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ON THE DIMENSION DATUM OF A SUBGROUP

AND ITS APPLICATION TO

ISOSPECTRAL MANIFOLDS

Jinpeng An, Jiu-Kang Yu & Jun Yu

Abstract

The dimension datum of a subgroup of a compact Lie group
is a piece of spectral information about that subgroup. We find
some new invariants and phenomena of the dimension data and
apply them to construct the first example of a pair of isospec-
tral, simply connected closed Riemannian manifolds which are of
different homotopy types. We also answer questions proposed by
Langlands.

1. Introduction

Let G be a compact Lie group (not necessarily connected). We denote

by Ĝ the set of irreducible (continuous) representations of G up to
equivalence, by G♮ the set of conjugacy classes in G, and by µG the
normalized Haar measure on G.

Let H be a closed subgroup of G. It is known [18] that the following
three objects associated to H contain the same information about H:

• the function DH : Ĝ → Z, V 7→ dimV H , called the dimension
datum of H;

• the equivalence class of the G-representation L2(G/H);
• the push-forward of µH by the composition H →֒ G → G♮, as a
measure on G♮.

It is natural to consider the following:

Question 1.1. To what extent is H (up to G-conjugacy) determined
by its dimension datum DH?

One may consider the dimension datum to be spectral in nature, and
paraphrase the question (following Bers and Kac [9]) as “can one hear
the shape of a subgroup?” Ideas around this question have been used
for the determination of the monodromy groups in arithmetic geometry
and for some constructions in inverse spectral geometry (on the problem
“can one hear the shape of a drum?”). In the theory of automorphic
forms, Langlands [14] has suggested using the dimension datum as a key
ingredient in his programme “Beyond Endoscopy.” The idea is to use
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the dimension datum to identify the conjectural subgroup λHπ ⊂ LG

associated to an automorphic representation π of G (A), where LG is
the L-group of G in the form of [2, 2.4(2)]. Strictly speaking, for this
one should formulate and consider the dimension datum problem for
complex reductive groups. By a well-known principle, which we review
in Section 8, this is equivalent to the problem we are considering here,
by taking G to be a maximal compact subgroup of LG .

In particular, Langlands [14, 1.1] wrote that it will be important to
establish the following.

Theorem 1.2. If the function DH is given, then there are only
finitely many possibilities for the conjugacy class of H.

(Langlands in fact concerns the finiteness of the possibleG◦-conjugacy
classes of H, but that is the same as the finiteness of the possible G-
conjugacy classes.) The first contribution in this paper is a proof of this
expectation of Langlands. A different and independent proof will appear
in another paper by the third author [33]. More finiteness results will
be given in Section 3. Next, we will prove

Theorem 1.3. The dimension datum DH determines the cardinality
|H/H◦| of H/H◦, the dimension of H, the rank of H, the G-conjugacy
class of the maximal tori of H, and DH◦ , where H◦ is the neutral com-
ponent of H.

The most striking result about dimension data is due to Larsen and
Pink [18]. It implies the following, when combined with Theorem 1.3.

Theorem 1.4. (Larsen and Pink) If H1 and H2 are semisimple sub-
groups of G such that DH1

= DH2
, then H◦

1 is isomorphic to H◦
2 .

Here, a compact Lie group is called semisimple if its Lie algebra is
semisimple. In view of this result, one may hope to extend it by drop-
ping the semisimplicity hypothesis, or to prove that certain numerical
invariants of H◦, such as the order of the Weyl group, the Coxeter num-
ber (see the paragraph before Theorem 6.1 for the definition), the Betti
numbers, or the semisimple rank, are determined by DH . However, all
these hopes are falsified by Part (1) of the following theorem.

Theorem 1.5. Let n > 2, n1 = ⌊(n − 1)/2⌋, n2 = ⌊n/2⌋. Put
H1 = U(n), Hk+1 = Sp(nk) × SO(2n − 2nk), k = 1, 2. Embed H1 into

U(2n) by st⊕ st∗, where st is the standard representation of H1. Embed
Hk+1 into U(2n) by st′⊗1⊕1⊗ st′′, where st′ and st′′ are the standard
representations of Sp(nk) and SO(2n − 2nk) respectively. Then the im-
ages of H1, H2, and H3 lie in SU(2n). Moreover, for any compact Lie
group G containing SU(2n), we have:

(1) If n is odd, then DH1
= DH2

.
(2) If n is even, then 2DH1

= DH2
+ DH3

.
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Part (2) of this theorem can be used to show that a problem raised by
Langlands (Question 5.3) has a negative answer in general. See Corol-
lary 5.4.

Part (1) of the theorem gives the first examples of connected sub-
groups H1 and H2 such that DH1

= DH2
but H1 is not isomorphic to

H2. There are abundant examples of this sort in the literature (see Sec-
tion 7), but with finite H1,H2. Larsen and Pink [18] also showed that
one can have connected H1,H2 such that DH1

= DH2
and H1 is not G-

conjugate to H2. But the examples of Larsen and Pink are semisimple
groups and hence H1 is isomorphic to H2 by Theorem 1.4.

We remark that although the hope of extending Theorem 1.4 without
the semisimplicity hypothesis is shattered by Theorem 1.5, one may
try to classify all counterexamples. This and the description of linear
relations amongst DH will be pursued by the third author [32]. On the
other hand, although the Coxeter number is not determined by DH , we
have

Theorem 1.6. If H1 and H2 are closed subgroups of G such that
DH1

= DH2
, then |h1 − h2| 6 1, where hi is the Coxeter number of H◦

i ,
i = 1, 2.

Application to isospectral manifolds. We now describe a geometric appli-
cation of Theorem 1.5 (1). Recall that two closed Riemannian manifolds
are called isospectral if the eigenvalues of their Laplacians, counting
multiplicities, coincide. Many examples reveal that closed isospectral
manifolds can be neither locally isometric nor homeomorphic (see [8]
and the references therein). The relationship between isospectral man-
ifolds and dimension data of connected subgroups was discovered by
Sutton [28], who proved that if DH1

= DH2
, then the Riemannian man-

ifolds G/H1 and G/H2 are isospectral. This generalized Sunada’s and
Pesce’s method for producing isospectral manifolds ([27], [23]). Sutton
[28] also showed that for non-conjugate H1 and H2 with DH1

= DH2
,

G/H1 and G/H2 are not locally isometric. The simplest example of this
kind constructed by Sutton, which is based on an example of Larsen and
Pink, has dimension on the order of 1010, and it is difficult to determine
whether they are homeomorphic ([28, Remark 3.7]). Theorem 1.5 (1)
can be used to construct similar examples of dimension as small as 26.
Moreover, since the subgroups H1 and H2 we use have different homo-
topic invariants, it is easy to show that G/H1 and G/H2 have different
homotopy types. This provides the first example of pairs of isospectral,
simply connected, non-homeomorphic closed manifolds:

Theorem 1.7. Let G, H1, and H2 be as in Theorem 1.5 (1). Assume
that G is connected and simply connected. Then the compact homoge-
neous Riemannian manifolds G/H1 and G/H2 are isospectral, simply
connected, and have different homotopy types.
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Sections 2–6 are devoted to the proofs of the above-mentioned results.
Various examples are given in Section 7 to further illustrate the differ-
ence between ∼ and ∼LP, and between ≺ and ≺LP. These four relations
are defined in the next paragraph.

Notation and conventions. By a subgroup of a compact Lie group, we
always mean a closed subgroup. For two subgroups H and H ′ of G, we
write (following Langlands)

• H ∼ H ′ if H is G-conjugate to H ′,
• H ∼LP H ′ if DH = DH′ ,
• H ≺ H ′ if H is G-conjugate to a subgroup of H ′,

• H ≺LP H ′ if DH(V ) > DH′(V ) for all V ∈ Ĝ.

We often use the same notation for an equivalence class of repre-
sentations, and a particular representation in that class, since there is
no danger of confusion. Similarly, we often use the same notation for a
G-conjugacy class of subgroups, and a particular subgroup in that class.

Acknowledgments. We are gratefully indebted to ideas in the pio-
neering work of Larsen-Pink and Larsen, and from communication with
Larsen. We thank C. Gordan, R. Pink, G. Prasad, F. Shahidi, R. Spa-
tizer, and C. Sutton for their comments and suggestions. Jinpeng An
was partially supported by NSFC grant 10901005 and FANEDD grant
200915. Jiu-Kang Yu was partially supported by grant DMS 0703258
from the National Science Foundation. Jun Yu was partially supported
by a grant from the Swiss National Science Foundation (Schweizerischer
Nationalfonds).

2. A finiteness theorem

In this section, we will prove Theorem 1.2, which says that the fibers
of the map

D : {subgroups of G}/(G-conjugacy) → ZĜ, H 7→ DH

are finite, where ZĜ is the set of all functions Ĝ → Z. The key is the
following finiteness theorem of Mostow ([20]; see also [12, Theorem
4.23]).

Theorem 2.1. Let G be a compact Lie group and let X be a compact
G-manifold. Then the set {Gx : x ∈ X}/(G-conjugacy) is finite, where
Gx = {g ∈ G : g.x = x}.

We first prove two lemmas.

Lemma 2.2. Let n ∈ ZĜ be such that 0 6 n(V ) 6 dimV for all

V ∈ Ĝ. Then there exist a finite set {H1, . . . ,Hm} of subgroups of G

and a finite subset S of Ĝ such that
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(1) DHj
(V ) > n(V ) for all 1 6 j 6 m and V ∈ Ĝ, and

(2) if H is a subgroup of G satisfying DH(V ) > n(V ) for V ∈ S, then

H ≺ Hj for some j, and hence DH(V ) > n(V ) for all V ∈ Ĝ.

Proof. The lemma is evident if G is finite. For the rest of this proof,

we assume that G is infinite. Then Ĝ is countably infinite. We enumerate

Ĝ as {Vi}i>1 and fix a G-invariant inner product on each Vi. Let Xi be
the compact G-manifold consisting of ni-tuples of orthonormal vectors
in Vi, where ni = n(Vi). Then a subgroup H of G satisfies DH(Vi) > ni

if and only if XH
i 6= ∅.

We inductively construct a rooted tree T and a map x 7→ G(x) from
the set of nodes of T to the set of subgroups of G as follows. For the
root x0 of T we set G(x0) = G. Suppose that the nodes x together
with G(x) of level up to k > 0 have been constructed. Let x be a node

of level k. If X
G(x)
i 6= ∅ for all i > 1, we do not attach any more nodes

to x. Otherwise, let i(x) be the smallest integer such that X
G(x)
i(x) = ∅.

Then by the above theorem of Mostow, there exist finitely many proper
subgroups G1, . . . , Gr of G(x) such that the stabilizer subgroup in G(x)
of every point in Xi(x) is conjugate to some Gj . We create r new nodes
y1, . . . , yr of level k + 1, link them to x, and set G(yj) = Gj . By doing
so for each node x of level k, we obtain all the nodes of level k+1. This
completes the inductive construction.

From the construction we see that T , i(x), and G(x) satisfy the
following properties.

(i) If x is a terminal node of T , then X
G(x)
i 6= ∅ for all i > 1.

(ii) If x is a non-terminal node of T and H is a subgroup of G(x) with
XH

i(x) 6= ∅, then there exists a node y of level one greater than that

of x, which is adjacent to x, such that H ≺ G(y).
(iii) If x1, . . . , xs form a path in T with increasing levels, then G(x1) )

· · · ) G(xs).

Since there is no infinite descending chain of subgroups of G, from (iii)
we see that there is no infinite path in T . Note also that each node of
T is adjacent to finitely many other nodes. By König’s lemma (see [19,
page 298]), T has only finitely many nodes. We claim that

{H1, . . . ,Hm} = {G(x) : x is a terminal node of T }
and

N = max{i(x) : x is a non-terminal node of T }
satisfy the requirement of the theorem.

By (i) above, we have X
Hj

i 6= ∅ for all i > 1 and 1 6 j 6 m. So (1) is

satisfied. Let H be a subgroup of G such that XH
i 6= ∅ for 1 6 i 6 N .

We inductively construct a path x0, . . . , xk in T with increasing level,
starting from the root x0, ending at a terminal node xk, and such that
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H ≺ G(xj) for each j = 0, . . . , k, as follows. Note that G(x0) = G
contains H. Suppose that x0, . . . , xj have been constructed. If xj is a
terminal node, then the path ends there. Otherwise, since i(xj) 6 N ,
we have XH

i(xj)
6= ∅. We have H ≺ G(xj) by the induction hypothesis.

Then by (ii), there exists a node xj+1 of level j + 1, which is adjacent
to xj, such that H ≺ G(xj+1). This completes the construction of the
path. Now G(xk), which is equal to some Hj, contains a conjugate of
H. This proves (2) and completes the proof of the lemma. q.e.d.

Lemma 2.3. Let H ( H ′ be subgroups of G. Then there exists V ∈ Ĝ
such that dimV H > dimV H′

.

Proof. Let U be a nontrivial irreducible subrepresentation of W =

IndH
′

H 1, where 1 is the trivial representation of H. Then UH′

= 0. By

Frobenius reciprocity, we have UH 6= 0. Thus UH ) UH′

. Let V be an
irreducible constituent of IndGH′U . By Frobenius reciprocity again, the

restriction of V to H ′ contains U . This implies that V H ) V H′

. Hence
dimV H > dimV H′

. q.e.d.

Proof of Theorem 1.2. Let n ∈ ZĜ. We want to show that D−1(n) is

finite. We may and do assume 0 6 n(V ) 6 dimV for all V ∈ Ĝ (for
otherwise D−1(n) is empty). Therefore, by Lemma 2.2, there exists a
finite set {H1, . . . ,Hm} of subgroups of G such that if a subgroupH of G
satisfies DH(V ) > n(V ) for all V , then H ≺ Hj for some j ∈ {1, . . . ,m}.

Let H be a subgroup of G such that DH = n; then some Hj contains
a conjugate of H. We claim that Hj is indeed equal to this conjugate of

H. For otherwise, by Lemma 2.3, there exists V ∈ Ĝ such that n(V ) =
dimV H > dimV Hj > n(V ), a contradiction. This completes the proof.

q.e.d.

3. More finiteness results: isolated points in Im(D)

Notice that Lemma 2.2 has the following interesting consequence.

Proposition 3.1. Given n ∈ ZĜ, there exists a finite subset S of Ĝ
such that if H is a subgroup of G and DH(V ) > n(V ) for V ∈ S, then

DH(V ) > n(V ) for all V ∈ Ĝ.

This leads to the following question concerning a subgroup H of G. A
variant of this question was discussed by Larsen in [17] and the results
in this section are heavily influenced by Larsen’s ideas.

Question 3.2. Let n = DH ∈ ZĜ be the dimension datum of a

subgroup H. Is there a finite set S ∈ Ĝ such that for any subgroup H ′,

DH′(V ) = n(V ) for V ∈ S implies DH′(V ) = n(V ) for all V ∈ Ĝ?

Equivalently,
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Question 3.3. Is DH an isolated point in the image Im(D) of D?

Here Im(D) ⊂ ZĜ is given the induced topology from ZĜ (with product
topology while regarding each factor Z discrete).

If the answer is affirmative, one may say that (for fixedH and varying
H ′) verifying DH = DH′ can be checked on a finite set of representations.
For example, the question has an affirmative answer when H = {1} (by
letting n(V ) = dimV in Proposition 3.1, or by considering a faithful
representation of G), or more generally whenH is finite (by the theorem
below). Such results, in particular with a concrete set S, would be very
useful for the application of dimension data to monodromy groups or
automorphic forms [11].

Theorem 3.4. Let H be a subgroup of G. Put n = DH and

{K1, . . . ,Kr} = D
−1(n).

Then DH is isolated in Im(D) if and only if K1, . . . ,Kr are all semisim-
ple.

Lemma 3.5. Let J be a compact Lie group such that J◦ is a torus T .
There exists a finite subgroup F of J such that F meets every component
of J .

Proof. Let π0 = π0(J) and consider the extension 1 → T → J →
π0 → 1 and the corresponding class E inH2(π0, T ). The groupH2(π0, T ),
being compact and killed by |π0|, is finite, say of order N . Therefore, the

class E, being in the kernel of H2(π0, T )
N−−→ H2(π0, T ), comes from

H2(π0, TN ), where TN is the subgroup of N -torsion elements in T . This
gives a group F which is an extension of π0 by TN , embedded in J , and
meets every component of J . q.e.d.

Lemma 3.6. If H is not semisimple, then DH is not isolated in
Im(D).

Proof. Let D be the derived group of H◦ and apply the preceding
lemma to J = H/D. Let Fn = F.T2n and let Kn be the inverse image of
Fn under H ։ J . It is clear that {Kn}n>1 is an increasing sequence of

subgroups, and
⋃

n>1Kn is dense in K. It follows that for any V ∈ Ĝ,

dimV H = dimV Kn for all n sufficiently large.
If H is not semisimple, then the torus T = (H/D)◦ is of positive

dimension, the subgroups Kn are proper subgroups of H, and Kn (
Kn+1 for all n sufficiently large. It follows that for any finite S ⊂ Ĝ, we
have DH |S = DKn |S for all n sufficiently large. This shows that DH is
not isolated. q.e.d.

Proof of Theorem 3.4. The “only if” part is clear from the preceding
lemma. Let us assume that K1, . . . ,Kr are all semisimple. By [17, The-
orem 1.3], for each i = 1, . . . , r, there exists a finite set Ui of proper
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subgroups of Ki such that every proper subgroup of Ki is contained in
a Ki-conjugate of some element of Ui. For each J ∈ Ui, pick a represen-

tation Vi,J ∈ Ĝ such that dimV J
i,J > dimV Ki

i,J = n(Vi,J), by Lemma 2.3.
Apply Lemma 2.2 to get finitely many subgroups H1, . . . ,Hm and a

finite set S ⊂ Ĝ. We may and do assume that Hi = Ki for i = 1, . . . , r,
and DHj

6= n for j = r + 1, . . . ,m. For each j = r + 1, . . . ,m, choose

a representation Wj ∈ Ĝ such that dimW
Hj

j 6= n(Wj). Notice that this

actually implies dimW
Hj

j > n(Wj). Consider

S′ = S ∪ {Vi,J : i = 1, . . . , r, J ∈ Ui} ∪ {Wr+1, . . . ,Wm}.
We claim that DH′ |S′ = n|S′ implies DH′ = n. Indeed, since DH′(V ) >
n(V ) for all V ∈ S, a conjugate of H ′ lies in a suitable Hj. We can

not have j > r since that would give dimWH′

j > dimW
Hj

j > n(Wj).

Therefore, a conjugate of H ′ lies in a Ki, for some 1 6 i 6 r. If it is not
equal to the whole Ki, it lies in a conjugate of J for some J ∈ Ui, and
we have dimV H′

i,J > dimV J
i,J > n(Vi,J). Therefore, a conjugate of H is

equal to one of K1, . . . ,Km, and the theorem is proved. q.e.d.

Corollary 3.7. If DH◦ is isolated in Im(D), then DH is also isolated
in Im(D).

Proof. Let {K1, . . . ,Kr} = D−1(DH). Then DK◦

i
= DH◦ by Theo-

rem 1.3 (the proof of this theorem, to be presented in the next section,
doesn’t use this corollary). Therefore,K◦

i , and henceKi also, is semisim-
ple by the preceding theorem. By the theorem again, DH is isolated in
Im(D). q.e.d.

4. Determination of some invariants I

This section is devoted to the proof of Theorem 1.3. The determina-
tion of dimH for connected semisimple H and that of the G-conjugacy
class of maximal tori of H for connected H have been proved in [18].

We first recall the measure-theoretic characterization of dimension
data (due to [18]) mentioned in the introduction. Let p : G → G♮ be the
quotient map and let M be the space of (real-valued) measures on G♮,
where G♮ is endowed with the quotient Borel structure. For a subgroup
H of G, we view the normalized Haar measure µH on H as a measure

on G, supported on H. Then the measure µ♮
H := p∗(µH) ∈ M depends

only on the conjugacy class of H. From the Peter-Weyl theorem, we
obtain

Lemma 4.1. The linear map

D : M → RĜ, D(µ)(V ) =

∫

G♮

Tr(g|V ) dµ(g)
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is injective. In particular, the function DH = D(µ♮
H) determines the

measure µ♮
H , and vice versa.

We assume for the moment that G and H are connected. Let T be a
fixed maximal torus of G, and let W = W (G,T ) be the Weyl group. To

analyze D(H) and µ♮
H , we may assume without loss of generality that

T contains a maximal torus TH of H. Let ΦH ⊂ X(TH) be the root
system of H, and let Φ+

H be a system of positive roots. Let

fH =
∏

α∈Φ+

H

(1− [α]),

which is an element in the group algebra Q[X(TH)]. We identifyQ[X(TH)]
with a subset of the space of (complex-valued) functions on TH in the
natural way. Let

Γ = {w ∈ W : w(TH) = TH}.
For a function f on TH , we set

σ(f) =
1

|Γ|
∑

γ∈Γ

γ(f).

Lemma 4.2. We have µ♮
H = p∗(fHµTH

) = p∗(σ(fH)µTH
).

Proof. Let WH = W (H,TH) be the Weyl group of H, and let

FH =
1

|WH |
∏

α∈ΦH

(1− [α]).

Then we have

|WH |FH =



∏

α∈Φ+

H

(1− [α])






∏

α∈Φ+

H

(1− [−α])




=


 ∑

w∈WH

sgn(w)[δ − wδ]




 ∑

w′∈WH

sgn(w′)[−δ + w′δ]




=
∑

w,w′∈WH

sgn(ww′)[w′δ − wδ]

=
∑

w′∈WH

w′


 ∑

w′′∈WH

sgn(w′′)[δ − w′′δ]




=
∑

w∈WH

w



∏

α∈Φ+

H

(1− [α])


 =

∑

w∈WH

w(fH),
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where δ = 1
2

∑
α∈Φ+

H
α. From the Weyl integration formula we obtain

µ♮
H = p∗(FHµTH

) =
1

|WH |
∑

w∈WH

p∗(w(fH)µTH
)

= p∗(fHµTH
) = p∗(σ(fH)µTH

).

This completes the proof. q.e.d.

Lemma 4.3. For f, f ′ ∈ L1(TH , µTH
), if p∗(fµTH

) = p∗(f
′µTH

),
then σ(f) = σ(f ′).

Proof. The argument is similar to that in [18, page 380]. Since

p∗

(
∑

w∈W

w∗(fµTH
)

)
= |W |p∗(fµTH

)

= |W |p∗(f ′µTH
) = p∗

(
∑

w∈W

w∗(f
′µTH

)

)

and the restriction of p∗ to the set of W -invariant measures on T is
injective, we obtain

∑

w∈W

w∗(fµTH
) =

∑

w∈W

w∗(f
′µTH

).

By restricting the measures on both sides to TH , we obtain

|Γ|σ(f)µTH
=
∑

γ∈Γ

γ∗(fµTH
) =

∑

γ∈Γ

γ∗(f
′µTH

) = |Γ|σ(f ′)µTH
.

Thus σ(f) = σ(f ′). q.e.d.

Proof of Theorem 1.3. LetH,H ′ be subgroups ofG with D(H) = D(H ′).
By embedding G into a connected compact Lie group, say U(n), we may
assume without loss of generality that G is connected. By Lemma 4.1,

we have µ♮
H = µ♮

H′ . Let B be a small ball (with respect to some bi-
invariant Riemannian metric on G) centered at the identity of G such
that B ∩ (H r H◦) = B ∩ (H ′ r H ′◦) = ∅. Then B is invariant under
the conjugation of G. Since µH is the sum of 1

|H/H◦|µH◦ and a measure

supported on H rH◦, from Lemma 4.2 we obtain

χp(B)µ
♮
H =

χp(B)µ
♮
H◦

|H/H◦| =
p∗(χBfH◦µTH◦ )

|H/H◦| .

A similar identity holds for H ′. So we have

(4.1)
p∗(χBfH◦µTH◦

)

|H/H◦| =
p∗(χBfH′◦µTH′◦

)

|H ′/H ′◦| .

This implies that supp(χBfH◦µTH◦ ) = TH◦∩B and supp(χBfH′◦µTH′◦
) =

TH′◦ ∩B are conjugate. So TH◦ and TH′◦ are conjugate.
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We may assume without loss of generality that TH◦ = TH′◦ . By
Lemma 4.3 and (4.1), the functions σ(fH◦)/|H/H◦| and σ(fH′◦)/|H ′/H ′◦|
agree on TH◦ ∩ B. Since they are analytic on TH◦ , they must agree on
TH◦ . From Lemma 4.2 we obtain

µ♮
H◦/|H/H◦| = µ♮

H′◦/|H ′/H ′◦|.

By evaluating at G♮ on both sides, we get |H/H◦| = |H ′/H ′◦|. Hence
µ♮
H◦ = µ♮

H′◦ . Now from Lemma 4.1 we obtain D(H◦) = D(H ′◦).

It remains to prove that dimH = dimH ′. For α ∈ Φ+
H◦ , let dα be the

complex-valued linear function on the Lie algebra Lie(TH◦) of TH◦ such

that α(exp(v)) = edα(v) for all v ∈ Lie(TH◦). Then we have

fH◦(exp(v)) =
∏

α∈Φ+

H◦

(1− edα(v)) =
∏

α∈Φ+

H◦

(
−

∞∑

n=1

(dα(v))n

n!

)
.

Thus the smallest order of nontrivial terms in the power series expansion
of the analytic function fH◦◦exp on Lie(TH◦), and hence that of σ(fH◦)◦
exp, is equal to |Φ+

H◦ |. A similar result holds for H ′◦. Since σ(fH◦) =

σ(fH′◦), we have |Φ+
H◦ | = |Φ+

H′◦ |. Hence
dimH = 2|Φ+

H◦ |+ dimTH◦ = 2|Φ+
H′◦ |+ dimTH′◦ = dimH ′.

This completes the proof. q.e.d.

5. Theorem 1.5 and its applications

We first recall the following determinant identities.

Lemma 5.1. Consider the elements in Q[t±1
1 , . . . , t±1

n ] defined by

ãn = det
[
ti−j
j

]n
i,j=1

, b̃n = det
[
ti−j
j − t2n+1−i−j

j

]n
i,j=1

,

c̃n = det
[
ti−j
j − t2n+2−i−j

j

]n
i,j=1

, d̃n =
1

2
det
[
ti−j
j + t2n−i−j

j

]n
i,j=1

.

Then we have

ãn =
∏

16i<j6n

(1− tit
−1
j ),

b̃n =
∏

16i<j6n

(1− titj)(1 − tit
−1
j )

n∏

i=1

(1− ti),

c̃n =
∏

16i<j6n

(1− titj)(1 − tit
−1
j )

n∏

i=1

(1− t2i ),

d̃n =
∏

16i<j6n

(1− titj)(1 − tit
−1
j ).
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Proof. The identity for ãn is a variant of the Vandermonde determi-
nant. The other three identities are variants of (2.3)–(2.5) in [13, Lemma
2]. q.e.d.

Lemma 5.2. Let x0 = 1, and consider the polynomials

an = det
[
x|i−j|

]n
i,j=1

, bn = det
[
x|i−j| − x2n+1−i−j

]n
i,j=1

,

cn = det
[
x|i−j| − x2n+2−i−j

]n
i,j=1

, dn =
1

2
det
[
x|i−j| + x2n−i−j

]n
i,j=1

in Q[x1, x2, . . .]. Then

a2n+1 = cndn+1,(5.1)

2a2n = cndn + cn−1dn+1.(5.2)

Proof. This is proved in [30, Section 4.5.2]. We sketch another proof
below.

We view xi as real variables, denote the matrices in the definitions
of an, cn, and dn by An, Cn, and Dn, respectively, and let D′

n be the
matrix obtained from Dn by dividing the last row by 2. Let Ln be the
linear transformation on Rn with matrix An relative to the standard
ordered basis {e1, . . . , en}. To prove (5.1), consider the decomposition
R2n+1 = V1 ⊕ V2, where

V1 = span{e1 − e2n+1, e2 − e2n, . . . , en − en+2},
V2 = span{e1 + e2n+1, e2 + e2n, . . . , en + en+2, 2en+1}.

It is easy to verify that L2n+1 preserves the decomposition, and with
respect to the ordered basis of V1 (resp. V2) specified above, the matrix
for L2n+1|V1

(resp. L2n+1|V2
) is Cn (resp. D′

n+1). Thus (5.1) follows.

Let P2n be the linear transformation on R2n defined by P2n(ei) =
xie2n, 1 6 i 6 2n. Then 2a2n = det(L2n + P2n) + det(L2n − P2n).
Consider the subspaces of R2n defined by

V + = span{e1 − e2n−1, e2 − e2n−2, . . . , en−1 − en+1},
V − = span{e1 + e2n−1, e2 + e2n−2, . . . , en−1 + en+1, 2en}.

Then V + (resp. V −) is invariant under L2n + P2n (resp. L2n − P2n),
and with respect to its ordered basis specified above, the matrix for
(L2n+P2n)|V + (resp. (L2n−P2n)|V −) is Cn−1 (resp. D

′
n). Moreover, the

linear transformation on the quotient space R2n/V + (resp. R2n/V −)
induced by L2n + P2n (resp. L2n − P2n) has matrix D′

n+1 (resp. Cn)
with respect to the ordered basis

{2e2n + V +, e1 + e2n−1 + V +, . . . , en−1 + en+1 + V +, 2en + V +}
(resp. {−2e2n + V −, e1 − e2n−1 + V −, . . . , en−1 − en+1 + V −}).
Thus det(L2n + P2n) = cn−1dn+1, det(L2n − P2n) = cndn. This proves
(5.2). q.e.d.
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Proof of Theorem 1.5. It suffices to prove the theorem whenG = SU(2n).
Let

T = {diag(t1, . . . , t2n) : ti ∈ U(1), t1 · · · t2n = 1},
and let

TH1
= {t = diag(t1, . . . , tn, t

−1
1 , . . . , t−1

n ) : ti ∈ U(1)},
which is a maximal torus of H1. Note that Γ ≃ Sn ⋉ (Z/2Z)n, which
acts on TH1

in the natural way. Let ǫi ∈ X(TH1
) (1 6 i 6 n) be the

character ǫi(t) = ti. We choose

Φ+
H1

= {ǫi − ǫj : 1 6 i < j 6 n}.
Then

fH1
(t) =

∏

16i<j6n

(1− tit
−1
j ) = ãn.

It is easy to see that Hk+1 (k = 1, 2) has a conjugate, which we still
denote by Hk+1, such that it contains TH1

as a maximal torus and has
a system of positive roots

Φ+
Hk+1

={ǫi ± ǫj : 1 6 i < j 6 nk} ∪ {2ǫi : 1 6 i 6 nk}
∪ {ǫi ± ǫj : nk + 1 6 i < j 6 n}.

Then

fHk+1
(t) =

∏

16i<j6nk

(1− titj)(1− tit
−1
j )

nk∏

i=1

(1− t2i )

×
∏

nk+16i<j6n

(1− titj)(1− tit
−1
j ) = c̃nk

d̃
(nk)
n−nk

,

where d̃
(nk)
n−nk

is obtained from d̃n−nk
by replacing t1, . . . , tn−nk

with
tnk+1, . . . , tn, respectively. By Lemmas 4.1 and 4.2, it suffices to prove
that {

σ(ãn) = σ(c̃n1
d̃
(n1)
n−n1

) n odd,

2σ(ãn) = σ(c̃n1
d̃
(n1)
n−n1

) + σ(c̃n2
d̃
(n2)
n−n2

) n even.

Consider the linear map ν : Q[t±1
1 , . . . , t±1

n ] → Q[x1, x2, . . .] deter-

mined by ν(1) = 1 and ν(tk1i1 · · · tkrir ) = x|k1| · · · x|kr|, where kj 6= 0. It is
easy to see that

(i) ν is Γ-invariant. In particular, ν ◦ σ = ν.
(ii) The restriction of ν on Q[t±1

1 , . . . , t±1
n ]Γ is injective.

(iii) For f ∈ Q[t±1
1 , . . . , t±1

n ], we denote by supp(f) the smallest subset

J of {1, . . . , n} such that f ∈ Q[t±1
j : j ∈ J ]. Then for f1, f2 with

supp(f1) ∩ supp(f2) = ∅, we have ν(f1f2) = ν(f1)ν(f2).
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So it suffices to prove that
{
ν(ãn) = ν(c̃n1

)ν(d̃
(n1)
n−n1

) n odd,

2ν(ãn) = ν(c̃n1
)ν(d̃

(n1)
n−n1

) + ν(c̃n2
)ν(d̃

(n2)
n−n2

) n even.

Since supp(ti−j
j ) ⊂ {j}, monomials in different columns of the matrix[

ti−j
j

]n
i,j=1

have mutually disjoint supports. Thus

ν(ãn) = ν

(
det
[
ti−j
j

]n
i,j=1

)
= det

[
ν(ti−j

j )
]n
i,j=1

= det
[
x|i−j|

]n
i,j=1

= an.

Similarly, we have

ν(c̃nk
) = det

[
ν(ti−j

j − t2nk+2−i−j
j )

]nk

i,j=1
= cnk

,

ν(d̃
(nk)
n−nk

) =
1

2
det
[
ν(ti−j

nk+j + t2n−2nk−i−j
nk+j )

]n−nk

i,j=1
= dn−nk

.

Taking Lemma 5.2 into account, this completes the proof. q.e.d.

Remark. The technique of computing in the ring Q[x1, x2, . . .] in
the above proof is due to Larsen and Pink. They also introduced the
elements bn, cn, dn (which are denoted as b′n, c

′
n, d

′
n in [18]) in this ring.

What is new here is that we introduce a new family of polynomials an,
and obtain simple formulas of an, bn, cn, dn as determinants (notice that

we also have ν(b̃n) = bn by the same argument). For the sake of clarity,
we make our proof self-contained without direct reference to [18].

Proof of Theorem 1.7. The isospectrality of G/H1 and G/H2 follows
from [28, Theorem 2.3] and Theorem 1.5. Consider the homotopy exact
sequence

· · · → π2(G) → π2(G/H1) → π1(H1) → π1(G) → π1(G/H1) → · · · .
Since π1(G) and π2(G) are trivial by our hypothesis on G ([5, Proposi-
tion V(7.5)]), we have π1(G/H1) = 1 and

π2(G/H1) ≃ π1(H1) ≃ π1(U(n)) ≃ Z.

Similarly, we have π1(G/H2) = 1 and

π2(G/H2) ≃ π1(H2) ≃ π1(Sp(n1)× SO(2n − 2n1)) ≃ Z/2Z.

This shows that G/H1 and G/H2 are simply connected, and they have
different homotopy types. q.e.d.

Next, we will show an implication of Theorem 1.5 (2) for another

question raised by Langlands in [14, 1.1 and 1.6]. Denote by R[Ĝ] the

free R-module with basis Ĝ, so that its dual space Hom(R[Ĝ],R) is RĜ.
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Question 5.3. Let L be a set of subgroups of G. Can we find a

collection {aH}H∈L of elements in R[Ĝ] with the following property?

For all H,H ′ ∈ L , (aH ,DH′) =

{
1 if H ′ ∼LP H,

0 if H ′ 6≺LP H,

where (−,−) is the natural pairing between R[Ĝ] and RĜ.

Langlands proposed that the existence of {aH}H∈L may facilitate a
way to deal with the dimension datum of λHπ using the trace formula.

In [14, 1.2], Langlands started with the class L1 = {H ⊂ G : H →
G/G◦ is surjective}. He then analyzed the case G = SU(2)×F , where F
is a finite group, in [14, 1.3] and decided that it is necessary to restrict to
a smaller class ([14, 1.4]): L2 = {H ⊂ G : H ∩ G◦ = H◦ and H/H◦ ≃
G/G◦} so that there is a chance of an affirmative answer for Ques-
tion 5.3. (Langlands expects this restricted class to be enough for his
purpose in that L2 should contain all his conjectural groups λHπ’s; see
also [1, Section 5].) Indeed, for G = SU(2) × F one can show the ex-
istence of {aH}H∈L for L = L2. However, Langlands suspected ([14,
discussions following (14)]) that in general Question 5.3 cannot be solved
exactly (for L = L2). The following result confirms this.

Corollary 5.4. Let n > 2 be even. Let H1,H2,H3 be as in The-
orem 1.5, and let G be any connected compact Lie group containing
SU(2n). Then the answer to Question 5.3 is negative for any class L

containing {H1,H2,H3}.
We first give a simple lemma which offers a basic obstruction to the

existence of {aH}H∈L .

Lemma 5.5. If {aH}H∈L exists, then {DH1
, . . . ,DHn} is linearly

independent for any H1, . . . ,Hn such that DHi
6= DHj

for i 6= j.

Proof. Let
∑n

i=1 ciDHi
= 0 be a non-trivial linear relation. We may

and do assume that ci 6= 0 for all i = 1, . . . , n. Assume also that H1

is a minimal element in the partially ordered set ({H1, . . . ,Hn},≺LP).
Then (aH1

,DHi
) = 0 for i = 2, . . . , n. The linear relation then implies

(aH1
,DH1

) = 0, a contradiction. q.e.d.

Proof of Corollary 5.4. By the lemma and Theorem 1.5 (2), it suffices
to show that DH1

,DH2
,DH3

are distinct. Since dimH1 = dimH3 = n2

and dimH2 = n2 + 2, Theorem 1.3 implies that DH2
is different from

DH1
and DH3

. By Theorem 1.5 (2) again, we obtain DH1
6= DH3

. q.e.d.

Example 5.6. For the polynomials defined in Lemma 5.2, one can
check the equality (see [32])

2b1b
2
2c1 + 4b21c2d2 + 4b21c1d3 + 4b2c

2
1d2 + 4b22d2

− b1c1c2d2 − b1c
2
1d3 − 16b1b2c1d2 = 0
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holds. This is an explicit form of the equation described in the last para-
graph of Section 3 on page 393 of [18]. Similar to the proof of Theorem
1.5, from this we can construct rank-6 connected semisimple subgroups
H1, . . . ,H8 of G = SU(15) such that DH1

, . . . ,DH8
are distinct and lin-

early dependent. This again has an implication for Question 5.3 by the
above lemma.

Question 5.7. Find all linear relations among {DH : H ∈ L }.
In view of the preceding discussion, this is a natural and important

question. For G connected and L = L2 being the class of connected
subgroups, this question has been solved by the third author [32].

6. Determination of some invariants II

For any compact connected Lie group H, we define a sequence of
numbers ǫn(H) as follows. Take a maximal torus T of H and let Φ be
the root system of (H,T ). Let D : T → R be the Weyl discriminant
D(t) = |W |−1

∏
α∈Φ(1 − α(t)), where W is the Weyl group of (H,T ).

We then define for n > 1,

ǫn(H) =
1

|Tn|
∑

t∈Tn

D(t),

where Tn is the subgroup of n-torsion points on T . It is clear that
ǫn(H) depends only on the isomorphism class of H. In view of Weyl’s
integration formula, one may regard ǫn as an analogue of the ǫn-invariant
defined for finite groups in Example 7.1.

Put X = X∗(T ) and

F =
1

|W |
∏

α∈Φ

(1− [α]) ∈ Q[X],

f =
∏

α∈Φ+

(1− [α]) =
∑

w∈W

sgn(w)[(1 − w)δ] ∈ Z[X].

Here Φ+ is a fixed system of positive roots in Φ and δ = 1
2

∑
α∈Φ+ α.

We will denote X/nX by Xn, the image of F under Q[X] → Q[Xn] by
Fn, and the image of f under Z[X] → Z[Xn] by fn.

By the constant term of an element g ∈ Q[X] or Q[Xn], we mean the
coefficient of [0] in g.

Let h = 1 if H is a torus; otherwise let h be the largest among the
Coxeter numbers (see [3, VI.1.11]) of the irreducible components of Φ.

We call h the Coxeter number of H. Let H̃ be the simply connected
cover of the derived group of H. We decompose H̃ as H̃h × H̃ ′

h, where

H̃h (resp. H̃ ′
h) is the product of those simple factors of H̃ with Coxeter

number = h (resp. < h). Corresponding to this decomposition we have
Φ = Φh × Φ′

h. Put δ
∨ = 1

2

∑
α∈Φ+ α∨. Let Hh,H

′
h, Zh, Z

′
h be the image
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of H̃h, H̃
′
h, Z(H̃h), Z(H̃ ′

h) in H, respectively, where Z(G) denotes the
center of G.

Theorem 6.1. We have

(1) ǫn(H) is a non-negative integer for all n > 1, and ǫn(H) = 1 for
n sufficiently large.

(2) ǫn(H1 ×H2) = ǫn(H1)× ǫn(H2) for all n > 1.
(3) If H1 and H2 are connected subgroups of a compact Lie group G

such that H1 ∼LP H2, then ǫn(H1) = ǫn(H2) for all n > 1.
(4) ǫn(H) is the constant term of Fn.
(5) ǫn(H) is the constant term of fn.
(6) Let S be the neutral component of the center Z of H. Put H̄ =

H/S. Then ǫn(H) = ǫn(H̄) for all n > 1.

(7) ǫn(H) =

{
1 if n > h,

0 if n < h.

Moreover, the average of D(t) over {t ∈ T : tn = z} is 1 for all
n > h, z ∈ Z.

(8) ǫh(H) = ǫh(H/SH ′
h).

(9) ǫh(H) =




|Z/(SZ ′

h)| if exp(2πiδ∨) ∈ SZ ′
h,

where Z and S are defined in (6),
0 otherwise.

Remark. The theorem implies that we can repack the information
contained in the sequence {ǫn(H)}n>1 into a pair (h′, z), where

h′ := min{n > 1 : ǫn(H) > 0}
= min{ord(x) : x ∈ H is regular of finite order},

and z := ǫh′(H). Then h′ and z are numerical invariants which are
determined by the dimension datum (relative to any H →֒ G). We have
h 6 h′ 6 h + 1 by the above theorem. Theorem 1.6 is an immediate
consequence of this.

Proof of Properties (1)–(8). Properties (2), (3), and (4) are immediate
from the definition of ǫn. Property (5) follows from (4) and the formula
|W | · F =

∑
w∈W w(f) (see the proof of Lemma 4.2). From (5) we

see that ǫn are integers. We have ǫn(H) > 0 since D(t) > 0. Write
f =

∑
x∈X mx[x]. For large n, no non-zero x with mx 6= 0 is divisible

by n, so ǫn(H) = 1 by (5). We can also derive limn→∞ ǫn(H) = 1 by
Weyl’s integration formula. So we have (1).

The split exact sequence 0 → X̄ → X → X∗(S) → 0 implies that we
have an injection X̄n →֒ Xn. This gives (6) by using (4) or (5).

We now prove (7). By (6), it suffices to prove (7) when G is semisim-
ple, a condition we will assume throughout the proof of (7). If n < h,
every n-torsion point t of T is non-regular (see [4, Exercise IX.4.14(d)]),
i.e. it satisfies α(t) = 0 for some α ∈ Φ. So ǫn(H) = 0.
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Assume n > h. Let P ⊃ X be the dual of the coroot lattice. We claim
that (1− w)δ /∈ nP for w 6= 1.

Recall that (δ, α∨) = 1 for all simple coroots α. It follows that −(h−
1) 6 (δ, α∨) 6 (h − 1) for all coroots α∨. Moreover, (δ, α∨) = ±(h− 1)
if and only if ±α∨ is the highest coroot in an irreducible component of
Φ with Coxeter number h.

Observe that (1−w)δ ∈ nP if and only if ((1−w)δ, α∨) ∈ nZ for all
simple coroots α∨. But

((1− w)δ, α∨) = (δ, α∨)− (wδ, α∨) = 1− (δ, w−1α∨) ∈ [−(h− 2), h].

The above number is divisible by n only when it is zero. So (1−w)δ ∈ nP
⇔ (1− w)δ = 0 ⇔ w = 1. This proves the claim.

It follows that the only non-zero term in f of the form cα[α] (α ∈ nX)
is 1 · [0], and the same statement holds when f is replaced by F = the
average of w(f) over w ∈ W . This implies ǫn(H) = 1, and more generally
the last statement in (7). We have completed the proof of (7).

To prove (8), let T ′′ (resp. T ′) be a maximal torus of Hh (resp. SH ′
h).

Then T = T ′′T ′ is a maximal torus of H and A := T ′′ ∩ T ′ = Zh ∩
(SZ ′

h). Notice that D|T ′′ and D|T ′ are the D-function for Hh and SH ′
h,

respectively, and D(t′′t′) = D(t′′)D(t′) for t′′ ∈ T ′′, t′ ∈ T ′.
The average of D over Tn is the same as the average of D over

{(t′′, t′) ∈ T ′′ × T ′ : (t′′)n = (t′)−n ∈ A}. Fix t′′ ∈ T ′′ such that
z := (t′′)n ∈ A; then the average of D(t′′t′) over {t′ ∈ T ′ : (t′)−n = z} is
D(t′′) if n = h, by the last statement of (7).

Therefore, the average of D over Th is the same as the average of
D over the inverse image of T̄ ′′

h in T ′′, where T̄ ′′ = T ′′/A is a maximal
torus of H/SH ′

h. This proves (8). q.e.d.

It remains to analyze the case of n = h and prove (9). Assume first
that H is simple and ∆∨ = {α∨

1 , . . . , α
∨
l } is the set of simple coroots.

Let β∨ =
∑l

i=1 niα
∨
i be the highest coroot. Let C be the alcove on the

apartment A = X ⊗Z R defined by {x ∈ A : α∨
0 (x) > 0, . . . , α∨

l (x) > 0},
where α∨

0 = 1−β∨. We put n0 = 1 and give the ith vertex of C weight ni.
Then x = h−1δ is the (weighted) barycenter of C, and is characterized
by α∨

i (x) = 1/h for i = 0, . . . , h. For any w ∈ W , let w̃ be the affine
map x ∈ A 7→ w(x − h−1δ) + h−1δ, which is the only affine map fixing
h−1δ with tangential part w.

Lemma 6.2. Let Q be the root lattice and P the dual of the coroot
lattice. For w ∈ W , the following conditions are equivalent:

(a) w̃ ∈ W ⋉ P . (b) w̃(C) = C.
(c) w̃(∆∨

0 ) = ∆∨
0 , where ∆∨

0 = ∆∨ ∪ {α∨
0 }.

(d) w(∆∨ ∪ {−β∨}) = ∆∨ ∪ {−β∨}. (e) (1− w)δ ∈ hP .

The set Ω consisting of those w ∈ W satisfying these conditions is a
subgroup of W , and w 7→ w̃(α∨

0 ) is a bijection between Ω and {α∨
i ∈
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∆∨
0 : ni = 1}. There is an isomorphism ι : Ω → P/Q defined by any of

the following equivalent ways:

(A) ι(w) = (1−w)h−1δ +Q.
(B) ι(w) is the image of w̃ under W ⋉P → (W ⋉P )/(W ⋉Q) = P/Q.
(C) If w 6= 1 and w̃(α∨

0 ) = α∨
i , ι(w) is the ith fundamental weight ωi

modulo Q. For w = 1, ι(w) = 0.

Finally, sgn(w) = (−1)〈ι(w),2δ∨〉 for all w ∈ Ω, where δ∨ = 1
2

∑
α∈Φ+ α∨.

Proof. Assume (a). Then w̃ takes alcoves to alcoves ([3, VI.2.3]). Since
w̃ fixes the interior point h−1δ of C, we must have (b). The implications
(b) ⇒ (c) ⇒ (d), and (e) ⇒ (a) are obvious. Assume (d). By the proof
of (7), 〈(1 − w)δ, α∨

i 〉 ∈ {0, h} for i = 1, . . . , l. So we have (e). This
completes the proof of the equivalence of (a)–(e).

It is clear from (d) or (e) that Ω is a subgroup. The bijection with
{α∨

i : ni = 1} is [3, VI.2.3, Prop. 6]. The equivalence of the three
descriptions of ι follows from that of (a)–(e), and it is clear from (A) or
(B) that ι is a homomorphism. Moreover, [3, VI.2.3, Corollary] shows
that ι is a bijection.

To prove the identity sgn(w) = (−1)〈ι(w),2δ∨〉, assume w(−β∨) = α∨
i

with i 6= 0, ni = 1. Recall that sgn(w) = (−1)|S|, where S = {α∨ ∈ Φ∨
+ :

w−1.α∨ ∈ −Φ∨
+}. Write α∨ =

∑l
j=1 cjα

∨
j ∈ Φ∨

+ . Then ci = 〈ωi, α
∨〉

is either 0 or 1 (since ni = 1) and α∨ ∈ S ⇔ ci = 1. Thus we have
〈ωi, 2δ

∨〉 = |S|. q.e.d.

Let ΩX ⊂ Ω be the subgroup ι−1(X/Q). Then the above lemma
implies (w − 1)δ ∈ hX ⇔ w ∈ ΩX . Write f =

∑
x∈X mx[x] and put

fh =
∑

x∈hX mx[x] ∈ Z[hX]. Then the lemma gives

fh = [0] +
∑

16i6l,ni=1,ωi∈X

(−1)〈ωi,2δ
∨〉[hωi],

and the image of fh under the map Z[hX] ≃ Z[X] → Z[X/Q] is∑
x∈X/Q(−1)〈x,2δ

∨〉[x].

Corollary 6.3. Assume that H is simple and Had is its adjoint
group. Let c be a regular element of order h in Had and c̃ ∈ H a lift of
c. The following are equivalent:

(a) ǫh(H) > 0. (b) ǫh(H) = |Z(H)|.
(c) ΩX ⊂ ker(sgn : W → {±1}). (d) The order of c̃ is h.
(e) exp(2πiδ∨) = 1 in H. (f) δ∨ ∈ X∨.
(g) X/Q ⊂ ker

(
〈−, δ∨〉 : P/Q → 1

2Z/Z
)
.

Proof. Recall that ΩX ≃ X/Q is dual to Z(H). Therefore the equiva-
lence of (a), (b), (c), (g) is clear from the preceding discussion. It is also
clear that (g), (e), and (f) are mutually equivalent. Finally [4, Exercise
IX.4.14(b)] says that (f) is equivalent to (d). q.e.d.
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Corollary 6.4. Let H be a simple adjoint group of rank l and let
h1 = h or h+ 1. Let c ∈ T be a regular element of order h1. Then

D(c) =
1

|W |

l∏

i=1

di−1∏

j=1

|1− ζj|2 =
{
hl · |P/Q| · |W |−1, if h1 = h,

(h+ 1)l · |W |−1, if h1 = h+ 1,

where ζ is a primitive h1-th root of unity, and d1, . . . , dl are the degrees
of W .

Proof. The first equality follows from the definition of D(t). By ([10,
Cor. to Prop. 1], or [4, Exercise IX.4.14(c)] in case h1 = h), there is a
unique W -orbit of regular h1-torsion points on T , which is represented
by c = exp(2πiδ∨/h1). By applying Lemma 6.2 when h1 = h or the
proof of (7) when h1 = h + 1 to the dual root system, we see that
StabW (c) is isomorphic to the dual of P/Q when h1 = h, and is trivial
when h1 = h+1. The second equality follows from these and ǫh1

(H) = 1.
q.e.d.

Corollary 6.5. Assume that H is simple.

(a) If H has a regular conjugacy class of order h, it has a unique one.
This happens exactly when (a)–(g) of Corollary 6.3 hold.

(b) The group H always has a unique regular conjugacy class of order
h+ 1.

Proof. We stated (a), which is [4, Exercise IX.4.14], for contrast. We
now give the proof of (b), whose argument also gives another proof of
(a).

Since ǫh+1(H) > 0, a regular conjugacy class of order h + 1 exists.
Let c̃ ∈ T be H-regular of order h + 1. Let π : H → Had be the
natural homomorphism from H to its adjoint group. Then c = π(c̃) is
regular of order dividing h+ 1, and hence is of order exactly h+ 1 (by
[4, Exercise 4.14d]). Observe that StabW (c̃) is trivial since StabW (c) is
trivial by the proof of the preceding corollary. This gives ǫh+1(H) >

|W | ·D(c̃)/(h+1)l = |W | ·D(c)/(h+1)l = 1. Since ǫh+1(H) = 1 by (7),
H has no other regular conjugacy classes of order h+ 1. q.e.d.

Remark. (1) See [4, Exercise IX.4.13(d)] for an explicit form of
exp(2πiδ∨) for each simple group. (2) In the above proofs, all references
to [4, Exercise IX.4.14] can be replaced by simple arguments using the
theory of Kac coordinates ([26]). (3) One may ask for an explicit con-
struction of an element in the class characterized by part (b) of the
above corollary. This can be done as follows. Let α1, . . . , αl be the sim-

ple roots, ω∨
1 , . . . , ω

∨
l the fundamental coweights, and let β =

∑l
i=1 miαi

be the highest root. Make the conventions that m0 = 1 and ω∨
0 = 0.

Then {ω∨
i : mi = 1} forms a set of representatives of Q∨/P∨. There-

fore, there exists an i0 such that mi0 = 1 and δ∨ ≡ ω∨
i0

(mod P∨). Then
exp(2πi(δ∨ + ω∨

i0
)/(h + 1)) is regular of order h+ 1.
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Proof of Property (9). We observe that by (6), it suffices to prove (9)
when H is semisimple, a condition we now assume (if we want, we may
also use (8) to reduce (9) to the case of H = Hh; this would make
the proof below a bit simpler). Again let Q and P be the root lattice
and the dual of the coroot lattice, respectively. Corresponding to the
decomposition Φ = Φh × Φ′

h, we have a decomposition W = Wh ×W ′
h

and similar decompositions of P,Q, and Ω ⊂ W . Let Ω′
X ⊂ P/Q be

the intersection of Ph/Qh and X/Q. Let ΩX be the subgroup of Ω
corresponding to Ω′

X under the isomorphism ι : Ω → P/Q. We observe

• (1− w)δ ∈ hX if and only if w ∈ ΩX .
• |ΩX | = |Ω′

X | = |Z/Z ′
h|.

• The conditions ΩX ⊂ ker
(
sgn : W → {±1}

)
, Ω′

X ⊂ ker
(
〈−, δ∨〉 :

P/Q → 1
2Z/Z

)
, δ∨ ∈ X∨ + P̌ ′

h, and exp(2πiδ∨) ∈ Z ′
h are mutually

equivalent, where X∨ = X∗(T ), P̌ ′
h is the dual of Q′

h.

Now (9) is clear from (5) and the above observations. q.e.d.

Example 6.6. Let H1 = U(2), H2 = U(1)×SU(2). Then ǫ2(H1) = 1,
ǫ2(H2) = 0. Therefore, for any embeddings of H1 and H2 into a common
target group G, we have H1 6∼LP H2. This generalizes to two families of
similar examples: take (H1,H2) to be (U(n),U(1)×SU(n−1)), n > 2, or
(GSp(m), U(1) × Sp(m)), m > 1; then H1 6∼LP H2 in any G containing
both H1 and H2.

Example 6.7. Let H1 and H2 be simple adjoint groups of type Bn

and Cn, respectively, n > 3. Then H1 and H2 have the same dimension,
rank, and ǫn-invariant for all n > 1. But Theorem 1.4 impliesH1 6∼LP H2

inside any G. Therefore, the criterion in Example 7.1 doesn’t generalize
to compact connected groups.

Example 6.8. Let H1 andH3 be as in Corollary 5.4. By Theorem 6.1
(9) and [4, Exercise IX.4.13(d)], we have ǫn(H1) = 1 and ǫn(H3) = 0.
This gives a direct proof of the distinctness of DH1

and DH3
.

7. Miscellaneous examples

We will first review various examples in the literature of (G,H,H ′)
with H ∼LP H ′ and H 6∼ H ′.

Example 7.1. WhenG is finite, the relation ∼LP is called Gassmann-
equivalence. There are abundant examples of Gassmann-equivalent but
non-conjugate or non-isomorphic subgroups in the literature ([24], [25],
[29]). In particular, it is known that two finite groups H1,H2 are Gass-
mann-equivalent inside certain G if and only if ǫn(H1) = ǫn(H2) for all
n > 1, where ǫ(Hi) is the number of n-torsion elements in Hi.

Example 7.2. Examples with H,H ′ finite and G = U(n) were stud-
ied in the representation theory of finite groups. The most remarkable



80 J. AN, J.-K. YU & J. YU

kind comes from a Brauer pair (H,H ′). This means that H and H ′ are
non-isomorphic finite groups with identical character table in the fol-

lowing strong sense: there are bijections i : Ĥ → Ĥ ′ and j : H♮ → (H ′)♮

such that for any π ∈ Ĥ of degree d, π′ := i(π) is also of degree d and
the diagram

H♮
π♮

))❘❘
❘❘

❘❘
❘

j

��
U(d)♮

(H ′)♮ (π′)♮

66❧❧❧❧❧❧

is commutative. It follows that for any faithful representation π : H →֒
U(n), there is a corresponding faithful representation π′ = i(π) : H ′ →֒
U(n) such that π(H) ∼LP π′(H ′). But obviously π(H) 6∼ π′(H ′) since
H and H ′ are not isomorphic. See [6] and [21].

Example 7.3. Many examples with finite H ≃ H ′ arise in the work
of Larsen ([15], [16]). He considered a finite group H, a connected G,

and embeddings φ1, φ2 : H → G such that φ♮
1 = φ♮

2 but φ1 is not G-
conjugate to φ2. Then clearly φ1(H) ∼LP φ2(H). But we have φ1(H) 6∼
φ2(H) if all automorphisms of H are inner. Similar examples with H
connected are given by S. Wang [31].

Next, we will give some examples of the relation ≺LP, to address the
following question.

Question 7.4. Let H and H ′ be subgroups of G. It is clear that if
there exist K ∼LP H, K ′ ∼LP H ′, such that K ≺ K ′, then H ≺LP H ′.
Is the converse true?

This may seem reasonable at first. Indeed, an affirmative answer will
make Langlands’ formulas (1) and (2) in [14, 1.1] most consistent. Our
examples will show that it is the contrary in general. They will also
serve as illustrations to Lemma 2.2.

Example 7.5. Let G = Sn be a symmetric group with n > 2, and
for 0 6 p 6 ⌊n/2⌋, put Hp = Sp×Sn−p, regarded as the subgroup of Sn

stabilizing {1, . . . , p}. Then we have

G = H0 ≻LP H1 ≻LP H2 ≻LP · · · ≻LP H⌊n/2⌋.

Indeed, from the representation theory of Sn, one sees that there ex-
ist mutually inequivalent irreducible representations π0, . . . , π⌊n/2⌋ such

that IndGHp
1 ≃ π0 + π1 + · · · + πp. More precisely, πp is indexed by

the partition (n − p, p) of n in Frobenius’ parametrization of Ŝn with
partitions of n.
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It is clear that Hp 6≺ Hq for p 6= q (p, q > 1), since Hp meets the
conjugacy class parametrized by the partition (n − p, p), but Hq does
not.

Claim. Let H ′ be a subgroup of Sn. The following are equivalent:

(1) H ′ ≺ Hp for some p > 1,
(2) H ′ ≺LP H1,

(3) dimV H′

> 2, where V = IndGH1
1 = π0 + π1.

Indeed, (1) ⇒ (2) ⇒ (3) is clear. Moreover, dimV H′

is the number
of H ′-orbits in {1, . . . , n}. From this it is clear that (3) ⇒ (1).

Claim. Let H ′ be a subgroup of Sn. Then H ′ ∼LP Hp ⇔ H ′ ∼ Hp.

It suffices to verify (⇒) when p > 1. Assume H ′ ∼LP Hp with p > 1.
Then H ′ ≺ Hq for some q > 1 by the preceding claim. By assumption,
H ′ meets the conjugacy class indexed by the partition (n−p, p). But Hp

is the only one among H1, . . . ,H⌊n/2⌋ that meets this class. Therefore,

q = p and this forces H ′ ∼ Hp by cardinality consideration.

Example 7.6. Let G = U(n) with n > 2, and for 0 6 p 6 ⌊n/2⌋,
put Hp = U(p) × U(n − p), regarded as the subgroup of G stabilizing
the decomposition Cn = Cp × Cn−p. Then we again have

G = H0 ≻LP H1 ≻LP H2 ≻LP · · · ≻LP H⌊n/2⌋.

Indeed, it is customary to parametrize Ĝ as {πλ}λ∈Λ, where Λ is the set
of decreasing n-tuples of integers. By a theorem of Helgason [7, Theorem
12.3.13], and the calculation in [7, pages 577–578], the G-representation
L2(G/Hp) is multiplicity-free, and is the orthogonal direct sum of πλ,
over all λ ∈ Λ of the form λ = (λ1, . . . , λp, 0, . . . , 0,−λp, . . . ,−λ1).
Therefore, if p 6 q 6 ⌊n/2⌋, then DHp(πλ) > 0 ⇒ DHp(πλ) = 1 ⇒
DHq (πλ) = 1. Thus Hp ≻LP Hq.

It is clear that Hp 6≺ Hq for p 6= q (p, q > 1), since Hp doesn’t stabilize
a q-dimensional subspace in the standard representation of U(n).

Claim. Let H ′ be a subgroup of U(n). The following are equivalent:

(1) H ′ ≺ Hp for some p > 1,
(2) H ′ ≺LP H1,

(3) dimV H′

> 2, where V is the adjoint representation of U(n).

Indeed, it is clear that (1) ⇒ (2) ⇒ (3). By Schur’s lemma, (3) im-
plies that the standard representation of U(n) is reducible as an H ′-
representation, and hence H ′ ≺ Hp for some p > 1.

Claim. Let H ′ be a subgroup of U(n). Then H ′ ∼LP Hp ⇔ H ′ ∼ Hp.

Again we only have to check (⇒) while assuming H ′ ∼LP Hp with
p > 1. Then H ′ is connected of rank n. It is well known that then H ′ is
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conjugate to U(r1)×· · ·×U(rk) for some r1+· · ·+rk = n. By considering

dimV H′

, we see that k = 2 and H ′ ∼ Hq for some q. But DHq = DHp

only when q = p. So H ′ ∼ Hp.

The two preceding examples give nice instances of Lemma 2.2. Take
n = DH1

. Then the conclusion of Lemma 2.2 is satisfied with the sub-
groups {H1, . . . ,H⌊n/2⌋} and the set S = {π1} (resp. S = {V1}) in the
case of Example 7.5 (resp. Example 7.6), where V1 = π(1,0,...,0,−1) is the
non-trivial subrepresentation of the adjoint representation of U(n).

Finally, we remark that the relationH ≺LP H ′ seems harder to handle
than H ∼LP H ′. The technique of [18] allows one to verify H ∼LP H ′

by an algorithm. But we do not know any good characterization for
H ≺LP H ′.

8. Appendix: The category of compact Lie groups up to

conjugation

Let K (resp. K̄ ) be the category defined as follows: the objects are
compact Lie groups, and the set of morphisms from A to B is Hom(A,B)
(resp. Hom(A,B)/B), where Hom(A,B) is the set of smooth homomor-
phisms from A to B, and B acts on the right of Hom(A,B) by f.b = the
homomorphism a 7→ b−1f(a)b. The composition in K is the usual one,
and the composition of g.C ∈ MorK̄ (B,C) with f.B ∈ MorK̄ (A,B) is
defined to be (g ◦ f).C ∈ MorK̄ (A,C).

We verify easily that K̄ is indeed a category. We call it the cate-
gory of compact Lie groups up to conjugation. This seems a suitable
formalism for studying dimension datum problems. For example, the
subgroups of G up to G-conjugation are exactly the subobjects (in K̄ )
of G up to isomorphism. Notice also that AutK̄ (G) is the group of outer
automorphisms of G.

Most applications of dimension data to arithmetic geometry and au-
tomorphic forms require us to use the language of reductive groups over
a field isomorphic to C instead of that of compact Lie groups. The
principle for translating between the two settings is well known, but is
usually only given in the literature as the first statement in the theorem
below. For the convenience of the reader, we will give a version which
is most adequate for the present purpose.

A linear algebraic group G over R or C is called reductive if its neutral
component is reductive. We will identify a reductive group G over C with
G(C) in what follows. We define the category C (resp. C̄ ) of complex
reductive groups (resp. up to conjugation) in the same way we defined
K (resp. K̄ ): the objects are reductive algebraic groups over C, and
the set of morphisms from A to B is Hom(A,B) (resp. Hom(A,B)/B),
where Hom(A,B) is the set of algebraic homomorphisms from A to B.
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It is well known [22, page 246] that a compact Lie group A carries a
unique real algebraic structure A, which is reductive, and every contin-
uous morphism between compact Lie groups is real algebraic. Therefore
we can define the functors of complexification: A 7→ A ⊗R C, from K

to C (resp. from K̄ to C̄ ), in an obvious manner. Recall that A ⊗R C
is identified with A(C) by our convention.

Theorem 8.1. The functor of complexification K → C is faithful
and essentially surjective. The functor K̄ → C̄ is an equivalence of
categories.

Proof. The first statement is well known [22, Theorems 11 and 12,
pages 246–247], and it shows that the functor K̄ → C̄ is essentially
surjective. Therefore it suffices to show that K̄ → C̄ is fully faithful,
i.e. the natural map Hom(A,B)/B → Hom(A(C), B(C))/B(C) is bi-
jective for any compact Lie groups A and B. Recall that the Cartan
decomposition [22, Theorem 2, page 239] states that B × P → B(C),
(k, p) 7→ kp, is a bijection, where P = exp(

√
−1LieB).

We first verify that if f1, f2 ∈ Hom(A,B) are in the same B(C)-orbit,
then they are in the same B-orbit. Indeed, if f2(a) = b−1f1(a)b, we can
write b = kp with k ∈ B, p ∈ P . Then we have kpf2(a) = f1(a)kp, and
(kf2(a))(f2(a)

−1pf2(a)) = (f1(a)k)p. Since f2(a) ∈ B and B normalizes
P , the uniqueness of the Cartan decomposition gives kf2(a) = f1(a)k,
f2(a) = k−1f1(a)k, which holds for all a ∈ A.

Next, we show that every f ∈ Hom(A(C), B(C)) is B(C)-conjugate
to an element of Hom(A,B). The image f(A), being compact, lies in
bBb−1 for some b ∈ B(C). It follows that f.b ∈ Hom(A,B). q.e.d.

Corollary 8.2. Let G be a compact Lie group. Let Ĝ(C) be the set
of irreducible rational representations of G(C), up to equivalence. There

is a canonical bijection Ĝ → Ĝ(C). Identify Ĝ with Ĝ(C) using this

bijection. Then we have dimV H = dimV H(C) for any V ∈ Ĝ and any
subgroup H of G.

Proof. Let π : G → U(n) correspond to an n-dimensional represen-
tation V of G. Notice that π : G → U(n) is irreducible if and only
if π does not factor through U(m) × U(n − m) →֒ U(n) in the cate-
gory K̄ for any 1 6 m 6 n − 1, and for any subgroup H, dimV H

is the largest integer d such that π|H factors through the composition
{e} ×U(n− d) ⊂ U(d)×U(n− d) →֒ U(n) in K̄ . The corollary follows
from these statements, their analogues in Ḡ , and the theorem. q.e.d.
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