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BERNSTEIN THEOREM AND REGULARITY FOR
A CLASS OF MONGE-AMPÈRE EQUATIONS

Huaiyu Jian & Xu-Jia Wang

Abstract

In this paper we first introduce a transform for convex func-
tions and use it to prove a Bernstein theorem for a Monge-Ampère
equation in half space. We then prove the optimal global regularity
for a class of Monge-Ampère type equations arising in a number
of geometric problems such as Poincaré metrics, hyperbolic affine
spheres, and Minkowski type problems.

1. Introduction

In this paper we introduce a transform for convex functions, prove
a Bernstein theorem for a Monge-Ampère equation in half space, and
establish the global regularity of solutions to a class of Monge-Ampère
equations by new techniques. A well-known transform for convex func-
tions is the Legendre transform, given by

(1.1)
y = Du(x),

u∗(y) = x · y − u(x).

The Legendre transform is very useful in the study of Monge-Ampère
type equations and optimal transportation, and in the theory of convex
bodies.

In this paper we introduce the following new transform for convex
functions:

y = x/u(x),

u#(y) = 1/u(x),
(1.2)

where u is defined in a domain Ω ⊂ R
n. This transform is closely related

to the concept of polar set in the theory of convex bodies; a geometric
interpretation of it will be given in Section 2. See in particular Lemma
2.1 for its relation to the Legendre transform (1.1). Some properties of
the transform are summarized in the following theorem.
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Theorem 1.1. Let u be a convex function. Then
(a) u# is convex if u∗/u > 0, and concave if u∗/u < 0.
(b) (u∗)# = (u#)∗.
(c) Denote Q[u] = |u|n+2 detD2u, and w = (u#)∗. Then

(1.3) Q[u] = 1/Q[w]

if u# is convex, and Q[u] = 1/|Q[w]| if u# is concave.

The transform u → u# has some other properties that should be
useful in studying Monge-Ampère type equations. For example, if u is
a convex function satisfying u(0) = |Du(0)| = 0 and |Du(x)| → ∞ as
|x| → ∞, then the transform (1.2) sends x = 0 to y = ∞ and x = ∞ to
y = 0. This property is shared by the Kelvin transform

(1.4)
y = ψ(x) := x/|x|2,

v(y) = J (n−2)/2nu(x),

where J is the Jacobian of the mapping ψ. Another property shared
by the transforms (1.2) and (1.4) is the invariance of certain quantities,

that is, Q[u] for (1.2) and |u|−
n+2
n−2∆u for (1.4). Moreover, Q[u] is closely

related to the Blaschke-Santalo inequality, just like |u|−
n+2
n−2∆u is related

to the Sobolev inequality.
The Kelvin transform is very useful in the study of semilinear elliptic

equations involving critical Sobolev exponents. It is natural to use the
transform (1.2) to study the equation

(1.5) detD2u =
η(x)

|u|n+2
in Ω,

where Ω is a convex domain in R
n, and η ∈ C(Ω) is a positive function.

Equation (1.5) arises in several geometric problems such as the Hilbert
metric (Poincaré metric) in convex domains [24], affine spheres [6, 7],
the p-Minkowski problem [25], and the Minkowski problem in centro-
affine geometry [10]. A parabolic version of equation (1.5) has been used
in image processing. In Section 2 we will see that equation (1.5) is related
to the Euler equation of the well-known Blaschke-Santalo inequality
[26, 30].

A special case of (1.5) is when η ≡ 1, which is the equation for affine
hyperbolic spheres. By the rotation of coordinates,

(1.6)
y1 = −xn+1,
yk = xk, k = 2, . . . , n,
yn+1 = x1,

equation (1.5) (with η ≡ 1) can be rewritten as

(1.7) detD2u =
(ux1

x1

)n+2
in R

n,+ := R
n ∩ {x1 > 0}.
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Equation (1.7) and the more general equation (4.2) also arise in opti-
mal transportation; namely u is the potential function of the optimal
transportation from R

n,+ to R
n,+.

Equation (1.7) is invariant under both transforms (1.1) and (1.2). As
an application of the transform (1.2), we prove the following Bernstein
property.

Theorem 1.2. Let u be a smooth convex solution to (1.7) in R
n,+.

If u(0, x̃) = |x̃|2/2, where x̃ = (x2, . . . , xn), then

either u(x) = |x|2/2,

or u(x) = |x̃|2/2.
(1.8)

Bernstein theorems usually concern the classification of entire solu-
tions and have been a key issue in PDEs. But the Bernstein theorem in
half-space is also important. For example, an interesting problem is the
Bernstein theorem for the equation

(1.9)
detD2u = 1 in R

n,+,

u = 1
2 |x̃|

2 on {x1 = 0}

(namely, a smooth convex solution to (1.9) must be u(x) = 1
2 |x|

2 up
to a linear function). If the Bernstein property for (1.9) is true, then
one can recover the global C2,α regularity of convex solutions to the
Dirichlet problem of the Monge-Ampère equation [4, 18, 31], and it
can also be used to establish the global W 2,p estimate, extending the
interior estimate of Caffarelli [2].

As another application of the transform (1.2), in this paper we also
prove the regularity up to boundary for the graphs of solutions to the
Dirichlet problem

detD2u = η(x)/|u|n+2 in Ω,

u = 0 on ∂Ω,
(1.10)

where Ω is a bounded, uniformly convex domain in R
n, and η is a

positive, sufficiently smooth function. There are a number of deep works
on boundary regularity for related problems such as (1.12), and (1.14)
below [7, 12, 19, 32, 33]. Let u ∈ C∞(Ω)∩C0(Ω) be a solution to (1.10).
If η ≡ 1, then (−u)−1

∑

uxixjdxidxj is a Hilbert metric in Ω [24], and
u∗, the Legendre transform of u, defines an affine hyperbolic sphere [7].
The existence and uniqueness of smooth solutions u ∈ C∞(Ω) ∩ C0(Ω)
to (1.10) was proved in [7]. Due to the singularity on the right hand side
of (1.10), the gradient Du necessarily blows up at the boundary. One
cannot expect the regularity of the solution u up to the boundary. But
we want to know if its graph Mu, as a hypersurface in R

n+1, is smooth
up to the boundary. In this paper we prove
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Theorem 1.3. Suppose Ω is a bounded, uniformly convex domain
in R

n with C∞ boundary. Suppose η > 0 and η ∈ C∞(Ω). Let u be a
convex solution to (1.10). Then the graph Mu is Cn+2,α smooth up to
its boundary, for any α ∈ (0, 1).

In §5.5 we will introduce a compatibility condition, which implies that
the Cn+2,α regularity is probably optimal, even if ∂Ω and η are C∞

smooth. A similar phenomenon occurs for Fefferman’s equation (1.12)
below. We point out that the global C1,1 estimate in Theorem 1.3 (in
the two-dimensional case) was first observed by Loewner and Nirenberg
[24], and the C2,α regularity was obtained by Lin and Wang [22] by con-
structing proper sub- and super-solutions (see Remark 4.1 for details).
In this paper we will present a different proof for the C2,α regularity.
Here our main interest is the optimal regularity, stated in Theorem 1.3.
It is also a question raised by S.T. Yau in his lecture at the Chinese
Academy of Sciences in 2006.

Due to the singularity on the right hand side of (1.7), our proofs of
Theorems 1.2 and 1.3 involve new techniques. Our proof of Theorem
1.2 and the C2,α regularity in Theorem 1.3 is based on the transform
(1.2) and the method of moving planes. The method of moving planes
and the Kelvin transform have been used in semilinear elliptic equations
to prove the rotational symmetry of solutions and Liouville theorems.
But for Monge-Ampère type equations it is new to use it to establish
the regularity of solutions, and this should be of interest itself. We ex-
pect more applications of the transform (1.2) in Monge-Ampère type
equations.

For the Ck,α (k ≥ 3) regularity of (1.7), we introduce an iteration
for an ordinary differential equation, which is the linearized equation of
(1.7), by regarding x̃ as parameters. The iteration improves the regular-
ity of solutions step by step until the Cn+3−ǫ regularity. It also applies to
the linear elliptic equation with singular coefficients near the boundary,

(1.11)
∑n

i,j=1
aij(x)uxixj +

∑n

i=1

bi(x)

d(x)
uxi + c(x)u = f,

and yields the global Cβ+1 regularity if β > 0 is not an integer, where

β = b·γ
aijγiγj

, γ is the unit outer normal of ∂Ω, and where d(x) is the

distance from x to the boundary ∂Ω. If β is an integer, our iteration gives
a necessary and sufficient compatibility condition for regularity higher
than Cβ+1. This compatibility condition implies that the regularity in
Theorem 1.3 is optimal.

An interesting and related problem is the boundary value problem
for the equation of Fefferman [12]

(−1)n det

(

v, vz̄j
vzi , vziz̄j

)

= 1 in Ω,

v = 0 on ∂Ω.

(1.12)
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The equation is obtained by the change v = e−u from the complex
Monge-Ampère equation [12]

det uziz̄j = e(n+1)u in Ω,

u = ∞ on ∂Ω,
(1.13)

where Ω is a strictly pseudoconvex domain in C
n. If u is a solution to

(1.13), then
∑ ∂2u

∂zi∂z̄j
dzidz̄j is a complete Kähler-Einstein metric on Ω

[12], in a way similar to the real case (1.10) considered in [24], where
−1
u

∑

uxixjdxidxj is a Hilbert metric in Ω.
By computing the formal power series expansion, Fefferman observed

that the solution hypersurface to (1.12) should be Cn+2−δ smooth up to

the boundary, and Cheng and Yau [8] were able to prove the Cn+3/2−δ

regularity for any small δ > 0. Lee and Melrose [19] finally obtained the
optimal Cn+2−δ regularity result observed in [12].

Another boundary value problem for the Monge-Ampère equation
with singularity at the boundary was studied by Urbas [32, 33]. He
proved that there exists a positive constant K such that when ∂Ω ∈ C∞

is uniformly convex, there is a unique (up to a constant) convex solution
to

detD2u

(1 + |Du|2)(n+2)/2
= K in Ω,

|Du| = ∞ on ∂Ω.

(1.14)

The solution itself is not smooth at the boundary, but its graph is a C∞

smooth hypersurface up to the boundary.
We would like to point out that equations (1.7) or (1.10), (1.12), and

(1.14) contain different singularities and the regularity of solutions to
these equations is quite different. For equation (1.14), by the elliptic
regularity theory and using the support function of the convex hyper-
surface, higher regularity follows readily from the C2,α regularity. The
higher regularity for (1.7) and (1.12) is more complicated. For equation
(1.12), which becomes v∆v = |Dv|2 − 1 in C

1, Lee and Melrose [19]
proved the following interesting singularity profile. There exist func-

tions ψj = φ
(n+1)j
0 aj, j ≥ 1, aj ∈ C∞(Ω), such that for all integers

N ≥ 1,

(1.15) u−
∑N

j=0
ψj [log(−φ0)]

j ∈ C(n+1)N−1(Ω),

where φ0 is a defining function for the domain Ω, namely −φ0(x) ≈ dx
when x is close to ∂Ω, where dx is the distance from x to ∂Ω.

By a formal computation in dimension 2, a solution to equation (1.7)
does not seem to have the singularity profile (1.15). Our argument im-
plies that there exists a smooth function a(x̃) such that

(1.16) u(x) = p(x) + a(x̃)xn+3
1 log x1 + q(x)
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where p is a polynomial of order n + 3 and q is a higher order term,
namely q(x) = o(|x|n+3) near x = 0. By our compatibility condition, if
a ≡ 0, then q ∈ C∞(Ω).

We would like to point out that the transform (1.2) and its proper-
ties in Section 2 below were found by the authors in 2005. In the last
few years, the authors asked several researchers in the area whether
the transform (1.2) is new. In early 2009, John Loftin told us that the
transform coincides with the conormal map in affine geometry, which
transforms a hyperbolic affine sphere to its dual sphere [23]; see Exam-
ple 4 below. The authors would like to thank John Loftin for this.

This paper is arranged as follows. In Section 2 we discuss in some
detail the transform (1.2) and prove Theorem 1.1. In Section 3 we prove
Theorem 1.2. In Sections 4 and 5 we prove Theorem 1.3 for the cases
k = 2 and k ≥ 3, respectively.

Acknowledgments. The first author was supported by NSFC (Grant
No. 11131005) and the Doctoral Programme Foundation of Institution
of Higher Education of China. The second author was supported by
Australian Research Council DP1094303 and DP120102718.

2. A transform for convex functions

To make the notation simpler, we write h = u# and the transform
(1.2) as

y =
x

u(x)
,

h(y) =
1

u(x)
.

(2.1)

Obviously the inverse transform is given by

x =
y

h(y)
,

u(x) =
1

h(y)
.

(2.2)

Hence (u#)# = u; namely, the transform of u# is u itself.

Geometric interpretation. The transform (2.1) has a clear geometric
interpretation. Let Mu = {(x, u(x), x ∈ Ω} be the graph of the convex
function u. For any point X = (x, u(x)) ∈ Mu, consider a ray R from
the origin O, given by R = {tX : t > 0}. If u(x) > 0, then the ray R
intersects with the hyperplane P = {xn+1 = 1} at a point Y = (y, 1) ∈
P , where y = x/u(x). We have two similar triangles OxX and OyY ,
where x, y are regarded as points on the plane {xn+1 = 0}. Then the
value of h at y is equal to the ratio

|y|

|x|
=

1

u(x)
=

|Y |

|X|
.
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The following properties of the transform are easy to verify.

(i) If u(0) = 0, Du(0) = 0, and u is uniformly convex, then h is
asymptotically quadratic.

(ii) If Ω is a convex domain containing the origin and u < 0 is a
convex function in Ω, vanishing on ∂Ω, then −h is an entire convex
function in R

n, asymptotic to a convex cone determined by Ω.
(iii) For any vector ξ 6= 0, like the transform x → x/|x|2 in (1.4), the

transform (2.1) maps the ray Rξ = {tξ : t > 0} to the ray itself.
(iv) From the above geometric interpretation, we have the following

monotonicity of the transform. Let u, P,R,X, Y be as above. If û
is another positive convex function such that X̂ = (x̂, û(x̂)) is a

point onR between X and Y , then ĥ(y) < h(y). As a consequence,
for any positive constants C1 and C2, we have

if u(x) ≥ C1|x|
2, then h(y) ≤ C1|y|

2;
if 0 ≤ u(x) ≤ C2|x|

2, then h(y) ≥ C2|y|
2.

The transform has some other interesting properties. For example, it
transforms linear functions to linear functions (Example 1), and trans-
forms the quadratic function u(x) =

∑

aijxixj to itself (Example 2).
For relation with polar set of a convex body, see Example 4 below. Now
we compute

∂yk
∂xi

=
δki
u

−
xkuxi

u2

and

uxi = −
hyk
h2

∂yk
∂xi

= −
hyk
h2

(δki
u

−
xkuxi

u2
)

= −
hyk
h

+
ykhykuxi

h
.

Hence

(2.3) uxi =
hyi

ykhyk − h
=
hyi
h∗

and

u∗ = xiuxi − u(2.4)

=
yi
h

hyi
h∗

−
1

h

=
1

h∗
.

Lemma 2.1. We have

(2.5) (u∗)# = (u#)∗.
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Proof. By (2.4), we have

h∗ =
1

u∗
.

By definition (2.1), we have

(u∗)# =
1

u∗
.

Hence (u∗)# = h∗ = (u#)∗. q.e.d.

Next we compute the second derivatives.

uxixj =
(hyi
h∗

)

yl

∂yl
∂xj

(2.6)

=
(hyiyl
h∗

−
ykhyihykyl

h∗2
)(δlj
u

−
xluxj

u2
)

=
h

h∗
(

hil −
yk
h∗
hyihykyl

)(

δlj −
yl
h∗
hyj

)

=
h

h∗
(

hij −
yk
h∗
hihkj −

yl
h∗
hjhli +

ykyl

h∗2
hihjhkl

)

=
h

h∗
(

δik − aibk
)

{hkl}
(

δlj − blaj
)

,

where

ai = hyi , bk =
yk
h∗
.

We have

det(δij − aibj) = 1−
∑

akbk

= 1−
ykhyk
h∗

= −
h

h∗
.

Hence

detD2u =
hn

h∗n
detD2h |det(δij − aibj)|

2(2.7)

=
hn+2

h∗n+2 detD
2h.

In particular, we have (see Remark 2.2 below)

(2.8) un+2 detD2u =
1

h∗n+2 detD2h∗
.

Proof of Theorem 1.1. Part (b) of Theorem 1.1 was proved in Lemma
2.1. Part (a) was verified in (2.6). Part (c) follows from (2.8). �
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Remark 2.1. In order to keep h convex, we may let

y =
x

u(x)
,

h(y) = −
1

u(x)

if u∗/u < 0.
Remark 2.2. In comparison to (2.8), we recall the corresponding for-
mula for the Legendre transform (1.1). For the Legendre transform (1.1),
by differentiating either x = Du∗(y) or y = Du(x) we have

{D2u∗(y)} · {D2u(x)} = I,

namely D2u∗ is the inverse of D2u. It follows that

(2.9) detD2u = 1/detD2u∗.

Let us compute a few examples.
Example 1.

u(x) = a · x+ b (b 6= 0).

The graph of u is a linear function. Then by y = x
u(x) =

x
a·x+b , we have

x = by
1−a·y and

h(y) =
1

b
(1− a · y).

Example 2.

u(x) =
∑

aijxixj,

where (aij) is positive definite. To compute h = u#, let ξ be a unit
vector in R

n. By the geometric interpretation, it suffices to compute the
transform of u restricted to the 2-plane spanned by the vectors ξ and
en+1 = (0, . . . , 0, 1). Therefore it suffices to compute the transform for
ũ(t) = ct2, where t ∈ R

1 and c is a constant. By direct computation we

have h̃(s) = cs2. Hence

h(y) =
∑

aijyiyj.

Namely, u# = u, the transform of u is itself.
Example 3.

u(x) =
1

2
(a+ |x|2).
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By y = x
u we have |y| = 2|x|

a+|x|2
. Hence |x| = 1

|y|

(

1±
√

1− a|y|2
)

. There-

fore

h(y) =
1

u(x)
=

|y|

|x|

=
|y|2

1±
√

1− a|y|2

=
1

a

(

1∓
√

1− a|y|2
)

=: h± if a 6= 0.

We obtain

if a > 0, then h± are two parts of the same sphere;
if a = 0, then h ≡ u;
if a < 0, then h± are two hyperboloids.

Note that in the above example, if |x|2 is replaced by
∑

aijxixj in u,
then |y|2 in h can simply be replaced by

∑

aijyiyj.

Example 4. Let u be an affine hyperbolic sphere asymptotic to a convex
cone with vertex at the origin. Then u∗ (the Legendre transform of u)
is a convex function that satisfies

(2.10)
|u∗|n+2 detD2u∗ = c0 in Ω,

u∗ = 0 on ∂Ω,

for some constant c0 > 0. By (2.8), h = u# satisfies

(2.11)
|h|n+2 detD2h = 1/c0 in Ω#,

h = 0 on ∂Ω#,

where Ω# is the polar body of Ω, given by [30]

Ω# = {x ∈ R
n : 〈x, y〉 < 1 ∀ y ∈ Ω}.

Hence h∗ also defines an affine hyperbolic sphere. It is the dual affine
hyperbolic sphere defined by the conormal map of u, given in [14]. For
affine hyperbolic spheres, the explicit formula (2.1) for the dual affine
sphere was first given by J. Loftin in [23].

There are a number of geometric problems that involve the following
equation:

(2.12) det(∇2H +HI) =
η(X)

Hn+2
on Sn.

For example, if η ≡ 1, then H is the support function of an elliptic affine
sphere. For general η, (2.12) is the equation for the p-Minkowski problem
[25] or for the Minkowski problem in the centro-affine geometry [10].
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The equation is also closely related to the Blaschke-Santalo inequality
[26, 30],

(2.13) inf
ξ∈K

V (K)

∫

Sn

1

(H − ξ · x)n+1
≤

ω2
n

n+ 1
,

where K is a convex body, H is its support function, and

V (K) =
1

n+ 1

∫

Sn

H det(∇2H +HI) dσ

is the volume of K. The infimum is taken over all ξ, satisfying H−ξ ·x >
0. For symmetric convex hypersurfaces, (2.12) is the Euler equation of
the Blaschke-Santalo inequality.

Let u be the projection of H on {xn+1 = −1}, given by

(2.14) u(x) =
√

1 + |x|2H(X), X =
( x
√

1 + |x|2
,

−1
√

1 + |x|2

)

.

By direct computation,

detD2u = (1 + |x|2)−
n+2
2 det(∇2H +HI).

Hence u satisfies (1.5).

3. A Bernstein theorem

In this section we employ transform (1.2) to prove a Bernstein theo-
rem (Theorem 1.2) for the problem

detD2u =
(ux1

x1

)n+2
in R

n,+ := R
n ∩ {x1 > 0},(3.1)

u =
1

2
|x̃|2 on {x1 = 0}.(3.2)

That is, a smooth convex solution to (3.1)–(3.2) is either u(x) ≡ 1
2 |x|

2

or u(x) ≡ 1
2 |x̃|

2. For the equation

(3.3) detD2u = 1 in R
n,

it is well known that an entire convex solution must be a quadratic
function, proved by Jörgens [17] for n = 2, Calabi [5] for n ≤ 5, and
for all n ≥ 2 by Pogorelov [27]. See [9] for a different proof. A more
general result was proved by Caffarelli and Li in [3]. For semilinear
elliptic equations in half space, a Liouville type theorem was proved by
Li and Zhu in [20].

Here we use transform (1.2) and a method of moving planes to prove
the Bernstein theorem for (3.1)–(3.2). As the reader will see below,
technically our proof for the Monge-Ampère equation is quite different
from that for the semilinear elliptic equation [20]. First we point out a
nice property of equation (3.1), namely its invariance under transforms
(1.1) and (1.2).
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Lemma 3.1. Let u be a smooth convex solution to (3.1). Then both
u∗ and u# satisfy (3.1).

Proof. By (1.1) and (2.9), it is apparent that the Legendre transform
u∗ satisfies (3.1).

Let h := u# be the transform of u, given in (1.2). By (2.2) and (2.3)
we have

(ux1

x1

)n+2
=

(hy1
h∗

/ y1
h(y)

)n+2
=

(hy1
h∗

h(y)

y1

)n+2
,

where h∗ is the Legendre transform of h. By (2.7),

detD2u =
hn+2

h∗n+2 detD
2h.

Hence h satisfies (3.1). q.e.d.

Lemma 3.2. Let u be a smooth convex solution to (3.1). Then ux1 =
0 on {x1 = 0}.

Proof. If |ux1(0)| > 0, then |ux1(x)| ≥
1
2 |ux1(0)| for x ∈ B+

r (0), where
B+

r (0) = Br(0)∩{x1 > 0} and r > 0 is small, depending on u. Consider
the integral

∫

B+
r

detD2u =

∫

B+
r

(ux1

x1

)n+2
.

The left hand side is equal to Du(B+
r (0)), but the right hand side is

equal to ∞. The contradiction implies Lemma 3.2. q.e.d.

Lemma 3.3. Let u be a smooth convex solution to (3.1)–(3.2). Then
either u ≡ 1

2 |x̃|
2 or ux1 > 0 when x1 > 0.

Proof. By Lemma 3.2 and the convexity of u, we have ux1 ≥ 0. Hence
∀ x̃ ∈ R

n−1 and x1 > 0 we have u(x1, x̃) ≥ 1
2 |x̃|

2. We claim that if

u 6≡ 1
2 |x̃|

2, then ∀ x̃ ∈ R
n−1 and there exists x1 > 0 such that u(x1, x̃) >

1
2 |x̃|

2. Indeed, if there exists x̃0 ∈ R
n−1 such that u(x1, x̃0) =

1
2 |x̃0|

2 for
all x1 > 0, by a translation of x̃ and subtraction of a linear function of
x̃, we assume x̃0 = 0. Then u(x1, 0) = 0 for all x1 > 0. Extend u to
Rn such that it is even in x1. Then u is a convex function in Rn and
u(x1, 0) ≡ 0. The convexity of u then implies that u is a function of x̃,
independent of x1. By the boundary condition (3.2) we have u ≡ 1

2 |x̃|
2.

The claim is proved.
Note that if there is a sequence x̃k → x̃0 and x1,k → ∞ such that

u(x1,k, x̃k) = 1
2 |x̃k|

2, by convexity it means u(x1, x̃0) = 1
2 |x̃0|

2 for all
x1 > 0, which is ruled out by the above claim. Hence ∀ R > 0, ∃ M > 0
such that u(x1, x̃) >

1
2 |x̃|

2 whenever x1 > M and |x̃| < R.
To prove ux1(x1, x̃) > 0 when x1 > 0, it suffices to prove it for x̃ = 0.

Let v(x) = 1
2ǫ|x|

2. Then

detD2v >
(vx1

x1

)n+2
.



BERNSTEIN THEOREM 443

By the above claim, we can choose ǫ > 0 small and R > 1 large such
that v < u on ∂B+

R (0). By the comparison principle, we obtain v ≤ u

in B+
R (0). Hence ux1(0) ≥ 0 and ux1(x1, 0) > 0 when x1 > 0. q.e.d.

In the following proof of Theorem 1.2, we always assume u 6≡ 1
2 |x̃|

2.

Lemma 3.4. Let u be a smooth convex solution to (3.1)–(3.2). Then
for any R > 0, there exist constants C1, C2 > 0 such that

(3.4) C1x
2
1 ≤ u(x)−

1

2
|x̃|2 ≤ C2x

2
1 ∀ x ∈ B+

R (0),

where C1, C2 are allowed to depend on x̃ and R.

Proof. For any x̃0 ∈ R
n−1, by a translation of the coordinates x̃ =

(x2, . . . , xn), we may assume x0 = 0. By subtracting a linear function
of x̃, we may also assume that u(0) = 0 and Dx̃u(0) = 0.

In the previous lemma, we have shown that v(x) = 1
2ǫ|x|

2 is a sub-

barrier. Hence the first inequality was proved. Let w(x) = 1
2M |x|2. Then

detD2w <
(wx1

x1

)n+2

if we choose M large such that w > u on ∂B+
R (0). By the comparison

principle, we obtain w ≥ u in B+
R (0). Hence w is an upper barrier and

we obtain the second inequality of (3.4). q.e.d.

Lemma 3.5. Let u be a smooth convex solution to (3.1)–(3.2). Then
u11 ≡ 1 on {x1 = 0}, where we denote uij = uxixj .

Proof. By Lemma 3.2, we have ux1 = 0 on {x1 = 0}. Hence by
differentiating in x̃ we have

(3.5) u1k(x) = 0 on {x1 = 0}.

From equation (3.1), it then follows:

(3.6) u11 detD
2
x̃u = un+2

11 on {x1 = 0}.

Namely,
un+1
11 = detD2

x̃u on {x1 = 0}.

By (3.2), detD2
x̃u ≡ 1 on {x1 = 0}. q.e.d.

By Lemma 3.5, we have, for k ≥ 1,

(3.7) Dk
x̃u11 = 0 on {x1 = 0}.

By Lemma 3.2, we also have

(3.8) Dk
x̃ux1 = 0 on {x1 = 0}.

The boundary condition also implies that if k ≥ 3,

(3.9) Dk
x̃u = 0 on {x1 = 0}.

Lemma 3.6. Let u be a smooth convex solution to (3.1)–(3.2). Then
u111 ≡ 0 on {x1 = 0}.
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Proof. Write equation (3.1) as

(3.10) u11 = {(
ux1

x1
)n+2 + g̃}/detD2

x̃u,

where

(3.11) g̃ = −
∑

i,j>1

r1irj1
∂2 det r

∂r1i∂rj1
at r = D2u.

Differentiating (3.10) in x̃, we have

(3.12) u111 = H(
u11
x1

−
ux1

x21
) +G

where

H = (n+ 2)[
ux1

x1
]n+1/detD2

x̃u,(3.13)

G = (
g̃

detD2
x̃u

)x1 + (
1

detD2
x̃u

)x1(
ux1

x1
)n+2.(3.14)

By (3.5), (3.7)–(3.9), and Lemma 3.5 we have

G(0, x̃) = 0, H(0, x̃) = n+ 2.

Hence by Taylor expansion and (3.12) we have u111 = (n + 2)u111 on
{x1 = 0}, which implies the desired result. q.e.d.

Lemma 3.7. Let u ∈ C3,1(Br(0)) be a smooth convex function. Sup-
pose at the origin 0, u has the expansion

(3.15) u(x) =
1

2
|x|2 + a(x) + b(x)

where

a(x) =
∑

i,j,k

uijk(0)xixjxk,

|Dkb(x)| = O(|x|4−k) for 0 ≤ k ≤ 4.

Let h = u# be the transform of u. Then as y → ∞,

(3.16) h(y) =
1

2
|y|2 + 2

a(y)

|y|2
+ b∗(y),

with

b∗(y) = O(1),

Db∗(y) = O(
1

|y|
) as |y| → ∞.



BERNSTEIN THEOREM 445

Proof. By y = x
u(x) we have

yi =
2xi
|x|2

|x|2

|x|2 + 2a(x) + 2b(x)

=
2xi
|x|2

[

1−
2a(x) + 2b(x)

|x|2 + 2a(x) + 2b(x)

]

=
2xi
|x|2

[

1−
2a(x)

|x|2
+O(|x|2)

]

.

Hence yi =
2xi
|x|2

(

1 +O(|x|)
)

and xi =
2yi
|y|2

(

1 +O( 1
|y|)

)

. It follows that

|x| =
2

|y|

1

1 + 2a(x)/|x|2 + 2b(x)/|x|2

= 2|y|−1
[

1− 2a(x)/|x|2 − 2b′(x)/|x|2
]

= 2|y|−1
[

1− 4a(y)/|y|4 + b̃(y)
]

,

where b′ satisfies |Dkb′(x)| = O(|x|4−k) for 0 ≤ k ≤ 4, and b̃ satisfies

|b̃(y)| ≤ C|y|−2, |Db̃(y)| ≤ C|y|−3 as y → ∞.

Hence

u(x) =
1

2
|x|2 + a(x) + b(x)

= 2|y|−2
[

1− 4a(y)/|y|4 + b̃(y)
]2

+ 8a(y)/|y|6 + b̃(y)/|y|2

= 2|y|−2
{[

1− 4a(y)/|y|4 + b̃(y)
]2

+ 4a(y)/|y|4 + b̃(y)
}

= 2|y|−2
{

1− 4a(y)/|y|4 + b̃(y)
}

,

where b̃ changes from line to line but all satisfy the above asymptotic
behavior. We thus obtain

h(y) =
1

u(x)
=

|y|2/2

1− 4a(y)/|y|4 + b̃(y)

=
1

2
|y|2

(

1 + 4a(y)/|y|4 + b̃(y)
)

=
1

2
|y|2 + 2a(y)/|y|2 + b∗(y). q.e.d.

We are now ready to use the method of moving planes to prove The-
orem 1.2. Denote

Σλ = {xn = λ},

Dλ,R = B′
R(0)× {λ < xn < λ+R},

D∗
λ,R = B′

R(0)× {λ−R < xn < λ},

where Σλ is a plane, B′
R(0) = {x′ ∈ R

n−1 : |x′| < R, x1 > 0},
where x′ = (x1, . . . , xn−1). The domain Dλ,R is a cylinder in {x1 > 0},
and D∗

λ,R is the reflection of Dλ,R in the plane Σλ. For a point x =
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(x1, · · · , xn) ∈ Dλ,R, we denote by xλ = (x1, . . . , xn−1, 2λ − xn) the
reflection of x in Σλ.

By the moving planes we want to prove that for any λ > 0 and all
large R > 0,

(3.17) h(x) > h(xλ) ∀ x ∈ Dλ,R.

In the following we use x to denote the variables of h. If (3.17) holds,
then by sending λ→ 0 and R→ ∞, we obtain

h(x1, . . . , xn−1, xn) ≥ h(x1, . . . , xn−1,−xn).

As the axis xn can be chosen in any direction perpendicular to x1, hence
h, and also u, are symmetric in x̃. Note that we can choose any point
x̃0 as a center. Hence the above proof implies that u is symmetric with
respect to x̃ (with center at x̃0). We can then use the following lemma
for u(x1, x̃), for any fixed x1, to conclude that u is a quadratic function.

Lemma 3.8. Let u be a convex function in R
n. Suppose that at any

point x0 ∈ R
n, u−Du(x0)(x−x0) is symmetric with respect to x0. Then

up to a constant multiplication, u(x) = 1
2 |x|

2 + ℓ(x), where ℓ is a linear
function.

Proof. By subtracting a linear function we assume that u(0) = 0 and
Du(0) = 0. By assumption, u is symmetric with respect to the origin
0. Hence u(x) = u(|x|). Therefore it suffices to consider u as a radial
function defined on [0,∞). Hence the condition in the lemma implies
that for any a > 0,

u(a+t)−u(a−t) = [u(a+t)−u′(a)t]−[u(a−t)+u′(a)t]+2u′(a)t = 2u′(a)t.

If u ∈ C3, by the Taylor expansion at a, for sufficiently small t, we
find that the third derivative of u must vanish everywhere. Hence u is
a quadratic function.

If u is not C3 smooth, consider the case a = 0, and by subtracting a
linear function we assume u′(0) = 0. Then the above formula means u
is even, so its mollification is also even. Hence its third derivative exists
and vanishes at a = 0. As a is arbitrary, u is a quadratic function. q.e.d.

From Lemma 3.8 and by (3.17) (or the above discussions), we see
that for any given x1, u(x1, x̃) is a quadratic function of x̃, i.e.

u(x1, x̃) =
1

2
|x̃|2 + a(x1)x̃+ b(x1),

where a(x1) = (a2(x1), . . . , an(x1)). Hence

detD2u = b′′ −
∑n

i=2
(a′i)

2,

(ux1

x1

)n+2
=

∣

∣

a′x̃+ b′

x1

∣

∣

n+2
,
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where b′ and b′′ are the first and second derivatives of b. Notice that
detD2u is independent of x̃. Hence the right hand sides of the above
two formulas are the same and we have a′ = 0,

b′′ =
∣

∣

b′

x1

∣

∣

n+2
.

Noting that b′(0) = 0, we have b′ = x1 and so u = 1
2 |x|

2.

It remains to prove (3.17) for any λ > 0 and all large R. This will be
achieved in the following two steps.

(i) We show that (3.17) holds for all large R > 0 when λ > λ0, where
λ0 > 0 depends only on the upper bound of |uijk(0)|. This step is

for any h = u#, provided u satisfies the expression (3.15).
(ii) When uijk(0) = 0, by the maximum principle we show that λ0 = 0.

Step (i) readily follows from (3.16). First note that by the boundary
condition (3.2), we have

h(x) =
1

2
|x̃|2 on {x1 = 0}.

By (3.16) we have

(3.18)

h(x)− h(xλ) =
1

2

[

x2n − (xn − 2λ)2
]

+ 2
[a(x)

|x|2
−
a(xλ)

|xλ|2
]

+
[

b∗(x)− b∗(xλ)
]

= 2λ[xn − λ] + 2
[a(x)

|x|2
−
a(xλ)

|xλ|2
]

+
[

b∗(x)− b∗(xλ)
]

.

Note that

|Dxna
∗(x)| ≤ C

∑

|uijk(0)| when |x| >> 1,(3.19)

|Dxnb
∗(x)| = O(|x|−1),(3.20)

where a∗(x) = a(x)
|x|2

. Hence ∃ λ0 such that if λ > λ0 and xn > λ,

h(x)− h(xλ) > 0.
For step (ii), first we observe that equation (3.1) is invariant in re-

flection, namely if h(x) satisfies (3.1), so does

hλ(x) := h(x′, 2λ− xn).

Therefore both h and hλ satisfy the equation

(3.21) detD2h =
(hx1

x1

)n+2
in Dλ,R.

Hence by the strong maximum principle or the comparison principle, it
follows that if

(3.22) h ≥ hλ on ∂Dλ,R,
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then

either h > hλ in Dλ,R,(3.23)

or h ≡ hλ in Dλ,R.(3.24)

In the former case, (3.17) is proved. In the latter case we have h = hλ in
the whole {xn > λ}, and hence h is symmetric with respect to {xn = λ}.
By the boundary condition (3.2), λ must be zero.

Therefore it suffices to verify (3.22) for all large R > 0. The boundary

∂Dλ,R consists of the following parts, ∂Dλ,R =
⋃4

i=1 Γi, where

Γ1 = ∂Dλ,R ∩ {xn = λ},

Γ2 = ∂Dλ,R ∩ {x1 = 0},

Γ3 = ∂Dλ,R ∩ {|x′| = R},

Γ4 = ∂Dλ,R ∩ {xn = λ+R}.

On Γ1, we obviously have h = hλ.
On Γ2, by the boundary condition we obviously have h > hλ, provided

λ > 0.
On Γ3, by (3.7)–(3.9) and Lemma 3.6, we have uijk(0) = 0. Hence for

any given λ > 0, if R > 1 is sufficiently large, by (3.19) and (3.20), we
obtain from (3.18) that

h(x)− hλ(x) = h(x)− h(xλ)

≥ 2λ(xn − λ)− o(xn − λ) > 0.

On Γ4, (3.22) follows from (3.18) and (3.20) as a∗ ≡ 0 in (3.19).
Therefore we have verified (3.22), and so also (3.17) by the maximum

principle, for all λ > 0. Hence by Lemma 3.8 and the discussion before
it, we conclude that u is a quadratic function. Theorem 1.2 is proved.

Remark 3.1. For any α > 0, the above moving plane argument also
implies that a smooth convex solution to

detD2u =
(ux1

x1

)n+2+α
in R

n,+,(3.25)

u =
1

2
|x̃|2 on {x1 = 0}(3.26)

must be u(x) = 1
2 |x|

2 or u(x) = 1
2 |x̃|

2. Indeed, by the transform (2.1),
equation (3.2) is changed to

(3.27) detD2h =
( h

h∗
)α(hx1

x1

)n+2+α
.

When α ≥ 0, the comparison principle is applicable to the functions h
and hλ, and from (3.22) we can still infer (3.23) or (3.24).



BERNSTEIN THEOREM 449

Remark 3.2. By the moving plane, we see that a smooth convex solu-
tion to

detD2u =
(ux1

x1

)n+2
in R

n,+ = {x1 > 0},(3.28)

u = φ(x̃) on {x1 = 0}(3.29)

is symmetric with respect to x̃ if φ is. One can easily verify that (3.7)–
(3.9) and Lemma 3.6 hold at x = 0, and hence uijk(0) = 0.

An interesting question is whether one can use the transform (1.2) to
prove Bernstein theorems for other Monge-Ampère type equations,

(3.30) detD2u = f(x, u,Du) in R
n,

such as the case f ≡ 1. Let u be a solution to (3.30) and let h = u#

be the transform of u. Another interesting question is the singularity
removability for h near the origin. Note that if h is smooth at the origin,
then u is asymptotic to a quadratic function as infinity.

4. C2,α regularity

In this section we prove the global C2,α regularity for the problem

detD2u =
η(x)

|u|n+2
in Ω,

u = 0 on ∂Ω.

(4.1)

Namely, the graph of u is C2,α smooth up to the boundary. In this
section we assume that Ω is a bounded, uniformly convex domain with
Ck,α boundary, and η is positive and Ck−2,α smooth, k ≥ 3. By Cheng-
Yau [7] and Caffarelli [2, 16], there is a unique convex solution u ∈
Ck,α(Ω) ∩ C0(Ω) to (4.1). By a translation of coordinates, we assume
that the origin 0 ∈ ∂Ω, and e1 = (1, 0, . . . , 0) is the inner normal of ∂Ω
at 0. We make the rotation of the coordinates

y1 = −xn+1,
yk = xk, k = 2, . . . , n,
yn+1 = x1.

In the new coordinates, the graph of u near the origin can be represented
as

yn+1 = v(y).

Since ux1 < 0 near the origin, we have vy1 > 0 near the origin.
From equation (4.1), the Gauss curvature

K =
detD2u

[1 + |Du|2](n+2)/2

=
η

|u|n+2[1 + |Du|2](n+2)/2
.
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Hence

detD2v = K[1 + |Dv|2](n+2)/2

= η

[

1 + |Dv|2

y21(1 + |Du|2)

]

n+2
2

.

Claim:
[

1 + |Dv|2

1 + |Du|2

]

n+2
2

= vn+2
y1 .

Indeed, note that the tangent plane is given by

xn+1 − ux1x1 − · · · − uxnxn = 0.

After the above rotation of coordinates, it is given by

yn+1 +
1

ux1

y1 +
ux2

ux1

y2 + · · · +
uxn

ux1

yn = 0.

Hence
vy1 = −1/ux1 ,
vy2 = −ux2/ux1 ,
. . .
vyn = −uxn/ux1 ,

and the claim follows.
Therefore equation (4.1) can be written as (from now on we write v

and y as u and x)

(4.2) detD2u = η
[ux1

x1

]n+2
in B+

R ,

where η = η(u, x2, . . . , xn). By a rescaling, we assume that

η(0) = 1

and near 0, the boundary ∂Ω is given by {x1 = φ(x2, . . . , xn)} in the
original coordinates. Then the boundary condition for (4.2) is

(4.3) u = φ on {x1 = 0}.

Moreover, we have

u(0) = 0, u ≥ 0 and ux1 > 0 near 0.

By Lemma 3.2,

ux1 = 0 on {x1 = 0}.

It follows that for any k ≥ 0,

(4.4)
Dk

x̃ux1 = 0 on {x1 = 0},

Dk
x̃u = Dk

x̃φ,

where x̃ = (x2, . . . , xn). In particular, we have u1k = 0 on x1 = 0, for
any k ≥ 2. Therefore at any boundary point, we can make a rotation of
the axes x2, . . . , xn such that D2u is diagonal. By a unimodular linear
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transform of x̃, we may assume that uii(0) = ujj(0) for all 2 ≤ i, j ≤ n.
Since φ is uniformly convex, there is no loss in assuming that uii(0) = 1
for all 2 ≤ i ≤ n. By (3.6) we can then assume that

(4.5) D2u(0) = I

is the unit matrix.

To prove the regularity of the solution to (4.1), we employ the method
of continuity, as was used in [8] for equation (1.12). It is worth noting
that one may use the method of continuity in different ways. For ex-
ample, we can write problems (4.2)–(4.3) as a Dirichlet problem for
the support function of the solution on the south hemisphere Sn,− and
apply the method of continuity to the Dirichlet problem in the space
C3,α(Sn,−). We can apply the method of continuity to v = u2 in C3,α(Ω).
Instead of fixing the domain Ω and allowing η to vary, we can also fix
an η and allow the domain Ω to vary. That is, letting Ωt be a family
of uniformly convex domains such that Ω0 is the unit ball and Ω1 = Ω,
apply the method of continuity to Ωt.

Remark 4.1. (i) The C2,α regularity at boundary was obtained in [22].
At a boundary point 0, one can construct a lower-barrier w1 and an
upper-barrier w2 such that

(4.6) 0 ≤ w2(x)− w1(x) ≤ C|x|2+α.

From (4.6), one can obtain the boundary C2,α estimate as follows. By
rescaling, one can first prove the strict convexity of solutions and use
the interior second derivative estimate of Pogorelov [28] to get the C1,1

estimate, such that equation (4.2) is uniformly elliptic. Then by (4.6)
one can prove that for any ball Br(z), there is a quadratic polynomial
Pz such that supBr(z) |u(x) − Pz(x)| ≤ Cr2+α. By using Campanato’s

space, the C2,α regularity follows as in [1, 29].
(ii) Unaware of the work [22], in early 2008 we found a similar proof.

We also constructed upper and lower barriers satisfying (4.6). Our barri-
ers are as follows: Considering a boundary point 0, by a linear transform
of x̃, we may assume that φ(x̃) = 1

2 |x̃|
2 +O(|x̃|2+α) for some α ∈ (0, 1).

Then it is straightforward to verify that

w1(x) =
1

2
|x|2 + a|x|2+α,

w2(x) =
1

2
|x|2 − a|x|2+α

are upper and lower barriers provided a is sufficiently large. Instead of
using Camponato’s space, we observed that the C2,α estimate can be
obtained from the interior regularity theory of Evans-Krylov [11, 18] by
a rescaling argument. That is, for any points x, y ∈ R

n,+ with |x− y| <
1
2 min(dx, dy), where dx = dist(x, ∂Rn,+), by rescaling and the interior
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regularity theory of Evans-Krylov we have |D2u(x)−D2u(y)| ≤ C|x−
y|α. For any two points x, y ∈ R

n,+, assuming dy ≤ dx, we choose a
sequence of points (xk) on the line segment xy such that x0 = x and
xN = y such that |xi − xi+1| <

1
2 min(dxi , dxi+1) for i = 0, 1, . . . , N .

Then

|D2u(x)−D2u(y)| ≤

N
∑

i=1

|D2u(xi)−D2u(xi−1)|

≤
∑

C|xi − xi−1|
α ≤ C|x− y|α.

Note that N = ∞ if y is a boundary point. Note also that D2u is C2,α

smooth on {x1 = 0}, which follows from ux1xk
= 0 (Lemma 3.2) and

(3.6), and so we may assume that the segment xy is parallel to the
x1-axis.

(iii) Note that if one applies the regularity in [1, 11, 18, 29] directly,
one may get the C2,α regularity for a small α > 0 only. But for the
Monge-Ampère equation (4.2), if η is sufficiently smooth, we have the
C∞ interior regularity and the above argument implies the C2,α regu-
larity, for any α > 0.

In the following, we first use the method of moving planes to prove
a continuity estimate for D2u at the boundary, then prove the C2,α

regularity, for any α ∈ (0, 1). The proof is more complicated than the one
in Remark 4.1, and also we need to assume ∂Ω ∈ C3,α. We present the
proof here because the technique is new and should be of some interest
in the area. Moreover, some estimates will be needed in the next section
for the proof of the higher regularity, which is more complicated. Our
main interest is to obtain the optimal regularity, as with Fefferman’s
equation (1.12), mentioned in the introduction.

4.1. Continuity estimate for D2u. Let u be a smooth convex solu-
tion to (4.2) and (4.3). We assume ∂Ω ∈ C3,α and η ∈ C1,α. We will
first prove for simplicity the regularity of solutions to (4.2)–(4.3) for the
case η ≡ 1. We then explain that our argument also applies to solutions
with general smooth and positive η.

To start with, we first recall the estimate in Lemma 3.4,

φ(x̃) + C1x
2
1 ≤ u(x) ≤ φ(x̃) + C2x

2
1 in B+

R(0),

obtained by proper construction of barriers, which also follows from
(4.6). Hence by the uniform convexity of φ we have

(4.7) C1|x|
2 ≤ u(x) ≤ C2|x|

2 in B+
R (0),

for two positive constants C1, C2. From (4.7) and the convexity of u we
also have

(4.8) ∂x1u > 0 in B+
R (0).
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To prove thatD2u is continuous at the boundary, it suffices to prove that
D2u(x) → D2u(0). Namely, for an arbitrary sequence pm → 0, we want
to prove that D2u(pm) → D2u(0) = I by (4.5).1 By a translation of x̃,
we may assume that pm lies on the x1-axis such that pm = (δm, 0, . . . , 0).
Make the dilation x → x/δm and u → u/δ2m =: um. Then by the
interior regularity of the Monge-Ampère equation (as in Remark 4.1),
um is locally uniformly smooth near e1 = (1, 0, . . . , 0) and so D2um(e1)
converges. Moreover, um satisfies the equation

detD2u =
[ux1

x1

]n+2
in B+

R/δm
,(4.9)

u = φm on {x1 = 0},

where φm(x̃) = δ−2
m φ(δmx). Note that (4.7) is also invariant under the di-

lation. Since φm → 1
2 |x̃|

2 locally smoothly, as in (3.7)–(3.9) and Lemma
3.6 we have

(4.10)

D3
x1
um(0) → 0,

Dx̃D
2
x1
um(0) → 0,

D2
x̃Dx1um(0) = 0,

D3
x̃um(0) → 0,

where the equality in the third line of (4.10) is due to Lemma 3.2, which
also holds for solutions to (4.2) and (4.3).

Let hm = u#m be the transform of um. By (4.7), the function hm
is defined in R

n,+\BCδm(0). By the monotonicity property (iv) of the
transform in Section 2, we also have

(4.11) hm ≤ Cδ2m on ∂B+
Cδm

(0).

We can extend hm to B+
Cδm

(0) such that hm is convex in R
n,+ and

hm ≤ Cδ2m in B+
Cδm

(0).
With the above preparation, we now apply the moving plane argu-

ment in Section 3 to hm. By step (i) of Section 3 (details after Lemma
3.8), there exists λ0 > 0, independent of m, such that

(4.12) hm(x) ≥ hm,λ(x) ∀ x ∈ Dλ,R

for all λ ≥ λ0 and large R > 0, where hm,λ(x) = hm(xλ).
For step (ii), by (4.10) and (4.11), one can easily verify that for each

m, there exists λm > 0, with λm → 0 as m → ∞, such that (4.12)

1Since we use the continuity method, the solution is assumed to be smooth and
D2u(pm) → D2u(0) holds automatically. Our blow-up argument below gives a uni-
form convergence rate for the sequence D2u(pm), which implies an estimate for the
modulus of continuity of D2u at the boundary. More generally the blow-up argument
also applies to a sequence of solutions {um}, and one obtains an estimate, uniformly
in m, for the modulus of continuity of D2um at the boundary.
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holds for any λ > λm and large R > 1. Hence the limit functions
h = limm→∞ hm and hλ = limm→∞ hm,λ satisfy

(4.12)′ h(x) ≥ hλ(x) ∀ x ∈ R
n,+.

Therefore h is rotationally symmetric in x̃. By Lemma 3.8 and our
boundary condition, we have h ≡ 1

2 |x|
2. Changing back, we obtain

D2u(pm) → I.
Next we show that the above moving plane argument also applies to

(4.2) for any positive and continuous η. Indeed, examining the above
proof, we see that the argument for (4.7)–(4.11) is fine, and the argu-
ment for (4.12) and (4.12)′ needs change. When η is not a constant, the
functions hm and hm,λ satisfy respectively the equation

detD2h = η(·)
(hx1

x1

)n+2

detD2hλ = ηλ(·)
( (hλ)x1

x1

)n+2

in Dλ,R. For a given λ ∈ (0, λ0), we don’t have the monotonicity η ≤ ηλ
and cannot infer the monotonicity (4.12) directly. But we have a weak
form of (4.12); namely, for any given λ0 > 0 and R0 > 1, there exists
ǫm → 0 such that

(4.13) hm(x) ≥ hm,λ(x)− ǫm ∀ x ∈ Dλ,R

for all λ ≥ λ0 and large R ≥ R0. Indeed, if this is not true, by step (i)
we can move the plane Σλ such that when m >> 1,

(4.13)′ hm(x) ≥ hm,λ(x)−ǫ0 ∀ x ∈ Dλ,R

for all λ ≥ λ0, and there is a point x0 ∈ Dλ,R such that

(4.13)′′ hm(x0) ≤ hm,λ(x0)−ǫ0/2,

where ǫ0 > 0 is a small constant. We should point out that the functions
hm and hm,λ behave nicely at infinity, and (4.13) holds when |x| is
sufficiently large, as shown in step (i). Sending m → ∞ and noticing
that both η and ηλ converge to η(0) locally uniformly, we infer that
(4.12)′ holds for the limits h = limm→∞ hm and hλ = limm→∞ hm,λ,
which is in contradiction with (4.13)′′. Hence the limit function h is
rotationally symmetric, and so we also obtain a continuity estimate for
D2u.

We also remark that the modulus of continuity of D2u depends on
n, inf η, ‖η‖C1,α , and ‖φ‖C3,α . The C3,α regularity of φ and the C1,α

regularity of η are such that (4.10) holds. But for the argument in §4.1,
it suffices to assume η is continuous. Note that in Lemma 3.7, we need
u ∈ C3,1, but by approximation it suffices to assume that u ∈ C3,α.
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4.2. C1,α-estimate for ux̃. Differentiating equation (4.2) in xk, k ≥ 2,
we get

(4.14) L[w] = (n+ 2)η̃
[ux1

x1

]n+1wx1

x1
+ η̃xk

[ux1

x1

]n+2
,

where η̃(x) = η(u(x), x̃), w = uxk
, and L =

∑

aij(x)∂xi∂xj is the lin-

earized operator of detD2u. It is a linear, uniformly elliptic operator
with continuous coefficients. By the boundary condition (4.3), we have
w(0, x̃) = φxk

(x̃).
We construct proper barriers to show that

(4.15) |w(x) − φxk
(x̃)| ≤ Cx21 in Gr,

where

Gr = {|x̃| < r, 0 < x1 < r}.

First by subtracting a linear function of x̃, we assume that w satisfies

|w| ≤ C|x̃|2 on {x1 = 0}.

Let

z = a|x̃|2 + bx21.

Obviously

(4.16) z ≥ w on ∂Gr,

when a, b are suitably large. To verify

(4.17) Lz ≤ (n+ 2)η̃
[ux1

x1

]n+1 zx1

x1
+ η̃xk

[ux1

x1

]n+2
in Gr,

by (4.5), the continuity of D2u, and recalling that η̃(0) = 1, we have

the matrix {aij} = I + o(1),
ux1

x1
= u11(0) + o(1) = 1 + o(1),

η̃ = 1 + o(1)

near the origin. Hence

Lz = a11z11 + C = 2b[1 + o(1)] + C,

(n+ 2)η̃
[ux1

x1

]n+1 zx1

x1
+ η̃xk

[ux1

x1

]n+2
≥ 2b(n + 2)

[

1− o(1)
]

−C,

where C depends on a but not b. Therefore (4.17) holds when b is chosen
large.

From (4.16) and (4.17) and by the comparison principle, we have
z ≥ w. It follows that on the x1-axis, w(x1, 0) ≤ bx21 on the x1-axis.
By the same argument we also have w(x1, 0) ≥ −bx21 on the x1-axis.
Similarly, for any x̃, we have |w(x) − φxk

(x̃)| ≤ bx21. Therefore (4.15)
holds.
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Observe that (4.15) implies
wx1
x1

∈ L∞(Gr). By (4.14) and the W 2,p

estimate for the linear elliptic equation, we obtain

(4.18) ‖ux̃‖W 2,p(Gr) ≤ C1,

where C1 depends on n, r, p, φ, η and the modulus of continuity of D2u.
By the Sobolev embedding, it follows that for any α ∈ (0, 1),

(4.19) ||Dx̃u||C1,α(Ḡr) ≤ C,

where C depends on C1 and α.

4.3. C2,α-estimate for u. It remains to prove u11 ∈ Cα. Usually the
regularity of u11 follows from the regularity of uij (i + j > 2) and the
equation. However, this is not the case for equation (4.2), due to the
singular term ux1/x1.

Denote

f(t) = ux1(t, x̃),

h(t) = η̃/detD2
x̃u(t, x̃),

g(t) = g̃(t, x̃)/detD2
x̃u(t, x̃),

where g̃ is given in (3.11). Then we can write (3.10) as an ordinary
differential equation

(4.20) f ′(t) = h(t)
[f

t

]n+2
+ g(t),

regarding x̃ as parameters. By (4.4) and (4.19), we have g, h ∈ Cα(Ḡr)
and

(4.21)
g(0) = 0, |g(t)| ≤ Ctα,

|h(t)− h(0)| ≤ Ctα.

By (4.5) and the C2 continuity of u, we have

(4.22)
1

2
<

t

f(t)
<

3

2
when (t, x̃) ∈ Gr

for some r > 0. To prove u11 ∈ Cα, by equation (3.10) it suffices to
prove

ux1
x1

∈ Cα.

We first show that
ux1
x1

is Cα in x1; namely, f
t is Cα in t. Solving the

ordinary differential equation (4.20), we have

[f(t)]−n−1 = [f(r)]−n−1 + (n+ 1)

∫ r

t

[

h(s)

sn+2
+

g(s)

fn+2(s)

]

ds.

Namely,
(4.23)
[ t

f(t)

]n+1
=

[ t

f(r)

]n+1
+ (n + 1)

[

G1(t) +G2(t)
]

+
1− (tr−1)n+1

n+ 1
h(0),
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where

G1(t) = tn+1

∫ r

t

h(s)− h(0)

sn+2
ds,(4.24)

G2(t) = tn+1

∫ r

t

g(s)

fn+2(s)
ds.(4.25)

Differentiating G1 and G2, we get

G′
1(t) = (n+ 1)tn

∫ r

t

h(s)− h(0)

sn+2
ds− tn+1h(t)− h(0)

tn+2
,

G′
2(t) = (n+ 1)tn

∫ r

t

g(s)

fn+2(s)
ds− tn+1 g(t)

fn+2(t)
.

By (4.21) and (4.22), we obtain |G′
i(t)| < Ctα−1 for t ∈ (0, r) and

i = 1, 2. Hence Gi ∈ Cα[0, r] and so is [ t
f(t) ]

n+1. It follows that the

right hand side of (4.20) is in Cα[0, r]. Hence u11 = f ′ ∈ Cα[0, r], i.e.,
u11 is Hölder in x1, and its Hölder norm is controlled by that of uij for
i+ j > 2, obtained in §4.2.

Next we show that
ux1
x1

is Cα continuous in x̃. Indeed, regard x̃ as
parameters, and recall that f, g, h in the ordinary differential equation
(4.20) all depend on the parameters x̃, and are Hölder continuous in x̃.
We have

|G1(t, x̃1)−G1(t, x̃2)| ≤ tn+1

∫ r

t

|h(s, x̃1)− h(s, x̃2)|+ |h(0, x̃1)− h(0, x̃2)|

sn+2
ds

≤ Ctn+1

∫ r

t

|x̃1 − x̃2|
α

sn+2
ds

≤ C|x̃1 − x̃2|
α.

Next we estimate G2. Note that if |x̃1 − x̃2| > t, then

|G2(t, x̃1)−G2(t, x̃2)| ≤ |G2(t, x̃1)|+ |G2(t, x̃2)|

≤ Ctα ≤ C|x̃1 − x̃2|
α.

If |x̃1 − x̃2| < t, then

|G2(t, x̃1)−G2(t, x̃2)| ≤ tn+1

∫ r

t

∣

∣

g(s, x̃1)

fn+2(s, x̃1)
−

g(s, x̃2)

fn+2(s, x̃2)

∣

∣ds

≤ tn+1

[
∫ r

t

∣

∣

g(s, x̃1)− g(s, x̃2)

fn+2(s, x̃1)

∣

∣ds+

∫ r

t

∣

∣

g(s, x̃2)

fn+2(s, x̃1)
−

g(s, x̃2)

fn+2(s, x̃2)

∣

∣ds

]

.

The first integral

≤ Ctn+1

∫ r

t

|x̃1 − x̃2|
α

sn+2
ds ≤ C|x̃1 − x̃2|

α.
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The second one

≤ Ctn+1

∫ r

t
sα

∣

∣

fn+2(s, x̃1)− fn+2(s, x̃2)

fn+2(s, x̃1)fn+2(s, x̃2)

∣

∣ds

≤ Ctn+1

∫ r

t

sα

s2(n+2)

∣

∣fn+2(s, x̃1)− fn+2(s, x̃2)
∣

∣ds

≤ Ctn+1

∫ r

t

sα

sn+3

∣

∣f(s, x̃1)− f(s, x̃2)
∣

∣ds

≤ Ctn+1

∫ r

t

sα

sn+3

∣

∣x̃1 − x̃2
∣

∣ds

≤ C|x̃1 − x̃2|
α.

We have therefore obtained by (4.23) that
[

t
f(t)

]n+1
is Hölder in x̃.

Hence, u11 is Hölder in x̃ by (4.20).

5. Higher regularity

In §4 we have proved the boundary C2,α regularity for solutions to
(4.2) and (4.3). But due to the singularity

ux1
x1

in (4.2), it does not
imply higher regularity. The following examples show that a solution to
an elliptic equation with singularity ux1/x1 is usually not smooth at the
boundary.
Example 5.1. The function u = x1+α

1 , α ∈ R
1, satisfies the equation

∆u = α
ux1

x1
in R

n,+,

but u 6∈ C1,α+ǫ ∀ ǫ > 0 if α is not a positive integer.
Example 5.2. The function u(x) = xk+2

1 log x1 (∀ k ≥ 0) is a solution to

∆u = (k + 1)
ux1

x1
+ (k + 2)xk1 in R

n,+,

but u 6∈ Ck+2.
The above examples show that the regularity is determined by the

coefficient of
ux1
x1

. The first example shows that u cannot be C∞ smooth

if the coefficient of
ux1
x1

is not an integer. In the second example, the so-

lution is not C1,1 if k = 0. In this case, there is no C1,1 super-solution to
the equation. In fact, we will prove for the ordinary differential equation

(5.1) f ′(t) = h(t)
f(t)

t
+ g(t), t ∈ [0, t0),

that if h(0) = 1, h, g ∈ Cα for some α ∈ (0, 1), then the solution to (5.1)
is C1,α at t = 0 if and only if g(0) = 0.

For the linearized equation of (4.2), the coefficient of
ux1
x1

is equal to
n+ 2 at x1 = 0; see Remark 5.3 below. In this section we introduce an
iteration to prove the Cn+2,α regularity. We point out that our iteration
does not assume a priori the regularity of the solution at the boundary.
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We prove directly that a C2,α solution is Cn+2,α near the boundary. An
interesting consequence of our iteration is a compatibility condition for
the general elliptic equation with the singularity ux1/x1, which implies
our regularity is optimal.

5.1. A lemma. Our iteration and higher regularity are based on the
following lemma.

Lemma 5.1. Assume h, g ∈ Cα(Ḡr), f ∈ Cα(Ḡr) ∩ C
1(Gr), where

α ∈ (0, 1). Assume

h(0, x̃) = N ∀ |x̃| < r

for some positive integer N . If N = 1, we also assume that g(0, x̃) = 0.
Then if

(5.2) f ′(t, x̃) = h(t, x̃)
f(t, x̃)

t
+ g(t, x̃) (t, x̃) ∈ Gr,

where f ′ denotes a derivative of f in t, we have f(0, x̃) = 0 for |x̃| < r
and for any ǫ > 0, f ∈ C1,α−ǫ(Ḡr) and

||f ||C1,α−ǫ(Ḡr) ≤ Cǫ

for a constant Cǫ depending only on ǫ and the Hölder norms of g and
h.

Proof. Let z = t−Nf. Then equation (5.2) is changed to

z′(t, x̃) =
h(t, x̃)−N

t
z(t, x̃) +

g(t, x̃)

tN
.

Hence

z(t, x̃) = e−H(t,x̃)

[

z(r, x̃)−

∫ r

t

G(s, x̃)

sN
ds

]

,

where

H(t, x̃) =

∫ r

t

h(s, x̃)−N

s
ds,

G(s, x̃) = g(s, x̃)eH(s,x̃).

We obtain

(5.3)
f(t, x̃)

t
= e−H(t,x̃)

[f(r, x̃)

rN
tN−1 − G̃(t, x̃)

]

,

where

(5.3)′ G̃(t, x̃) = tN−1

∫ r

t

G(s, x̃)

sN
ds

= tN−1

[
∫ r

t

G(0, x̃)

sN
ds+

∫ r

t

G(s, x̃)−G(0, x̃)

sN
ds

]

.
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By assumption, N is an integer and G(0, x̃) = 0 if N = 1. Hence
the first integral on the right hand side is a smooth function. Therefore
there exists a constant C > 0 such that

|H(t, x̃)| ≤ C,

|H ′(t, x̃)| ≤ Ctα−1,

|G̃(t, x̃)| ≤ C,

|G̃′(t, x̃)| ≤ Ctα−1

for all (t, x̃) ∈ Gr. Namely H(t, ·), e−H(t,·), G(t, ·) and G̃(t, ·), and so also
f(t,·)

t , are all in Cα[0, r] in t and their Hölder norms are independent of

x̃. It means by (5.2) that f ′(t, ·) ∈ Cα[0, r] in t, and so f(t, ·) ∈ C1,α[0, r]
and its C1,α norm is independent of x̃.

Multiplying both sides of (5.2) by t and by the C1,α regularity of f ,
we obtain that f(0, x̃) = 0 for all |x̃| < r.

To show that f is C1,α−ǫ in x̃, observe that

H(0, x̃) =

∫ r

0

h(s, x̃)−N

s
ds =

∫ r

0

h(s, x̃)− h(0, x̃)

s
ds.

The Hölder continuity of h implies that

|H(t, x̃)−H(0, x̃)| ≤ Ctα

for all (t, x̃) ∈ Gr; namely, H is Hölder continuous in t. To show that H
is Hölder continuous in x̃, note that

|h(t, x̃1)− h(t, x̃2)| ≤ |h(t, x̃1)−N |+ |h(t, x̃2)−N |

= |h(t, x̃1)− h(0, x̃1)|+ |h(t, x̃2)− h(0, x̃1)|

≤ Ctα.

If |x̃1 − x̃2| ≥ t, then for any ǫ > 0,

|H(t, x̃1)−H(t, x̃2)| ≤

∫ r

t

∣

∣

h(s, x̃1)− h(s, x̃2)

s

∣

∣ds

≤ C

∫ r

t
sαǫ

|h(s, x̃1)− h(s, x̃2)|
1−ǫ

s
ds

≤ C|x̃1 − x̃2|
α(1−ǫ)

∫ r

t
sαǫ−1ds

≤ Cǫ|x̃1 − x̃2|
α(1−ǫ).
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If |x̃1 − x̃2| < t, then for any ǫ > 0,

|H(t, x̃1)−H(t, x̃2)| ≤

∫ r

t

∣

∣

h(s, x̃1)− h(s, x̃2)

s

∣

∣ds

≤ C

∫ r

t

|x̃1 − x̃2|
α

s
ds

≤ C|x̃1 − x̃2|
α| log t|

≤ Cǫ|x̃1 − x̃2|
α−ǫ.

Similarly, one can estimate the Hölder continuity of G̃(t, x̃). q.e.d.

Remark 5.1. By the function u = Ct2 log t and letting f = ux1 , we see
from Example 5.2 that Lemma 5.1 is not true if N = 1 and g(0, x̃) 6= 0.
Namely, the solution f of (5.2) is not Lipschitz if g(0, x̃) 6= 0. This is
due to the integration in (5.3)′,

tN−1

∫ r

t

G(0, x̃)

sN
ds = G(0, x̃) log s

∣

∣

r

t
,

which is not continuous at t = 0 when N = 1. More precisely, if N = 1,
then by (5.3), the solution can be expressed as

f(t, x̃) = f0(t, x̃) + g(0, x̃) log t,

where f0 ∈ C1,α. The solution cannot be Lipschitz continuous at t = 0
if g(0, x̃) 6= 0.

Therefore, if h(0) = 1, by Lemma 5.1 and Remark 5.1 we see that
the solution f is C1,α near t = 0 if and only if g(0) = 0.
Remark 5.2. In Lemma 5.1 we proved that f is C1,α in t and C1,α−ǫ

in x̃. However, for the solution u to (4.2)–(4.3), if u = φ ∈ Ck,α on
{x1 = 0} and u is Ck,α in x1, then by the rescaling argument in Remark
4.1(ii), u is Ck,α smooth in all variables x. Therefore for the regularity
of u, the Hölder exponent in x̃ is the same as in x1.

5.2. C2,α estimate for Dj
x̃u. In §4.2 we have shown that ux̃ ∈ C1,α

for all α ∈ (0, 1). Now we show that ux̃ ∈ C1,1 up to the boundary
{x1 = 0}. Indeed, consider the point (δ, 0) on the x1-axis, where δ > 0
is a small constant. We make the scaling v(y) = δ−2w(x) and y =
x/δ, where w = Dx̃u as in (4.14). Then by (4.19) and the argument in
§4.2, v satisfies the uniformly elliptic equation (4.14) in B2/3(e1) with
Hölder continuous coefficients, where e1 = (1, 0, . . . , 0). By (4.15), v is
uniformly bounded. Hence, by the interior regularity for the equation
(4.14), we have ‖v‖C2(B1/2(e1))

≤ C. Scaling back, we see that the second

derivatives of w are uniformly bounded. Hence we obtain

(5.4) ‖ux̃‖C1,1(Ḡr) ≤ C.
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To prove that ux̃x̃ ∈ C1,1, we differentiate equation (4.14) in x̃ again
to get

(5.5) L(w) = (n + 2)η̃
(ux1

x1

)n+1wx1

x1
+ g

where w = D2
x̃u, g = ĝ + g̃, ĝ arises in differentiating the coefficients

of the operator L, and g̃ arises in differentiating the right hand side of
(4.14),

g̃ = (n+2)(n+1)η̃
(ux1

x1

)n(u1x̃
x1

)2
+2(n+2)η̃x̃

(ux1

x1

)n+1u1x̃
x1

+η̃xkx̃

(ux1

x1

)n+2
.

By the C1,1 estimate for ux̃, we have ĝ ∈ L∞(Gr). By (4.19) and (4.10)
(or (5.4)), we have

ux1
x1
, u1x̃

x1
∈ L∞, which implies g̃ ∈ L∞. Hence, by

theW 2,p-estimate we have the estimate ‖w‖W 2,p(Gr) ≤ C, which implies

w ∈ C1,α(Ḡr) ∀ α ∈ (0, 1). By the rescaling argument in Remark 4.1(ii),
we obtain w ∈ C1,1(Ḡr), i.e.,

‖D2
x̃u‖C1,1(Ḡr) ≤ C.

Repeating the above argument, we obtain

(5.6) ||Dj
x̃u||C1,1(Ḡr) ≤ C

for any j ≥ 1.

To prove the C2,α estimate for Dj
x̃u, by (5.6) it remains to prove that

Dj
x̃u11 ∈ Cα(Gr) for j ≥ 1.
Fix a k ≥ 2 and denote f(t, x̃) = u1k(t, x̃). We write equation (4.14)

in the form

(5.7) f ′(t, x̃) = h(t, x̃)
f(t, x̃)

t
+ g(t, x̃),

where

h(t, x̃) =
n+ 2

a11(t, x̃)
η̃(t, x̃)

[ux1(t, x̃)

t

]n+1
,

g(t, x̃) = −
∑

i+j>2

aij(t, x̃)

a11(t, x̃)
uijk(t, x̃) +

η̃xk

a11(t, x̃)

(ux1

x1

)n+2
.

Note that h, g ∈ Cα(Ḡr) by (5.6), and

(5.8) h(0, x̃) = n+ 2

by Remark 5.3. Applying Lemma 5.1 to equation (5.7), we obtain f ′ ∈
Cα−ǫ(Ḡr) for any ǫ > 0. Therefore u11k ∈ Cα−ǫ(Ḡr) for k = 2, 3, . . . , n
and we have the estimate

(5.9) ‖u11k‖Cα−ǫ(Ḡr) ≤ C.

As noted in Remark 5.2, the Cα−ǫ norm can be replaced by the Cα

norm. To prove

(5.10) ‖Dj
x̃u‖C2,α(Ḡr) ≤ C ∀ j ≥ 1,
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we use induction. Denote

fj(t, x̃) = Dj+1
x̃ u1(t, x̃),

g1(t, x̃) = ∂x̃g(t, x̃) + ∂x̃h(t, x̃)
f(t, x̃)

t
,

gj+1(t, x̃) = ∂x̃gj(t, x̃) + ∂x̃h(t, x̃)
fj(t, x̃)

t
.

Note that the subscripts in fk, gk, and hk mean index and the subscripts
in u1k mean partial derivatives. By (5.7), we have the equation

(5.11) f ′j(t, x̃) = h(t, x̃)
fj(t, x̃)

t
+ gj(t, x̃).

From (5.9), we have

‖g1‖Cα−ǫ(Ḡr) ≤ C,

‖
u1k
x1

‖Cα−ǫ(Ḡr) ≤ C.

By induction, assume that for some j ≥ 1 and any small ǫ > 0 (such
that jǫ << 1),

‖Dj
x̃u11‖Cα−jǫ(Ḡr) ≤ C,(5.12)

‖gj‖Cα−jǫ(Ḡr) ≤ C.

We want to prove that (5.12) holds for j + 1. Applying Lemma 5.1 to

equation (5.11) for j+1, we obtain that f ′j+1 ∈ Cα−(j+1)ǫ(Ḡr). Namely,

‖Dj+1
x̃ u11‖Cα−(j+1)ǫ(Ḡr)

≤ C,

which together with (5.6) implies

‖gj+1‖Cα−(j+1)ǫ(Ḡr) ≤ C.

Therefore, we have proved that (5.12) holds for all j ≥ 1. Hence (5.10)
is proved. Note that by Taylor expansion, (5.10) implies

(5.13) ‖
Dj

x̃u1(x1, x̃)

x1
‖Cα(Ḡr) ≤ C, ∀j ≥ 1.

Remark 5.3. We claim that

h(0, x̃) ≡ n+ 2.

Indeed, from (4.2) and (4.4), we have

a11u11 = ηun+2
11 on {x1 = 0}.

Hence un+1
11 = a11/η on {x1 = 0}. We obtain

h(0, x̃) = lim
t→0

n+ 2

a11
η
[ux1(t, x̃)

t

]n+1
=
n+ 2

a11
η un+1

11 = n+ 2.
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5.3. C3,α estimate for u and Dj
x̃u. We first show u111 ∈ Cα(Ḡr).

Write equation (4.2) in the form (3.10), namely,

u11 =
η̃

d̃
(
ux1

x1
)n+2 +

g̃

d̃
,

where g̃ is given in (3.11) and d̃ = detD2
x̃u. From §5.2, d̃ ∈ C2,α(Ḡr)

and g̃ ∈ C1,α(Ḡr). Differentiating the above equation, we have

(5.14) u111(t, x̃) = h(t, x̃)(
u11
t

−
ux1

t2
) + g(t, x̃)

where t denotes x1,

h =
n+ 2

d̃
η̃
[ux1

t

]n+1
,

g =
( g̃

d̃

)

x1
+

(ux1

t

)n+2( η̃

d̃

)

x1
.

By Taylor expansion at t = 0 and recalling that Dj
x̃Dx1u = 0 at {x1 =

0}, we have
ux1
t ∈ Cα(Ḡr). Hence g, h ∈ Cα(Ḡr).

Denote

f0(t, x̃) = u11(t, x̃)−
ux1(t, x̃)

t
.

Then (5.14) can be written as

(5.15) f ′0(t, x̃) = h0(t, x̃)
f0(t, x̃)

t
+ g0(t, x̃),

where

(5.16)

g0(t, x̃) = g(t, x̃),

h0(t, x̃) = h(t, x̃)− 1,

h0(0, x̃) = n+ 1.

Applying Lemma 5.1 to equation (5.15), we obtain f ′0 ∈ Cα−ǫ(Ḡr).
Observing that (5.14) and (5.15) imply

u111(t, x̃) = h(t, x̃)
f0(t, x̃)

t
+ g(t, x̃)(5.17)

=
[

h
f ′0 − g0
h0

]

(t, x̃) + g(t, x̃),

we obtain u111(t, x̃) ∈ Cα−ǫ(Ḡr). Note that α ∈ (0, 1) is arbitrary and
ǫ > 0 can be sufficiently small. We have thus proved

(5.18) ‖u111‖Cα(Ḡr) ≤ C.

Next we show that Dj
x̃u ∈ C3,α(Ḡr) for j ≥ 1, namely Dj

x̃u111 ∈

Cα(Ḡr). By (5.17), it suffices to prove that Dj
x̃f

′
0 ∈ Cα(Ḡr). By differ-

entiating (5.15) and applying Lemma 5.1, this can be proved similarly
as (5.10). Note that equation (5.15) is of the same type as (5.7). We
leave the details to the reader.
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5.4. Ck,α estimate for u and Dj
x̃u (4 ≤ k ≤ n + 2). To prove the

Ck,α estimate for u and Dj
x̃u, we use the induction argument. Assume

that for some 3 ≤ k ≤ n+ 1 and any j ≥ 1,

||u||Ck,α(Ḡr) ≤ C,

||Dj
x̃u||Ck,α(Ḡr) ≤ C.

(5.19)

We want to show that (5.19) holds for k + 1.
We first prove that

(5.20) ||∂k+1
x1

u||Cα(Ḡr) ≤ C.

For this purpose, we introduce an iteration as follows. Let f0 be as given
in (5.15). For i = 1, 2, . . ., suppose fi−1 satisfies

(5.21) f ′i−1(t, x̃) = hi−1(t, x̃)
fi−1(t, x̃)

t
+ gi−1(t, x̃).

We introduce

(5.22) fi = f ′i−1 −
fi−1

t
.

Then

(5.23)
(fi−1

t

)′
=
fi
t

and fi satisfies the equation

(5.24) f ′i = hi
fi
t
+ gi,

where

(5.25)
hi = hi−1 − 1,

gi = g′i−1 + h′i−1
fi−1

t .

From (5.19) and using the Taylor expansion, we have h0, g0 ∈ Ck−2,α(Ḡr).
Therefore hk−2 ∈ Ck−2,α(Ḡr) and gk−2 ∈ Cα(Ḡr). Note that hk−2(0, x̃) =
n − k + 3 for k ≤ n + 1. Applying Lemma 5.1 to equation (5.24), we
obtain f ′k−2 ∈ Cα−ǫ(Ḡr) for any ǫ > 0.

Observe that (5.22)–(5.24) imply

f ′′i−1 = f ′i + (
fi−1

t
)′(5.26)

= (hi + 1)
fi
t
+ gi

= (hi + 1)
f ′i − gi
hi

+ gi.

Hence f ′k−2 ∈ Cα−ǫ(Ḡr) implies that f
(k−1)
0 ∈ Cα−ǫ(Ḡr) for any ǫ >

0, where we denote φ(k)(t) = dk

dtk
φ. From (5.17) we then infer that

∂k+1
x1

u(x1, x̃) ∈ Cα(Ḡr), and (5.20) is thus proved.
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From (5.19) (the induction assumption), we see that for any j ≥ 1,

Dj
x̃hk−2 ∈ Ck−2,α(Ḡr) and Dj

x̃gk−2 ∈ Cα(Ḡr). Differentiating equation
(5.24) and repeating the argument from (5.11) to (5.13), we infer that
for any j ≥ 1,

‖Dj
x̃f

′
k−2(t, x̃)‖Cα(Ḡr) ≤ C.

Hence by (5.26) and (5.17), as above we conclude that

(5.27) ‖Dj
x̃∂

k+1
x1

u‖Cα(Ḡr) ≤ C.

Combining (5.20) and (5.27), we obtain (5.19) for k + 1. We have thus

proved the global Ck,α estimate for u and Dj
x̃u for any k ≤ n + 2 and

j ≥ 1. Theorem 1.3 is proved.

Remark 5.4. In Theorem 1.3 we assume that the boundary ∂Ω ∈ C∞.
This condition can be weakened. For the C2,α regularity, it suffices to
assume ∂Ω ∈ C2,α by the argument in Remark 4.1 (but note that our
moving plane argument assumes ∂Ω ∈ C3,α). For the Ck,α regularity,
k ≥ 3, it suffices to assume that ∂Ω ∈ Ck,1, as we have used the W 2,p

estimate between (5.5) and (5.6).

5.5. A compatibility condition. For the regularity higher than Cn+2,α,
we need to apply Lemma 5.1 to fn. Note that hn(0, x̃) ≡ 1. By Lemma
5.1 and Remark 5.1, fn ∈ C1,α, or equivalently u ∈ Cn+3,α, if and only
if the condition (5.28) holds,

(5.28) gn(0, x̃) = 0 ∀ x̃.

This is a compatibility condition, and if it holds, then by the iteration
(5.22)–(5.25), hn+1(0, x̃) ≡ 0. Hence we can write (5.24) in the form

f ′n+1 =
hn+1

t
fn+1 + gn+1,

where hn+1

t is smooth and we obtain higher regularity for u. In other
words, u ∈ C∞ if and only if (5.28) holds. By Remark 5.1, the solution
has the expression (1.16) in general.

The compatibility condition (5.28) does not hold in general. Indeed,
consider the simplest equation

∆u = N
ux1

x1
+ g̃ in R

n,+,

u = φ on {x1 = 0},
(5.29)

where N is a positive integer, and φ and g̃ are C∞ smooth functions.
Denote f0 = ux1 and write the above equation in the form

(5.30) f ′0(t, x̃) = N
f0(t, x̃)

t
+ g0(t, x̃),

where t = x1 and g0 = g̃ −
∑n

i=2 uii. The argument in §5.2–5.4 implies

that u ∈ CN,α. By Lemma 5.1 and Remark 5.1, u ∈ CN+1,α if and only if
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gN−1(0) = 0. By (5.25) and since h ≡ N for (5.29), we have gN−1(0, x̃) =
dN−1

dtN−1 g0(t, x̃) |t=0. Hence we need the compatibility condition

(5.31)
dN−1

dtN−1
g0(t, x̃) |t=0= 0.

If N = 1, 2, 3, (5.31) can be written explicitly as

g̃(0, x̃)−

n
∑

i=2

φxixi(x̃) = 0,

g̃x1(0, x̃) = 0,

g̃x1x1(0, x̃) +
1

2

∑

i≥2

g̃xixi(0, x̃)−
1

2

∑

i,j≥2

φxixixjxj (x̃) = 0.

(5.32)

We note that when N < 0, the global regularity of solutions to (5.29)
was obtained in [13].

To conclude this paper, we note that the argument in this section
applies not only to the linear equation (1.11) but also to fully nonlinear,
uniformly elliptic equations of the form

(5.33) F (D2u,
ux1

x1
,Du,

u

x21
, x) = 0 in R

n,+.

If F is independent of u/x21, F ∈ C∞, and F satisfies Fq/FM11 ≥ N on
{x1 = 0}, we can prove u ∈ CN+α up to the boundary for α ∈ (0, 1),
where N > 0 is a constant. If Fq/FM11 ≡ N is an integer, then u ∈
CN+1,α (up to the boundary) if and only if the compatibility condition
gN−1(0, x̃) = 0 on {x1 = 0} is satisfied, as in (5.28) or (5.31). If the
operator F depends on u/x21, the above iteration does not work and we
need a different one to get higher regularity. These results are of interest
themselves, and we plan to consider them in a separate work.
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[32] J.I.E. Urbas, Global Hölder estimates for equations of Monge-Ampère type,

Invent. Math. 91 (1988), 1–29, MR 0918234, Zbl 0674.35026.

[33] J.I.E. Urbas, Boundary regularity for solutions of the equation of prescribed

Gauss curvature, Ann. Inst. H. Poincare Anal. Non Lineaire 8 (1991), 499–
522, MR 1136354, Zbl 0757.35024.

Department of Mathematics
Tsinghua University
Beijing 100084, China

and
Centre for Mathematics and Its Applications

Australian National University
Canberra, ACT 0200, Australia

E-mail address: hjian@math.tsinghua.edu.cn

Centre for Mathematics and Its Applications
Australian National University
Canberra, ACT 0200, Australia

E-mail address: Xu-Jia.Wanganu.edu.au


