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THE COMPLETION OF THE MANIFOLD OF
RIEMANNIAN METRICS

Brian Clarke

Abstract

We give a description of the completion of the manifold of
all smooth Riemannian metrics on a fixed smooth, closed, finite-
dimensional, orientable manifold with respect to a natural met-
ric called the L2 metric. The primary motivation for studying
this problem comes from Teichmüller theory, where similar con-
siderations lead to a completion of the well-known Weil-Petersson
metric. We give an application of the main theorem to the com-
pletions of Teichmüller space with respect to a class of metrics
that generalize the Weil-Petersson metric.
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1. Introduction

This is the second in a pair of papers studying the metric geometry of
the Fréchet manifold M of all smooth Riemannian metrics on a smooth,
closed, finite-dimensional, orientable manifold M . The manifold M
carries a natural weak Riemannian metric called the L2 metric, defined
in the next section. In the first paper [5], we showed that the L2 metric
induces a metric space structure on M (a nontrivial statement for weak
Riemannian metrics; see Section 2.1.3). In this paper, we will give the
following description of the metric completion M of M with respect
to the L2 metric. In the theorem, and the remainder of the paper, a
positive-semidefinite symmetric (0, 2)-tensor based at x ∈ M is called
nondegenerate if it induces a positive-definite scalar product on TxM ,
and degenerate otherwise.

Theorem. Let Mf denote the space of all measurable, symmetric,
finite-volume (0, 2)-tensor fields onM that induce a positive semidefinite
scalar product on each tangent space of M . Then there is a natural
identification

M ∼= Mf/∼.
Here, for g0, g1 ∈ Mf , we say g0 ∼ g1 if and only if the following
statement holds for almost every x ∈M :

If at least one of g0(x) or g1(x) is nondegenerate, then g0(x) = g1(x).

Note that while M is a space of smooth objects, we must add in
points corresponding to extremely singular objects in order to complete
it. This is a reflection of the fact that the L2 metric is a weak rather
than a strong Riemannian metric. That is, the topology it induces on
the tangent spaces—the L2 topology—is weaker than the C∞ topology
coming from the manifold structure. In essence, the incompleteness of
the tangent spaces then carries over to the manifold itself.

The manifold of Riemannian metrics—along with geometric struc-
tures on it—has been considered in several contexts. It originally arose
in general relativity [6], and was subsequently studied by mathemati-
cians [7, 9, 10]. In particular, the Riemannian geometry of the L2

metric is well understood—its curvature, geodesics, and Jacobi fields
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are explicitly known. The metric geometry of the L2 metric, though,
was not as clear up to this point, and this paper seeks to illuminate one
aspect of that.

Our motivation for studying the completion of M—besides the in-
trinsic interest to Riemannian geometers of investigating this impor-
tant deformation space—came largely from Teichmüller theory. If the
base manifold M is a closed Riemann surface of genus larger than one,
the work of Fischer and Tromba [26] gives an identification of the Te-
ichmüller space of M with M−1/D0, where M−1 ⊂ M is the submani-
fold of hyperbolic metrics and D0 is the group of diffeomorphisms of M
that are homotopic to the identity, acting on M−1 by pull-back. The
L2 metric restricted to M−1 descends to the Weil-Petersson metric on
Teichmüller space, and its completion consists of adding in points corre-
sponding to certain cusped hyperbolic metrics. The action of the map-
ping class group on Teichmüller space extends to this completion, and
the quotient is homeomorphic to the Deligne-Mumford compactification
of the moduli space ofM . In Section 6, inspired by [11, 12], we general-
ize the Weil-Petersson metric and use the above theorem to formulate a
condition on the completion of these generalized Weil-Petersson metrics.

The paper is organized as follows:
In Section 2, we recall the necessary background on the manifold of

metrics, the L2 metric, and completions of metric spaces. We also review
some nonstandard geometric notions and fix notation and conventions
for the paper.

In Section 3, we complete what we call amenable subsets of M. They
are defined in such a way that we can show that the completion of these
subsets with respect to the L2 metric on the subset is the same as with
respect to the L2 norm on M (this will be made precise below). This
completion is the first step in a bootstrapping process of understanding
the full completion.

In Section 4, we introduce a notion we call ω-convergence for Cauchy
sequences in M that describes how a Cauchy sequence converges to an
element of Mf/∼. It is a kind of pointwise a.e.-convergence—except
on a subset where the sequence degenerates in a certain way, where
no convergence can be demanded of Cauchy sequences. We then use
the results of Section 3 to show that this convergence notion gives an
injective map from the completion of M into Mf/∼. To do this, we
need to show two things. First, we prove that every Cauchy sequence in
M has an ω-convergent subsequence. Second, we show in two theorems
that two Cauchy sequences are equivalent (in the sense of the completion
of a metric space) if and only if they ω-subconverge to the same limit.
This section comprises the most technically challenging portion of the
paper. It also contains the following result, which is in our eyes one of
the most unexpected and striking of the paper:
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Proposition. Suppose that g0, g1 ∈ M, and let E := carr(g1 − g0) =
{x ∈M | g0(x) 6= g1(x)}. Let d be the Riemannian distance function of
the L2 metric (·, ·). Then there exists a constant C(n) depending only
on n := dimM such that

d(g0, g1) ≤ C(n)
(√

Vol(E, g0) +
√

Vol(E, g1)
)
.

In particular, we have

diam ({g̃ ∈ M | Vol(M, g̃) ≤ δ}) ≤ 2C(n)
√
δ.

The surprising thing about this proposition is that it says that two
metrics can vary wildly, but as long as they do so on a set that has small
volume with respect to each, they are close together in the L2 metric.

In Section 5, we complete the proof of the main result. This is done
by continuing the bootstrapping process begun in Section 3 to see that
the map defined in Section 4 is in fact surjective. That is, we prove
in stages that there are Cauchy sequences ω-converging to elements in
ever larger subsets of Mf/∼.

In Section 6, we give the application to the geometry of Teichmüller
space that was mentioned above.

Several different types of sequences and convergence notions enter into
this work. For the reader’s convenience, we have included an appendix
which summarizes the relationships between these different concepts.

Acknowledgements. The results of this paper formed a portion of my
Ph.D. thesis ([4], where the reader may find the facts here presented
in significantly greater detail), written at the Max Planck Institute for
Mathematics in the Sciences in Leipzig and submitted to the University
of Leipzig. First and foremost, I would like to thank my advisor Jürgen
Jost for his many years of patient assistance. I am also grateful to Guy
Buss, Christoph Sachse, and Nadine Große for many fruitful discussions
and their careful proofreading. Portions of the research were also carried
out while I was visiting Stanford University, and I would like to thank
Rafe Mazzeo and Larry Guth for helpful conversations. Special thanks
to Yurii Savchuk for discussions related to Section 5.2.2.

I would also like to thank the referees for their helpful comments on
improving the paper’s exposition, and for pointing out several errors in
the original manuscript.

2. Preliminaries

2.1. The Manifold of Metrics. For the entirety of the paper, let M
denote a fixed closed, orientable, n-dimensional C∞ manifold. We fix
an orientation on M , but all our results are independent of the choice
of orientation.

The basic facts about the manifold of Riemannian metrics given in
this section can be found in [4, §2.5]
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We denote by S2T ∗M the vector bundle of symmetric (0, 2) tensors
over M , and by S the Fréchet space of C∞ sections of S2T ∗M . The
space M of Riemannian metrics onM is an open subset of S, and hence
it is trivially a Fréchet manifold, with tangent space at each point canon-
ically identified with S. (For a detailed treatment of Fréchet manifolds,
see, for example, [13]. For a more thorough treatment of the differential
topology and geometry of M, see [7].)

2.1.1. The L2 Metric. M carries a natural Riemannian metric (·, ·),
called the L2 metric, induced by integration from the natural scalar
product on S2T ∗M . Given any g ∈ M and h, k ∈ S ∼= TgM, we define

(h, k)g :=

∫

M
trg(hk) dµg .

Here, trg(hk) is given in local coordinates by

tr(g−1hg−1k) = gijhilg
lmkjm,

and µg denotes the volume form induced by g.

Remark 2.1. Alternatively, we may express trg(hk) without ref-
erence to coordinates as follows. For any h ∈ S2T ∗

xM , there is a
unique (1, 1)-tensor H (an endomorphism of TxM) such that h(X,Y ) =
g(H(X), Y ) for all X,Y ∈ TxM . Then trg(hk) = tr(HK), where K is
defined analogously to H and HK simply denotes the composition of
endomorphisms.

Throughout the paper, we use the notation d for the distance function
induced from (·, ·) by taking the infimum of the lengths of paths between
two given points.

The L2 metric is a weak Riemannian metric, which means that its in-
duced topology on the tangent spaces of M is weaker than the manifold
topology. This leads to some phenomena that are unfamiliar from the
world of finite-dimensional Riemannian geometry, or even strong Rie-
mannian metrics on Hilbert manifolds. For instance, the L2 metric does
not a priori induce a metric space structure on M. In [5], we never-
theless showed directly that (M, d) is a metric space, but other strange
phenomena occur—for instance, the metric space topology of (M, d) is
weaker than the manifold topology of M. Indeed, in Lemma 5.11 we
will see the following: When considered as a subset of its completion,
M contains no open d-ball around any point! For more information on
weak Riemannian metrics, see [4, §2.4], [5, §3]

The basic Riemannian geometry of (M, (·, ·)) is relatively well under-
stood. For example, it is known that the sectional curvature of M is
nonpositive [9, Cor. 1.17], and the geodesics of M are known explicitly
[9, Thm. 2.3], [10, Thm. 3.2].

We will also consider related structures restricted to a point x ∈ M .
Let Sx := S2T ∗

xM denote the vector space of symmetric (0, 2)-tensors at
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x, and letMx ⊂ Sx denote the open subset of tensors inducing a positive
definite scalar product on TxM . Then Mx is an open submanifold of
Sx, and its tangent space at each point is canonically identified with Sx.
For each g ∈ Mx, we define a scalar product 〈·, ·〉g on TgMx

∼= Sx by
setting, for all h, k ∈ Sx,

〈h, k〉g := trg(hk).

Then 〈·, ·〉 defines a Riemannian metric on the finite-dimensional man-
ifold Mx.

For each g ∈ M, we denote the L2 norm induced by g on S with
‖ · ‖g, that is, ‖h‖g :=

√
(h, h)g . For any g0, g1 ∈ M, the norms ‖ · ‖g0

and ‖ · ‖g1 are equivalent [20, §IX.2]. (As Ebin pointed out [7, §4], this
statement even holds if g0 and g1 are only required to be continuous.)

2.1.2. Geodesics. As noted above, the geodesic equation of M can be
solved explicitly. We will not need the full expression for an arbitrary
geodesic for our purposes, but rather only for very special geodesics.

We denote by P ⊂ C∞(M) the group of strictly positive smooth
functions onM . This is a Fréchet Lie group that acts onM by pointwise
multiplication. For any g0 ∈ M, the next proposition gives the geodesics
of the orbit P · g0.

Proposition 2.2 ([9, Prop. 2.1]). The geodesic γ in M starting at
g0 ∈ M with initial tangent vector ρg0, where ρ ∈ C∞(M), is given by

(2.1) γ(t) =

(
1 + n

t

4
ρ

)4/n

g0.

In particular, P·g0 is a totally geodesic submanifold, and the exponential
mapping expg0 is a diffeomorphism from the open set U · g0 ⊂ Tg0(P ·
g0)—where U is the set of functions ρ satisfying ρ > −4/n—onto P ·g0.
2.1.3. Metric Space Structures on M. In [5], we proved the fol-
lowing theorem:

Theorem 2.3. (M, d), where

d(g0, g1) =

inf

{
L(γ) =

∫ 1

0

∥∥γ′(t)
∥∥
γ(t)

dt

∣∣∣∣∣
γ : [0, 1] → M piecewise differ-

entiable, γ(0) = g0, γ(1) = g1

}
,

for g0, g1 ∈ M, is the distance function of the L2 metric, is a metric
space.

Convention 2.4. In the remainder of the paper, whenever M is
(implicitly or otherwise) referred to as a metric space, the metric d is
implied unless we explicitly state otherwise. For example, a “Cauchy
sequence in M” refers to a d-Cauchy sequence.
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As mentioned above, the fact that the L2 metric is a weak Riemannian
metric means that general theorems imply only that d is a pseudometric.
In fact, there are examples [17, 18] of weak Riemannian metrics where
the induced distance between any two points is always zero!

To prove Theorem 2.3, we defined a function on M × M that was
manifestly a metric (in the sense of metric spaces) and showed that this
metric bounded d from below in some way. We also showed that the
function M → R sending a metric to the square root of its total volume
is Lipschitz with respect to d. These results will play a role in what is
to come, so we review them here, along with the relevant definitions.

First, we have the lemma on Lipschitz continuity of the square root
of the volume function.

Lemma 2.5 ([5, Lemma 17]). Let g0, g1 ∈ M. Then for any mea-
surable subset Y ⊆M ,

∣∣∣
√

Vol(Y, g1)−
√

Vol(Y, g0)
∣∣∣ ≤

√
n

4
d(g0, g1).

Next, we define the metric ΘM on M that was mentioned above and
state the lower bound it provides on d.

Definition 2.6. For each x ∈ M , consider Mx = {g̃ ∈ Sx | g̃ > 0}
(cf. Section 2.1.1). For any fixed g ∈ M, define a Riemannian metric
〈·, ·〉0 on Mx by

〈h, k〉0g̃ = trg̃(hk) det
(
g(x)−1g̃

)
∀h, k ∈ Tg̃Mx

∼= Sx.

We denote by L〈·,·〉0 the length of a path with respect to 〈·, ·〉0, and by
θgx the Riemannian distance function of 〈·, ·〉0.

Note that θgx is automatically positive definite, since it is the distance
function of a Riemannian metric on a finite-dimensional manifold. By
integrating it in x, we can pass from a metric on Mx to a function on
M×M as follows:

Lemma 2.7 ([5, Lemma 20, 21]). For any measurable Y ⊆M , define
a function ΘY : M×M → R by

(2.2) ΘY (g0, g1) =

∫

Y
θgx(g0(x), g1(x)) dµg(x).

Then ΘY does not depend upon the choice of metric g used to define
θgx. (Indeed, even the integrand in (2.2) is independent of the choice of
g.) Furthermore, ΘY is a pseudometric on M, and ΘM is a metric.
Finally, if Y0 ⊆ Y1, then ΘY0(g0, g1) ≤ ΘY1(g0, g1) for all g0, g1 ∈ M.

The lower bound on d is the following:
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Proposition 2.8 ([5, Prop. 22]). For any Y ⊆ M and g0, g1 ∈ M,
we have the following inequality:

ΘY (g0, g1) ≤ d(g0, g1)
(√

n d(g0, g1) + 2
√

Vol(M,g0)
)
.

In particular, ΘY is a continuous pseudometric (w.r.t. d).

2.2. Completions of Metric Spaces. To fix notation and recall a few
elementary points, we briefly review the completion of a metric space.
We will simply state the definition and explore a couple of consequences
of it, then give an alternative, equivalent viewpoint for path metric
spaces.

The precompletion of (X, δ) is the set (X, δ)
pre

, usually just denoted

by X
pre

, consisting of all Cauchy sequences of X, together with the
distance function

δ({xk}, {yk}) := lim
k→∞

δ(xk, yk).

(We denote the distance function of the precompletion of a space using
the same symbol as for the space itself; which distance function is meant
will always be clear from the context.)

The completion of (X, δ) is a quotient space of X
pre

, X := X
pre
/∼,

where ∼ is the equivalence relation defined by

(2.3) {xk} ∼ {yk} ⇐⇒ δ({xk}, {yk}) = 0.

Note that if {xk} is a Cauchy sequence in X and {xkl} is a subsequence,
then clearly {xkl} ∼ {xk}. Thus, given an element of the precompletion
of X, we can always pass to a subsequence and still be talking about
the same element of the completion.

Recall that a path metric space is a metric space for which the distance
between any two points coincides with the infimum of the lengths of
rectifiable curves joining the two points. (We will also call a rectifiable
curve a finite-length path.)

The following theorem describes the completion of a path metric space
in terms of finite-length paths. Its proof is straightforward.

Theorem 2.9 ([4, Thm. 2.2]). Let (X, δ) be a path metric space.
Then the following description of the completion of (X, δ) is equivalent
to the definition given above, in the sense that there exists an isometry
between the two completions which restricts to the identity on X.

Define the precompletion X
pre

of X to be the set of rectifiable curves
α : (0, 1] → X. It carries the pseudometric

(2.4) δ(α0, α1) := lim
t→0

δ(α0(t), α1(t)).

Then the completion of (X, δ) is X := X
pre
/∼, where α0 ∼ α1 ⇐⇒

δ(α0, α1) = 0.
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2.3. Geometric Preliminaries. We now give some of the nonstan-
dard geometric facts that we will need, in order to fix notation and
recall the relevant notions.

2.3.1. Sections of the Endomorphism Bundle of M . We begin
with a small convention:

Convention 2.10. When we refer to a section of a fiber bundle over
M , we mean section only in the set-theoretic sense, unless otherwise
specified. In particular, measurable, continuous, and smooth sections
will be explicitly identified as such.

Given a sectionH of the endomorphism bundle ofM , the determinant
and trace of H are well-defined functions over M . Furthermore, if H is
measurable, continuous, or smooth, then the determinant and trace will
be so as well, since they are smooth functions from the space of n × n
matrices into R. If H is (pointwise) self-adjoint with respect to some
Riemannian metric onM , i.e., there exists g ∈ M such that g(H(·), ·) =
g(·,H(·)), then the eigenvalues of H are real, and in particular the
minimal and maximal eigenvalues are well-defined functions on M .

The following proposition allows us to characterize positive definite
and positive semidefinite (0, 2)-tensors.

Proposition 2.11 ([15, Thm. 7.2.1]). A symmetric n×n matrix T is
positive definite (resp. positive semidefinite) if and only if all eigenvalues
of T are positive (resp. nonnegative).

In particular, if T is positive definite (resp. positive semidefinite),
then detT > 0 (resp. detT ≥ 0). If T is positive semidefinite but not
positive definite, then detT = 0.

We also need a result on the eigenvalues of a section of the endomor-
phism bundle.

Lemma 2.12 ([4, Lemma 2.11]). Let h be any continuous, symmetric
(0, 2)-tensor field. Suppose g is a Riemannian metric on M , and let H
be the (1, 1)-tensor field obtained from h by raising an index using g
(cf. Remark 2.1). (That is, locally H i

j = gikhkj , or h(·, ·) = g(H(·), ·).)
Then H is a continuous section of the endomorphism bundle End(M).
Denote by λHmin(x) the smallest eigenvalue of H(x). We have that

1) λHmin is a continuous function and
2) if h is positive definite, then minx∈M λHmin(x) > 0.

Furthermore, if λHmax(x) denotes the largest eigenvalue of H(x), then
λHmax is a continuous and hence bounded function.

Proof. Given a symmetric n×n matrix A, we have (with 〈〈·, ·〉〉 denot-
ing the Euclidean scalar product on R

n) λAmax = sup〈〈v,v〉〉〈〈v,Av〉〉. From
this, one can easily deduce that λAmax is a convex function from the space
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of n × n symmetric matrices to R. Furthermore, since λAmin = −λ−Amax,
λAmin is a concave function. Thus both mappings are continuous [23,
Thm. 10.1]. The proof of the continuity of λHmin and λHmax then fol-
lows via a standard argument using compactness of the sphere bundle
SM ⊂ TM .

The bound on the minimal eigenvalue follows from continuity and
Proposition 2.11. q.e.d.

2.3.2. Lebesgue Measure on Manifolds. The concept of Lebesgue
measurability carries over from R

n to smooth (or even topological) man-
ifolds by simply declaring a subset E to be Lebesgue measurable if
φ(E ∩U) is Lebesgue measurable for each chart (U, φ) in a maximal at-
las. Transition functions will also map nullsets to nullsets, so the notion
of a nullset is well-defined.

With Lebesgue measurable sets well-defined, the concept of a mea-
surable function or a measurable map between manifolds is also well-
defined. We can also speak about measures on the σ-algebra of Lebesgue
sets on the manifold. (In contrast to R

n, there is no one canonical
Lebesgue measure on a general manifold.) For example, any nonnega-
tive n-form µ onM with measurable representative in any chart induces
a measure on M . If µ is a smooth volume form, then in particular µ-
nullsets are precisely the Lebesgue nullsets described above.

Convention 2.13. Unless we explicitly state otherwise, measurabil-
ity of subsets of M , functions on M , and sections of fiber bundles over
M , as well as the concept of a nullset in and measure on M , all refer
to the concepts deriving from the Lebesgue σ-algebra and nullsets, as
described in the preceding two paragraphs.

Additionally, if we write that a statement holds almost everywhere,
we mean that it holds outside of a Lebesgue nullset.

It is not hard to see that the same relation between Lebesgue mea-
surable sets and Borel measurable sets that holds on R

n [24, 11.11(d)]
also holds on M . Namely, any Lebesgue measurable set E can be de-
composed as E = F ∪ G, where F is Borel measurable and G is a
Lebesgue-nullset.

2.4. Notation and Conventions. Before we begin with the main
body of the work, we will describe all nonstandard notation and con-
ventions that will be used throughout the text.

The first thing we do is fix a reference metric, with respect to which
all standard concepts will be defined.

Convention 2.14. For the remainder of the paper, we fix an element
g ∈ M. Whenever we refer to the Lp norm, Lp topology, Lp convergence
etc., we mean that induced by g unless we explicitly state otherwise.
(The Lp norm depends on the choice of g, but the Lp topology and the
notion of Lp convergence do not.)
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If we have a tensor h ∈ S, we denote by the capital letter H the
tensor obtained by raising an index with g, i.e., locally H i

j := gikhkj ,

or invariantly h(·, ·) = g(H(·), ·). Given a point x ∈ M and an ele-
ment a ∈ Mx, the capital letter A means the same—i.e., we assume
some coordinates and write A = g(x)−1a, though for readability we
will generally omit x from the notation (or again, we may write invari-
antly a(·, ·) = g(x)(A(·), ·)). We use the same convention for accented

characters—e.g., for h̃ ∈ S and â ∈ Sx, by convention h̃(·, ·) = g(H̃(·), ·)
and â(·, ·) = g(x)(Â(·), ·)—and for characters with sub-/superscripts.

Next, we’ll fix an atlas of coordinates on M that is convenient to
work with.

Definition 2.15. We call a finite atlas of coordinates {(Uα, φα) | α ∈
A} for M , where A is some index set, amenable if for each α ∈ A, there
exists a different coordinate chart (Vα, ψα) (which does not necessarily
belong to {(Uα, φα)}) such that

(2.5) cl(Uα) ⊂ Vα and φα = ψα|Uα,
where cl(Uα) denotes the closure of Uα in the topology of M .

Remark 2.16. Note that, by compactness ofM , the set cl(Uα) in the
above definition is itself compact, and hence Uα is relatively compact
as a subset of the domain of the larger chart (Vα, φα)—a fact which will
be crucial throughout the paper.

Compactness of M implies that an amenable atlas for M always ex-
ists. Thus, we may make the following convention.

Convention 2.17. For the remainder of this paper, we work over
a fixed amenable coordinate atlas {(Uα, φα)} for all computations and
concepts that require local coordinates.

The next lemma heuristically says the following: in amenable coordi-
nates, the coordinate representations of a smooth metric are somehow
“uniformly positive definite”. Additionally, the coefficients satisfy a
uniform upper bound.

Lemma 2.18. For any metric g̃ ∈ M, there exist constants δ(g̃) > 0
and C(g̃) < ∞, depending only on g̃, with the property that for any α,
any x ∈ Uα, and 1 ≤ i, j ≤ n,

(2.6) |g̃ij(x)| ≤ C(g̃) and λG̃min(x) ≥ δ(g̃),

where we of course mean the value of g̃ij(x) in the chart (Uα, φα).

Proof. Note that Definition 2.15 implies that φα(Uα) ⊆ R
n is a rela-

tively compact subset of ψα(Vα). Thus, the proof of the first inequality
is immediate and the second is clear from Lemma 2.12. q.e.d.
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Remark 2.19. The estimate |g̃ij(x)| ≤ C(g̃) also implies an upper
bound in terms of C(g̃) on det g̃(x). This is clear from the fact that the
determinant is a homogeneous polynomial in g̃ij(x) with n! terms and
coefficients ±1.

The main point of using a fixed amenable coordinate atlas is the
following: it gives us an easily understood and uniform—but neverthe-
less coordinate-dependent—notion of how “large” or “small” a metric
is. The dependence of this notion on coordinates is perhaps somewhat
dissatisfying at first glance, but it should be seen as merely an aid in
our quest to prove statements that are, indeed, invariant in nature.

It is necessary to introduce somewhat more general objects than Rie-
mannian metrics in this paper:

Definition 2.20. Let g̃ be a (set-theoretic) section of S2T ∗M . Then
g̃ is called a (Riemannian) semimetric if it induces a positive semidefi-
nite scalar product on TxM for each x ∈M .

We now make a couple of definitions on semimetrics and sequences
of metrics.

Definition 2.21. Let g̃ be a semimetric on M (which we do not
assume to be even measurable). We define the set

Xg̃ := {x ∈M | g̃(x) is degenerate} ⊂M,

which we call the deflated set of g̃. (Recall that by saying g̃(x) is de-
generate, we mean that it is not positive definite.)

We call g̃ bounded if there exists a constant C such that

|g̃ij(x)| ≤ C

for almost every x ∈ M and all 1 ≤ i, j ≤ n. Otherwise g̃ is called
unbounded.

Definition 2.22. Let {gk} ⊂ M be any sequence. We define the set

D{gk} := {x ∈M | ∀δ > 0, ∃k ∈ N s.t. detGk(x) < δ},
which we call the deflated set of {gk}.

Remark 2.23. We note here that:

1) Given any sequence {gk} ⊂ M, its deflated set is measurable. In
fact, since D{gk} = ∩∞

m=1(∪∞
k=1{x ∈ M | detGk(x) < 1

m}), the
deflated set is even Borel-measurable.

2) If g̃ is a measurable semimetric, then Xg̃ is measurable, since it is

the set of points where det G̃ = 0.

Note that any measurable semimetric g̃ on M induces a measure on
M that is absolutely continuous with respect to the fixed volume form
µg.
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A measurable Riemannian semimetric g̃ on M gives rise to an “L2

scalar product” on measurable functions in the following way. For any
two measurable functions ρ and σ on M , we define, as usual, µg̃ :=√
det g̃ dx1 · · · dxn and

(2.7) (ρ, σ)g̃ :=

∫

M
ρσ µg̃.

(We denote this by the same symbol as the L2 scalar product on S;
which is meant will always be clear from the context.) We put “L2 scalar
product” in quotation marks because unless we put specific conditions
on ρ, σ, and g̃, (2.7) is not guaranteed to be finite or even well-defined.
It suffices, for example, to require that ρ and σ be bounded and that
the total volume Vol(M, g̃) =

∫
M µg̃ of g̃ be finite.

3. Amenable Subsets

We begin the study of the completion of M in this section, by first
completing very special subsets of M called amenable subsets (defined
below). The main result of the section is that the completion of such a
subset with respect to d coincides with the completion with respect to
the L2 norm on S, the vector space in which M resides.

3.1. Amenable Subsets and their Basic Properties. For the fol-
lowing definition, recall that we work over an amenable atlas (cf. Defi-
nition 2.15).

Definition 3.1. We call a subset U ⊂ M amenable if U is convex
and we can find constants C, δ > 0 such that for all g̃ ∈ U , x ∈ M and
1 ≤ i, j ≤ n,

λG̃min(x) ≥ δ

(where we recall that G̃ = g−1g̃, with g our fixed metric) and

|g̃ij(x)| ≤ C.

Remark 3.2. We make a couple of remarks about the definition:

1) The requirement that U is convex is technical, and is there to
insure that we can consider simple, straight-line paths between
points of U to estimate the distance between them.

2) Recall that the function sending a positive-semidefinite matrix to
its minimal eigenvalue is concave (cf. the proof of Lemma 2.12).
Also, the absolute value function on R is convex by the triangle
inequality. Therefore, the two bounds given in Definition 3.1 are
compatible with the requirement of convexity.

Definition 3.3. If U ⊂ M is any subset, we denote by U0 the L2-
completion of U (that is, the completion of U with respect to ‖ · ‖g).
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Remark 3.4. Note that each element of the L2 completion of S
can be identified with an element of L2(S2T ∗M), i.e., an L2-integrable
measurable section of S2T ∗M , modulo an identification of sections that
agree a.e. In particular, if U is an amenable subset, then U0 can be
naturally identified with the set of measurable sections comprising the
closure of U as a subset of L2(S2T ∗M).

Let us give a few examples of amenable subsets, which will be needed
in later proofs.

Example 3.5.

1) The convex hull of any finite subset of elements of M is clearly
amenable.

2) The convex hull of the union of a finite number of amenable subsets
is amenable.

3) The “pointwise convex hull” of an amenable subset U is also ame-
nable. What we mean by this is that the set

U ′ := {fg0 + (1− f)g1 | g0, g1 ∈ U , f ∈ C∞(M), 0 ≤ f ≤ 1}
is amenable, even with the same bounds C and δ as for U . This
follows immediately from the definition and Remark 3.2(2).

We now state another fact that will be needed in proofs below as a
lemma, since it is not so immediately seen to be true.

Lemma 3.6. Let g0 ∈ M and h ∈ S, and assume that g0 + h ∈ M.
Then there exists an amenable subset U such that for any measurable
function f with 0 ≤ f ≤ 1, g0 + fh ∈ U0, and such that if additionally
f is smooth, then g0 + fh ∈ U .

Proof. Let V be an amenable subset containing g0 and g0 + h, as
in Example 3.5(1), and let U be the pointwise convex hull of V, as in
Example 3.5(3). For a fixed function f as in the hypotheses of the
lemma, let fk ∈ C∞(M) be smooth functions converging to f in L2 as
k → ∞, and such that 0 ≤ fk ≤ 1. (That f ∈ L2(M,g) follows from the
fact that it is a measurable, bounded function and that Vol(M,g) <∞.)
Note that g0+fkh = fk(g0+h)+(1−fk)g0 ∈ U by pointwise convexity.
But then g0 + fh, as the L2 limit of g0 + fkh, is contained in U0. If f
was smooth in the first place, we may choose fk = f for all k ∈ N, so
g0 + fh ∈ U . Since U was chosen independently of f , the statement is
proved. q.e.d.

One useful property the metrics g̃ of an amenable subset have is that
the Radon-Nikodym derivatives (µg̃/µg), with respect to the reference
volume form µg, are bounded away from zero and infinity independently
of g̃.
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Lemma 3.7. Let U be an amenable subset. Then there exists a con-
stant K > 0 such that for all g̃ ∈ U ,

(3.1)
1

K
≤
(
µg̃
µg

)
≤ K

Proof. First, we note that
(
µg̃
µg

)
=
√

det G̃ and

(
µg̃
µg

)−1

=

(
µg
µg̃

)
= (det G̃)−1/2.

So (3.1) is equivalent to upper bounds on both det G̃ and (det G̃)−1.

Now, if the eigenvalues of G̃ are λG̃1 , . . . , λ
G̃
n , then

det G̃ = λG̃1 · · ·λG̃n ≥
(
λG̃min

)n
≥ δn,

where δ is the constant guaranteed by the fact that g̃ ∈ U . This allows
us to bound (det G̃)−1 from above.

To bound det G̃ from above, it is sufficient to bound the absolute
value of the coefficients of G̃ = g−1g̃ from above. But bounds on the
coefficients of g̃ are already assured by the fact that g̃ ∈ U , and bounds
on the coefficients of g−1 are guaranteed by the fact that g−1 is a fixed,
smooth cometric on M . So we are finished. q.e.d.

Amenable subsets guarantee good behavior of the norms on S that
are defined by their members—namely, the norms are in some sense
“uniformly equivalent”. More precisely, we have:

Lemma 3.8. Let U ⊂ M be an amenable subset. Then there exist
constants K and K ′, depending only on U , such that for all g̃ ∈ U , all
h ∈ S, all x ∈M , and all k ∈ Sx,

1

K
〈k, k〉g(x) ≤ 〈k, k〉g̃(x) ≤ K〈k, k〉g(x)

and
1

K ′ ‖h‖g ≤ ‖h‖g̃ ≤ K ′ ‖h‖g .

Proof. The first statement is equivalent to the following. Let

Tg̃ : (S
2T ∗M, 〈·, ·〉g̃) → (S2T ∗M, 〈·, ·〉g)

be the identity mapping on the level of sets, sending the bundle S2T ∗M
with the Riemannian structure 〈·, ·〉g̃ to itself with the Riemannian
structure 〈·, ·〉g. Let N(Tg̃)(x) be the operator norm of Tg̃(x) : Sx → Sx,
and let N(T−1

g̃ )(x) be defined similarly. Then the first statement of the
lemma holds if and only if there exists a constant K such that

N(Tg̃)(x)
2, N(T−1

g̃ )(x)2 ≤ K.

But N(Tg̃) and N(T−1
g̃ ) are continuous functions on the compact

manifold M for fixed g̃. Secondly, we notice that both N(Tg̃)(x) and
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N(T−1
g̃ )(x) depend only on the coordinate representations of g̃(x) and

g(x). But g̃(x) and g(x) can only range over a compact subset of the
space of positive definite n × n symmetric matrices, because g̃ ranges
over an amenable subset. This implies the existence of K.

The second statement now follows from the first, as well as from the
bounds on (µg̃/µg) given by Lemma 3.7. q.e.d.

Lemma 3.7 immediately implies that the function g̃ 7→ Vol(M, g̃) is
bounded when restricted to any amenable subset. Recalling the form of
the estimate in Proposition 2.8 then shows the following lemma.

Lemma 3.9. Let U be an amenable subset. Then there exists a con-
stant V such that for any g0, g1 ∈ U and Y ⊂M ,

ΘY (g0, g1) ≤ 2d(g0, g1)

(√
n

2
d(g0, g1) +

√
V

)
.

Specifically, this inequality holds with V = supg̃∈U Vol(M, g̃), which is
finite by the discussion preceding the lemma.

3.2. The Completion of U with Respect to d and ‖ · ‖g. We are
now ready to prove a result that, in particular, implies equivalence of
the topologies defined by d and ‖ · ‖g on an amenable subset U .

Theorem 3.10. Consider the L2 topology on M induced from the
scalar product (·, ·)g (where g is fixed). Let U ⊂ M be any amenable
subset.

Then the L2 topology on U coincides with the topology induced from
the restriction of the Riemannian distance function d of M to U .

Additionally, the following holds:

1) There exists a constant K such that d(g0, g1) ≤ K ‖g1 − g0‖g for
all g0, g1 ∈ U .

2) For any ǫ > 0, there exists δ > 0 such that if d(g0, g1) < δ, then
‖g0 − g1‖g < ǫ.

Proof. To prove (1), consider the linear path γ from g0 to g1. We
then have

(3.2)

L(γ) =

∫ 1

0

∥∥γ′(t)
∥∥
γ(t)

dt =

∫ 1

0
‖g1 − g0‖γ(t) dt

≤
∫ 1

0
K ′ ‖g1 − g0‖g dt = K ′ ‖g1 − g0‖g ,

where K ′ is the constant guaranteed by Lemma 3.8. Since d(g0, g1) ≤
L(γ) and the constant K ′ depends only on the set U , this inequality is
shown.

We now move on to statement (2). To prove this, we will essentially
show that the distance induced by the (fixed) scalar product 〈·, ·〉g and is
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bounded by the distance function θgx, in a uniform way, when restricted
to an amenable subset.

To make this precise, we first consider metrics in U as sections of the
bundle S2

+T
∗M →M of positive definite (0, 2)-tensors onM , and define

I(U) := {g̃(M) | g̃ ∈ U} ⊂ S2
+T

∗M.

(Here, g̃(M) denotes the image of g̃ as a map M → S2
+T

∗M .) By the
definition of an amenable subset and the compactness of M , I(U) is a
precompact subset of S2

+T
∗M .

For the moment, fix an arbitrary point x ∈ M and an arbitrary ele-
ment a0 of the finite-dimensional manifold Mx. Consider the Riemann-
ian metric 〈·, ·〉0 on Mx. Since 〈·, ·〉0a varies smoothly with a, we may, by
restricting to a sufficiently small neighborhood of a0 in Mx, ensure that
〈·, ·〉0a0 approximates arbitrarily closely a constant (flat) metric—say, in

the C2 sense. It then follows that there exist 0 < C(x, a0), ζ(x, a0) <∞
such that if θgx(a0, a1) < ζ(x, a0), then

(3.3)
√

〈a1 − a0, a1 − a0〉0a0 < C(x, a0)θ
g
x(a0, a1),

since the left-hand side is just the distance from a0 to a1 in the metric
induced by extending 〈·, ·〉0a0 constantly from the point a0.

Since the Riemannian metric 〈·, ·〉0 on the fibers of S2
+T

∗M is smooth,
the constants C(x, a0) and ζ(x, a0) of (3.3) may be chosen uniformly
with respect to x and a0 if we restrict to a0 ∈ I(U), since then both
x and a0 vary over (pre)compact subsets. Let C and ζ denote such a
uniform choice of these constants, with of course 0 < C, ζ <∞.

On the other hand, if we define

(3.4) D := sup
x∈M

{√
〈a1 − a0, a1 − a0〉g(x)

∣∣∣ a0, a1 ∈ I(U) ∩ S2
+T

∗
xM

}
,

then the precompactness of I(U) implies that D <∞.
Now, let g0, g1 ∈ U be given. Of course, we have g0(x), g1(x) ∈ I(U)

for all x ∈M . Thus, if x ∈M is such that θgx(g0(x), g1(x)) < ζ, then we
can use Lemmas 3.7 and 3.8 to see that there exist constants K0 and
K1, depending only on U , such that

(3.5)

〈g1(x)− g0(x), g1(x)−g0(x)〉g(x)
≤ K0〈g1(x)− g0(x), g1(x)− g0(x)〉g0(x)
≤ K1〈g1(x)− g0(x), g1(x)− g0(x)〉0g0(x)
< C2K1θ

g
x(g0(x), g1(x))

2

< C2K1ζθ
g
x(g0(x), g1(x)).

Here, C is the uniform constant mentioned above such that (3.3) holds.
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On the other hand, if x ∈M is such that θgx(g0(x), g1(x)) ≥ ζ, then
(3.6)

〈g1(x)− g0(x), g1(x)− g0(x)〉g(x) ≤ D2 =
D2ζ

ζ
≤ D2

ζ
θgx(g0(x), g1(x)).

Thus, we let C ′ := max{C2K1ζ,D
2/ζ}; note that C ′ depends only

on U , not on g0 g1.
Finally, choose δ > 0 such that

(3.7) 2δ

(√
n

2
δ +

√
V

)
<
ǫ2

C ′ ,

where V is the constant of Lemma 3.9. We claim that d(g0, g1) < δ
implies ‖g1 − g0‖g < ǫ. For in that case, Lemma 3.9 and (3.7) imply

that ΘM (g0, g1) < ǫ2/C ′, while (3.5) and (3.6) give

‖g1 − g0‖2g =
∫

M
〈g1(x)− g0(x), g1(x)− g0(x)〉g(x) dµg(x)

≤ C ′
∫

M
θgx(g0(x), g1(x)) dµg(x) < ǫ2.

Since C ′ and V , and hence δ, were independent of g0 and g1, this com-
pletes the proof. q.e.d.

Theorem 3.10 will give us our first result regarding the completion of
M. First, though, we need to prove a statement about metric spaces.

Let’s look back at Theorem 3.10 again. The first statement says that
for any amenable subset U and any g ∈ M, d is uniformly Lipschitz
continuous with respect to ‖ · ‖g when viewed as a function on U × U .
The second statement says that ‖ · ‖g is uniformly continuous on U ×U
with respect to d. To put this knowledge to good use, we will need the
following lemma:

Lemma 3.11. Let X be a set, and let two metrics, d1 and d2, be
defined on X. Denote by φ : (X, d1) → (X, d2) the map which is the
identity on the level of sets, i.e., φ simply maps x 7→ x. Finally, de-

note by X
1
and X

2
the completions of X with respect to d1 and d2,

respectively.
If both φ and φ−1 are uniformly continuous, then there is a natural

uniformly continuous homeomorphism between X
1
and X

2
.

Proof. The proof follows in a straightforward manner from the def-
inition of the completion of a metric space from Section 2.2, and the
fact that a uniformly continuous function maps Cauchy sequences to
Cauchy sequences. The natural homeomorphism is the unique continu-
ous extension of φ to X1. This extension is uniformly continuous.

q.e.d.

Now, Theorem 3.10 and Lemma 3.11 immediately imply
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Theorem 3.12. Let U be an amenable subset. Then we can identify
U , the completion of U with respect to d, with U0, the L2-completion
of U , in the sense of Lemma 3.11. We can make the natural homeo-
morphism U → U0 into an isometry by placing a metric on U0 defined
by

d(g0, g1) = lim
k→∞

d(g0k, g
1
k),

where {g0k} and {g1k} are any sequences in U that L2-converge to g0 and
g1, respectively.

We have thus found a nice description of the completion of very spe-
cial subsets of M. As already discussed, our plan now is to start remov-
ing the nice properties that allowed us to understand amenable subsets
so clearly, advancing through the completions of ever larger and more
generally defined subsets of M. Before that, though, we need to study
general Cauchy sequences in M more closely in the next section.

4. Cauchy sequences and ω-convergence

In this chapter, we introduce and study a fundamental notion of con-
vergence of our own invention for d-Cauchy sequences in M. We call
this ω-convergence, and its importance is made clear through two theo-
rems we will prove, an existence and a uniqueness result. The existence
result, proved in Section 4.1, says that every d-Cauchy sequence has
a subsequence that ω-converges to a measurable semimetric, which we
will then show has finite total volume. The uniqueness result, proved in
Section 4.3, is that two ω-convergent Cauchy sequences in M are equiv-
alent (in the sense of (2.3)) if and only if they have the same ω-limit.
(Please note that my usage of the term “ω-limit” is a new coinage, and
not related to the usage of this term in dynamical systems.)

These results allow us to identify an equivalence class of d-Cauchy
sequences with the unique ω-limit that its representatives subconverge
to, and thus give a geometric meaning to points of M.

4.1. Existence of the ω-Limit. We begin this section with an im-
portant estimate and some examples, followed by the definition of ω-
convergence and some of its basic properties. After that, we start on
the existence proof by showing a pointwise version, i.e., an analogous
result on Mx. Finally, we globalize this pointwise result to show the
existence of an ω-convergent subsequence for any Cauchy sequence in
M.

4.1.1. Volume-Based Estimates on d and Examples. The follow-
ing surprising proposition shows us that two metrics that differ only on
a subset with small (intrinsic) volume are close with respect to d.
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Proposition 4.1. Suppose that g0, g1 ∈ M, and let E := carr(g1 −
g0) = {x ∈ M | g0(x) 6= g1(x)}. Then there exists a constant C(n)
depending only on n = dimM such that

(4.1) d(g0, g1) ≤ C(n)
(√

Vol(E, g0) +
√

Vol(E, g1)
)
.

In particular, we have

diam ({g̃ ∈ M | Vol(M, g̃) ≤ δ}) ≤ 2C(n)
√
δ.

Proof. The second statement follows immediately from the first, so
we only prove the first.

The heuristic idea is the following. We want to construct a family of
paths with three pieces, depending on a real parameter s, such that the
metrics do not change onM \E as we travel along the paths. Therefore,
we pretend that we can restrict all calculations to E. On E, the first
piece of the path is the straight line from g0 to sg0 for some small
positive number s. It is easy to compute a bound for the length of this
path based on Vol(E, g0). The second piece is the straight line from sg0
to sg1, which, as we will see, has length approaching zero for s → 0.
The last piece is the straight line from sg1 to g1, which again has length
bounded from above by an expression involving Vol(E, g1).

Our job is to now take this heuristic picture, which uses paths of L2

metrics, and construct a family of paths of smooth metrics that captures
the essential properties.

For each k ∈ N and s ∈ (0, 1], we define three families of metrics as
follows. Choose closed sets Fk ⊆ E and open sets Uk containing E such
that Vol(Uk, gi)−Vol(Fk, gi) ≤ 1/k for i = 0, 1. (This is possible because
the Lebesgue measure is regular.) Let fk,s ∈ C∞(M) be functions with
the following properties:

1) fk,s(x) = s if x ∈ Fk,
2) fk,s(x) = 1 if x 6∈ Uk and
3) s ≤ fk,s(x) ≤ 1 for all x ∈M .

Now, for t ∈ [0, 1], define

γ̂k,s(t) := ĝk,st := ((1− t) + tfk,s)g0,

γ̄k,s(t) := ḡk,st := fk,s((1 − t)g0 + tg1),

γ̃k,s(t) := g̃k,st := ((1− t) + tfk,s)g1.

We view γ̂k,s, γ̄k,s, and γ̃k,s as paths in t depending on the family
parameter s. Furthermore, we define a concatenated path γk,s := γ̂k,s ∗
γ̄k,s ∗ (γ̃k,s)−1, where of course the inverse means we run through the
path backwards. It is easy to see that γk,s(0) = g0 and γk,s(1) = g1 for
all s.

We now investigate the length of each piece of γk,s separately, starting
with that of γ̂k,s. Recalling that by Convention 2.14, G0 = g−1g0, we
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compute

L(γ̂k,s) =

∫ 1

0

(∫

M
tr((1−t)+tfk,s)g0

(
((fk,s − 1)g0)

2
)

·
√

det (((1 − t) + tfk,s)G0)µg

)1/2

dt

=

∫ 1

0

(∫

Uk

((1− t) + tfk,s)
n
2
−2

· trg0
(
((1− fk,s)g0)

2
)√

detG0 µg

)1/2

dt.

since det(λA) = λn/2 detA for any n × n-matrix A and λ ∈ R. Note
that in the last line, we only integrate over Uk, which is justified by the
fact that 1− fk,s = 0 on M \ Uk. Since s > 0, it is easy to see that

(1− fk,s)
2 ≤ (1− s)2 < 1,

from which we can compute the estimate

L(γ̂k,s) <

∫ 1

0

(
n

∫

Uk

((1− t) + tfk,s)
n
2
−2 µg0

)1/2

dt.

Now, to estimate this, we note that for n ≥ 4, n2 − 2 ≥ 0 and therefore
fk,s ≤ 1 implies that

(4.2) L(γ̂k,s) <
√
nVol(Uk, g0).

For 1 ≤ n ≤ 3, n
2 − 2 < 0 and therefore one can compute that fk,s ≥

s > 0 implies

((1− t) + tfk,s)
n
2
−2 ≤ (1− t)

n
2
−2.

In this case, then,

(4.3) L(γ̂k,s) <
√
nVol(Uk, g0)

∫ 1

0
(1− t)

n
4
−1 dt,

and the integral term is finite since n
4 −1 > −1. Furthermore, the value

of this integral depends only on n. Putting together (4.2) and (4.3)
therefore gives

L(γ̂k,s) ≤ C(n)
√

Vol(Uk, g0),

where C(n) is a constant depending only on n.
In exact analogy, we can show that the same estimate holds with g1

in place of g0.
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Next, we look at the second piece of γk,s. Here we have, using that
g1 − g0 ≡ 0 on M \ E,

∥∥∥(γ̄k,s)′(t)
∥∥∥
2

γ̄k,s(t)
=

∫

M
trfk,s((1−t)g0+tg1)

(
(fk,s(g1 − g0))

2
)

·
√

det (fk,s((1 − t)G0 + tG1))µg

=

∫

E
f
n/2
k,s tr(1−t)g0+tg1

(
(g1 − g0)

2
)

·
√

det((1 − t)G0 + tG1)µg.

Since fk,s(x) = s if x ∈ Fk, and fk,s(x) ≤ 1 for all x ∈ M , it follows
from the above that
∥∥∥(γ̄k,s)′(t)

∥∥∥
2

γ̄k,s(t)

≤ sn/2
∫

Fk

tr(1−t)g0+tg1
(
(g1 − g0)

2
)√

det((1− t)G0 + tG1)µg

+

∫

E\Fk

tr(1−t)g0+tg1
(
(g1 − g0)

2
)√

det((1− t)G0 + tG1)µg.

Since tr(1−t)g0+tg1
(
(g1 − g0)

2
)
and det((1 − t)G0 + tG1) vary smoothly

with x and t over the compact space M × [0, 1], we have

K := max
x∈M,t∈[0,1]

tr(1−t)g0+tg1
(
(g1 − g0)

2
)√

det((1 − t)G0 + tG1) <∞.

Thus, we obtain

∥∥∥(γ̄k,s)′(t)
∥∥∥
2

γ̄k,s(t)
≤ sn/2K Vol(Fk, g) +K Vol(E \ Fk, g).

Since the right-hand side of this inequality is independent of t, Vol(Fk, g)
is bounded independently of k, and by assumption Vol(E \ Fk, g) → 0
as k → ∞, we have

lim
k→∞

lim
s→0

L(γ̄k,s) = 0.

Combining these considerations gives the desired estimate. q.e.d.

As the following examples show, Proposition 4.1 implies that we can-
not expect a Cauchy sequence in M to converge pointwise over subsets
of M whose volume vanishes in the limit. Indeed, we cannot control its
behavior at all.

Example 4.2. Consider the case where M is a two-dimensional
torus,M = T 2. On the standard chart for T 2 ([0, 1]×[0, 1] with opposite
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edges identified), define the following sequences of flat metrics:

g1k :=

(
1 0
0 k−1

)
, g2k :=

(
k−1 0
0 k−1

)
,

g3k :=

(
ek 0
0 e−2k

)
, g4k :=

(
|cos k| 0

0 k−1

)
.

Since Vol(T 2, gik) → 0 for all i = 1, 2, 3, 4, Proposition 4.1 implies that
each of these sequences is d-Cauchy, and all are equivalent. Yet in
terms of (pointed) Gromov–Hausdorff convergence, if dik denotes the
distance-function on M induced by gik, then {(M,d1k)} converges to a
circle (one dimension of T 2 collapses), {(M,d2k)} converges to a point
(both dimensions collapse), {(M,d3k)} converges to the real line, and
{(M,d4k)} does not converge at all. (The sequences {g1k} and {g2k} are
related to the notion of collapse introduced by Cheeger and Gromov
[3, cf. Ex. 0.4]. However, in contrast to their definition of collapse as a
sequence of metrics onM with injectivity radius uniformly converging to
zero and with uniformly bounded curvature, one can easily modify the
examples given here to find Cauchy sequences in (M, d) that collapse
with unbounded curvature and/or only on a subset of M .)

4.1.2. ω-Convergence and its Basic Properties. In this subsec-
tion, we give a convergence notion suited to the completion of M, in
that it allows sequences to behave badly on sets that collapse in the
limit.

First, though, recall that we define general measure-theoretic notions
(e.g., the notion of something holding almost everywhere, or a.e.) using
the fixed reference metric g (cf. Convention 2.14). Furthermore, we need
one definition before that of ω-convergence.

Definition 4.3. We denote by Mm the set of all measurable semi-
metrics onM . That is, Mm is the set of all sections of S2T ∗M that have
measurable coefficients and that induce a positive semidefinite scalar
product on TxM for each x ∈M .

Define an equivalence relation “∼” on Mm by g0 ∼ g1 if and only if

1) their deflated sets Xg0 and Xg1 differ at most by a nullset, and
2) g0(x) = g1(x) for almost every x ∈M \ (Xg0 ∪Xg1).

We denote the quotient space of Mm by

M̂m := Mm/∼.
Definition 4.4. Let {gk} be a sequence in M, and let [g∞] ∈ M̂m.

Recall that we denote the deflated set of the sequence {gk} by D{gk}
and the deflated set of an individual semimetric g̃ by Xg̃ (cf. Defini-
tions 2.21 and 2.22). We say that {gk} ω-converges to [g∞] if for every
representative g̃∞ ∈ [g∞], the following holds:

1) {gk} is d-Cauchy,
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2) Xg̃∞ and D{gk} differ at most by a nullset,
3) gk(x) → g̃∞(x) for almost every x ∈M \D{gk}, and
4)
∑∞

k=1 d(gk, gk+1) <∞.

We call [g∞] the ω-limit of the sequence {gk} and write gk
ω−→ [g∞].

(The use of the definite article “the” for the ω-limit of a sequence will
be justified in Lemma 4.5 below.) More generally, if {gk} is a d-Cauchy
sequence containing a subsequence that ω-converges to [g∞], then we

say that {gk} ω-subconverges to [g∞], write gk
ω−→ g∞, and call [g∞] an

ω-limit of {gk}.

Loosely speaking, the utility of Definition 4.4 is that, in a sense to
be made precise, an ω-convergent sequence in M will d-converge to
the same limit. The full identification of the completion of M with
(equivalence classes of) semimetrics that allows this is given in the main
result of this paper, Theorem 5.19.

Condition (1) in the definition is simply there for convenience, so we
don’t have to repeatedly assume that a sequence is ω-convergent and
Cauchy. Condition (4) is technical and will aid us in proofs. Conceptu-
ally, it means that we can find paths αk connecting gk to gk+1 such that
the concatenated path α1∗α2∗· · · has finite length. If {gk} is d-Cauchy,
then this can always be achieved by passing to a subsequence. (We re-
mark here, however, that these two conditions are not independent. In
fact, (4) implies (1).)

Note that condition (3) implies that if gk
ω−→ [g∞], then for almost

all x ∈M \D{gk}, there exists some δ(x) > 0 such that

detGk(x) ≥ δ(x)

for all k ∈ N.
We now move on to proving some properties of ω-convergence. We

first state an entirely trivial consequence of Definitions 4.3 and 4.4.

Lemma 4.5. Let [g∞] ∈ M, and let {gk} be a sequence in M. Sup-
pose that for one given representative g∞ ∈ [g∞], {gk} together with g∞
satisfies conditions (1)–(4) of Definition 4.4. Then these conditions are
also satisfied for {gk} together with every other representative of [g∞].

Therefore, if can we verify these conditions for one representative of

an equivalence class, this already implies {gk} ω−→ [g∞].

We can thus consistently say that {gk} ω-converges to an individual
semimetric g∞ ∈ Mm if the two together satisfy conditions (1)–(4) of
Definition 4.4.

The next property of ω-convergence is obvious from property (2) of
Definition 4.4.
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Lemma 4.6. If {g0k} and {g1k} both ω-converge to the same element

[g∞] ∈ M̂m, then {g0k} and {g1k} have the same deflated set, up to a
nullset.

Recall that the main goal of this section is to show that each Cauchy
sequence in M has an ω-convergent subsequence. To do this, we will
first prove a pointwise result in the following subsection.

4.1.3. (Riemannian) Metrics on Mx Revisited. In order to more
closely study the metric ΘM on M, we now take a closer look at the
Riemannian metrics 〈·, ·〉 and 〈·, ·〉0 (see Section 2.1.1 and Definition 2.6,
respectively) that we have defined on the finite-dimensional manifold
Mx. The relationship between the two is quite simple:

(4.4) 〈h, k〉0g̃ = 〈h, k〉g̃ det G̃ for all g̃ ∈ Mx and h, k ∈ Tg̃Mx
∼= Sx.

Thus, we will first study the simpler Riemannian metric 〈·, ·〉 and find
out what properties of 〈·, ·〉0 we can deduce in this way. Despite their
close relationship, their qualitative properties are very different—in par-
ticular, Mx is complete with respect to 〈·, ·〉. We will show this using a
simplified version of the analogous computations for (·, ·) on M carried
out in [9, Thm. 2.3].

Before we start, let’s clear up some notation.

Definition 4.7. By dx, we denote the distance function induced on
Mx by 〈·, ·〉. We denote the 〈·, ·〉-length of a path γ in Mx by L〈·,·〉(γ)
and the 〈·, ·〉0-length by L〈·,·〉0(γ).

Now we compute the Christoffel symbols.

Proposition 4.8. Let h and k be constant (that is, translation-
invariant) vector fields on Mx, and denote the Levi-Civita connection
of 〈·, ·〉 by ∇. Then the Christoffel symbols of 〈·, ·〉 are given by

Γ(h, k) = ∇hk|g̃ = −1

2

(
hg̃−1k + kg̃−1h

)
.

Proof. All computations are done at the base point g̃, which we will
omit from the notation for convenience. Let ℓ be any other constant
vector field on Mx. Using the Koszul formula, we can compute that

(4.5) 2〈∇hk, ℓ〉 = h〈k, ℓ〉 + k〈ℓ, h〉 − ℓ〈h, k〉.
Using the fact that the derivative of the map ĝ 7→ ĝ−1 at the point g̃

is given by a 7→ −g̃−1ag̃−1, one can compute that

h〈k, ℓ〉 = − tr
(
(g̃−1hg̃−1k)(g̃−1ℓ)

)
− tr

(
(g̃−1k)(g̃−1hg̃−1ℓ)

)
.

Repeating the same computation for the other permutations and sub-
stituting the results into (4.5) then gives the result. q.e.d.

Using this, it is a relatively simple matter to solve the geodesic equa-
tion of 〈·, ·〉.
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Proposition 4.9. The geodesic γ in (Mx, 〈·, ·〉) with initial data
γ(0) = g0, γ

′(0) = h is given by

γ(t) = g0e
tg−1

0
h.

In particular, (Mx, dx) is a complete metric space.

Proof. Let a(t) := γ′(t). Since γ is a geodesic, we have

(4.6) 0 = ∇a(t)a(t) = a′(t) + Γ(a(t), a(t)) = a′(t)− a(t)γ(t)−1a(t)

by Proposition 4.8. (Note that Γ denotes the Christoffel symbols here,
and not g(x)−1γ.) Now, multiplying (4.6) on the left by γ(t)−1 gives

(γ(t)−1a(t))′ = 0.

Thus γ(t)−1γ′(t) is constant, or log(γ(t))′ = γ(t)−1γ′(t) ≡ g−1
0 h. The

geodesic equation now follows, and since g0e
tg−1

0
h ∈ Mx for all t ∈ R,

the Hopf-Rinow theorem implies that (Mx, dx) is complete. q.e.d.

We now want to use Proposition 4.9 and (4.4) to characterize θgx-
Cauchy sequences in Mx. First, though, we need a lemma that is a
pointwise version of Lemma 2.5. The proof is completely analogous to
that of Lemma 2.5, and so we omit it.

Lemma 4.10. Let a0, a1 ∈ Mx. Then

∣∣∣
√

detA1 −
√

detA0

∣∣∣ ≤
√
n

2
θgx(a0, a1).

(Recall Convention 2.14 for the definitions of Ai.)

Proposition 4.11. Let ak be a θgx-Cauchy sequence. Then either

1) detAk → 0 as k → ∞, or
2) there exist constants C, η > 0 such that |(ak)ij | ≤ C and detAk ≥

η for all 1 ≤ i, j ≤ n and k ∈ N.

Proof. Keeping Lemma 4.10 in mind, it is more convenient to work
with the square root of the determinant. This is, of course, completely
equivalent for our purposes.

Now, by Lemma 4.10, the map a 7→
√
detA is θgx-Lipschitz. Since ak

is θgx-Cauchy, L := limk→∞
√
detAk is well-defined.

If for every η > 0, there exists k such that
√
detAk ≤ η, then clearly

L = 0.
It remains to show that if there exist i and j such that for all C > 0,

there is a k such that |(ak)ij | > C, then
√
detAk → 0. We will assume

that L > 0 and show a contradiction.
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Let’s say that we are given b0, b1 ∈ Mx with detB0,detB1 ≥ δ. Let

L−δ := inf

{
L〈·,·〉0(β)

∣∣∣∣∣
β : [0, 1] → Mx is a path from b0 to b1 with

det(g(x)−1β(t)) ≤ δ/2 for some t ∈ (0, 1)

}
,

L+δ := inf

{
L〈·,·〉0(β)

∣∣∣∣∣
β : [0, 1] → Mx is a path from b0 to b1 with

det(g(x)−1β(t)) ≥ δ/2 for all t ∈ [0, 1]

}
.

It is easy to see that θgx(b0, b1) = min(L−δ, L+δ). Now let β be a path
as in the definition of L−δ, let bt := β(t), and assume τ ∈ (0, 1) is such
that detBτ ≤ δ/2. Then using Lemma 4.10, we have

L〈·,·〉0(β) ≥
√
n

2

∣∣∣
√

detB0 −
√

detBτ

∣∣∣+
√
n

2

∣∣∣
√

detB1 −
√

detBτ

∣∣∣

≥ √
n

(
√
δ −

√
δ

2

)
=

√
n

(
1− 1√

2

)√
δ.

Therefore L−δ ≥ √
n(1 − 1/

√
2)
√
δ. Then, if β is a path as in the

definition of L+δ, we have

L(β) =

∫ 1

0

√
〈β′(t), β′(t)〉0 dt =

∫ 1

0

√
〈β′(t), β′(t)〉 det(g(x)−1β(t)) dt

≥
√
δ

2

∫ 1

0

√
〈β′(t), β′(t)〉 dt ≥

√
δ

2
dx(b0, b1).

This gives L+δ ≥
√
δ/2 dx(b0, b1). Putting this together, we get that

(4.7) θgx(b0, b1) ≥ min{√n(1− 1/
√
2)
√
δ,
√
δ/2 dx(b0, b1)}

whenever detB0,detB1 ≥ δ.
Now, let’s apply the considerations of the last paragraph to the prob-

lem at hand. Let i and j be, as above, the indices for which |(ak)ij | is
unbounded, and choose a subsequence, which we again denote by ak,
such that |(ak)ij | ≥ k for all k ∈ N. Passing to this subsequence does
not change the limit limk→∞

√
detAk.

Next, choose K ∈ N such that k ≥ K implies
√
detAk ≥ L/2 and

k, l ≥ K implies θgx(ak, al) ≤
√
n
4 (1− 1/

√
2)L. The latter assumption is

possible since ak is Cauchy. By (4.7), if k ≥ K, we also have

θgx(aK , ak) ≥ min

{√
n

2
(1− 1/

√
2)L, dx(aK , ak)

L

2
√
2

}
.

But θgx(aK , ak) ≥
√
n
2 (1 − 1/

√
2)L violates our assumptions on K. Fur-

thermore, dx(aK , ak) → ∞ since |(ak)ij | → ∞ and (Mx, 〈·, ·〉) is com-

plete. Therefore, if θgx(aK , ak) ≥ dx(aK , ak)
L

2
√
2
for all k, then our as-

sumptions on K are violated as well. Thus we have achieved the desired
contradiction. q.e.d.
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Since for every pair of constants C, η > 0, the set of elements g̃ of
Mx with |g̃ij | ≤ C and det G̃ ≥ η for all 1 ≤ i, j ≤ n is compact, we
immediately get the following corollary of Proposition 4.11:

Corollary 4.12. Let {gk} be a θgx-Cauchy sequence. Then either

1) detGk → 0 as k → ∞, or
2) there exists an element g∞ ∈ Mx such that gk → g∞, with con-

vergence in the manifold topology of Mx.

This is essentially a pointwise equivalent of ω-convergence. In the
next subsection, we will globalize this result. Before we do that, though,
we use this opportune moment to prove two last pointwise results, which
will be useful in Section 4.3. The first is the pointwise analog of Propo-
sition 4.1. Again, the proof is analogous to that of Proposition 4.1, so
we omit it.

Proposition 4.13. Let g̃, ĝ ∈ Mx. Then there exists a constant
C ′(n), depending only on n, such that

θgx(g̃, ĝ) ≤ C ′(n)
(√

det G̃+
√

det Ĝ
)
.

The last pointwise result we need combines Corollary 4.12 and Propo-
sition 4.13 to give a description of the completion of the metric space
(Mx, θ

g
x).

Theorem 4.14. For any given x ∈ M , let cl(Mx) denote the clo-
sure of Mx ⊂ Sx with regard to the natural topology inherited by Sx
from the manifold topology of M . Then cl(Mx) consists of all positive
semidefinite (0, 2)-tensors at x. Let us denote the boundary of Mx, as
a subspace of Sx, by ∂Mx.

Then the completion of (Mx, θ
g
x) is homeomorphic to the quotient

of the space cl(Mx) where ∂Mx has been identified to a single point.
Under this identification, the distance function is given by

θgx([g0], [g1]) = lim
k→∞

θgx(g
0
k, g

1
k),

where [g0], [g1] ∈ cl(Mx)/∂Mx and {g0k} and {g1k} are any sequences in
Mx such that the sequences {[g0k]} and {[g1k]} in cl(Mx)/∂Mx converge
to [g0] and [g1], respectively.

Proof. Let {gk} be any sequence in Mx. By Corollary 4.12, if {gk} is
θgx-Cauchy then either gk → g∞ ∈ Mx (with convergence in the topology
of Sx), or detGk → 0. In fact, by the equivalence of the topologies on
Mx inherited from Sx and θgx, one sees as well that if gk → g∞ ∈ Mx

in the topology of Sx, then {gk} is θgx-Cauchy. Furthermore, two θgx-
Cauchy sequences in Mx that converge to distinct elements of Mx are
inequivalent as θgx-Cauchy sequences.

By Proposition 4.13, all sequences with detGk → 0 are θgx-Cauchy

and equivalent, and so they are identified in (Mx, θ
g
x).



THE COMPLETION OF THE MANIFOLD OF RIEMANNIAN METRICS 231

Thus, there is a natural bijection φ : cl(Mx)/∂Mx → (Mx, θ
g
x) iden-

tifying an element [g0] ∈ cl(Mx)/∂Mx with an equivalence class of
θgx-Cauchy sequences whose projections to cl(Mx)/∂Mx have limit [g0].
Continuity of φ is immediately implied by the preceding arguments.

To establish continuity of φ−1, consider θgx-Cauchy sequences {glk}
and {g∞k }, for l ∈ N, such that the sequences {[glk]} and {[g∞k ]} in

cl(Mx)/∂Mx have limits [gl] and [g∞]. (Note that [gl] = φ−1({glk}) and
[g∞] = φ−1({g∞k }).) Let g̃l ∈ [gl] and g̃∞ ∈ [g∞] be any representatives.

Suppose that we have θgx({glk}, {g∞k }) → 0 as l → ∞; then

(4.8) lim
l→∞

lim
k→∞

θgx(g
l
k, g

∞
k ) = 0.

To complete the proof, we wish to show that liml→∞[gl] = [g∞] in the
topology of cl(Mx)/∂Mx.

First, we see by Lemma 4.10,

(4.9)

0 = lim
l→∞

lim
k→∞

θgx(g
l
k, g

∞
k ) ≥

√
n

2
lim
l→∞

lim
k→∞

∣∣∣∣
√

detG∞
k −

√
detGlk

∣∣∣∣

=

√
n

2
lim
l→∞

∣∣∣
√

det G̃∞ −
√

det G̃l
∣∣∣ .

(Note that det G̃l and det G̃∞ do not depend of the choice of represen-
tative for [gl] or [g∞].) The last equality holds since limk→∞ detGlk =

det G̃l follows from Lemma 4.10 if g̃l ∈ Mx, and otherwise it follows
since limk→∞ detGlk = 0 = det G̃l. An analogous argument holds for
{g∞k } and g̃∞.

So suppose that g̃∞ ∈ ∂Mx. Then (4.9) implies that det G̃l → 0,
and in particular, [gl] → [g∞] in the topology of cl(Mx)/∂Mx. On the
other hand, if g̃∞ ∈ Mx, then (4.9) implies that g̃l ∈ Mx for sufficiently
large l, and so the following is well defined and follows from (4.8):

0 = lim
l→∞

lim
k→∞

θgx(g
l
k, g

∞
k ) = lim

l→∞
θgx(g̃

l, g̃∞).

But this in turn implies that [gl] → [g∞] as l → ∞ in the topology of
cl(Mx)/∂Mx. This completes the proof. q.e.d.

4.1.4. The Existence Proof. We now wish to globalize Corollary 4.12
to characterize d-Cauchy sequences, using Proposition 2.8 to reduce
questions about d to questions about the simpler metric ΘM .

Lemma 4.15. Let {gk} be a Cauchy sequence in M. Assume that

(4.10)

∞∑

k=1

d(gk, gk+1) <∞.
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Then the following holds:

(4.11)
∞∑

k=1

ΘM (gk, gk+1) <∞.

Furthermore, define functions Ω and ΩN for each N ∈ N by

ΩN (x) :=

N∑

k=1

θgx(gk(x), gk+1(x)), Ω(x) :=

∞∑

k=1

θgx(gk(x), gk+1(x)).

Then Ω is a.e. finite, Ω ∈ L1(M,g) and ΩN
L1

−→ Ω. Furthermore, by
definition, ΩN converges to Ω pointwise.

Proof. The statement that ΩN → Ω pointwise is clear. So we move
on to the other statements.

Lemma 2.5 implies that
√

Vol(M,gk) is a Cauchy sequence in R.
Therefore it is bounded, and we can find a constant V such that we
have

√
Vol(M,gk) ≤ V for all k. Thus, by Proposition 2.8,

ΘM(gk, gk+1) ≤ d(gk, gk+1)
(√
nd(gk, gk+1) + 2V

)
.

But for large k, since {gk} is Cauchy, we must have d(gk, gk+1) ≤ 1, so

ΘM(gk, gk+1) ≤ (
√
n+ 2V )d(gk, gk+1).

The estimate (4.11) is now immediate from (4.10).
We can then compute
∫

M
Ωµg =

∫

M

( ∞∑

k=1

θgx(gk, gk+1)

)
µg =

∞∑

k=1

∫

M
θgx(gk, gk+1)µg

=

∞∑

k=1

ΘM (gk, gk+1) <∞,

where exchanging the infinite sum and the integral is valid due to a
theorem of Lebesgue [14, Thm. (12.21)]. Finiteness follows from the first
part of the lemma. This proves that Ω is a.e. finite and Ω ∈ L1(M,g).

It remains to show that ΩN
L1

−→ Ω. But this is now immediate from
a classical theorem of F. Riesz [22], which states that if 1 ≤ p < ∞,

fi → f a.e. and ‖fi‖p → ‖f‖p, then fi
Lp

−→ f . q.e.d.

Using this lemma, we can globalize Corollary 4.12.

Proposition 4.16. Let {gk} be a Cauchy sequence in M such that
∞∑

k=1

d(gk, gk+1) <∞.

Then for almost every x ∈M , {gk(x)} is θgx-Cauchy and either:

1) detGk(x) → 0 as k → ∞, or
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2) gk(x) is a convergent sequence in Mx.

Furthermore, (1) holds for almost every x ∈ D{gk}, and (2) holds for
almost every x ∈M \D{gk}.

Proof. By our assumption, all the conclusions of Lemma 4.15 hold.
In particular, ΩN → Ω pointwise and Ω is a.e. finite. Therefore, for
almost every x ∈M ,

(4.12)

∞∑

k=1

θgx(gk(x), gk+1(x)) = Ω(x) <∞.

From this, it is immediate that {gk(x)} is θgx-Cauchy. The remaining
results follow from Corollary 4.12. q.e.d.

This proposition essentially delivers us the proof of the existence re-
sult.

Theorem 4.17. For every Cauchy sequence {gk} in M, there exists

an element [g∞] ∈ M̂m and a subsequence {gkl} such that {gkl} ω-
converges to [g∞].

Explicitly, given the subsequence {gkl}, [g∞] is the unique equivalence
class containing the element g∞ ∈ Mm defined as follows. At points
x ∈M where {gkl(x)} is θgx-Cauchy,

1) g∞(x) := 0 for x ∈ D{gkl} and

2) g∞(x) := lim gkl(x) for x ∈M \D{gkl}.

At points x ∈M where {gkl(x)} is not θgx-Cauchy, we set g∞(x) := 0.

Proof. Let {gkl} be a subsequence of {gk} such that
∞∑

l=1

d(gkl , gkl+1) <∞.

Then {gkl} satisfies properties (1) and (4) of Definition 4.4, as well as
the hypotheses of Corollary 4.16. Thus {gkl} is a.e. θgx-Cauchy, and so
g∞ is defined a.e. by the two conditions given above. From this, it is
immediate that {gkl} together with g∞ also satisfies properties (2) and
(3) of Definition 4.4. Thus, {gkl} ω-converges to g∞, and by Lemma 4.5
it therefore ω-converges to [g∞]—provided we can show that g∞ ∈ Mm.
But g∞ is clearly a semimetric, and it is the pointwise limit of the
measurable semimetrics χ(M \D{gkl})gkl (one can easily construct the

set D{gkl} as a countable intersection of open sets, so it is measurable).

Therefore g∞ itself is measurable. q.e.d.

Knowing now that a Cauchy sequence in M ω-subconverges (see Def-
inition 4.4), we go further into the properties of ω-convergence. Note
that as of yet, we have not addressed whether all ω-convergent subse-
quences of a Cauchy sequence in M have the same ω-limit. Resolving
this issue is postponed until Theorem 4.28 below.
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4.2. ω-Convergence and the Concept of Volume. In this brief
subsection, we wish to prove that the volumes of measurable subsets
behave well under ω-convergence. To make this precise, we begin with
a definition.

Definition 4.18. Let Mf ⊂ Mm denote the set of all elements
of Mm that have finite volume, where the volume form of g̃ ∈ Mm

is defined in the usual way by µg̃(x) =
√

det g̃(x)dx1 ∧ · · · ∧ dxn in
coordinates. (Note that µg̃ is a measure on the Lebesgue sets of M , as
discussed in §2.3.2.)

We also define M̂f := Mf/∼, where “∼” is the equivalence relation
introduced in Definition 4.3.

For any g̃ ∈ Mf and any measurable subset Y ⊆ M , we define
Vol(Y, g̃) :=

∫
Y dµg̃.

In this subsection, we want to show that if {gk} ω-converges to [g∞]
and Y ⊆M is measurable, then for any representative g∞ ∈ [g∞],

(4.13) Vol(Y, gk) → Vol(Y, g∞).

To see that the above expression is well-defined, note that given any two
representatives g0∞, g

1
∞ ∈ [g∞], we have that µg0

∞

= µg1
∞

as measures—it
is clear from Definition 4.3 that µg0

∞

and µg1
∞

can differ at most on a

nullset. Thus Vol(Y, g0∞) = Vol(Y, g1∞).
The proof of (4.13) is achieved via the Lebesgue dominated conver-

gence theorem with the help of the next two lemmas.

Lemma 4.19. Let {gk} ω-converge to g∞ ∈ Mm. Then
(
µgk
µg

)
a.e.−→

(
µg∞
µg

)
.

Proof. We first prove that for almost every x ∈ D{gk},(
µgk
µg

)
=
√

detGk(x) → 0 =
√

detG∞ =

(
µg∞
µg

)

as k → ∞. By the definition of the deflated set, for every x ∈ D{gk}
and ǫ > 0, there exists k ∈ N such that detGk(x) < ǫ. But we also
know from Proposition 4.16 and property (4) of Definition 4.4 that
{gk(x)} is θgx-Cauchy for almost every x ∈ M . Hence, by Lemma 4.10,{√

detGk(x)
}

is a Cauchy sequence in R at such points. Therefore it

has a limit, and this limit must be 0.
Now, for almost every x ∈ M \ D{gk}, gk(x) → g∞(x). Since the

determinant is a continuous map from the space of n× n matrices into
R, this immediately implies that detGk(x) → detG∞(x) for almost
every x ∈M \D{gk}. q.e.d.

Our next task is to find an L1 function that dominates (µgk/µg).
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Lemma 4.20. Let {gk} be a Cauchy sequence such that
∞∑

k=1

d(gk, gk+1) <∞,

and let Ω be the function of Lemma 4.15. Then(
µgk
µg

)
(x) ≤

√
n

2
Ω(x) +

(
µg1
µg

)
(x)

for almost every x ∈M and all k ∈ N.

Proof. By Proposition 4.16, {gk(x)} is θgx-Cauchy for almost every
x ∈ M . Let x ∈ M be a point where this holds. Then by Lemma 4.10,
the triangle inequality, and the definitions of ΩN and Ω, we have, for
any fixed k,

∣∣∣
√

detGk −
√

detG1

∣∣∣ ≤
√
n

2
θgx(gk, g1) ≤

√
n

2

k−1∑

m=1

θgx(gm, gm+1)

=

√
n

2
Ωk−1(x) ≤

√
n

2
Ω(x).

The result is now immediate. q.e.d.

Now, since µg1 is smooth, it has finite volume, and hence (µg1/µg) ∈
L1(M,g). We have already seen in Lemma 4.15 that Ω ∈ L1(M,g).
Therefore Lemmas 4.19 and 4.20 allow us to apply the Lebesgue domi-
nated convergence theorem to obtain:

Theorem 4.21. Let {gk} ω-converge to g∞ ∈ Mm, and let Y ⊆ M
be any measurable subset. Then Vol(Y, gk) → Vol(Y, g∞).

An immediate corollary of this theorem and Lemma 2.5 is that the
total volume of an ω-limit is finite.

Corollary 4.22. If g∞ ∈ Mm is an ω-limit of a sequence {gk} in
M, then Vol(M,g∞) <∞, i.e., g∞ ∈ Mf .

Furthermore, as we might have suspected from the beginning, the
volume of the deflated set D{gk} of an ω-convergent sequence vanishes
in the limit. This is because Vol(D{gk}, g∞) = 0.

Corollary 4.23. Let {gk} ω-converge to g∞ ∈ Mf . Then we have
Vol(D{gk}, gl) → 0 as l → ∞. Furthermore, if Y ⊂ M is such that
Y \D{gk} has positive µg-measure, then Vol(Y, g∞) > 0.

Since we now know the volume of an ω-limit is finite, we can refine
Theorem 4.17:

Theorem 4.24. For every Cauchy sequence {gk} in M, there exists

an element [g∞] ∈ M̂f such that some subsequence of {gk} ω-converges
to [g∞].
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4.3. Uniqueness of the ω-Limit. The goal of this section is to prove
the uniqueness of the ω-limit in the sense mentioned in the introduction
to the chapter: we will show that two ω-convergent Cauchy sequences
in M are equivalent if and only if they have the same ω-limit. We prove
each direction in a separate subsection.

4.3.1. First Uniqueness Result. We first prove the statement that if
two ω-convergent Cauchy sequences are equivalent, then their ω-limits
agree. To do so, we will extend the pseudometric ΘY (cf. Definition 2.7)
to the precompletion of M. For this, we need an easy lemma.

Lemma 4.25. Let Y ⊆ M be measurable. If {gk} is a d-Cauchy
sequence, then it is also ΘY -Cauchy.

Proof. As noted in the proof of Lemma 4.15, since {gk} is d-Cauchy,

the sequence
√

Vol(M,gk) in R is bounded, so Proposition 2.8 gives the
result easily. q.e.d.

Now we give the extension of ΘY mentioned above.

Proposition 4.26. Let Y ⊆M be measurable. Then the pseudomet-
ric ΘY on M can be extended to a pseudometric on Mpre

, the precom-
pletion of M, via

(4.14) ΘY ({g0k}, {g1k}) := lim
k→∞

ΘY (g
0
k, g

1
k).

This pseudometric is weaker than d in the sense that d({g0k}, {g1k}) = 0
implies ΘY ({g0k}, {g1k}) = 0 for any d-Cauchy sequences {g0k} and {g1k}.
More precisely, given two such sequences, if {gikl} is any ω-convergent

subsequence of {gik}, i ∈ {0, 1}, then

(4.15) ΘY ({g0kl}, {g
1
kl
}) ≤

d({g0kl}, {g
1
kl
})
(√

nd({g0kl}, {g
1
kl
}) + 2

√
Vol(M,g0)

)
,

where g0 is any element of Mf for which g0kl
ω−→ [g0].

Furthermore, let any g0, g1 ∈ Mf be given. If {g0k} and {g1k} are
sequences in M that ω-converge to g0 and g1, respectively, then we have

(4.16) ΘY ({g0k}, {g1k}) =
∫

Y
θgx(g0(x), g1(x))µg(x).

Remark 4.27. The existence of the ω-convergent subsequences used
in the Proposition has been proven, but it has not been proven that
there is a unique ω-limit to which a d-Cauchy sequence subconverges
(see Definition 4.4).

Proof of Proposition 4.26. The construction of a pseudometric on the
precompletion of a metric space can be carried over to the case where
we begin with a pseudometric space. Therefore, the limit in (4.14) is
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well-defined due to the fact that {g0k} and {g1k} are Cauchy sequences
with respect to ΘY , and (4.14) indeed defines a pseudometric.

The inequality (4.15) is proved via the following simple computation,
which uses (4.14), Proposition 2.8, and Theorem 4.21:

ΘY ({g0kl}, {g
1
kl
}) = lim

l→∞
ΘY (g

0
kl
, g1kl)

≤ lim
l→∞

d(g0kl , g
1
kl
)
(√

n d(g0kl , g
1
kl
) + 2

√
Vol(M,g0kl)

)

= d({g0kl}, {g
1
kl
})
(√

n d({g0kl}, {g
1
kl
}) + 2

√
Vol(M,g0)

)
.

As for (4.16), note first that θgx(g0(x), g1(x)) is well-defined by Theo-
rem 4.14, since g0 and g1 are positive-semidefinite tensors at each point
x ∈ M . To prove (4.16), we will first use Fatou’s Lemma to show
that θgx(g0(x), g1(x)) is integrable. We will then use this to apply the
Lebesgue dominated convergence theorem.

By Proposition 4.16, for almost every x ∈ M , {g0k(x)} and {g1k(x)}
are θgx-Cauchy. At such points, by definition,

(4.17) θgx(g0(x), g1(x)) = lim
k→∞

θgx(g
0
k(x), g

1
k(x)).

So defining

fk(x) := θgx(g
0
k(x), g

1
k(x)), f(x) := θgx(g0(x), g1(x)),

we have fk → f a.e.
Now, note that

ΘY (g
0
k, g

1
k) =

∫

Y
fk(x)µg(x).

We have already seen that limk→∞ΘY (g
0
k, g

1
k) exists, so {ΘY (g

0
k, g

1
k)} is

in particular a bounded sequence of real numbers. Thus Fatou’s Lemma
applies to the sequence {fk}, and we obtain
∫

Y
f(x) dµg(x) ≤ lim inf

k→∞

∫

Y
fk(x) dµg(x) = lim inf

k→∞
ΘY (g

0
k, g

1
k) <∞,

where we have used Fatou’s Lemma in the first inequality.
Now we wish to verify the assumptions of the Lebesgue dominated

convergence theorem for fk and f . We note that for each l > k, the
triangle inequality gives

fk(x) ≤
l−1∑

m=k

θgx(g
0
m(x), g

0
m+1(x))

+ θgx(g
0
l (x), g

1
l (x)) +

l−1∑

m=k

θgx(g
1
m(x), g

1
m+1(x)).
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Starting the sum above at m = 1 instead of m = k and taking the limit
l → ∞ gives, for almost every x ∈M ,

fk(x) ≤
∞∑

m=1

θgx(g
0
m(x), g

0
m+1(x)) + f(x) +

∞∑

m=1

θgx(g
1
m(x), g

1
m+1(x)),

where we have used (4.17). Now we claim that the right-hand side of
the above inequality is L1-integrable. We already showed f is integrable
using Fatou’s Lemma. As for the two infinite sums, they are each also
integrable by Lemma 4.15 and ω-convergence of gik, i = 0, 1 (specifically,
property (4) of Definition 4.4). Thus each fk is bounded a.e. by an L1

function not depending on k.
Knowing all of this, we can apply the Lebesgue dominated conver-

gence theorem to show

ΘY ({g0k}, {g1k}) = lim
k→∞

ΘY (g
0
k, g

1
k) = lim

k→∞

∫

Y
fk µg

=

∫

Y
f µg =

∫

Y
θgx(g0(x), g1(x))µg(x),

which completes the proof. q.e.d.

With this proposition, proving the first uniqueness result becomes a
relatively simple matter.

Theorem 4.28. Let two ω-convergent sequences {g0k} and {g1k}, with
ω-limits [g0] and [g1], respectively, be given. If {g0k} and {g1k} are d-
equivalent, i.e., if

lim
k→∞

d(g0k, g
1
k) = 0,

then [g0] = [g1].

Proof. Suppose the contrary; then for any representatives g0 ∈ [g0]
and g1 ∈ [g1], one of two possibilities holds:

1) Xg0 and Xg1 differ by a set of positive µg-measure, or
2) Xg0 = Xg1 , up to a µg-nullset, but g0 and g1 differ on a set E

with E ∩ (Xg0 ∪Xg1) = ∅ and Vol(E, g) > 0, where g is our fixed
metric.

We will show that neither of these possibilities can actually occur.
To rule out (1), letXi := D{gi

k
} denote the deflated set of the sequence

{gik} for i = 0, 1. Then Xi is measurable by Remark 2.23(1). We claim
X0 = X1, up to a nullset. If this is not true, then by swapping the two
sequences if necessary, we see that Y := (X0 \X1) has positive volume
with respect to g1 (cf. Corollary 4.23) and zero volume with respect to
g0. (Y is simply the set on which {g0k} deflates and {g1k} doesn’t.) But
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then by Lemma 2.5,

lim inf
k→∞

d(g0k, g
1
k) ≥ lim

k→∞
4√
n

∣∣∣∣
√

Vol(Y, g1k)−
√

Vol(Y, g0k)

∣∣∣∣

=
4√
n

√
Vol(Y, g1) > 0,

where we have used Theorem 4.21. This contradicts the assumptions of
the theorem, so in fact X0 = X1 up to a nullset. Since by property (2)
of Definition 4.4, Xgi = D{gi

k
} up to a nullset as well, (1) cannot hold.

So suppose that (2) holds. Note that on E, g0 and g1 are both
positive definite. Note also that E has positive g-volume and that
θgx(g0(x), g1(x)) > 0 for all x ∈ E. Thus,

∫
E θ

g
x(g0(x), g1(x)) dµg > 0,

and so we can conclude from Proposition 4.26 (specifically (4.16)), that
ΘE({g0k}, {g1k}) > 0. But then this and (4.15) also imply that

lim
k→∞

d(g0k, g
1
k) = d({g0k}, {g1k}) > 0.

This contradicts the assumptions of the theorem, and so (2) cannot hold
either. q.e.d.

Corollary 4.29. Let {gk} be a d-Cauchy sequence in M. Then all
ω-convergent subsequences of {gk} have the same ω-limit.

Remark 4.30. In view of this corollary and Theorem 4.17, we can
unambiguously define the ω-limit of a d-Cauchy sequence inM to be the

ω-limit of any ω-convergent subsequence. Thus the element [g∞] ∈ M̂m

defined in Theorem 4.17 is determined uniquely by the sequence {gk},
and in fact [g∞] ∈ M̂f .

Theorems 4.17 and 4.28 combine to show that there exists a well-
defined map from M to M̂f :

Definition 4.31. Denote by Ω : M → M̂f the map sending an

equivalence class of Cauchy sequences to the unique element of M̂f

that all of its representatives ω-subconverge to.

Our goal in the following subsection is to see that this map is injective,
and in Section 5, we will show that it is surjective.

4.3.2. Second Uniqueness Result. Our goal in this subsection is to
prove the following statement: up to d-equivalence, there is only one

d-Cauchy sequence ω-converging to a given element of M̂f . That is,
if we have two sequences {g0k}, {g1k} that both ω-converge to the same

[g∞] ∈ M̂f , then

d({g0k}, {g1k}) = lim
k→∞

d(g0k, g
1
k) = 0.

We will first prove the above statement for sequences that remain
within a given amenable subset U , and will then use this to extend the
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proof to arbitrary sequences. In what follows, we will often implicitly
make use of the identification of elements of U0—the ‖·‖g-completion of

U—with particular measurable sections in L2(S2T ∗M), as explained in
Remark 3.4.

Proposition 4.32. Let U be an amenable subset, and let U0 be
the L2-completion of U . If two sequences {g0k} and {g1k} in U both

ω-converge to [g∞] ∈ M̂m, then [g∞] ∈ M̂f and {g0k} and {g1k} are
d-equivalent. That is,

lim
k→∞

d(g0k, g
1
k) = 0.

Furthermore, up to differences on a nullset, [g∞] only contains one rep-
resentative, g∞, and {g0k} and {g1k} both L2-converge to g∞. In partic-
ular, g∞ ∈ U0.

Proof. Note that Definition 3.1 of an amenable subset implies that the
deflated sets of {g0k} and {g1k} are empty. Therefore, all representatives
of [g∞] differ at most by a nullset, and property (3) of Definition 4.4

implies that g0k, g
1
k

a.e.−→ g∞.
Since all g0k and g1k satisfy the same bounds a.e. in each coordinate

chart, it is easy to see that the set

{|(glk)ij |2 | 1 ≤ i, j ≤ n, k ∈ N}
is uniformly integrable in each coordinate chart for both l = 0 and
l = 1. Therefore, using [14, (13.39)(a)] (this also follows quickly from
the Vitali convergence theorem [14, (13.38)]), we see that {g0k} and {g1k}
converge in L2 to g∞, proving the second statement. This also implies
that limk→∞

∥∥g1k − g0k
∥∥
g
= 0. But now, invoking Theorem 3.10 gives

limk→∞ d(g0k, g
1
k) = 0. q.e.d.

The next lemma establishes the strong correspondence between L2-
and ω-convergence within amenable subsets.

Lemma 4.33. Let U ⊂ M be amenable, and let g̃ ∈ U0. Then for
any sequence {gk} in U that L2-converges to g̃, there exists a subsequence
{gkl} that ω-converges to g̃.

In particular, for any element g̃ ∈ U0, we can always find a sequence
in U that both L2- and ω-converges to g̃.

Proof. Let {gk} be any sequence L2-converging to g̃ ∈ U0. Then
g̃ together with any subsequence of {gk} already satisfies properties
(1) and (2) of Definition 4.4. This is clear from Theorem 3.10 and
Definition 3.1 of an amenable subset. (Property (2) is empty here, as
{gk} has empty deflated set by the definition of an amenable subset.)
Since {gk} is d-Cauchy by Theorem 3.10, it is also easy to see that there
is a subsequence {gkm} of {gk} satisfying property (4) of ω-convergence.
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To verify property (3), note that L2-convergence of {gkm} implies that
there exists a subsequence {gkl} of {gkm} that converges to g̃ a.e. [14,
(13.33), (11.26)]. q.e.d.

Given the results that we have so far, we can give an alternative
description of the completion of an amenable set using ω-convergence
instead of L2-convergence.

Proposition 4.34. Let U ⊂ M be an amenable subset. Then ω-
convergence implements the homeomorphism in Theorem 3.12. That is,
there is a natural homeomorphism between U and U0 given by identify-
ing each equivalence class of Cauchy sequences [{gk}] with the unique
element of U0 that they ω-subconverge to. Furthermore, U0 can be nat-

urally identified with a subset of M̂f as in Remark 3.4.

Proof. The existence result (Theorem 4.17), the first uniqueness re-
sult (Theorem 4.28) and Proposition 4.32 together imply that for every
equivalence class [{gk}] of d-Cauchy sequences in U , there is a unique L2

metric g∞ ∈ U0 such that every representative of [{gk}] ω-subconverges
to g∞, and that the representatives of a different equivalence class can-
not also ω-subconverge to g∞. This gives us the map from U to U0

and shows that it is injective. Furthermore, by Lemma 4.33, there is a
sequence in U ω-subconverging to every element of U0. Thus, this map
is also surjective. q.e.d.

With this identification, we can define a metric on U0 by declaring
the bijection of the previous proposition to be an isometry. The result
is the following:

Definition 4.35. Let U be an amenable subset. By dU , we denote the
metric on the completion of U , which we identify with the L2-completion

U0 via Proposition 4.34. Thus, for g0, g1 ∈ U0 and any sequences g0k
ω−→

g0, g
1
k

ω−→ g1, we have

(4.18) dU (g0, g1) = lim
k→∞

d(g0k, g
1
k).

Note that by the preceding results, to define dU via (4.18) it suffices to
assume that {g0k} and {g1k} L2-converge to g0 and g1, respectively.

The next lemma, the proof of which is immediate, shows that the
metric dU is nicely compatible with the metric d.

Lemma 4.36. Let U ⊂ M be amenable, and suppose g0, g1 ∈ U and
g2 ∈ U0. Then

1) d(g0, g1) = dU (g0, g1), and
2) d(g0, g1) ≤ dU (g0, g2) + dU (g2, g1).
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With a little bit of effort, we can use previous results to extend Propo-
sition 4.1, a statement about M, to the completion of an amenable sub-
set. We first prove a very special case in a lemma, followed by the full
result.

Lemma 4.37. Let U be any amenable subset and g0, g1 ∈ U . Let
C(n) be the constant of Proposition 4.1, and let E ⊆M be measurable.
Then

dU (g0, χ(M \ E)g0 + χ(E)g1) ≤ C(n)
(√

Vol(E, g0) +
√

Vol(E, g1)
)
.

Proof. For each k ∈ N, choose closed subsets Fk and open subsets Uk
such that Fk ⊆ E ⊆ Uk and Vol(Uk, g)−Vol(Fk, g) ≤ 1/k. Furthermore,
choose functions fk ∈ C∞(M) satisfying

1) 0 ≤ fk(x) ≤ 1 for all x ∈M ,
2) fk(x) = 1 for x ∈ Fk and
3) fk(x) = 0 for x 6∈ Uk.

Then it is not hard to see that the sequence defined by

gk := (1− fk)g
0 + fkg

1

L2-converges to χ(M \E)g0 + χ(E)g1, so in particular

(4.19) dU (g
0, χ(M \ E)g0 + χ(E)g1) = lim

k→∞
d(g0, gk).

Furthermore, since g0 and all gk are smooth, Proposition 4.1 gives

(4.20) d(g0, gk) ≤ C(n)
(√

Vol(Uk, g0) +
√

Vol(Uk, gk)
)
.

By our assumptions on the sets Uk, it is clear that Vol(Uk, g
0) →

Vol(E, g0). So if we can show that Vol(Uk, gk) → Vol(E, g1), then (4.19)
and (4.20) combine to give the desired result.

Now, because gk = g1 on Fk, we have

Vol(Uk, gk) =

∫

Fk

µg1 +

∫

Uk\Fk

µgk .

The first term converges to Vol(E, g1) as k → ∞ by the definition of
Fk. We claim that the second term converges to zero. Note that since
the bounds of Definition 3.1 are pointwise convex, we can enlarge U to
an amenable subset containing gk for each k ∈ N. (By the definition,
each gk is contained in the “pointwise convex hull” of U ; see Example
3.5(3).) Therefore, by Lemma 3.7, there exists a constant K such that

(
µgk
µg

)
≤ K.

But using this, our claim is clear from the assumptions on Uk and Fk.
q.e.d.
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At this point, we establish the following convention. If U is amena-
ble, g0 ∈ U0, and Y ⊆ M is measurable, choose any g̃0 ∈ Mf that
represents g0, and define Vol(Y, g0) := Vol(Y, g̃0). Note that this defi-
nition is independent of the choice of representative g̃0, since any other
representative will differ from g̃0 at most on a nullset.

Theorem 4.38. Let U be any amenable subset with L2-completion
U0. Suppose that g0, g1 ∈ U0, let g̃0, g̃1 ∈ Mf represent g0 and g1,
respectively, and let E := carr(g̃1 − g̃0) = {x ∈ M | g̃0(x) 6= g̃1(x)}.
Then there exists a constant C(n) depending only on n = dimM such
that

dU (g0, g1) ≤ C(n)
(√

Vol(E, g0) +
√

Vol(E, g1)
)
.

In particular, we have

diamU
(
{g̃ ∈ U0 | Vol(M, g̃) ≤ δ}

)
≤ 2C(n)

√
δ.

Proof. Using Lemma 4.33, choose any two sequences {g0k} and {g1k} in
U that both L2- and ω-converge to g0 and g1, respectively. By Definition
4.35, dU (g0, g1) = limk→∞ d(g0k, g

1
k). We claim that

lim
k→∞

d(g0k, g
1
k) ≤ C(n)

(√
Vol(E, g0) +

√
Vol(E, g1)

)
,

which would complete the proof.
By the triangle inequality (2) of Lemma 4.36, we have

(4.21)
d(g0k, g

1
k) ≤ dU (g

0
k, χ(M \E)g0k+χ(E)g1k)+dU (χ(M \E)g0k+χ(E)g1k, g

1
k).

By Lemma 4.37 and Theorem 4.21, we can conclude

lim
k→∞

dU (g
0
k, χ(M \ E)g0k + χ(E)g1k) ≤

C(n)
(√

Vol(E, g0) +
√

Vol(E, g1)
)
.

Therefore, if we can show that the second term of (4.21) converges
to zero as k → ∞, then we will have the desired result. But {g0k} L2-
converges to g0 and {g1k} L2-converges to g1. Additionally, χ(M \E)g0 =
χ(M \ E)g1, and thus χ(M \ E)g0k + χ(E)g1k L

2-converges to g1. This
implies that the L2 distance between g1k and χ(M \ E)g0k + χ(E)g1k
converges to zero as k → ∞. Thus, continuity of the map U0 → U given
in Proposition 4.34 implies that

lim
k→∞

dU (χ(M \ E)g0k + χ(E)g1k, g
1
k) = 0,

as was to be shown. q.e.d.

Next, we need another technical result that will help us in extending
the second uniqueness result from amenable subsets to all of M.
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Proposition 4.39. Say g0 ∈ M and h ∈ S with g0 + h ∈ M, and
let E ⊆ M be any open set. Define an L2 tensor field g1 ∈ S0 by
g1 := g0+h

0, where h0 := χ(E)h. (Here, we are using the identification
of the L2 completion S0 of S with L2(S2T ∗M), as in Remark 3.4.)
Finally, define a path γ of L2 metrics by γ(t) := gt := g0+th

0, t ∈ [0, 1].
Then there exists an amenable subset U such that gt ∈ U0 for all t,

so in particular dU (g0, g1) is well-defined. Furthermore,

(4.22) dU (g0, g1) ≤ L(γ) :=

∫ 1

0

∥∥h0
∥∥
gt
dt.

Lastly, let C, δ > 0 be such that the metrics gt, t ∈ [0, 1], all satisfy
the bounds

|(gt)ij(x)| ≤ C and λGt

min(x) ≥ δ

for 1 ≤ i, j ≤ n and almost every x ∈ M . (That this is satisfied for
some C and δ is guaranteed by gt ∈ U0.) Then there is a constant
K = K(C, δ) such that

dU (g0, g1) ≤ K
∥∥h0
∥∥
g
.

Proof. The existence of an amenable subset U such that g0+fh ∈ U0

for any measurable function f with 0 ≤ f ≤ 1, and such that g0 + fh ∈
U if additionally f is smooth, is given by Lemma 3.6. In particular,
gt = g0 + tχ(E)h ∈ U0 for all t ∈ [0, 1]. So we turn to the proof of
(4.22).

Let any ǫ > 0 be given. By Theorem 3.10, we can choose δ > 0 such
that for any g̃0, g̃1 ∈ U , ‖g̃1 − g̃0‖g < δ implies d(g̃0, g̃1) < ǫ.

Next, for each k ∈ N, we choose closed sets Fk ⊆ E and open sets
Uk ⊇ E with the property that Vol(Uk, g) − Vol(Fk, g) < 1/k. Given
this, let’s even restrict ourselves to k large enough that

(4.23) ‖χ(Uk \ Fk)h‖g < min{δ, ǫ}.
We then choose fk ∈ C∞(M) satisfying

1) fk(x) = 1 if x ∈ Fk,
2) fk(x) = 0 if x 6∈ Uk and
3) 0 ≤ fk(x) ≤ 1 for all x ∈M ,

The first consequence of our assumptions above is

(4.24) ‖g1 − (g0 + fkh)‖g ≤ ‖χ(Uk \ Fk)h)‖g < δ.

The second inequality is (4.23), and the first inequality holds for two
reasons. First, on both Fk and M \ Uk, g0 + fkh = g0 + χ(Fk)h = g1.
Second, on Uk \ Fk, g1 − (g0 + fkh) = (χ(E) − fk)h, and by our third
assumption on fk, 0 ≤ 1− fk ≤ 1, so |χ(E)− fk| ≤ 1. Now, inequality
(4.24) allows us to conclude, by our assumption on δ, that

(4.25) dU (g0 + fkh, g1) < ǫ.
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Since by the triangle inequality

dU (g0, g1) ≤ dU (g0, g0 + fkh) + dU (g0 + fkh, g1) < dU (g0, g0 + fkh) + ǫ,

we will now estimate dU (g0, g0 + fkh) to prove (4.22).
To do this, define a path γk in M, for t ∈ [0, 1], by γk(t) := gkt :=

g0 + tfkh. Then we have, as is easy to see,

(4.26) d(g0, g
k
1 ) = d(g0, g0 + fkh) ≤ L(γk) =

∫ 1

0
‖fkh‖gkt dt

This is almost what we want, but we first have to replace fkh with
h0 = χ(E)h. Also note that the L2 norm in (4.26) is that of gkt . To
put this in a form useful for proving (4.22), we therefore also have to
replace gkt with gt.

Using the facts that on Fk, fkh = h0 and gkt = gt, as well as that
fk = 0 on M \ Uk, we can write

(4.27) ‖fkh‖2gkt =

∫

Fk

trgt
(
(h0)2

)
µgt +

∫

Uk\Fk

trgkt

(
(fkh)

2
)
µgkt

.

For the first term above, we clearly have

(4.28)

∫

Fk

trgt
(
(h0)2

)
µgt ≤

∥∥h0
∥∥2
gt
.

As for the second term, it can be rewritten and estimated by∫

Uk\Fk

trgkt

(
(fkh)

2
)
µgkt

= ‖χ(Uk \ Fk)fkh‖2gkt ≤ ‖χ(Uk \ Fk)h‖2gkt ,

where the inequality follows from our third assumption on fk above.
Now, by the definition of gkt and our choice of U at the beginning of the
proof, we have that gkt ∈ U for all t ∈ [0, 1] and all k ∈ N. Therefore,
by Lemma 3.8, there exists a constant K ′ = K ′(U , g0, g1)—i.e., K ′ does
not depend on k—such that

‖χ(Uk \ Fk)h‖gkt ≤ K ′ ‖χ(Uk \ Fk)h‖g .
But by (4.23), we have that ‖χ(Uk \ Fk)h‖g < ǫ. Combining this with

(4.27) and (4.28), we therefore get

‖fkh‖2gkt ≤
∥∥h0
∥∥2
gt
+ (K ′ǫ)2 ≤

(∥∥h0
∥∥
gt
+K ′ǫ

)2
.

The above inequality, substituted into (4.26), gives

d(g0, g
k
1 ) ≤

∫ 1

0

(∥∥h0
∥∥
gt
+K ′ǫ

)
dt = L(γ) +K ′ǫ.

Using the above inequality and (4.25),

dU (g0, g1) ≤ d(g0, g
k
1 ) + dU (g

k
1 , g1) < L(γ) + (1 +K ′)ǫ.

Since ǫ was arbitrary and K ′ is independent of k, we are finished with
the proof of (4.22).
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Finally, the third statement follows from the following estimate, which
is proved in exactly the same way as Lemma 3.8:

∥∥h0
∥∥
gt

=

(∫

E
trgt

(
h2
)
µgt

)1/2

≤ K(C, δ)
∥∥h0

∥∥
g
.

q.e.d.

With Theorem 4.38 and Proposition 4.39 as part of our toolbox, we
are now ready to take on the proof of the second uniqueness result in
its full generality.

So let two d-Cauchy sequences {g0k} and {g1k}, as well as some g∞ ∈
Mf , be given. Suppose further that {g0k} and {g1k} both ω-converge to
g∞ as k → ∞. We will prove that

(4.29) lim
k→∞

d(g0k, g
1
k) = 0.

The heuristic idea of our proof is very simple, which is belied by the
rather technical nature of the rigorous proof. The point, though, is
essentially that for all l ∈ N, we break M up into two sets, El and
M \ El. The set El has positive volume with respect to g∞, but {g0k}
and {g1k} L2-converge to g∞ on El, so the contribution of El to d(g

0
k, g

1
k)

vanishes in the limit k → ∞. The set M \ El contains the deflated
sets of {g0k} and {g1k}, so the sequences need not converge on M \ El.
However, we choose things such that Vol(M \ El, g∞) vanishes in the
limit l → ∞, so that Proposition 4.1 implies that the contribution of
M \ El to d(g0k, g1k) vanishes after taking the limits k → ∞ and l → ∞
in succession.

The rigorous proof is achieved in three basic steps, which we will
describe after some brief preparation.

For each l ∈ N, let

(4.30) El :=

{
x ∈M

∣∣∣∣∣
det gik(x) > l−1,

∣∣(gik)rs(x)
∣∣ < l

∀i = 0, 1; k ∈ N; 1 ≤ r, s ≤ n

}
,

where these local notions are of course defined with respect to our fixed
amenable atlas (cf. Convention 2.17), and the inequalities in the defini-
tion should hold in each chart containing the point x in question. Thus,
El is a set over which the sequences gik neither deflate nor become un-
bounded. We first note that for each k ∈ N, there exists an amenable
subset Uk such that the metrics

g0k, g
1
k and g0k + χ(El)(g

1
k − g0k)

are contained in U0
k . Finding Uk such that g0k + χ(El)(g

1
k − g0k) ∈ U0

k for
all l ∈ N is guaranteed by Lemma 3.6. (Note that, as follows from the
lemma, Uk may be chosen independently of l.) Then Uk can be enlarged
to contain g0k and g1k by Example 3.5(2).
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The steps in our proof are the following. We will show first that

(4.31) lim
k→∞

dUk
(g0k, g

0
k + χ(El)(g

1
k − g0k)) = 0

for all fixed l ∈ N. Second,

(4.32) lim sup
k→∞

dUk
(g0k + χ(El)(g

1
k − g0k), g

1
k) ≤ 2C(n)

√
Vol(M \El, g∞)

for all fixed l ∈ N (where C(n) is the constant from Theorem 4.38). And
third,

(4.33) lim
l→∞

Vol(El, g∞) = Vol(M,g∞).

Since the triangle inequality of Lemma 4.36(2) implies that

d(g0k, g
1
k) ≤ dUk

(g0k, g
0
k + χ(El)(g

1
k − g0k)) + dUk

(g0k + χ(El)(g
1
k − g0k), g

1
k)

for all l ∈ N, taking the lim sup as k → ∞ followed by the limit as
l → ∞ of both sides then gives (4.29).

We now prove each of (4.31), (4.32) and (4.33) in its own lemma.

Lemma 4.40. For each l ∈ N,

lim
k→∞

dUk
(g0k, g

0
k + χ(El)(g

1
k − g0k)) = 0.

Proof. Fix l ∈ N. We know that

g0k, g
0
k + χ(El)(g

1
k − g0k) ∈ U0

k ,

where Uk is an amenable subset. (Recall that the choice of Uk was made
independently of l.) Therefore, for each fixed k ∈ N, Proposition 4.39
applies to give

(4.34) dUk
(g0k, g

0
k + χ(El)(g

1
k − g0k)) ≤ Kl

∥∥χ(El)(g1k − g0k)
∥∥
g
,

where Kl is some constant depending only on l.
Now, recalling the definition (4.30) of El, we note that for all 1 ≤

i, j ≤ n and all k ∈ N, we have |(g1k)ij(x)− (g0k)ij(x)|2 ≤ 4l2 for x ∈ El,
and hence the family of (local) functions

{χ(El)((g1k)ij − (g0k)ij) | 1 ≤ i, j ≤ n, k ∈ N}
is uniformly integrable. Furthermore, since property (3) of Definition
4.4 implies that χ(El)g

a
k → χ(El)g∞ a.e. for a = 0, 1, we have that

χ(El)(g
1
k − g0k) → 0 a.e. Therefore, as in the proof of Proposition 4.32,

we can use the Vitali convergence theorem to show that∥∥χ(El)(g1k − g0k)
∥∥
g
→ 0

as k → ∞. Together with (4.34), this implies the result immediately.
q.e.d.

Lemma 4.41. For each l ∈ N,

lim sup
k→∞

dUk
(g0k + χ(El)(g

1
k − g0k), g

1
k) ≤ 2C(n)

√
Vol(M \El, g∞).
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Proof. Fix l ∈ N. First note that g1k = g0k + χ(El)(g
1
k − g0k) on El.

Therefore, by Theorem 4.38,

dUk
(g0k + χ(El)(g

1
k − g0k), g

1
k) ≤

C(n)

(√
Vol(M \ El, g0k) +

√
Vol(M \ El, g1k)

)
.

But now the result follows immediately from Theorem 4.21, since we
have Vol(M \El, gki ) → Vol(M \El, g∞) for i = 0, 1. q.e.d.

Lemma 4.42. For each l ∈ N,

lim
l→∞

Vol(El, g∞) = Vol(M,g∞).

Proof. Fix l ∈ N. Recall that Xg∞ ⊆ M denotes the deflated set of
g∞, i.e., the set where g∞ is degenerate. Note that Xg∞ is measurable
by Remark 2.23(2), and it has volume zero w.r.t. g∞, since µg∞ ≡ 0 on
Xg∞ . Therefore Vol(M,g∞) = Vol(M \Xg∞ , g∞).

We note that by Proposition 4.16, χ(El) converges a.e. to χ(M \Xg∞)
and that χ(El)(x) ≤ 1 for all x ∈ M . Since g∞ has finite volume, the
constant function 1 is integrable w.r.t. µg∞, and therefore the Lebesgue
dominated convergence theorem implies that

lim
l→∞

Vol(El, g∞) = lim
l→∞

∫

M
χ(El)µg∞ =

∫

M
χ(M \Xg∞)µg∞

= Vol(M \Xg∞ , g∞).

q.e.d.

As already noted, Lemmas 4.40, 4.41 and 4.42 combine to give the
desired result. We summarize what we have just proved in a theorem.

Theorem 4.43. Let [g∞] ∈ M̂f . Suppose we have two sequences

{g0k} and {g1k} with g0k, g
1
k

ω−→ [g∞] as k → ∞. Then

lim
k→∞

d(g0k, g
1
k) = 0,

that is, {g0k} and {g1k} are equivalent in the precompletion Mpre
of M.

Theorem 4.43 shows that the map Ω defined in Definition 4.31 is

injective, and therefore identifies M with a subset of M̂f . In the next

section, we will prove that M is actually identified with all of M̂f , i.e.,

Ω is surjective. We note here that for the purpose of studying M we
can now use Ω to drop the distinction between an ω-convergent sequence

and the element of M̂f that it converges to. We will employ this trick
in what follows to simplify formulas and proofs.
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5. The completion of M
In this section, our previous efforts come to fruition and we are able

to complete our description of M by proving, in Section 5.3, that the

map Ω : M → M̂f defined in the previous chapter is a bijection.
Section 5.1 provides some necessary preparation for the surjectivity

proof by going into more depth on the behavior of volume forms under
ω-convergence. After this, Section 5.2 presents a partial result on the
image of Ω. Namely, we show that all equivalence classes of measurable,
bounded semimetrics (cf. Definition 2.21) are contained in Ω(M). This
marks the final preparation we need to prove the main result.

5.1. Measures induced by measurable semimetrics. For use in
Section 5.3, we need to record a couple of properties of the measure µg̃
induced by an element g̃ ∈ Mf .

The first property is continuity of the norms of continuous functions
under ω-convergence. It follows immediately from Theorem 4.21 and
the Portmanteau theorem [25, Thm. 8.1]:

Lemma 5.1. Let g̃ ∈ Mf , and let ρ ∈ C0(M) be any continuous
function. If the sequence {gk} ω-converges to g̃, then µgk converges
weakly to µg̃, so in particular

lim
k→∞

‖ρ‖gk = ‖ρ‖g̃ .

The next fact we establish is that if g̃ ∈ Mf , i.e., g̃ is a measur-
able, finite-volume semimetric, then the set of C∞ functions is dense in
Lp(M, g̃) for 1 ≤ p <∞, just as in the case of a smooth volume form.

To prove this claim, we first state a fact about measures on Rn. One
can prove it almost identically to [2, Cor. 4.2.2], where the statement is
made for Borel measures. To prove it for Lebesgue measures, one must
simply approximate Lebesgue-measurable sets by Borel-measurable sets
using the discussion of Section 2.3.2.

Theorem 5.2. Let a nonnegative measure ν on the algebra of Le-
besgue sets in R

n be bounded on bounded sets. Then the class C∞
0 (Rn)

of smooth functions with bounded support is dense in Lp(Rn, ν), 1 ≤
p <∞.

Now, since any g̃ ∈ Mf has finite volume, its induced measure µg̃
clearly satisfies the hypotheses of the theorem in any coordinate chart.
Therefore, we have:

Corollary 5.3. If g̃ ∈ Mf , then C
∞(M) is dense in Lp(M, g̃).

5.2. Bounded semimetrics. In this section, we go one step further

in our understanding of the injection Ω : M → M̂f that was intro-
duced in Definition 4.31. Specifically, we want to see that the image
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Ω(M) contains all equivalence classes of bounded, measurable semi-
metrics (cf. Definition 2.21).

Our strategy for proving this is to first prove the fact for smooth
semimetrics by showing that for any smooth semimetric g0, there is a
finite-length path γ : (0, 1] → M with limt→0 γ(t) = g0 (where we take
the limit in the C∞ topology of S). Then, if we simply let tk be any
monotonically decreasing sequence converging to zero, it is trivial to

show γ(tk)
ω−→ g0 as k → ∞. We then use this to handle the general,

nonsmooth case.

5.2.1. Paths to the boundary. Before we get into the proofs, we put
ourselves in the proper setting, for which we first need to introduce the
notion of a quasi-amenable subset. These are defined by weakening the
requirements for an amenable subset (cf. Definition 3.1), giving up the
condition of being “uniformly inflated”:

Definition 5.4. We call a subset U ⊂ M quasi-amenable if U is
convex and we can find a constant C such that for all g̃ ∈ U , x ∈ M
and 1 ≤ i, j ≤ n,

(5.1) |g̃ij(x)| ≤ C

in our given amenable atlas.

We also define ∂M to be the boundary of M as a topological subset
of S. Thus, it consists of all smooth semimetrics that somewhere fail to
be positive definite.

Let U be any quasi-amenable subset, and denote by cl(U) the closure
of U in the C∞ topology of S. Thus, cl(U) may contain some smooth
semimetrics. One can easily see that any g0 ∈ ∂M is contained in cl(U)
for an appropriate quasi-amenable subset U .

Now, suppose some g0 ∈ cl(U) ∩ ∂M is given, and let g1 ∈ U have
the property that h := g1 − g0 ∈ M. Finding such a g1 may require
that we enlarge U to a different quasi-amenable subset. Since g0 is
positive semidefinite, it suffices to choose g1 such that for each x ∈ M ,
g1(x)(X,X) > g0(x)(X,X) for all X ∈ TxM .

Exploiting the fact that M is an open positive cone in the linear
space S, we define the simplest path imaginable from g0 to g1:

(5.2) γ(t) := gt := g0 + th, 0 ≤ t ≤ 1.

We claim that for t ∈ (0, 1], gt ∈ cl(U) ∩ M, where cl(U) denotes the
closure of U in the topology of S, and that cl(U)∩M is quasi-amenable.
For the latter statement, note that if metrics in U satisfy the bounds
(5.1), then so do all semimetrics in cl(U). For the former statement,
note that the closure of a convex set in a topological vector space is
convex, so cl(U) is convex. As g0 ∈ cl(U), we have that for all t ∈ [0, 1],
gt is a convex combination of g0 and g1, and is therefore contained in
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cl(U). Furthermore, gt is smooth for all t ∈ [0, 1], and positive definite
for all t > 0.

Recall that the length of γ(t) is given by

(5.3)

L(γ) =

∫ 1

0

(∫

M
trγ(t)(γ

′(t)2)µγ(t)

)1/2

dt

=

∫ 1

0

(∫

M
trgt(h

2)
√

det(g−1gt)µg

)1/2

dt.

To prove that γ is a finite-length path, we will therefore estimate the
inner integrand. This estimate will follow from pointwise estimates com-
bined with a compactness/continuity argument.

5.2.2. Pointwise estimates. Let A = (aij) and B = (bij) be real,
symmetric n × n matrices, with At := A + tB for t ∈ (0, 1]. We will
assume that B > 0 and that A ≥ 0. (In this scheme, A and B play the
role of g0(x) and h(x), respectively, at some point x ∈M .) Furthermore,
we fix an arbitrary matrix C that is invertible and symmetric (this plays
the role of g(x)).

To get a pointwise estimate on trgt(h
2)
√

det g−1gt, we need to es-

timate trAt(B
2)
√

det(C−1At). We prove the desired estimate in two
lemmas.

For any symmetric matrix D, let λDmin = λD1 ≤ · · · ≤ λDn = λDmax be
its eigenvalues numbered in increasing order.

Lemma 5.5.

λAt

min ≥ λAmin + tλBmin

λAt
max ≤ λAmax + tλBmax ≤ λAmax + λBmax.

Proof. Immediate from the concavity/convexity of the minimal/maxi-
mal eigenvalue (cf. the proof of Lemma 2.12). q.e.d.

Lemma 5.6.

trAt

(
B2
)√

detC−1At ≤
n
(
λBmax

)2 (
λAt
max

)n−1

2

√
detC

(
λBmin

)3/2
1

t3/2
.

Proof. We focus on the trace term first.
Since B is a symmetric matrix, there exists a basis for which B is

diagonal, so that B = diag(λB1 , . . . , λ
B
n ). In this basis, if we denote A−1

t

by (aijt ), then we have

(5.4)
tr
((
A−1
t B

)2)
=
∑

ij

aijt λ
B
j a

ji
t λ

B
i ≤

(
λBmax

)2∑

ij

(
aijt

)2

=
(
λBmax

)2
tr
(
A−2
t

)
,

where we have used the symmetry of A−1
t .
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We note that the trace of the square of a matrix is given by the sum
of the squares of its eigenvalues. Therefore,

(5.5) tr
(
A−2
t

)
=
∑

i

(
λAt

i

)−2
≤ n

(
λAt

min

)−2
.

This takes care of the trace term.
For the determinant term, we clearly have detAt ≤ λAt

min(λ
At
max)

n−1.
Combining this, equations (5.4) and (5.5), the estimate of Lemma 5.5,
and the fact that λAmin ≥ 0 (as A ≥ 0) now implies the result. q.e.d.

5.2.3. Finiteness of L(γ). We want to use the pointwise estimate of
Lemma 5.6 to prove the main result of the section.

It is clear that to pass from the pointwise result of Lemma 5.6 to
a global result, we will have to estimate the maximum and minimum
eigenvalues of h, as well as the maximum eigenvalue of gt. We begin by
noting that since we work over an amenable coordinate atlas (cf. Def-
inition 2.15), all components of h, g and g0 are bounded in absolute
value. Therefore, so are their determinants. In particular, since g > 0
and h > 0, we can assume that C ≥ det g ≥ C0 and C1 ≥ det h ≥ C2

over each chart of the amenable atlas for some constants C0, C1, C2 > 0.

Lemma 5.7. The quantities λhmax and λgtmax, as local functions on
each coordinate chart, are uniformly bounded, say λhmax(x) ≤ C3 and
λgtmax(x) ≤ C4 for all x and t.

Proof. Note that gt lies in the quasi-amenable subset U for all 0 <
t ≤ 1, so we have upper bounds (in absolute value) on the coefficients
of gt and h that are uniform in x and t. Thus, the bounds on their
maximal eigenvalues follow straighforwardly from the min-max theorem
[21, Thm. XIII.1]. q.e.d.

Lemma 5.8. The quantity λhmin, as a function over each coordinate

chart, is uniformly bounded away from 0, say λhmin ≥ C5 > 0.

Proof. It is clear that deth(x) ≤ λhmin(x)λ
h
max(x)

n−1. So by Lemma
5.7 and the discussion that precedes it, λhmin(x) ≥ λhmax(x)

1−n deth(x) ≥
C1−n
3 C2 =: C5. q.e.d.

Theorem 5.9. Define a path γ as in (5.2). Then

L(γ) <∞.

Proof. At each point x ∈M , we use Lemma 5.6 to see

(5.6) trgt(x)(h(x)
2)
√

det(g(x)−1gt(x)) ≤
1√
C0

C2
3

C
3/2
5

C
n−1

2

4

1

t3/2
=:

C6

t3/2
.

The result then follows from (5.3) and the integrability of t−3/4.
q.e.d.
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5.2.4. Bounded, nonsmooth semimetrics. We now proceed to the
proof that the equivalence class of any bounded semimetric, not just
smooth ones, is contained in Ω(M).

So far, we know from Proposition 4.34 that the equivalence class of
any measurable metric that can be obtained as the L2 limit of a sequence
of metrics from an amenable subset belongs to Ω(M). We also know
from the preceding arguments that any smooth semimetric g̃ is in the
image of Ω. Given the remarks at the end of Section 4, we can therefore
unambiguously write things like d(g0, g1)—where g0 and g1 are known
to belong to the image of Ω—in place of expressions involving sequences
ω-converging to g0 and g1.

To begin proving the result on bounded, nonsmooth semimetrics, we
want to prove a result about quasi-amenable subsets that is a general-
ization of Theorem 3.10—weakened so that it still applies for these more
general subsets. First, though, we need to prove a couple of lemmas.

Lemma 5.10. Let U ⊂ M be quasi-amenable. Recall that we denote
the closure of U in the C∞ topology of S by cl(U), and we denote the
boundary of M in the C∞ topology of S by ∂M. Then for each ǫ > 0,
there exists δ > 0 such that d(g0, g0 + δg) < ǫ for all g0 ∈ cl(U) ∩ ∂M.

Proof. For any g0 ∈ cl(U) ∩ ∂M, we consider the path γ given by
γ(t) := gt := g0 + th, where h := δg, δ > 0, and t ∈ (0, 1]. The proof
consists of reexamining the estimates of Theorem 5.9 and showing that
they only depend on upper bounds on the entries of g0 (and g, but we
get these automatically when we work over an amenable atlas), and that
the bound on the length of gt goes to zero as δ → 0.

So, recall the main estimate (5.6) of Theorem 5.9:

trgt(x)(h(x)
2)
√

det(g(x)−1gt(x)) ≤
n
(
λhmax(x)

)2
(λgtmax(x))

n−1

2

√
det g(x)

(
λhmin(x)

)3/2
1

t3/2
.

Since det g(x) is constant w.r.t. δ, we ignore this term. By Lemma
5.5,

λgtmax(x) ≤ λg0max(x) + λhmax(x) = λg0max(x) + δλgmax(x).

Therefore, using the same arguments as in Lemma 5.7, we see that
λgtmax(x) is bounded from above, uniformly in x and t, by a constant
that decreases as δ decreases. Furthermore, this constant does not de-
pend on our choice of g0 ∈ cl(U) ∩ ∂M, since the proof of Lemma 5.7
depended only on uniform upper bounds on the entries of g0, and we
are guaranteed the same upper bounds on all elements of cl(U) ∩ ∂M
since U is quasi-amenable.

We now focus our attention on the term
(
λhmax(x)

)2
(
λhmin(x)

)3/2 =
(δλgmax(x))

2

(
δλgmin(x)

)3/2 =
(λgmax(x))

2

(
λgmin(x)

)3/2
√
δ.
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This expression clearly goes to zero as δ → 0. Therefore, we have shown
that an estimate of the form (5.6) holds with a constant C6 that depends
only on U and δ, and which approaches zero as δ → 0. The result now
follows. q.e.d.

The next lemma implies, in particular, that ∂M is not closed in the
L2 topology of S, nor is it in the topology of d on Ω(M). It also implies
that around any point inM, there exists no L2- or d-open neighborhood.

Lemma 5.11. Let U ∈ M be any quasi-amenable subset. Then for
all ǫ > 0, there exists a function ρǫ ∈ C∞(M) with the properties that
for all g1 ∈ U ,

1) ρǫg1 ∈ ∂M,
2) 0 ≤ ρǫ(x) ≤ 1 for all x ∈M ,
3) ‖g1 − ρǫg1‖g < ǫ and

4) d(g1, ρǫg1) < ǫ.

Proof. Let x0 ∈ M be any point, and for each k ∈ N, choose a
function ρk ∈ C∞(M) satisfying

1) ρk(x0) = 0,
2) 0 ≤ ρk(x) ≤ 1 for all x ∈M and
3) ρk ≡ 1 outside an open set Zk with Vol(Zk, g) ≤ 1/k.

Then clearly ‖g1 − ρkg1‖g → 0 as k → ∞, and this convergence is
uniform in g1 because of the upper bounds guaranteed by the fact that
g1 ∈ U . Using arguments similar to those in the last lemma, we can also
see that the length of the path γk given by γk(t) := ρkg1 + t(g1 − ρkg1)
converges to zero as k → ∞. Therefore, choosing k large enough gives
the desired function. q.e.d.

The next theorem is the desired analog of Theorem 3.10. Note that
only one half of Theorem 3.10 holds in this case, and even this is proved
only in a weaker form.

Theorem 5.12. Let U ⊂ M be quasi-amenable. Then for all ǫ > 0,
there exists δ > 0 such that if g0, g1 ∈ cl(U) with ‖g0 − g1‖g < δ, then

d(g0, g1) < ǫ.

Proof. First, we enlarge U if necessary to include all metrics satisfying
the bound given in Definition 5.4. This enlarged U is then clearly convex
by the triangle inequality for the absolute value, and hence it is still a
quasi-amenable subset.

Now, let ǫ > 0 be given. We prove the statement first for g0, g1 ∈
cl(U) ∩ ∂M, then use this to prove the general case.

By Lemma 5.10, we can choose δ1 > 0 such that d(ĝ, ĝ + δ1g) < ǫ/3
for all ĝ ∈ cl(U) ∩ ∂M. We define an amenable subset of M by

U ′ := {ĝ + δ1g | ĝ ∈ U} .
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Lemma 5.5 implies that this set is indeed amenable. Now, by Theorem
3.10, there exists δ > 0 such that if g̃0, g̃1 ∈ U ′ with ‖g̃0 − g̃1‖g < δ, then

d(g̃0, g̃1) < ǫ/3. Let g0, g1 ∈ cl(U) ∩ ∂M be such that ‖g0 − g1‖g < δ.

If we define g̃i := gi + δ1g for i = 1, 2, then it is clear that ‖g̃0 − g̃1‖g =
‖g0 − g1‖g < δ. Given this and the definition of δ1, we have

d(g0, g1) ≤ d(g0, g̃0) + d(g̃0, g̃1) + d(g̃1, g1) < ǫ.

Now we prove the general case. Let ǫ > 0 be given. By the special case
we just proved, we can choose δ > 0 such that if g̃0, g̃1 ∈ cl(U)∩∂M with
‖g̃0 − g̃1‖g < δ, then d(g̃0, g̃1) < ǫ/3. Let g0, g1 ∈ U be any elements

with ‖g0 − g1‖g < δ. By Lemma 5.11 and our enlargement of U , we can
choose a function ρ ∈ C∞(M) such that for i = 0, 1,

1) ρgi ∈ cl(U) ∩ ∂M,
2) 0 ≤ ρ(x) ≤ 1 for all x ∈M , and
3) d(gi, ρgi) < ǫ/3.

(If gi ∈ cl(U) ∩ ∂M for both i = 1 and 2, we might as well just choose
ρ ≡ 1.) In particular, the second property of ρ implies that

‖ρg1 − ρg0‖g ≤ ‖g1 − g0‖g < δ.

Then we immediately get

d(g0, g1) ≤ d(g0, ρg0) + d(ρg0, ρg1) + d(ρg1, g1) < ǫ.

This proves the general case and thus the theorem. q.e.d.

Using the relationship between d and ‖ · ‖g determined in Theorem
5.12, we can prove the following.

Proposition 5.13. Let [g̃] ∈ M̂f be an equivalence class of bounded,
measurable semimetrics. Then for any representative g̃ ∈ [g̃], there
exists a sequence {gk} in M that both L2- and ω-converges to g̃. Thus
[g̃] ∈ Ω(M).

Moreover, suppose g̃ ∈ U0 for some quasi-amenable subset U ⊂ M.
Then for any sequence {gl} in U that L2-converges to g̃, {gl} is d-Cauchy
and there exists a subsequence {gk} that also ω-converges to g̃.

Proof. It is clear that for every bounded representative g̃ ∈ [g̃], we
can find a quasi-amenable subset U ⊂ M such that g̃ ∈ U0. Thus,
there exists a sequence {gl} that L2-converges to g̃. It is d-Cauchy by
Theorem 5.12. We wish to show that it contains a subsequence {gk}
that also ω-converges to g̃, so we still need to verify properties (2)–(4)
of Definition 4.4.

By passing to a subsequence, we can assume that property (4) is
satisfied for {gl}. Property (3) is verified in the same way as in the
proof of Lemma 4.33. That is, L2-convergence of {gl} implies that
there exists a subsequence {gk} of {gl} that converges to g̃ a.e. In par-
ticular, gk(x) → g̃(x) for almost every x ∈ M \ D{gk}. Furthermore,
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a.e.-convergence of {gk} to g̃ and continuity of the determinant func-

tion imply that detGk(x) → det G̃(x) for almost every x ∈ M . Thus,

detGk(x) → 0 for almost every x ∈ M with det G̃(x) = 0, and so
Xg̃ ⊆ D{gk}, up to a nullset. On the other hand, if x ∈ M \Xg̃, then

det G̃(x) > 0, so almost surely limk→∞ detGk(x) > 0 as well. This im-
plies the reverse inclusion D{gk} ⊆ Xg̃ (up to a nullset), and so property
(2) holds for {gk}. q.e.d.

Thus, like we did for more restricted types of metrics before, this
proposition allows us to cease to distinguish between bounded semimet-
rics and sequences ω-converging to them.

5.3. Unbounded metrics and the proof of the main result. Up

to this point, we have an injection Ω : M → M̂f , and we have deter-

mined that the image Ω(M) contains all equivalence classes containing
bounded semimetrics. In this section, we prove that Ω is surjective.

We first introduce a definition and explore a few consequences of it
that will be used in the proof of surjectivity.

Definition 5.14. For k ∈ N, let gk, g0, g̃ ∈ Mf be given. For ǫ > 0,
define

Eǫk :=
{
x ∈M

∣∣∣
√
〈g0(x)− gk(x), g0 − gk(x)〉g(x) ≥ ǫ

}
.

We say that {gk} converges to g0 in µg̃-measure if, for all ǫ > 0,
Vol(Eǫk, µg̃) → 0 as k → ∞.

Lemma 5.15. For k ∈ N, let gk, g0, g̃ ∈ Mf be given.

1) If gk → g0 µg̃-a.e., then gk → g0 in µg̃-measure.
2) If gk → g0 in µg̃-measure, then there exists a subsequence {gkl} of

{gk} that converges µg̃-a.e. to g0.
3) For ĝ, ḡ ∈ Mf , define

dg̃meas(ĝ, ḡ) :=

∫

M

√
〈ḡ(x)− ĝ(x), ḡ − ĝ(x)〉g(x)

1 +
√

〈ḡ(x)− ĝ(x), ḡ − ĝ(x)〉g(x)
dµg̃.

Then dg̃meas metrizes the topology of convergence in measure in Mf

(if we, as usual in this context, identify elements of Mf that agree
a.e.).

Proof. All three of these statements are proved in exact analogy with
the case of real- or complex-valued functions on a finite measure space;
cf. (11.31), (11.26), and (12.47), respectively, of [14]. q.e.d.

With this technical result in hand, we may now move on to the sur-
jectivity of Ω.
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Theorem 5.16. Let any [g̃] ∈ M̂f be given. Then there exists a
sequence {gk} in M such that

gk
ω−→ [g̃].

Proof. In view of Proposition 5.13, it remains only to prove this for
the equivalence class of a measurable, unbounded semimetric g̃ ∈ Mf .

Given any element ĝ ∈ Mf , we can define expĝ on tensors of the form
σĝ, where σ is any function, purely algebraically. We simply set

(5.7) expĝ(σĝ) :=
(
1 +

n

4
σ
)4/n

ĝ,

so that the expression coincides with the usual one if ĝ ∈ M and
σ ∈ C∞(M) with σ > − 4

n (cf. Proposition 2.2). If σ is additionally
measurable, then expĝ(σĝ) will also be measurable.

Now, let g̃ ∈ Mf . Then we can find a measurable, positive function ξ
on M such that g0 := ξg̃ is a bounded semimetric. A simple calculation
using the finite volume of g̃ shows that ρ := ξ−1 ∈ Ln/2(M,g0).

Define the map ψ by ψ(σ) := expg0(σg0), and let

(5.8) λ :=
4

n

(
ρn/4 − 1

)
.

Then clearly ψ(λ) = ρg0 = g̃. The fact that ρ ∈ Ln/2(M,g0) implies

that ρn/4 ∈ L2(M,g0), and the constant function 1 lies in L2(M,g0)
since Vol(M,g0) is finite. Hence λ ∈ L2(M,g0), and by Corollary 5.3 we
can find a sequence {λk} of smooth functions that converge in L2(M,g0)
to λ.

Since λk → λ in L2(M,g0), as in the proof of Lemma 4.33 we can
pass to a subsequence and assume that λk → λ pointwise a.e., where
here, “almost everywhere” means with respect to µg0 . With respect to
the fixed, smooth, strictly positive volume form µg, this actually means
that λk(x) → λ(x) for almost every x ∈M \Xg0 , since Xg0 is a nullset
with respect to µg0 . Note also that Xg0 = Xg̃, since we assumed that
the function ξ is positive. Therefore λk(x) → λ(x) for almost every
x ∈M \Xg̃.

Furthermore, since from (5.8) and positivity of ξ it is clear that λ >
− 4
n , we can choose the sequence {λk} such that λk > − 4

n for all k ∈ N.
(Here we are also using the fact that g0 has finite volume.) This implies,
in particular, that Xψ(λk) = Xg0 = Xg̃, which is easily seen from (5.7).

We make one last assumption on the sequence {λk}. Namely, by
passing to a subsequence, we can assume that

(5.9)
∞∑

k=1

‖λk+1 − λk‖g0 <∞.

Now, we claim that

(5.10) d(ψ(σ), ψ(τ)) ≤ √
n ‖τ − σ‖g0
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for all σ, τ ∈ C∞(M) with σ, τ > − 4
n . We delay the proof of this

statement to Lemma 5.18 below and first finish the proof of the theorem.
We wish to construct a sequence that ω-converges to g̃ using the

sequence {ψ(λk)}. We can’t use {ψ(λk)} directly, since it is a se-
quence in Ω(M), not M itself. So we first verify the properties of
ω-convergence for {ψ(λk)} and then construct a sequence in M that
approximates {ψ(λk)} well enough that it still satisfies all the condi-
tions for ω-convergence.

Since the sequence {λk} is convergent in L2(M,g0), it is also Cauchy
in L2(M,g0). Using the inequality (5.10), it is then immediate that
{ψ(λk)} is a Cauchy sequence in (Ω(M), d). This verifies property (1)
of ω-convergence (cf. Definition 4.4).

We next verify property (3). Note that Xg̃ ⊆ D{ψ(λk)}, since we have
already shown that Xψ(λk) = Xg̃. (Keep in mind here the subtle point
that Xψ(λk) is the deflated set of the individual semimetric ψ(λk), while
D{ψ(λk)} is the deflated set of the sequence {ψ(λk)}. Refer to Definitions
2.21 and 2.22 for details.) The inclusion implies that

M \D{ψ(λk)} ⊆M \Xg̃,

so it suffices to show that ψ(λk)(x) → g̃(x) for almost every x ∈M \Xg̃.
But this is clear from the fact, proved above, that λk(x) → λ(x) for
almost every x ∈M \Xg̃.

To verify property (2), we claim that D{ψ(λk)} = Xg̃, up to a nullset.
In the previous paragraph, we already showed that Xg̃ ⊆ D{ψ(λk)}.
The reverse inclusion holds, up to a nullset, using the same argument
as in the proof of Proposition 5.13 and the fact that for almost every
x ∈M \Xg̃, {ψ(λk)(x)} converges to g̃(x).

The last property to verify is (4). But this is immediate from (5.9)
and (5.10).

So we have shown that {ψ(λk)} satisfies the properties of ω-conver-
gence, save that it is a sequence of measurable semimetrics, rather than
a sequence of smooth metrics as required. To get a sequence in M that
ω-converges to g̃, recall that each of the functions λk is smooth and
therefore bounded, and also that g0 is a bounded, measurable semimet-
ric. Therefore, for each fixed k ∈ N, ψ(λk) is also a bounded, measurable
semimetric, and so by Proposition 5.13 we can find a sequence {glk} in
M that ω-converges to ψ(λk) as l → ∞. We will construct a sequence
ω-converging to g̃ by a diagonal argument which we now describe.

First, let us construct a sequence {glkk } satisfying property (4) of
Definition 4.4. This follows by a standard argument using the fact that∑

k d(ψ(λk), ψ(λk+1)) <∞, as well as that liml→∞ d(glk, ψ(λk)) = 0 for
all k ∈ N. Indeed, let lk be chosen large enough that, for all l ≥ lk,

d(glk, ψ(λk)) <
1

2k
.
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Then since

d(glkk , g
lk+1

k+1 ) ≤ d(glkk , ψ(λk)) + d(ψ(λk), ψ(λk+1)) + d(ψ(λk+1), g
lk+1

k+1 ),

we have
∑

k

d(glkk , g
lk+1

k+1 ) <
∑

k

d(ψ(λk), ψ(λk+1)) +
3

4

∑

k

1

2k
<∞.

Note that property (1) of Definition 4.4 follows, as noted in the discus-
sion following the definition.

We next modify {glkk } to satisfy property (3) of Definition 4.4. To
do this, recall that ψ(λk) → g̃ µg̃-a.e. Furthermore, one sees from

Definition 4.4 that, for all k, glk → ψ(λk) µψ(λk)-a.e. as l → ∞. But, as

already noted, Xψ(λk) = Xg̃, so in fact glk → ψ(λk) µg̃-a.e. By Lemma

5.15, then, dg̃meas(ψ(λk), g̃) → 0 as k → ∞, and dg̃meas(glk, ψ(λk)) → 0 as
l → ∞ for all k. Thus, by making lk larger if necessary, and since

dg̃meas(g
lk
k , g̃) ≤ dg̃meas(g

lk
k , ψ(λk)) + dg̃meas(ψ(λk), g̃),

we may assume that, for all k and all l ≥ lk, d
g̃
meas(glk, g̃) < 1/k, while

still insuring that properties (1) and (4) of Definition 4.4 are satisfied.

In particular, by Lemma 5.15(3), glkk → g̃ in µg̃-measure, and so Lemma

5.15(2) implies that we may pass to a subsequence to obtain that glkk → g̃
µg̃-a.e. Property (3) of Definition 4.4 now follows.

To modify {glkk } so that it satisfies property (2) of Definition 4.4, note

that by ω-convergence of glk to ψ(λk), detG
l
k → 0 for µg-almost every

x ∈ Xψ(λk) = Xg̃ and for all k. Consider µ := µg|Xg̃, the measure on Xg̃

obtained from µg by restriction, and let δ denote the standard metric of
convergence in µ-measure for real-valued functions on Xg̃ (this is defined
analogously to Lemma 5.15(3), cf. [14, (12.47)]). If f lk := detGlk|Xg̃,

then δ(f lk, 0) → 0 as l → ∞ for all k. Thus, by making lk larger if

necessary, we may assume that δ(f lkk , 0) < 1/k for all k, while still
insuring that properties (1), (3) and (4) of Definition 4.4. In particular,

by passing to a subsequence, we may assume that f lkk → 0 µ-a.e. [14,
(11.26)]. This shows that Xg̃ ⊆ D{glk

k
}. The reverse inclusion D{glk

k
} ⊆

Xg̃ then follows, as in the proof of Proposition 5.13, from the fact that

glkk (x) → g̃(x) for almost every x ∈ M \ Xg̃. Thus property (2) of

Definition 4.4 is also satisfied by {glkk }, and we have found the desired
sequence.

It still remains to prove (5.10). The following two lemmas do this
and thus complete the proof of the theorem. q.e.d.

Lemma 5.17. Let g̃ ∈ M. If σ, τ ∈ C∞(M) satisfy σ, τ > − 4
n , then

d(expg̃(σg̃), expg̃(τ g̃)) ≤
√
n ‖τ − σ‖g̃ .
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Proof. Let ĝ := expg̃(σg̃). We first note that P · g̃ = P · ĝ. Therefore,
by Proposition 2.2, there is a neighborhood V ⊂ C∞(M) such that
expĝ : V · ĝ → P · ĝ is a diffeomorphism.

Now

(5.11) d(expg̃(σg̃), expg̃(τ g̃)) ≤
∥∥∥exp−1

ĝ expg̃(τ g̃)
∥∥∥
ĝ
,

since the right-hand side is the length of a radial geodesic emanating
from expg̃(σg̃) and ending at expg̃(τ g̃). Showing that the right-hand

side of (5.11) is equal to
√
n ‖τ − σ‖g̃ is a straightforward computation

using (2.1). q.e.d.

Lemma 5.18. Let g0 and ψ be as in the proof of Theorem 5.16. If
σ, τ ∈ C∞(M) satisfy σ, τ > − 4

n , then

d(ψ(σ), ψ(τ)) ≤ √
n ‖τ − σ‖g0 .

Proof. Since g0 is bounded, we can find a quasi-amenable subset U
such that g0 ∈ U0, i.e., such that g0 belongs to the completion of U with
respect to ‖ · ‖g. Using Proposition 5.13, choose a sequence {gk} in U
that both L2- and ω-converges to g0. For each k ∈ N, define a map ψk
by ψk(κ) := expgk(κgk).

By the triangle inequality, we have
(5.12)
d(ψ(σ), ψ(τ)) ≤ d(ψ(σ), ψk(σ)) + d(ψk(σ), ψk(τ)) + d(ψk(τ), ψ(τ))

for each k. But since gk ∈ M, Lemma 5.17 applies to give

(5.13) d(ψk(σ), ψk(τ)) ≤
√
n ‖τ − σ‖gk

k→∞−→ √
n ‖τ − σ‖g0 ,

where the convergence follows from Lemma 5.1. By (5.12) and (5.13),
if we can show that

(5.14) d(ψ(σ), ψk(σ)) → 0 and d(ψk(τ), ψ(τ)) → 0,

then we are finished. But it is not hard to show that ψk(σ) L
2-converges

to ψ(σ), which then implies (5.14) by Proposition 5.13. q.e.d.

From the results of Section 4, we already know that the map Ω :

M → M̂f is an injection. Theorem 5.16 now states that this map is a
surjection as well. Thus, we have already proved the main result of this
paper, which we state again here in full detail.

Theorem 5.19. There is a natural identification of M, the comple-

tion of M with respect to the L2 metric, with M̂f , the set of measurable
semimetrics with finite volume on M modulo the equivalence given in
Definition 4.3.

This identification is given by a bijection Ω : M → M̂f , where we
map an equivalence class [{gk}] of d-Cauchy sequences to the unique
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element of M̂f that all of its members ω-subconverge to. This map is

an isometry if we give M̂f the metric d̄ defined by

d̄([g0], [g1]) := lim
k→∞

d(g0k, g
1
k)

where {g0k} and {g1k} are any sequences in M ω-subconverging to [g0]
and [g1], respectively.

Here, we briefly note what geometric notions are well-defined for el-

ements of M̂f . Given an equivalence class [g̃] ∈ M̂f , the metric space
structure of different representatives may differ—e.g., if M = T 2, the
torus, then the equivalence class of the zero metric also contains a geo-
metric circle, where only one dimension has collapsed. (Note that here,
as in Example 4.2, we are identifying a semimetric in Mf with the met-
ric space associated to it by defining the distance between two points of
M to be the infimum of the lengths of piecewise differentiable paths be-
tween them, and identifying points at distance zero from one another.)
On the other hand, since representatives of a given equivalence class in

M̂f all have equal induced measures, things like Lp spaces of functions
are well-defined for an equivalence class, as they are the same across all
representatives.

To end this section, we remark that one might hope that Theorem
5.19 would give some information on the completion of the space M/D
of Riemannian structures with respect to the distance that the L2 metric
induces on it. (Here, D is the group of orientation-preserving diffeomor-
phisms of M acting by pull-back.) M/D is the moduli space of Rie-
mannian metrics, and hence is of great intrinsic interest to geometers.
The problem here is that the proof of Theorem 5.19 does not indicate
which degenerations of Cauchy sequences of metrics arise from “vertical”
degenerations—that is, sequences {ϕ∗

ng̃}, where {ϕn} ⊂ D is a degener-
ating sequence of diffeomorphisms—and “horizontal” degenerations—
that is, sequences of metrics that can be connected by horizontal paths.
(See [9, §3] for a discussion of horizontal and vertical paths on M.) Of
course, only horizontal degenerations are relevant for the quotient. So
there is some work remaining to do in order to understand the com-
pletion of M/D. We hope to investigate these questions in a future
paper.

6. Application to Teichmüller Theory

In this section, we describe an application of our main theorem to the
theory of Teichmüller space. Teichmüller space was historically defined
in the context of complex manifolds, but the work of Fischer and Tromba
translates this original picture into the context of Riemannian geometry,
using the manifold of metrics [26]. We outline this construction of
Teichmüller space in the first subsection, then define the much-studied
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Weil-Petersson metric. In the second subsection, we prove a result on
the completions of a class of metrics that generalize the Weil-Petersson
metric.

6.1. The Weil-Petersson Metric on Teichmüller Space.

Convention 6.1. For the remainder of the paper, let our base mani-
fold M be a connected, smooth, closed, oriented, two-dimensional man-
ifold of genus p ≥ 2.

Convention 6.2. In this chapter, we abandon Convention 2.14.
That is, when we write g for a metric in M, we no longer assume
that this is fixed, but allow g to vary arbitrarily.

We have already noted that the group P acts on M by pointwise mul-
tiplication, and it turns out that the quotient M/P is a smooth Fréchet
manifold. Let D be the Fréchet Lie group of orientation-preserving dif-
feomorphisms ofM , and let D0 ⊂ D be the subgroup of diffeomorphisms
homotopic to the identity. Then both D and D0 act on M and M/P by
pull-back. Let T denote the Teichmüller space of M , R the Riemann
moduli space of M , and MCG := D/D0 the mapping class group of M .
Then there are identifications

T ∼= (M/P)
/
D0
, R ∼= T/

MCG
∼= (M/P)

/
D,

where the first identification is a diffeomorphism. Note that Teichmüller
space is finite-dimensional.

By the Poincaré uniformization theorem, there exists a unique hy-
perbolic metric (one with scalar curvature −1) in each conformal class
[g] ∈ M/P. Furthermore, one can show that the subset M−1 ⊂ M
of hyperbolic metrics is a smooth Fréchet submanifold, and moreover
that M−1 is the image of a smooth section of the principal P-bundle
M → M/P. It is easy to see that M−1 is D-invariant, and therefore

T ∼= M−1
/
D0
, R ∼= M−1

/
D,

where the first identification is again a diffeomorphism. We denote by
π : M−1 → M−1/D0 the projection.

It is not hard to see that the L2 metric (·, ·) on M is D-invariant, so it
descends to aMCG-invariant Riemannian metric, also denoted (·, ·), on
the quotient M−1/D0. This metric is called the Weil-Petersson metric.
(It differs from the usual definition of the Weil-Petersson metric by a
constant scalar factor; cf. [26, §2.6].) With these definitions, we see
that (M−1, (·, ·)) → (M−1/D0, (·, ·)) is a weak Riemannian principal
D0-bundle—that is, at each point g ∈ M−1, the differential Dπ(g) of
the projection is an isometry when restricted to the horizontal tangent
space at g.
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6.2. Generalized Weil-Petersson Metrics. We now wish to gener-
alize the construction of the Weil-Petersson metric by selecting a dif-
ferent section of M → M/P. In fact, we will simultaneously consider
every smooth section whose image N is D-invariant, which we require so
that we still have diffeomorphisms T ∼= N/D0 and R ∼= N/D. This idea
is directly inspired by [11] and [12], though our metrics on Teichmüller
space differ from theirs.

Definition 6.3. We call the image of a smooth section ofM → M/P
a modular submanifold if it is D-invariant. Given a modular subman-
ifold N ⊂ M, we call the quotients N/D0 and N/D the N -model of
Teichmüller space and the N -model of moduli space, respectively.

For the remainder of the talk, let N be an arbitrary modular subman-
ifold. It is not hard to see that N ∼= M−1 via a D-equivariant diffeomor-
phism, so in fact we do have the desired diffeomorphisms T ∼= N/D0

and R ∼= N/D.

Remark 6.4. Modular submanifolds other than M−1 indeed exist—
for example, there are the Bergman and Arakelov metrics (see [12, §1]
for details). We briefly describe the Bergman metric on a Riemann
surface here. Recall that conformal structures (elements of M/P) are
in one-to-one correspondence with complex structures on the surface,
so we can work with these instead. Let c be a complex structure on
M . Then the space of holomorphic one-forms on (M, c) has complex
dimension p, the genus of M [8, Prop. III.2.7]. Let θ1, . . . , θp be an
L2-orthonormal basis of this space. That is,

i

2

∫

M
θj ∧ θk = δjk.

The complex Bergman metric is defined by

gCB :=
1

p

p∑

j=1

θj θ̄j.

Note that gCB is nondegenerate, since for any x ∈ M , there exists a
holomorphic one-form onM that does not vanish at x [8, III.5.8]. Given
a holomorphic local coordinate z on M , we can write gC(z) = λ2Bdzdz̄
with λB real. The Bergman metric is the Riemannian metric associated
to gCB ; if z = x+ iy for real local coordinates (x, y), then gB = λ2B(dx

2+
dy2).

From this construction, it can be shown that the set MB of all
Bergman metrics on M is indeed a modular submanifold. This fact is
essentially contained in [11, 12], however, one can also argue as follows.
D-invariance of MB is clear from the construction, as is the fact that
MB is the image of a set-theoretic section of M → M/P. Furthermore,
Bers [1, Thm. I] constructs a smooth global section σ of M/P → T and
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shows that the holomorphic one-forms {wj(τ) | j = 1, . . . , p} on σ(τ)
normalized by their periods are smooth functions of τ [1, Thm. III].
Since an L2-orthonormal basis of holomorphic one-forms can be formed
from {wj(τ)} using the period matrix of σ(τ) [11, p. 303], and the pe-
riod matrix of σ(τ) depends smoothly on τ [1, p. 210], σ induces a
smooth injection σ̃ : T → MB with the property that D0 · σ̃(T ) = MB .
Since the D0-action is smooth, we have that MB is smooth as well.

As in the case of the submanifold M−1, the L
2 metric on M projects

to an MCG-invariant metric on N/D0. We call this metric the general-
ized Weil-Petersson metric on the N -model of Teichmüller space. As in
the case of the bundle M−1 → M−1/D0, these metrics turn the bundle
N → N/D0 into a weak Riemannian principal D0-bundle.

Theorem 6.5. For any C1 path γ : [0, 1] → N/D0 and any g ∈
π−1
N (γ(0)), there exists a unique horizontal lift γ̃ : [0, 1] → N with γ̃(0) =
g.

Furthermore, L(γ̃) = L(γ) and γ̃ has minimal length among the class
of curves whose image projects to γ under πN .

Proof. The existence of horizontal lifts is not usually guaranteed on
Fréchet manifolds, but since N/D0 is finite-dimensional, the horizon-
tal tangent space of N is finite-dimensional at each point. Therefore,
integral curves of horizontal vector fields exist (cf. [19, Thm. 7.2 and
Dfn. 5.6ff]).

An alternative proof, one which does not rely on the existence theory
of solutions to ODEs in Fréchet spaces, is given in [4, Thm. 6.16].

Minimality of g̃ can be easily shown using the fact that N → N/D0

is a weak Riemannian principal bundle. q.e.d.

The next theorem applies the paper’s main theorem to the completion
of N/D0 with respect to a generalized Weil-Petersson metric. In the
following, we denote the distance function of (N , (·, ·)) by dN .

Theorem 6.6. Let {[gk]} be a Cauchy sequence in the N -model of
Teichmüller space, N/D0, with respect to the generalized Weil-Petersson
metric. Then there exist representatives g̃k ∈ [gk] and an element [g∞] ∈
M̂f such that {g̃k} is a dN -Cauchy sequence that ω-subconverges to
[g∞].

Furthermore, if {[g0k]} and {[g1k]} are equivalent Cauchy sequences in
N/D0, then there exist representatives g̃0k ∈ [g0k] and g̃

1
k ∈ [g1k], as well

as an element [g∞] ∈ M̂f , such that {g̃0k} and {g̃1k} are dN -Cauchy
sequences that both ω-subconverge to [g∞].

Finally, if {[g0k]} and {[g1k]} are inequivalent Cauchy sequences in
N/D0, then there exists no choice of representatives g̃0k ∈ [g0k] and g̃

1
k ∈

[g1k] such that {g̃0k} and {g̃1k} ω-subconverge to the same element of M̂f .
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Proof. The first claim would follow from Theorem 5.19 if we could
show that there are representatives g̃k ∈ [gk] such that {g̃k} is a dN -
Cauchy sequence, since this implies that it is also a d-Cauchy sequence.
So this is what we will show.

Let’s denote the distance function induced by the generalized Weil-
Petersson metric on N/D0 by δ. For each k ∈ N, let γk : [0, 1] → N/D0

be any path from [gk] to [gk+1] such that

L(γk) ≤ 2δ([gk ], [gk+1]).

For any g̃1 ∈ π−1
N ([g1]), let γ̃1 be the horizontal lift of γ1 to N with

γ̃1(0) = g̃1 which is guaranteed by Theorem 6.5. Then clearly g̃2 :=
γ2(1) ∈ π−1

N ([g2]). Furthermore,

dN (g̃1, g̃2) ≤ L(γ̃1) = L(γ1) ≤ 2δ([g1], [g2]).

We repeat this process, i.e., let γ̃2 be the unique horizontal lift of γ2
with γ̃2(0) = g̃2, and set g̃3 := γ̃2(1), etc. In this way, we get a sequence
of representatives g̃k ∈ [gk] such that for each k ∈ N,

dN (g̃k, g̃k+1) ≤ 2δ([gk ], [gk+1]).

Thus, since {[gk]} is a Cauchy sequence, {g̃k} is a dN -Cauchy sequence,
as was to be shown.

The proof of the second statement is similar.
To prove the last statement, note that since {[g0k]} and {[g1k]} are

inequivalent, we have

lim inf
k→∞

δ([g0k], [g
1
k]) > 0.

Thus by Theorem 6.5, no matter what representatives g̃0k ∈ [g0k] and
g̃1k ∈ [g1k] we choose,

lim inf
k→∞

dN (g̃0k, g̃
1
k) ≥ ǫ > 0.

So Theorem 5.19 implies the statement immediately. q.e.d.

Theorem 6.6 generalizes what is known about the completion of the
Weil-Petersson metric [16], which is completed by adding in certain
cusped hyperbolic surfaces—which in particular can be viewed as ele-

ments of M̂f . However, they are only degenerate or singular along a
set of disjoint simple closed geodesics—connecting with the complex-

analytic viewpoint of degeneration—whereas elements of M̂f can be
degenerate or singular over an arbitrary subset ofM . With more investi-
gation and perhaps appropriate conditions on the modular submanifold
N , we expect that the statement of Theorem 6.6 can be considerably
improved.

Despite the shortcomings of the above result, we see it as quite useful,
as it gives relatively strong information about a new class of metrics on
Teichmüller space—namely, that their completions can consist only of
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finite-volume metrics. Furthermore, it illustrates the potential for ap-
plications of our main theorem and provides a starting point for further
investigations.

Appendix. Relations between Various Notions of
Convergence and Cauchy Sequences

In the following chart, we illustrate the relationships between the
different notions of Cauchy and convergent sequences onM. We let {gk}
be a sequence in M and g̃ ∈ Mf . A double arrow (“=⇒”) between two
statements means that the one implies the other. A single arrow (“−→”)
means that one statement implies the other, assuming the condition that
is listed below the chart.

�� ��

�� ��

{gk} is a.e.

θgx-Cauchy

�� ��

�� ��

{gk} is
ΘM -Cauchy

1

OO

�� ��

�� ��

{µgk} converges
weakly to µg̃

�� ��

�� ��

{gk} is
d-Cauchy

+3

2
oo

4

���� ��

�� ��

{gk} ω-converges
to g̃

KS

ks +3

�� ��

�� ��

{gk} L2-converges
to g̃

3 //

�� ��

�� ��

Vol(Y, gk) →
Vol(Y, g̃) for Y
measurable

1) After passing to a subsequence
2) If there exists an amenable subset U such that {gk} ⊂ U , then

there exists some g̃ ∈ U0 such that the implication holds
3) If there exists a quasi-amenable subset U such that {gk} ⊂ U
4) After passing to a subsequence, there exists some g̃ ∈ Mf such

that the implication holds
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