

∫

X×X

G(z, w)|(F (z, w) + iH(z, w))(F (w, z) + iH(w, z))|dA(w)dA(z)

≤

√

∫

X×X

G(z, w)|(F (z, w) + iH(z, w))|2dA(w)dA(z)

×

√

∫

X×X

G(z, w)|(F (w, z) + iH(w, z))|2dA(w)dA(z)

=

∫

X×X

G(z, w)|(F (z, w) + iH(z, w))|2dA(w)dA(z).

The last equality follows from G(z, w) = G(w, z).
Combining the two inequalities above and the second term in proposi-

tion 4.3, we see that on Span{∧2T 1
X Teich(S),∧2T 2

X Teich(S)} Q is non-
positive definite. Furthermore, Q(A+B,A+B) = 0 if and only if there
exists a constant k such that both of the following hold:

{

Im{F (z, z) + iH(z, z)} = 0,

F (z, w) + iH(z, w) = k · (F (w, z) + iH(w, z)).

If we let z = w, we get k = 1. Hence, the second equation is equiva-
lent to

∑

ij

(aij − aji + i(bij + bji))µi(w)µj(z) = 0.

Since {µi}i≥1 is a basis,

aij = aji, bij = −bji.

That is, A = 0 and B =
∑

ij bij
∂
∂xi

∧ ∂
∂yj

, where bij = −bji.

Conversely, if A = 0 and B ∈ {
∑

ij bij
∂
∂xi

∧ ∂
∂yj

; bij = −bji}, it is not

hard to apply proposition 4.3 to show that Q(A+B,A+B) = 0. q.e.d.
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Before we prove the main theorem, let us define a natural action of
J on ∧2TX Teich(S) by















J ◦ ∂
∂xi

∧ ∂
∂xj

:= ∂
∂yi

∧ ∂
∂yj

,

J ◦ ∂
∂xi

∧ ∂
∂yj

:= − ∂
∂yi

∧ ∂
∂xj

= ∂
∂xj

∧ ∂
∂yi
,

J ◦ ∂
∂yi

∧ ∂
∂yj

:= ∂
∂xi

∧ ∂
∂xj

,

and extend it linearly. It is easy to see that J ◦ J = id.
Now we are ready to prove theorem 1.1.

Proof of Theorem 1.1. It follows from proposition 4.1 and theorem 4.4
that Q is non-positive definite.

If A = C −J ◦C for some a C ∈ ∧2TX Teich(S), then it is easy to see
that Q(A,A) = 0, since J is an isometry.

Assume that A ∈ ∧2TX Teich(S) such that Q(A,A) = 0. Since
∧2T Teich(S) = Span{ ∂

∂xi
∧ ∂

∂xj
, ∂
∂xk

∧ ∂
∂yl
, ∂
∂ym

∧ ∂
∂yn

}, there exists aij ,

bij , and cij such that

A =
∑

ij

aij
∂

∂xi
∧

∂

∂xj
+ bij

∂

∂xi
∧

∂

∂yj
+ cij

∂

∂yi
∧

∂

∂yj
.

Since Q(A,A) = 0, by proposition 4.1 and theorem 4.4 we must have

aij + cij = aji + cji, bij = −bji.

That is,

aij − aji = −(cij − cji), bij = −bji.

Set

C =
∑

ij

aij
∂

∂xi
∧

∂

∂xj
+
bij
2

∂

∂xi
∧

∂

∂yj
.

Claim. A = C − J ◦ C.

Since
∑

ij aij
∂
∂xi

∧ ∂
∂xj

=
∑

i<j(aij − aji)
∂
∂xi

∧ ∂
∂xj

, we have

J ◦
∑

ij

aij
∂

∂xi
∧

∂

∂xj
=

∑

i<j

(aij − aji)
∂

∂yi
∧

∂

∂yj

= −
∑

i<j

(cij − cji)
∂

∂yi
∧

∂

∂yj
= −

∑

cij
∂

∂yi
∧

∂

∂yj
.

Similarly,

J ◦
∑

(
bij
2

∂

∂xi
∧

∂

∂yj
) = −

∑ bij
2

∂

∂xi
∧

∂

∂yj
.

The claim follows from the two equations above. q.e.d.
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5. Harmonic maps into Teich(S)

In this section we study the twist-harmonic maps from some domains
into the Teichmüller space. Before we go to the rank-one hyperbolic
space case, let us state the following lemma, which is influenced by
lemma 5 in [32].

Lemma 5.1. The rank-one Hyperbolic spaces HQ,m = Sp(m, 1)/

Sp(m) · Sp(1) and HO,2 = F−20
4 /SO(9) cannot be totally geodesically

immersed into Teich(S).

Proof. On quaternionic hyperbolic manifolds HQ,m = Sp(m, 1)/
Sp(m), assume that there is a totally geodesic immersion of HQ,m into
Teich(S). We may select p ∈ HQ,m. Choose a quaternionic line lQ on
TpHQ,m, and we may assume that lQ is spanned over R by v, Iv, Jv, and
Kv. Without loss of generality, we may assume that J on lQ ⊂ TpHQ,m

is the same as the complex structure on Teich(S). Choose an element

v ∧ Jv +Kv ∧ Iv ∈ ∧2TpHQ,m.

Let QHQ,m be the curvature operator on HQ,m.

QHQ,m(v ∧ Jv +Kv ∧ Iv, v ∧ Jv +Kv ∧ Iv) =

RHQ,m(v, Jv, v, Jv) +RHQ,m(Kv, Iv,Kv, Iv) + 2 · RHQ,m(v, Jv,Kv, Iv).

Since I is an isometry, we have

RHQ,m(Kv, Iv,Kv, Iv) = RHQ,m(IKv, IIv, IKv, IIv)

= RHQ,m(−Jv,−v,−Jv,−v)

= RHQ,m(v, Jv, v, Jv).

Similarly,

RHQ,m(v, Jv,Kv, Iv) = RHQ,m(v, Jv, IKv, IIv)

= RHQ,m(v, Jv,−Jv,−v)

= −RHQ,m(v, Jv, v, Jv).

Combining the terms above, we have

QHQ,m(v ∧ Jv +Kv ∧ Iv, v ∧ Jv +Kv ∧ Iv) = 0.

Since f is a geodesical immersion,

QTeich(S)(v ∧ Jv +Kv ∧ Iv, v ∧ Jv +Kv ∧ Iv) = 0.

On the other hand, by theorem 1.1, there exists C such that

v ∧ Jv +Kv ∧ Iv = C − J ◦ C.
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Hence,

J ◦ (v ∧ Jv +Kv ∧ Iv)(2)

= J ◦ (C − J ◦ C) = J ◦ C − J ◦ J ◦ C = J ◦ C − C

= −(v ∧ Jv +Kv ∧ Iv).

On the other hand, since J is the same as J in HQ,m, we also have

J ◦ (v ∧ Jv +Kv ∧ Iv) = (Jv ∧ JJv + JKv ∧ JIv)(3)

= Jv ∧ (−v) + Iv ∧ (−Kv) = v ∧ Jv +Kv ∧ Iv.

From equations (2) and (3) we get

v ∧ Jv +Kv ∧ Iv = 0,

which is a contradiction since lQ is spanned over R by v, Iv, Jv, and
Kv.

In the case of the Cayley hyperbolic plane HO,2 = F 20
4 /SO(9), the

argument is similar by replacing a quaternionic line by a Cayley line
([4]). q.e.d.

Now we are ready to prove theorem 1.2.

Proof of theorem 1.2. Since the sectional curvature operator on Teich(S)
is non-positive definite, Teich(S) also has non-positive Riemannian sec-
tional curvature in the complexified sense as stated in [19]. Suppose
that f is not constant. From theorem 2 in [19] (also see [6]), we know
that f should be a totally geodesic immersion, which contradicts lemma
5.1. Hence, f must be a constant. q.e.d.

Remark 5.1. In [32] it is shown that the image of any homomor-
phism ρ from Γ to Mod(S) is finite. Hence, ρ(Γ) must have a fixed point
in Teich(S) from the Nielsen realization theorem (one can see [14, 30]).
If we assume that there exists a twist harmonic map f with respect to
this homomorphism, then by theorem 1.2 we know ρ(Γ) ⊂ Mod(S) will
fix the point f(G/Γ) ∈ Teich(S).

Remark 5.2. Conversly, if one can prove that for any homomorphism
ρ from Γ to Mod(S) there exists a twist harmonic map f from G into the

completion Teich(S) of Teich(S) such that the image f(G) ⊂ Teich(S),
theorem 1.2 tells us that the image ρ(Γ) fixes a point in Teich(S); hence,
the image ρ(Γ) is finite because Mod(S) acts properly on Teich(S).
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