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ALGEBRAIC HYPERBOLICITY OF RAMIFIED
COVERS OF G2 (AND INTEGRAL POINTS
ON AFFINE SUBSETS OF P,)

PIETRO CORvVAJA & UMBERTO ZANNIER

Abstract

Let X be a smooth affine surface, X — G2, be a finite mor-
phism. We study the affine curves on X, with bounded genus and
number of points at infinity, obtaining bounds for their degree in
terms of Euler characteristic.

A typical example where these bounds hold is represented by
the complement of a three-component curve in the projective plane,
of total degree at least 4.

The corresponding results may be interpreted as bounding the
height of integral points on X over a function field. In the language
of Diophantine Equations, our results may be rephrased in terms
of bounding the height of the solutions of f(u,v,y) = 0, with
u, v,y over a function field, u, v S-units.

It turns out that all of this contain some cases of a strong
version of a conjecture of Vojta over function fields in the split
case. Moreover, our method would apply also to the nonsplit case.

We remark that special cases of our results in the holomor-
phic context were studied by M. Green already in the seventies,
and recently in greater generality by Noguchi, Winkelmann, and
Yamanoi [12]; however, the algebraic context was left open and
seems not to fall in the existing techniques.

1. Introduction

Let k be an algebraically closed field of characteristic zero, X be a
smooth affine surface over x and 7 : X — G2, be a finite morphism. We
are interested in bounding the degree of curves on X, in terms of their
Euler characteristic, under suitable hypotheses on X (or on 7).

We observe that such a problem constitutes an affine analogue of an
issue treated by Bogomolov for compact surfaces in high generality [1].

As usual, these problems have an analogue in the holomorphic con-
text, where one wants to prove, for the same surfaces, the degeneracy
of entire curves. In this direction, we remark that special cases were
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studied already in the seventies by M. Green, who considered the equa-
tion y2(z) = exp(¢(z)) + exp(¥(z)) + 1 in entire functions y, ¢, (he
worked under the condition that the functions ¢, be of finite order).
The solutions correspond to entire curves on the surface X obtained
as complement of a particular configuration of a conic and two lines in
Py; the main point of Green’s proof consists in exploiting a projection
X — G2,

Recently Noguchi, Winkelmann, and Yamanoi [12] vastly generalized
Green’s result, again working over varieties endowed with finite maps
to tori (either compact or not).

However, the algebraic case (and certainly the arithmetic case) re-
mained pratically completely open and does not appear to fall into ex-
isting techniques, even in the simplest instances in dimension two. (We
know here only of a paper of Lu [11], in the compact case, which only
bounds the degree of complete curves of genus 1, i.e., Euler characteristic
0. This is a severe limitation which that paper does not overcome.)

Some progress came from our paper [5], where we employed a new
type of abed result, and in particular solved the case of the complement
of a conic and two lines in the projective plane. In the present paper,
we vastly extend such results.

The whole context is deeply related to Vojta’s conjecture on integral
points, which we now briefly formulate in the split function field case:
Let X be a smooth complete surface, K be a canonical divisor of X,
and D be a reduced normal crossing divisor on X; let X = X \ D be
the complement of the support of D. Following general convention, we
say that X is of log-general type, if D + K is big: This means that
RO(n(D + K)) > n?; see [7], Chap. 1, for other equivalent condition
for bigness. Then Vojta’s conjecture, in the split function field case,
predicts a bound for the degree of affine curves in X, in terms of their
Fuler characteristic.

For instance, Bogomolov’s theorem cited above essentially proved
such bounds for empty D—i.e., for compact X.

In this paper, we prove such bounds in the case where X = X \ D is
an affine surface that dominates the torus G2,; we need mild hypotheses
on normal crossing, expressed in Theorems 1 and 2 below.

Remark. SPLIT AND NONSPLIT CASE. We stress at once that our
method would also apply to the nonsplit case—namely, when X is de-
fined over the same function field where we seek the points. In other
words, in these cases X is a threefold fibered over a curve, and we study
the cross sections.

In fact, the sources of the present methods are mainly [5] (and a func-
tion field version of [3] is also useful in one of the possible approaches).
Now, the results of [5] partly generalize to the nonsplit case (see, for
instance, Step 3 and following arguments in §3 in [5]).
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The simplest and most natural case arises when X = Py is the pro-
jective plane; so X = Py \ D where D is a plane curve. In this case,
Vojta’s previously mentioned conjecture predicts a bound for the de-
gree of curves on X, in terms of their Kuler characteristic, provided
deg D > 4 (and D has normal-crossing singularities). It has long been
known that in the case where D has four components the sought bound
holds. Instead we shall treat here the three-component case.

Now we shall state in detail our results. Consider a smooth projective
curve C of genus g, and a finite nonempty subset S C C, and let C = C\ S
be the corresponding affine curve. We also put

xc =29 —2+4(5)

and call it the FEuler characteristic of the affine curve C. By analogy
with the number field case, we set Og = k[C], the ring of regular func-
tions on the affine curve C. The integral points X (Og) on the surface
X thus correspond to curves Y (not necessarily smooth) lying on X,
parametrized by the smooth curve C, and we set xy = xc.

Theorem 1. [Vojta’s conjecture for Py minus three divisors]. Let
D=Di+...4+D, CPy be a curve whose components D; meet transver-
sally at each point of intersection. Suppose r > 3 and deg(D) > 4. Then
there exists a number C; = C1(D) such that for every curveY C Py\ D,
we have the following bound:

(1) deg(Y) < Cy - max{1, xy }

Remark. The condition on the degree of D—namely, deg D > 4—is
best possible. Actually, if deg D < 3, no bound like (0.1) can generally
hold (see [5], §4 and its Addendum, §(ii)).

The condition on the normal-crossing singularities is weaker than in
the usual Vojta’s conjecture: for instance, each component of D can
have arbitrary singularities at any point where it does not intersect any
other component.

It will be clear from the proof that our bounds are effective and that in
principle one may determine all the curves of given Euler characteristic
on the affine surface Py \ D.

As we mentioned, the case when D is a configuration of a conic and
two lines in general position was open until recently and solved in [5].
Its analogue in complex analysis (Nevanlinna theory) was conjectured
(actually for a special configuration) by M. Green in the seventies, and
was solved only recently by Noguchi, Winkelmann, and Yamanoi in
much greater generality [12].

Note that under the hypotheses of Theorem 1, the surface X admits
a dominant map 7 : X — G2; if F; = 0 are equations for the compo-
nents D;, then the map (F{8 s /pdeet pdeels ) pdea 2y tales values in
G2,. Actually, if the number of components of D is exactly three, every
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regular map from X to a semi-abelian variety factors through such map
7 (some authors say that the “logarithmic irregularity” is 2, or that the
generalized Albanese variety of X is the two-dimensional torus G2).
We note that if the logarithmic irregularity is higher than 2, the results
improve, since we can apply the general theorems of Faltings and Vojta.

Theorem 1 will be deduced from a more general result, i.e., Theorem
2, below, which applies to surfaces admitting such maps to G2,. We shall
comment about the classification of these surfaces after Theorem 2.

As above, X is a smooth affine surface and 7 : X — G2, a finite map
to the torus. We suppose that G2, is embedded in P as the complement
of the divisor UVIW = 0 (U, V, W being homogeneous coordinates in Ps).

Theorem 2. Let Z C X be the ramification divisor of the finite
map © : X — G2,. Assume that the closure of ©(Z) in Py does not
intersect the set of singular points of the boundary of G2, in Po—i.e.,
(0:0:1),(0:1:0),(1:0:0). If X is of log-general type, then there
exists a number Cy = Co(X, ) such that for every curve Y C X of
Euler characteristic xy the following inequality holds:

degY < (- max{1, xy }. (0.1)

Remark: CLASSIFICATION OF THE RELEVANT SURFACES. We recall
that for a surface X endowed with a finite map to the torus G2, it can
be proved that

(1) X itself is a torus (so it has log-Kodaira dimension 0, which
happens if and only if 7 is unramified), or

(2) it is a Gy,-bundle over a curve C with Euler characteristic > 0
(for instance a product C X G,,), so it has log-Kodaira dimension 1, or

(3) it is of log-general type (log-Kodaira dimension 2).

This classification can be easily obtained from a theorem of Kawa-
mata ([8], Theorem 27; see also [12], Theorem 2.12).

In cases (1) and (2), no bound of the form (0.1) above may hold for
general curves on X; in the third case, our Theorem 2 provides such
bounds (under some natural hypothesis on the compactification of X).
Note that in case (2) one can easily prove a bound for the degree of
curves of Euler characteristic 0, i.e., those uniformized by G,,; for such
curves, in case (3) one could prove their finiteness, as a corollary of our
results. This fact should be compared with the recent results of Lu [11]
in the compact case, where he proves the finiteness of genus one curves
on complete surfaces of general type dominating an abelian surface.

Remark. In the statement of Theorem 2, by degY we mean the
degree under a projective embedding of a completion X of the surface
X in a projective space (i.e., on the choice of an ample line bundle on
X ). Hence it is meant, here and in the sequel, that the number Cs also
depends on such embeddings. Inspection of the proof will show that

the numbers C1,Cy, ... appearing in the statements will depend only
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on the degree of X and the degree of 7. Also, they will be effectively
computable in terms of deg X, deg.

In the particular case considered in Theorem 1, the hypothesis on
the closure of 7(Z) shall turn out to be a consequence of the normal-
crossing hypothesis on D. As shown in Example 3, this latter hypothesis
cannot be removed. Nevertheless, for every surface of log-general type
endowed with a dominant map to G2,, we can prove a weaker statement
in the direction of Vojta’s conjecture, which needs no further hypothesis.
Namely, we can prove the following:

Given a smooth surface X of positive log-Kodaira dimension endowed
with a finite dominant map © : X — G2, the bound (0.1) holds for
every curve Y C X such that the Zariski closure in Py of (YY) does not
contain any of the singular points of the boundary of G2, in Py.

The next result (Theorem 3) will be presented from a more algebraic
view point, so we introduce the relevant notation (see also the next
section). For a fixed (abstract) projective curve C and a finite set of
points S C C, we denote by C = C \ S the complement of S, and by
Og = k|C] the corresponding algebra of regular functions. Its elements
will be called S-integers, in analogy with the number field case. The
group of S-units OF accordingly consists of the rational functions on C
having all their zeros and poles in S.

Let us return to our surface X. Every morphism C — X corre-
sponds to an integral point in X (QOg). Hence, to study the curves on
X parametrized by the abstract curve C, one is led to consider integral
points on the surface. All of our previous results could be reformulated
in these terms.

Up to birationality, the surface X is defined in G2, x A! by an equation
of the form f(u,v,y) = 0. For such a surface, we may often control the
integral points over Og also by another method. In this respect we
shall prove the following theorem, in which we do not even assume the
smoothness of the surface implicitly appearing in the statement.

Theorem 3. Let f(U,V,Y) € k[U,V,Y] be an irreducible polynomial,
monic in'Y . Suppose that the discriminant A(U, V') € k[U, V] of f with
respect to Y has no multiple nonmonomial factors. Then, for an affine
curve C as above, one of the following cases occurs:

(a) There exist numbers Cs, Cy, effectively computable in terms of f
and x = Xxc, such that the solutions (u,v,y) € 0% x 0% x Og of the
equation f(u,v,y) = 0 satisfy either

max{deg(u),deg(v),deg(y)} < Cs
or a multiplicative dependence relation u® = X\ - v°, for a pair (a,b) €
72\ {(0,0)} with max{|al|, [b|} < C4 and X € x*.

(b) After an automorphism of G2,, there is a Q € k[U] such that

AU, V) = QU)V® and f(U,V,Y) = VIP(U, V™Y + A(U,V)), where
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P c k[UTY, W], A(U,V) € slUT,VEY, a,l,m € Z, a > 0. Also, either
fUV,Y) = (Y + AU V)L —bV"UP, where b € k*, d,n,p are positive
integers, or deg(u) < Cs, and the number of possible u is finite, bounded
only in terms of deg f and x.

We note that the assumption on the discriminant is “generically”
true; i.e., the polynomials of given degree for which it is not verified
form a proper algebraic subset of the space of all such polynomials.

Also, in alternative (b), the (possibly singular) surface £ defined by
f in G2, x Al is isomorphic to a product C’ x G,,, where C’ is a curve,
and moreover it is a cover of G2, ramified at most above finitely many
translates of a same one-dimensional algebraic subgroup of G2, (i.e., the
subgroup defined by U = 1 in the new coordinates). Actually, in the first
of cases (b), this surface is unramified above G2,, whereas in the second
case we can have only finitely many possibilities for u, with effectively
bounded height.

Acknowledgments. The authors are grateful to an anonymous ref-
eree for his careful reading of the manuscript and his useful technical
remarks.

2. Preliminaries on heights

All of the present results may be formulated in two different, though
equivalent, languages, either “geometrical” or “diophantine,” so to say.
Namely, either we bound the degree of the image ¥ C X of a map
C — X, or we bound the degree of the functions on C that express this
map; in turn, this last degree may be seen as a height function. Hence we
start by detailing this (elementary) connection; we believe that this will
add clarity to our exposition and also stress the geometrical-diophantine
link.

Morphisms and integral points. Let x be, as before, an alge-
braically closed field of characteristic 0, C a smooth complete curve
defined over &, of genus g = ¢g(C), S C C a finite nonempty set of points
of C. We shall consider nonconstant morphisms ¢ : C — X; note that ¢
corresponds to an integral point on X (Og) = X (&[C]), and moy to a S-
unit point (u,v) € G2, (k[C]). We fix a projective embedding X < Py,
of a smooth complete surface X (recall X = X \ D), so that we can
speak of the degree degY of a curve Y C X.

Note that in Theorems 1 and 2 we have a bound for the degree of
the image Y = ¢(C), whereas in Theorem 3 we bound the degree
of the functions u, v defined on C; this degree is a height. Note also
that this last bound is valid, however, only excepting some possibly infi-
nite families of multiplicative dependent pairs of functions (u,v), which
in fact appear in the statement of Theorem 3, whereas no exception
appears in the previous statements.
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In fact, we can explicitly explain these differences and analogies by
relating the two kind of degrees as follows.

We may write m o ¢ = (u,v), where u,v are rational functions on
C, with zeros and poles only in S. In one direction, it is easy to see
that a bound for the degree of the functions u,v implies a bound for
deg(¢(C)), on taking intersections with lines au + bv + ¢ = 0 (see, for
instance, Lemma 3.2 of [5]).

In the inverse direction, given (as in Theorems 1 and 2) a bound on
the degree of the image Y = ¢(C), we can recover as follows complete
information for the u, v and their degrees. We give a few details.

First, note that max(deg(u),deg(v)) < deg(y) - degY: it suffices to
count, for example, zeros, or poles. So, if ¢ is birational on its image, the
maximum of the degrees of u,v is bounded by the degree of the image.

If instead ¢ : C — Y is not birational, then we contend that only two
things may happen:

(a) The degree of u,v is bounded uniformly by C' degY” where C only
depends on the curve C, or

(b) xy = 0 and ¢ factors through G,, as C — G,, — Y. In this case,
we can view the pair (u,v) as a map G,,, — G2 ; since the invertible reg-
ular functions on G, form a cyclic group modulo constants, u, v must be
multiplicatively dependent. Now, after composing with endomorphisms
x — z¥ of G,,, one obtains solutions u,v of arbitrarily large degree.

To prove that this alternative necessarily holds, we use the following
known fact, whose proof shall be recalled below in a moment.

Fact. Let f : C1 — Co be a morphism of degree d > 1 between the
smooth affine curves C1,Ca. Then xc, > d - xc,-

Given this, take C; = C, and let 5 : Co — Y be the desingularization
of Y. Then ¢ factors as 9 o f, for a morphism f : C; — Co of smooth
curves. If x¢, > 0, then, by the Fact, deg(y) < xe,/xc, and we fall
into (a), because max(deg(u),deg(v)) < deg(y)degY < Csxc, degY.
Otherwise, x¢, = 0, so Co = G,,, whence u,v are necessarily powers
of a single function on C, and this gives the multiplicative dependence
relation mentioned in (b) and in Theorem 3.

To conclude this pause, here is the promised easy proof of the Fact:
Let f : C1 — Ca be the continuation of f to the complete smooth models
for C1,Cs; for i =1,2, denote by g; the genus of C; and let S; = C; \ C;.
By hypothesis f~1(S3) C S;. By Riemann-Hurwitz formula we have
291 —2 = d(2g2 — 2)+ 3 pec, (d— p(P)) where p(P) i= £(f~L(P)). Then

Xc dxz + §(S1) — di(S2) + X pec, (d — p(P))
dxc, + f71(S2) — di(S2) + X peg, (d — p(P))
dxc,-

VIV
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In the sequel, cj,... will denote computable numbers that, unless
otherwise stated, will depend only on X, 7 (and actually only on their
degree).

Heights. As usual, for a rational function a € x(C), we let h(a) =

hi(a) be its height—i.e., its degree as a morphism a : C — IPy. For n > 2

and elements uy, ..., u, € £(C) not all zero, we denote by hs(uy : ... :
Up), or simply h(uj :...:uy), the projective height
h(uy ... cup) =hg(uy ...t up) = —Zmin{v(ul),...,v(un)}.
veC

Recall that X is embedded in Py, so a morphism ¢ : C — X is given

by a point Pys(k(C)) and we define its projective height accordingly—

namely, if ¢ is given by ¢(p) = (ui(p) : ... : up(p)),
H=H(p)=hs(uy:...:up).

Start of the proofs. We denote by Z C X the ramification divisor
of 7 : X — G2,. The Euler characteristic of the affine curve C = C \ S
will be denoted by x.

In the sequel, with the purpose of proving Theorems 1 and 2, we
shall suppose that ¢ : C — X is nonconstant and that the curve ¢(C)
is not contained in the ramification divisor Z, for otherwise we have
automatically a bound for its degree.

We start by proving a crucial proposition that shows that the contri-
bution of the ramification divisor to the height of ¢ is negligible. This is
at the heart of the present method, and strongly depends on a bound ob-
tained in [5, Theorem 1.2] for the multiple zeros of a polynomial A(u,v)
in S-unit functions (u,v) on a curve.

Proposition 1. . Let X, Z be as above; for every e > 0 and every in-
teger x there exists a number C = C(X,m, ¢, x) = C'(X, 7, €)-max(1, x)
such that for every morphism ¢ : C — X (with xc = x) of height
H > C, with o(C) ¢ Z, the degree of the divisor p*(Z) satisfies

(2) deg(p*(2)) < eH.

In particular, the number of points p € C such that p(p) € Z is bounded
by eH.

We stress that we consider the morphism ¢ : C — X from the non-
complete curve C. It may be that the points in S are sent to the points at
infinity of Z with high multiplicity, so that the inequality like (1.1) can

fail (for small €) if ¢*(Z) is replaced by ¢*(Z). This certainly happens
if Z is big, which occurs in the most interesting cases.

Proof. We can suppose that Z is nonempty. By arguing on each ir-
reducible component of Z, we can also suppose that Z is irreducible.
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Since X is smooth and Z has codimension 1, we may cover X by a fi-
nite number of Zariski open subsets U such that Z has a local equation
fu = 0 in each of the subsets U. The divisor 7(Z) will be defined in
G2, by an irreducible polynomial equation A(X,Y) = 0. Note that A is
not a monomial, because Z is nonempty. The polynomial A induces a
regular function 7*(A) on X, through pull-back by 7. Since Z is inside
the ramification locus of 7, 7*(A) is divisible by fZ in the local ring of
Z in U, so we can write 7*(A) = f#g, where g = gy is regular on U,
since A is regular on 7(U) (in fact on the whole G2,).

Now let p € C be a point with ¢(p) € ZNU. Write m o ¢ = (u,v),
where u,v are S-unit functions on C. Then the contribution of p to
©*(Z) is ap = ordy(fu o ¢). Since 7*(A) = fZg, with g regular at p, we
have

ordy(A(u,v)) > 2ay.

Then, taking into account all the open sets in the cover and summing
over the points p in ¢~1(Z), we obtain

(3) degp*(Z)= > ordpfuop< > (ordy(A(u,v)) —1).

p(p)ezZ o(p)eZ

To estimate the right-hand side, we note that the summation includes
only points p € C =C\ S, and we distinguish two cases:

Suppose first that u,v are multiplicatively independent modulo k*;
we then apply Theorem 1.2 from [5], to obtain directly from (3) a bound

deg p*(Z) < eH

provided H is larger then some number of the shape C'(X, 7, €)-max(1, x)
(because the polynomial A(X,Y") depends only on X, 7); this proves the
sought conclusion in this case.

Suppose now that u,v are multiplicatively dependent modulo con-
stants, so they satisfy a so-called generating relation u"v® € k*, with
r,s coprime integers. This case could also be treated by using the re-
sults of [5], as in the first case, but the statement of Theorem 1.2 in [5]
was not completely explicit for this situation; so we give a direct simple
argument here.

Interchanging wu, v if necessary we may write u = t*,v = at”, with
a € k" and a suitable S-unit function ¢ € OfF. We have to bound
the multiple zeros of B(t) = B, (t) := A(t*,at”) and to show that
> peclordpB(t) — 1) < eH if r,s are large enough with respect to e
and y.

Consider the Laurent polynomial B(T) := A(T*,a1") € s[T,T~!]
and factor it as a product of a power of T times coprime factors (7T'— )™,
where § € k* and m = m(3) is a positive integer.

The power of T' gives no contribution because ¢ has no zeros on C.
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The total number of multiple zeros of terms of the form ¢ — 3, each
zero counted with a weight equal to “multiplicity —1,” for a given S-unit
t and variable § € k*, is bounded by the degree of the zero divisor of
the differential dt/t; however, this degree is bounded by the degree of
the pole divisor +2¢g — 2, so by x only, since ¢ is an S-unit. Also, m(f)
is bounded by (deg A)?, in view of Hajos Lemma [[13], Lemma 1, p.
187]. Hence, to conclude it suffices to bound the number of 3 such that
m(5) > 1. Let us call Q the set of such .

For this task note that each such 8 is a common zero of B(T) and
B'(T). Using the definition of B(T'), we find that (8%, af") is a com-
mon zero of A(X,Y) and A*(X,Y) := ng—)’?. + rYg—é. Since A(X,Y)
is irreducible, these last polynomials can have common factors only if
A(X,Y) divides A*(X,Y); comparing degrees, this implies that A* is a
scalar multiple of A. But then, by differentiation, we immediately find
that B/(T) is a scalar multiple of B(T')/T, which in turn implies that
B(T) is a constant times a power of T'. In this case, as observed, there
would be no multiple zeros of B(t).

Hence we may suppose that A, A* are coprime, and by Bezout’s The-
orem the number of common zeros is bounded by (deg A4)?.

We have proved that the cardinality of the set {(8%,a8") : 5 € Q}
is bounded by (deg A)2. Since, for fixed a, the map 3 — (B%,af") is
injective, due to the coprimality of r, s, the same bound holds for the
cardinality of €2, concluding the proof. g.e.d.

82 Proof of Theorem 2.

Let us first outline the strategy of our proof, which makes essential
use of Proposition 1 from last paragraph (and which ultimately rests on
the ged estimates of [5]). Let X D X be a smooth projective closure of
X such that the map 7 extends to a regular map 7 : X — Ps. Note that
we do not require that 7 be finite (so X is not necessarily its normal
completion, as defined, for instance, in [12]).

Let Y C X be an irreducible curve, and let Y C X be its closure in
X. The hypothesis that X is of log-general type will be used to prove
that the ramification divisor Z C X is big; so, if Y is not a component
of Z (in which case its degree would be bounded in terms of the surface
only), the intersection product Y.Z is at least ¢ deg(Y), for some positive
number ¢. On the other hand, the degree of ¢*(Z), which measures the
degree of intersection of Y and Z outside the points at infinity of X is
bounded by edegY by Proposition 1. So Y and Z must intersect with
high multiplicity at some point at infinity. This will be shown to be
impossible, by abc-like inequalities.

Let us now go to the details of this proof.
To prove that Z is big, we shall use the following lemma.
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Lemma 1. Let 7 : X — Py, K5 and Z be as before. Let Ly, Ly, L3 be
three lines in general position in Py, and let D be the support of 7* (L1 +
Lo+ L3) (i.e., the sum of the components of 7*(Ly + Lo + L3) counted
with multiplicity 1), and suppose it has normal-crossing intersections.
Then D + K 5 is linearly equivalent to Z. In particular, if X is of log-
general type, then Z is big.

Proof. By [7] (1.11), the canonical class on X may be computed as
Kf( = ﬁ'*(Kp2) + Ram,
where Ram is the ramification divisor of 7. On the one hand, Kp, is
the classNOf —(L1 + La + L3); on the other hand, Ram decomposes as
Ram = Z+ Rp, where Rp is the contribution coming from the support
contained in D. Also, 7*(Ly + Ly + L3) = D + Rp. Substituting, we
obtain the lemma. q.e.d.

To obtain a lower bound for the intersection multiplicity Y.Z, we use
the following well-known general fact:

Lemma 2. . Let X be a complete surface embedded in a projective
space. Let Z C X be a big divisor. Then there exist a finite set of curves

Yi,..., Y in X and a positive number ¢ such that for every curve Y C X
with Y € {Y1,...,Y,} the following inequality holds:
(4) Y.Z>c-deg?.

Proof. Let H be a hyperplane section of X and Z a big divisor. By
Kodaira’s lemma [[9], Prop. 2.2.6], there exists an integer n > 0 and an
effective divisor E such that nZ is linearly equivalent to H + E (see also
[7]). Let Y be a curve not contained in the support Y3 U...UY, of E.
Then

~ ~ 1 ~ 1~ 1
Y.Z=—(H+E)Y >-HY = —degV,
n n n
so the lemma is proved with ¢ = 1/n. q.e.d.

We now proceed to prove Theorem 2. Let L1+ Lo+ L3 be the boundary
of G2, in Py; more precisely, using coordinates (U : V : W) in Py, let
Li:U=0,Ly:V =0and L3 : W = 0 be the equations for the
three lines at infinity. By hypothesis, now the image #(Z) C Py of the
closure of the ramification divisor of 7 does not contain any of the points
(1:0:0),(0:1:0),(0:0:1).

Let Y C X be an irreducible curve; suppose it is defined by a bira-
tional proper morphism ¢ : C — Y C X, from a smooth affine curve
C =C\ S as before. Let u,v again be S-units such that the morphism
7o is given as (u,v) (or, in homogeneous coordinates, as (u : v : 1)).
Let H = max{h(u),h(v)} be the height of (u,v). Suppose that Y is
distinct from any of the curves Y1, ...,Y, appearing in Lemma 2 (other-
wise, a bound for its degree follows at once). Then by Lemma 2 we have
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Y.Z > cdegY, for a number c depending only on X and . Letting

f(U,V,W) =0 be an equation for 7(Z), this fact can also be stated as
an inequality of the form

Z max (0, ord, f(u,v,1)) > coH

vel
for a suitable cy. Proposition 1 can also be stated as an inequality of that
form, but in the other direction. Namely, for every € > 0, the inequality

Z max(0,ord, f(u,v,1)) < eH
veC\S

holds, provided H is large with respect to e. Chosing € = ¢3/2, we have

Z max (0, ord, f (u,v,1)) > 62—2H
ves

The hypothesis of Theorem 2 that 7(Z) does not contain any of the
singular points of Ly + Lo + L3 implies that f(0,0,1) does not vanish,
so f(u,v,1) is a sum of monomials in u,v with nonzero constant term.
Then the above displayed inequality implies, via the generalized abc
inequality of Brownawell and Masser [2], that either u,v satisfy some
fixed algebraic relation or have bounded height, concluding the proof.

3. Proof of Theorem 1

We shall first deduce Theorem 1 from Theorem 2; then we shall briefly
sketch an alternative proof, which no longer depends on Theorem 2 but
instead uses tools from the arithmetic case treated in [3].

Proof. Assume the hypotheses of Theorem 1. Put X = Py \ (D; U
...UD,), X =P,.

Let Fy, Fy, F3 be forms without multiple factors defining, respectively,
the divisors Dy, Dy, D3 + ...+ D, of degrees ay,as,as. Note that a; +
as + ag > 4. By the normal-crossing condition appearing in Theorem 1,

the three forms have no common zero in Ps.
Define 7 : X — Py as

T(x:y:z) = (Fi(x,y,2)2% : Fy(x,y,2)"% : F3(x,y, 2)?%),

and note that it is everywhere well defined and finite, because of our
assumptions that not all the F; vanish at a same point. We embed
G2, < PPy in the usual way so that X = #71(G2,) = X \ |D|, where
D =Dy + ...+ D,. We let 7 be the restriction of 7 to X.

By Lemma 4, Z is linearly equivalent to D + Kp, = (deg D — 3)L,
where L is line in Ps. In particular, the ramification divisor Z is ample
(so by Lemma 2.1 X is of log-general type). Hence we have only to show
that the ramification divisor Z does not meet D at any point P such that
7(P) is a singular point of Ly + Lo + Lg. For this we argue locally at P
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and we suppose without loss that P = (0: 0 : 1). Suppose for simplicity
that Fy(P) = Fy(P) = 0, so F3(P) # 0. Since the D; are supposed
to intersect transversely at P, and since Fi, F» do not have multiple
factors, the functions £ := Fy /2%, n := Fy /2 are local parameters at
P. Now the map 7 locally at P is defined as (§,n) — (£%2%«a,n™%f3),
for functions «, 8 defined and not zero at P. The ramification divisor
is calculated locally by means of the differentials, which we express in
the coordinates &, 7. The determinant of the Jacobian matrix is of the
shape

£a2a3—177a1a3—1,7

9

where the regular function v does not vanish at P. Actually, v is the de-
terminant of the matrix with rows given by (agaza+&ag, {am), (nBE, aras B+
n/n). This proves that the only ramification component passing through
P lies in the support of D, which means that the closure of Z does not
contain P.

Now Theorem 2 can be applied, and its conclusion implies Theorem 1.
q.e.d.

Alternative proof. We only sketch another possible approach. As we
repeatedly remarked, the nonconstant maps C — X = P\ (D1U...UD,)
correspond to S-integral points on Py with respect to the divisor D =
Dy + ...+ D,. Whenever D has at least four components, it is well
known how to prove the degeneracy of the set of integral points, both
over number fields and over function fields. In the crucial case when D
has just three components, Proposition 1 provides an extra divisor Z
with respect to which the points in question are “almost integral.” We
then dispose of four ample divisors, no three of them intersecting, as
noticed. Now, the proof of the Main Theorem of [3] (or Theorem 2.1 of
[4], but actually Theorem 1(a) in [3] would suffice in this case) applies
with almost no modification to this situation, after replacing Schmidt’s
Subspace Theorem by its function field analogue proved by Wang [15].
Since the latter is effective, this proof also leads to effective estimates.

Note moreover that Wang’s Subspace Theorem is proved also in the
nonconstant case—i.e., for linear forms with nonconstant coefficients in
a given function field. So this second proof too extends to the nonsplit
case.

4. Proof of Theorem 3

In the sequel we shall use constants C1, ... (whose dependencies shall
be indicated), but not necessarily with the same meaning as in the
statement.

Let d := degy f; since f is monic in Y, d cannot be zero. We denote
by U,V indeterminates over xk and we let « satisfy f(U,V,«) = 0. Note
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that « has degree d over x(U,V); we denote by a = aq,...,qq its
conjugates.

Let A = A(U,V) € k[U, V] be the discriminant of f with respect to
Y, so we have A = HK]-(ai—aj)z (and we interpret A = 1ifd = 1). Our
assumption says that A does not have multiple factors as a polynomial
in U, V, apart possibly from monomials in U, V.

Now let h := f(U,V,Y)/(Y — a) = [[1.i<q(Y — ;). The division
algorithm shows that h € s[U,V,a,Y]. Hence the discriminant of h
with respect to Y is a polynomial g(U,V,«a) € &[U,V,a], and we have
9(U,V,a) = [licicjcalai — a;)?.

Hence, taking into account that f'(U,V,a) = [];o;(a — a;) (where
we have denoted with a dash differentiation with respect to Y'), we get

AU,V) = (U, V,a)g(U. V. ).
This is an identity in &[U,V,a] = &[U,V,Y]/(f). Hence it can be eval-
uated at our solutions (u,v,y) € O% x 0% x Og, which in fact satisfy
flu,v,y) = 0. We obtain

(5) Au,0) = [ (u,0,9)9(u,v,y).

We now argue similarly to Proposition 1 above, which in fact may be de-
scribed as a more abstract “discriminant argument.” We view f’ 2(u, v, Y)
and g(u,v,y) as rational functions on C. Since they are polynomials in
their arguments u, v,y € Og, they in fact lie in Og.

Let p € é\S be a zero of f’2(u, v,y). Then p is not a pole of g(u,v,y),
and so (4.1) shows that p is a multiple zero of A(u,v).

Now we invoke Theorem 1.2 in [5], which bounds the number of such
multiple zeros outside S, provided u, v are multiplicatively independent.
As in the above proofs (through Proposition 1), this is a most crucial
tool in the argument.

More precisely, by exactly the same arguments as in Proposition 1
(applied to A(u,v) in place of the A(u,v) appearing therein), we de-
duce from Theorem 1.2 of [5] that for every € > 0 one of the following
alternatives holds:

(i) The number of zeros of f'(u,v,y) outside S is small—mnamely,

(6) Z ord, (f'(u,v,y)) < eH (u,v).

peC\S
Here we are using the notation about heights introduced in §1. This
says that “f’(u,v,y) is an almost S-unit.”

(ii) The S-units u,v satisfy a relation u® = Av® with A\ € x* and a, b
integers not both zero and such that |a| + |[b] < C1(f, x,¢€), where Cy
depends only on f, x, and e.

In a moment we shall deal with (i), on choosing some small € depend-
ing only on f and |S|. Taking into account this future choice of €, we
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can at once dispense with (ii), by saying that if it holds, we are in one
of the cases of the conclusion.

So, it is sufficient to deal with (i), for a given small enough €. Since
k(U,V, a) has transcendence degree 2 over k, there exists a fixed nontriv-
ial irreducible polynomial relation R(U,V, f'(U,V,«)) = 0, from which
we derive

(7) R(u,v, f'(u,v,y)) = 0.

Setting w := f'(u,v,y), we view (7) as a linear combination over s of
monomial terms u®vbw®, for certain integer vectors (a,b,c) € Z3. We
want to apply a theorem of Brownawell and Masser on relations in S-
units (or almost S-units); for this however we need that there are no
vanishing proper subsums. Let us analyze this.

Suppose that (7) contains some proper vanishing subsum, expressed,
say, by an equation P(u,v,w) = 0; these subsums are finite in number
and depending only on R, and hence only on f. Since R is irreducible,
we can eliminate from the equations R = P = 0 the variable w and
obtain a nontrivial relation T'(u,v) = 0. This relation gives rise to a
map from C to the curve defined by T'. By the preliminaries explained
in the paragraph “Morphisms and Integral Points,” at the beginning
of §1, we conclude from such a relation either a bound for H(u,v) or a
multiplicative relation of the sought type and with the sought bound for
the degree. (Here we could also apply [2] with no problems because u, v
are S-units.) The bounds shall depend on 7', but, as remarked, there are
only finitely many possibilities for T, depending only on f. (Note that
the number of these relations and the degree of the resulting equation
T = 0 are bounded in terms only of deg f.)

Therefore, we shall suppose from now on that no proper subsum of
(7) vanishes.

On dividing by a monomial term in U, V', we may suppose that R is a
Laurent polynomial in u,v that contains the term 1; with this normal-
ization, let us denote by X the set of vectors (a,b,c) that correspond
to monomials appearing in R. The number of terms in R is bounded
dependently only on f, so by [BM], Theorem 1, we get:

(8) max H(u*v"w®) < Co(f)(x + eH (u,v)).
(a,b,c)eX

Here the last term on the right arises from (6), taking into account that
w may be not quite an S-unit, but that by (6) it becomes an S’-unit for
a set S’ containing at most |S| + eH (u,v) points.

To exploit (8) we consider again some cases. A first case occurs when
the set ¥ contains three linearly independent vectors. In this case, by
multiplicative elimination we may bound H(u), H(v) by C3(f) times
the right side of (8). Hence, for € small enough in terms of f, we obtain
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that H(u,v) is bounded by Cy(f)x, and we fall into one of the cases of
the sought conclusion.

If ¥ does not even contain two independent vectors, then the relation
may be written as Ry (u'v™w") = 0 for a nonzero polynomial R;. This
falls as a special instance of relation (9) below and can be treated by
the arguments to follow (9).

If ¥ contains two but not three independent vectors, we may find
a basis for the lattice they generate, and by a further 2 x 2 unimod-
ular transformation we may assume that such a basis has the shape
(I,m,0), (a,b,c). Note that ¢ # 0, because otherwise R(u,v) = 0 would
yield an algebraic relation between U, V.

Replacing the lattice by the primitive lattice defining the same Q-
vector space, we may even assume that ged(l, m) = 1 and by completing
(I,m) to a basis of Z?, we may assume that (I,m) = (1,0): note in fact
that these lattice transformations correspond to automorphisms of G2,,
contemplated in the statement.

Let us then perform such an automorphism, expressing our functions
in terms of the new coordinates on G2,. (Now the polynomials will
become Laurent polynomials with respect to U,V.) From now on we
shall refer to these new coordinates.

After these transformations, the relation R = 0 may be written as

(9) R2(U7 Mf/C(U,‘/,OZ)),

where M is a suitable monomial in U,V. We may conjugate « over
k(U,V) in all possible ways and obtain that M f'“(U,V, 3) is algebraic
over k(U) for all § such that f(U,V, ) = 0. Taking the product over g
and recalling that A(U, V') = [[ f(U, V, B), we deduce that MIA(U,V)
is algebraic over x(U). Therefore, differentiation with respect to V' sends
V™A€ to zero, for a suitable integer n. Hence A(U,V) = Q(U)V~"™/¢,
where @) is a polynomial (so ¢ divides n). Geometrically, this means
that the original cover of G2, is ramified precisely above a finite union
of cosets of certain algebraic subgroups (in the new coordinates, they
are defined by U = p, where Q(p) = 0).

Now, the equation f(U,V,Y) = 0 may be seen as defining a (possibly
reducible) curve over K := k(U) (that is, in the variables V,Y"); by the
previous conclusion on the discriminant, in particular each component of
this curve is an unbranched cover of G,,, through the V-map. It is then
well known that the defining equation of each component gives a cyclic
extension of K(V). Actually, by the conclusion on the discriminant,
this entails that the polynomial f may be written as a product of m
(irreducible) factors of the shape (Y —A(V))¢ —bV*®, where A € K[V *!],
b € K and e, s are coprime integers, ¢ > 0. Not to insert the (known)
argument inside the main reasoning, we pause to recall a proof of this
fact in a remark.
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Remark. We prove the following claim:

Let K be an algebraically closed field of characteristic 0 and let g €
K[V,Y] be an irreducible polynomial monic and of degree e in'Y such
that its discriminant with respect to Y 1is a constant times a power of
V. Then g(V,Y) = (Y —a(V))¢ — bV*® where a € K[V], b € K* and s
18 an integer prime to e.

Proof. If e = 1, the conclusion holds trivially, so we suppose e > 1.
In view of the condition on the discriminant, the extension L of K (V)
defined by ¢ is ramified only above 0 and oo (above the V-line). The
Hurwitz genus formula for L/K (V') shows that L/K must have genus 0
and be totally ramified (i.e., to order e) above both points. By Liiroth’s
theorem we have L = K(T) for some T' € L, so V = p(T) for some
rational function p in one variable over K, of degree e. The above con-
dition says that L is totally ramified above V = oo, say at Ty, and by
a homography we can assume Ty = oco. This allows us to assume that p
is a polynomial of degree e. The condition that this is totally ramified
above 0 says that p(T') = (T — T1)° for some T1 € K and now we may
assume 77 = 0 and [ = 1 after a translation and dilation, so T¢ = V.

The roots of g in Y lie in K(T') and actually in K[T] since g is monic
in Y (and KT is integrally closed); so they may be written uniquely as
ag+ a10T + ...+ ap,0™T™, where a; € K are fixed and 6 runs through
the eth roots of unity. The difference of any two roots must be a constant
times a power of T' because of the assumption on the discriminant. This
immediately shows that, among the a; such that i Z 0 (mod e), all but
one vanish—say, as # 0 for a single s not multiple of e. Since the roots
are pairwise distinct we have that actually s is prime to e. Then the sum
of the other terms is a polynomial in K[T¢] = K[V], which we denote
by a(V'). The roots of g may then be written as a(V') 4+ as0°T*, and this
clearly proves the assertion, with b = af.

Let us now go back to the argument we had interrupted. Since f is
irreducible over k(U, V'), necessarily the A, b that occur form a complete
system of conjugates of any of these pairs, over (U); let us denote them
as A7,b%, for automorphisms o of K/k(U). This also proves that e, s
may be chosen so not to depend on the factor, which in turn yields
me = d.

If e = 1, we may absorb bV* into A(V) and suppose b = 0. From
our conclusion on the discriminant, we deduce that A7 = A + ¢, V"7,
for ¢, € K and integers r,. If an integer r is among the r,, then a
term ¢V" must appear in A(V). Clearly V" appears in A — A if and
only if ¢ # ¢, which happens precisely when o is outside a certain
subgroup of automorphisms of Gal(K/k(U)). Suppose that for distinct
integers r,r’ the corresponding such subgroup is proper. Then there
exist automorphisms o not lying in any of the two subgroups, and so
such that both V", V" appear in A° — A, a contradiction with the fact
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that A — A = ¢, V" . Hence the said subgroup is proper for at most one
integer r; this implies that r, = r for all o, and that A(V) = cV"+B(V)
where ¢ € K and B € x(U)[V*!]. However, since f € x[U*!, V! Y]
(recall that we have performed an automorphism of G2,), it is also clear
that B = B(U,V) € s[U*', VF1.

In this case, after a substitution Y = Z + B(U, V), we have the fol-
lowing expression for f, where b € K and b” runs through its conjugates
over k(U):

(10) o vyY) =Tz -vv.

Now let e > 1. The discriminant of the said product contains the
nonzero factors A(V) — A7(V)+ V" (¢b'/¢ —4(b7)1/¢), for a given choice
of the e-th roots of V,b,b° and all choices of e-th roots of unity (,0,
where r = s/e. As before, we deduce that each factor must be (as a
polynomial in V1/ ) a multiple of a (fractional) power of V. Also, we
have b # 0 and more than a single choice for (, €, which forces this power
to be V. But then all the differences A — A% must also be of the shape
c V", for ¢, € K. In particular, we may write A = B 4+ aV", where
B € k(U)[V*!] and a € K. As in the case e = 1, in fact we must have
B = B(U,V) € s[U*!',V*!]. Also, since A is a Laurent polynomial
in V, either ¢ = 0 or r is integral. But this last fact cannot happen,
because e, s are coprime and e > 1. Hence ¢ = 0, and after the same
substitution Y = Z + B(U, V) as before, we have

(11) FOVY)=T][(Z°=t°V®),  ged(e,s) =1,
a formula which includes (4.6) as a special case. This formula also shows
that

(12)  f(UV,Y)=V""PU,Z/V®%), Z=Y —B(U,YV),

where P € x[U*!, W] is an irreducible (Laurent) polynomial and B €
H[Uil, V:I:l] .

This already shows that our surface defined by f = 0 is a product
of Gy, by a curve (which corresponds to P = 0 and to the subfield
x(U, bY€) of K).

In practice, this is the real content of the theorem, in that we have
reduced to the case of curves rather than surfaces, with which we started.
So we could stop here; however, we shall complete the picture and go
further, analyzing again our solutions (u, v, y) with the new information
provided by (12). In fact, we have the solutions P(u,w) = 0, where
u € 0% and where w = (y — B(u,v))/v® € Og.

We could now proceed in several ways: either invoking or reproving
the needed special case of Siegel’s theorem for the function field x(C), or
repeating the arguments at the beginning, in this simplified context. We
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choose this last possibility. In fact, we can do this because we again have
the needed assumptions on the discriminant: the discriminant Ap =
Ap(U) of P(U,W) with respect to W is a Laurent polynomial in U,
without multiple zeros in G,,—actually, by (12) this discriminant is
just the above Q(U), up to a factor that is a monomial in U.

The case of constant u = « € k* is a special case of a multiplicative
dependence of the sought type. Let us then consider only the solutions
with nonconstant .

Then we have the equation (5) above, with P in place of f and Ap in
place of A (and some polynomial in x[u*!, w], in place of g). As above,
note that every zero p € C of P'(u,w) is either in S or a multiple zero
of Ap(u). On the other hand, we have just noticed that Ap(U) has
no multiple factors (U — a)!, I > 1, with a € x*. Hence the number of
zeros of P'(u,w) outside S does not exceed the number of multiple zeros
in C \ S of a fixed product of pairwise factors of the shape u — a. To
estimate this last number, we no longer need the recourse to Theorem
1.2 from [5] (which we crucially needed above in this proof, before (6)).
We merely need the usual “abc” estimate, as in the second easier part
of the proof of Proposition 1; to avoid any reference, we shall reproduce
that few-lines argument: For nonconstant u, the total number of zeros
of multiplicity > 1, counted with weight equal to its multiplicity —1,
of u — a, even for varying o € k*, is bounded by the degree of the
zero divisor of the differential du/u; however, this degree equals the
pole-degree +2g — 2, so is bounded by yx, since u is an S-unit.

This leads to a sharp analogue of (6)—i.e.,

(13) Z ord, (P’ (u,w)) < x.

pE@\S

As in the derivation of (4.3) above, setting P(U, §) = 0, by transcendence
degree, there exists a fixed nontrivial irreducible polynomial relation
R3(U, P'(U,£)) = 0; this implies

R3(u, P'(u,w)) = 0.

But in view of (13), P'(u,w) becomes an Si-unit, for a set S; € C(k)
containing S and with at most #S5 + x elements. Hence we may apply
the Brownawell-Masser Theorem to the last displayed algebraic relation,
with S7 in place of S. Of course, we must again take into account possible
vanishing subsums. By the irreducibility of R3, any such subsum would
lead (by elimination) to a constant u, a case already considered. On the
other hand, if there are no vanishing subsums, let us suppose on dividing
by a monomial in U that Rg contains a constant term. As above let us
denote by X the set of integer pairs (a,b) such that u®P’(u,w)? appears
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in R3 = 0. We have, by [2],

(14) max_H (u®P'(u,w)") < Cs(deg f)(|S] + x).
(a,b)ex

If ¥ does not contain two independent vectors, then we have a relation
R1(U'P'(U, B)™) = 0, whence U'P'(U, B)™ is constant. Conjugating /3
among the possible roots of P(U, ) = 0 and multiplying, we obtain
that the discriminant A; is a power of U. As in a previous part of the
proof, P defines a cyclic unramified cover of G,,—i.e., we may write,
for suitable A;, By € x[U*!] and b; € x*,

P(UW) = (W — A (U)¢ — b, U"B, (U)“.
This yields the following shape for f,
(15) FUVY) = (Y — AU, V) = by VU B (U)Y,

showing that our surface is a cyclic cover of G2,. The assumption on A
also shows that B; may be taken constant, as in the statement.

If ¥ contains two independent vectors, we may perform a multiplica-
tive elimination and obtain H(u) < Cg = Cg(deg f, x).

Then we may write u = ci, where ¢ € £* and u assumes only finitely
many values; the set of possible values depends only on Cg, S, and x(C)
(and of course on our choice of representatives modulo k*), whereas
their number depends only on Cg and .

For fixed 4, a solution w of P(ct,w) = 0 defines a function field
(@, w), whose branch points on k(@) are of the shape ¢ 'R, where R
is the set of branch points of the curve P(u,w) = 0 above the u-line.
Since x (i, w) C #(C), such a set is contained in the set Ry of branch
points of x(C)/k(@). Let Ry := R\ {0,00}. Then ¢ 'Ry C Ry. Also,
|R1| is bounded by C7 = C7(deg f,Cs). We conclude that if there are
more than C7 relevant values of ¢, then R C {0, 00} therefore, as before,
P defines a cyclic unramified cover of G,, (above the U-line), leading
again to (15), with By constant.

This completes the description of the various possibilities and con-
cludes the proof.

5. Examples

Example 1. We begin by showing that inequality (1) is the best
possible for what concerns the type of dependence on xy. Namely, there
exists a number C) such that for curves Y C X of arbitrarily high degree,

max(1, xyy) < C% deg(Y).

We take for Y a component of 7= (W), where W C G2, is a rational
curve of high degree d. Since W intersects the branch divisor of 7 in
at most < d points, the genus of Y is also < d. (Here the implied
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constants depend only on X and 7.) The number of places at infinity is
also < d, and so is xy.

Example 2. We give an explicit application of Theorems 1 and 3.
Consider the case when Dy, Dy are lines, defined by, say, Z = 0 and X =
0 respectively, and Ds is an irreducible curve of degree d > 2, defined
by a homogeneous equation G(X,Y,Z) = 0. We suppose that Ds is not
tangent to D1 or Dy at any point of intersection and that D;NDyND3 =
(). This last condition amounts to G(0,1,0) # 0. We seek the S-integral
points for P\ D over a function field £(C). A morphism ¢ : C — Py \ |D|
is given by (ug : w1 : ug) where wug, u1, us are rational functions on C.
The condition that ¢(C) omits the divisors Dy, Dy corresponds to ug/uz,
ug/ug, u1/ug being regular on the affine curve C = C \ S. Then put
u = ug/ug, which will be a unit in the ring Og, and y = uj /uy, which
is regular on C. Also, put g(z,y) = G(z,y,1). Then the condition that
©(C) does not meet D3 amounts to g(u,y) being a unit in Og. Hence
we arrive at the equation g(u,y) = v. The assumptions of our Theorem
1 are satisfied so we deduce that the solutions (u,v,y) € O% x O% x Og
to the equation

glu,y) = v

have bounded degree, outside possible “trivial” families. (We have ex-
plained in §1 how inequalities of the form (0.1) give bounds for the
degree (or height) of the solutions to the corresponding Diophantine
equations, up to possible trivial families. Such families only arise when
the morphism ¢ : C — X factors through G,,, and u,v are multiplica-
tively dependent modulo constants.)

Let us also see how to apply Theorem 3, at least in certain cases.
Putting f(u,v,y) := g(u,y) — v, we arrive at the equation

f(u,v,y):() u7U€(OS)*7 yGOS-

Since G(0,1,0) # 0 (which is a consequence of the fact that Dy N Dy N
D3 = ), the polynomial f(U,V,Y) is monic in Y, as required by the
hypothesis of Theorem 3.

Now, if the discriminant of f(U,V,Y’) with respect to the variable Y’
has no repeated factors, we can apply Theorem 3 and conclude that if
u,v are multiplicatively independent modulo constants, their degree is
< xc, where the implied constant depends only on f. Hence the conclu-
sion of Theorem 1 is recovered again. However, although the condition
on the discriminant is “generically” satisfied, it is not automatically sat-
isfied even for the special polynomials arising from Example 2. Take for
instance for D3 the Fermat cubic of equation X3 + Y2 4+ Z3 = 0; the
corresponding polynomial will be f(U,V,Y) = Y3 +U? + 1 —V, whose
discriminant is a square. In that case Theorem 1 (or Theorem 2) applies,
but not Theorem 3. On the other hand, there are cases where Theorem
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3 can be used but Theorem 2 does not (directly) apply—e.g., when the
surface defined by the equation f(U,V,Y) = 0 is singular.

Remark. The case d = 2 of Example 2 was treated in [5]; the arith-
metic analogue is still unknown, but see [6] for special cases, like the
equation g(a™,y) = b", for fixed a,b € Z, to be solved in integers m, n.

Example 3. We now modify Example 2 and obtain a counter-example,
showing that the condition on the normal crossing of the divisor D +
...+ D, in Theorem 1 cannot be omitted. Consider the sum of a conic
and two lines intersecting on the conic. Supposing one line is the line
at infinity of the projective plane, so that its complement is identified
with A2, with affine coordinates z,y, let {x = 0} be the second line
and (z — 1)y + 1 = 0 be the equation for the conic. Then the S-integral
points on the complement of such configuration corresponds to the pairs
(u,y) € OF x Og such that (u — 1)y + 1 =: v is a unit. Hence they cor-
respond to the pairs of units (u,v) € (O%)? such that (u — 1) divides
(v —1) in the ring Og. Now, for every unit u and integer n, we have a
solution (u,v) = (u,u™) and they form a Zariski-dense set.
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