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SIMPLICIAL VOLUME OF MODULI SPACES
OF RIEMANN SURFACES

LizHEN JI

Abstract

Motivated by results on the simplicial volume of locally sym-
metric spaces of finite volume, in this note, we observe that the
simplicial volume of the moduli space M, ,, is equal to 0 if g > 2;
g=1n > 3; or g =0,n > 6; and the orbifold simplicial vol-
ume of My, is positive if g = 1I,n = 0,1; g = 0,n = 4. We
also observe that the simplicial volume of the Deligne-Mumford
compactification of M, ,, is equal to 0, and the simplicial vol-
umes of the reductive Borel-Serre compactification of arithmetic
locally symmetric spaces I'\X and the Baily-Borel compactifica-
tion of Hermitian arithmetic locally symmetric spaces I'\ X are
also equal to 0 if the Q-rank of I'\X is at least 3 or if '\ X is
irreducible and of Q-rank 2.
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The notion of simplicial volume of manifolds and algebraic varieties
was first introduced by Gromov [25] in the early 1980s. One motivation
was to give a lower bound of minimal volumes of complete Riemannian
metrics with sectional curvature bounded between 41 on the manifolds.
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Another was to construct a new homotopy invariant for odd dimensional
compact manifolds, for which the Euler characteristic is zero.

One early important application of the simplicial volume was a new
proof by Gromov of the Mostow strong rigidity of hyperbolic manifolds
of finite volume of dimension at least three [3]. This depends on a
result of Thurston that the simplicial volume of a hyperbolic manifold
of finite volume is positive and proportional to the hyperbolic volume
by a universal constant [25, §0.3].

There are several results on vanishing and non-vanishing of simplicial
volumes of special classes of manifolds. They are mainly concerned with
the simplicial volume of hyperbolic manifolds and more generally locally
symmetric spaces of finite volume. See §3 below for precise statements
and references.

Motivated by the close analogy between locally symmetric spaces and
moduli spaces, we study simplicial volumes of moduli spaces of Riemann
surfaces. Let M, , be the moduli space of Riemann surfaces of genus
g with n punctures. It is a noncompact complex orbifold and also a
quasi-projective variety and hence has a well-defined fundamental class.
For an orbifold M that admits finite smooth coverings, there is also a
notion of orbifold simplicial volume, besides the usual simplicial volume.
See Definition 2.12 below.

Theorem 1.1. Both the simplicial volume and the orbifold simplicial
volume of My, are equal to 0if g >2; g=1,n>3; or g=0,n > 6;
and the orbifold simplicial volume of Mg, is positive if g = 1,n = 0,1;
g=0,n=4.

Combining with a result of Thurston [25, §0.3] that the simplicial
volume of a complete negatively pinched manifold is positive, we obtain
immediately the following corollary (see Corollary 6.9 below for more
details).

Corollary 1.2. When g > 2; g=1,n>3; or g =0,n > 6, Mgy,
does not admit a complete Riemannian metric of negatively pinched
sectional curvature.

One application of the vanishing of the simplicial volume of M is
a new proof of the vanishing of the simplicial volume of R? and hence
of the simplicial volume of R?" [25, p. 10] [41, §6.3.1]. See Corollaries
2.15 and 2.16 below.

For a noncompact space M, it is natural to compactify M for various
applications and hence it also seems natural to consider the simplicial
volume of those compactifications which admit a fundamental class.

When I'\ X is a noncompact arithmetic locally symmetric space, it ad-

mits several different compactifications: e.g., the Borel-Serre compacti-
. ——BS . . . ———RBS
fication '\ X, the reductive Borel-Serre compactification I'\ X . If
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I\ X is Hermitian, then it also admits the Baily-Borel compactification
———BB
\X " (see [9]).

——=B

IM"\X " is a real analytic manifold with corners when I' is torsion-free
and can be considered as a topological manifold with boundary. There-
fore, it has the relative fundamental class and the relative simplicial
volume.

An immediate corollary of Proposition 3.3 and a general result [40,
Proposition 5.12] (see Proposition 2.7 below) is

Corollary 1.3. The relative simplicial volume of F\XBS 1s equal to
0 if the Q-rank of T\X is at least 3.

. . . —RBS .

The reductive Borel-Serre compactification I'\ X is not a smooth
manifold with corners or a complex variety. But it has a fundamen-
tal class and its simplicial volume is well-defined (see Proposition 2.4
below).

Proposition 1.4. The simplicial volume of F\XRBS is equal to 0
when the Q-rank of T\X is at least 3, or when I'\X is irreducible, the
rank of X is at least 2 and the Q-rank of T\ X is at least 1.

The simplicial volume is a birational invariant of smooth projective
varieties [25, p. 60]. A natural problem is to understand this invariant
for some explicit or special complex manifolds and to understand its re-
lation with algebro-geometric properties of the varieties. The paper [53]
studied vanishing of the simplicial volume of certain complex varieties
via an analogue of the Lefschetz theorem on hyperplane sections.

———BB
When I'\ X is Hermitian, the Baily-Borel compactification I'\ X~ is
a normal projective variety and admits a fundamental class. A corollary
of Proposition 1.4 is the following result.

Proposition 1.5. The simplicial volume of F\XBB is equal to 0
when the Q-rank of T\X is at least 3, or when I'\X is irreducible and
the Q-rank of T\X is equal to 2.

Using the above discussions, we can prove the following result.

Proposition 1.6. If M is a compact Riemann surface, then the sim-
plicial volume of M is nonzero if and only if M is of the general type,
i.e., its Kodaira dimension is equal to dimc M.

This follows easily from the uniformization theorem for Riemann sur-
faces and the result of Thurston on simplicial volume of compact hy-
perbolic manifolds [25, §0.3]. More generally, we have

Proposition 1.7. Let X be a Hermitian symmetric space, and T'\X
be a compact smooth quotient. Then the simplicial volume of T\ X is pos-
itive if and only if the Kodaira dimension of T\ X is equal to dimT'\ X,
i.e., T\ X 1is also of general type.
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Its proof will be given after Proposition 2.9.

Remark 1.8. If a compact complex manifold M is a quotient of a
homogeneous space, then it can also be shown that M is of the gen-
eral type if and only if the simplicial volume is positive. Briefly, the
Kodaira dimension has the additivity property for fibrations, and hence
if fibers are not of general type, the whole fibration is not of general
type. Given a fibration whose base and fiber and the total space are
closed manifolds, and whose fiber is of positive dimension, the simplicial
volume of the fibration is zero if the fibers have amenable fundamen-
tal groups. The above result follows from the Levi decomposition of
Lie groups and results on simplicial volume of quotients of symmetric
spaces in Proposition 1.7. See [54] for some discussion on homogeneous
complex manifolds.

Remark 1.9. In the above discussion of the simplicial volume of quo-
tients of Hermitian symmetric spaces and complex homogeneous spaces,
the assumption that the quotients are compact is important. Proposi-
tion 3.3 shows that if the Q-rank of a Hermitian locally symmetric space
is greater than or equal to 3, its simplicial volume vanishes.

Propositions 1.6 and 1.7 might suggest that if M is a compact complex
manifold of general type, then its simplicial volume is positive. The next
result shows that this is not true.

The moduli space M, ,, admits the Deligne-Mumford compactifica-

. —DM . . . .
tion Mg, which is a compact complex orbifold and hence admits a
fundamental class.

Proposition 1.10. The simplicial volume of MngM s equal to 0
for all values of g, n.

It is known that when g > 24, WgDM is of general type (see [19] and
references there).

Remark 1.11. Suitable finite smooth covers of MngM are simply
connected and smooth, and hence their simplicial volumes vanish by
Proposition 2.9, but they are also of general type (see [8]).

Acknowledgments. I would like to thank Bill Fulton, Mark Goresky,
Gopal Prasad, and Yongbin Ruan for helpful conversations, correspon-
dences and references, and John Scherk for helpful comments on an
early version. Especially I would like to thank Clara Loh for reading
earlier versions of this paper very carefully and for references and many
helpful suggestions. A part of the work in this paper was carried out
during my visit to MSC, Tshinghua University in 2010 and I would like
thank them for providing a very good working environment. I would
also like to thank an anonymous referee for helpful suggestions.



SIMPLICIAL VOLUME OF MODULI SPACES OF RIEMANN SURFACES 417

After this paper was circulated and submitted, Enrico Leuzinger told
me that he and Roman Sauer had also worked on and proved vanishing
of the simplicial volume of quotients of the Teichmiiller space 74, by
finite index torsion-free subgroups of Mod, ,, under the same assumption
on g,n as in Theorem 1.1, though it seems that nothing has been written

up yet.
This work was partially Supported by NSF grant DMS 0905283.

2. Definitions and basic results on simplicial volumes

In this section, we recall definitions of several versions of simplicial
volume and some of their basic properties.

Let N be a compact topological space. Assume that IV is a compact-
ification of an oriented manifold M. If N is a smooth manifold, then
M = N. Denote N — M by Ngine and call it the singular locus.

If N is a manifold with nonempty boundary whose interior is equal
to M, then N, is equal to the boundary of NV and denoted by ON.

If M is compact, let H;(M,Z) be the singular homology. If M is
noncompact, let Hllf(M ,Z) be the locally finite homology group of M
(see [33] for example).

If N is a compact oriented manifold of dimension n, then H,,(N,Z) is
isomorphic to Z, and there is a canonical choice of generator of H,, (N, Z)
that corresponds to the orientation of N, i.e., restricts to a generator of
H,(N,N — xz,Z) for every point « € N, which corresponds to the local
orientation at x. It is called the fundamental class of N and denoted by
[N].

If N is a compact oriented manifold of dimension n with boundary
ON, then H,(N,0N,Z) is also isomorphic to Z, and a canonical genera-
tor determined by the orientation of the interior M is called the relative
fundamental class of N and denoted by [N, 0N].

Proposition 2.1. Assume that M is an oriented connected manifold
of dimension n, and that N is a compactification of M such that there
are arbitrarily small neighborhoods Nging . of the singular locus Nging,
where € is a small real parameter, such that

1) Niing is of codimension at least 2,

2) N — Nging,e is a manifold with boundary,

3) Nsinge can be deformation retracted to Ngng. Furthermore, for
any 0 < €, Nging,e can be deformation retracted to Ngings.

Then H,(N,Z) is isomorphic to Z, and the orientation of M deter-
mines a generator of H,(N,Z) such that it restricts to a generator of
H,(N,N —z,7) for every point x € N — Nging. It is called the funda-
mental class of N and denoted by [N].
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Proof. Since Nging is of codimension at least 2, the long exact
sequence shows that

H,(N,Z) = H,(N, Nsing, Z).

Since N — Nging - is @ manifold with boundary, Hy (N — Nging,e, (N —
Nsingc), Z) is isomorphic to Z. Then the isomorphisms

Hn(Na Nsingy Z) = Hn(Na Nsing,aa Z) = Hn(N_Nsing,aa a(N_Nsing,e)y Z)

imply that H,, (N, Nsing, Z) is isomorphic to Z. In the last isomorphism,
we have used the assumption that for 6 < e, Nging can be deformation
retracted to Ngings to show that Ng,g . can be excised since the closure
of Nging 5 is contained in Ning . and hence can be excised [24, Theorems
15.1 and 15.2, p. 82).

Proposition 2.2. If V is an irreducible compact variety over C of
complex dimension n, then Hon(V,Z) is isomorphic to Z and has a
canonical fundamental class [V] determined by the orientation of the
complex structure.

For detailed constructions and definitions of [V], see [23, Appendix
B] (the book [33] also discusses the Borel-Moore homology group).

Remark 2.3. An intuitive way to understand the fundamental class
[V] is to start with a triangulation of V' and endow each simplex with
the canonical orientation from the complex structure. Then the sum
of the top dimensional simplexes gives the fundamental class. The fact
that the singular locus is of real codimension at least 2 implies that it
is a cycle. One difficulty of this approach is that it is not easy to check
that two different triangulations give the same homology class. Using
the Whitney stratification of V, it can be seen that the conditions in
Proposition 2.1 are satisfied, and hence a fundamental class can be
constructed by Proposition 2.1 as well. Another way to understand the
class [V] is to take a resolution V' of V. Then the fundamental class of V/
is pushed forward under the map Ho,(V,Z) — Hy,(V,Z) to obtain the
fundamental class [V]. To show that another resolution V of V gives the
same homology class, we take a resolution of V that dominates both V
and V, and note that the image of its fundamental class factors through

A

the classes [V] and [V].

Proposition 2.4. Let T\ X be a noncompact arithmetic locally sym-

——=RBS
metric space, and I'\X the reductive Borel-Serre compactification.
Assume that I' is torsion-free. Then the conditions in Proposition 2.1

are satisfied by I‘\XRBS, and F\XRBS has a fundamental class.

We will explain the idea of the proof of the above proposition in
——RBS
Proposition 5.3 after describing I'\X .
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Proposition 2.5. If N is a compact connected complex orbifold of
complex dimension n, then Hs,(N,7Z) is isomorphic to Z. If M is a
noncompact connected complex orbifold of dimension n, then H%fn(M, Z)
1s also isomorphic to Z.

Since the singular locus of N is of codimension at least 2, the same
proof as for Proposition 2.1 works.

Remark 2.6. Complex orbifolds are orientable. Any locally ori-
entable orbifold M is a rational homology manifold in the sense that for
every point x € M, H,(M,M — z,Q) = Q, where n = dim M, and any
orientable orbifold admits a rational fundamental class in H,, (M, Q) (see
[1]). Since the smooth locus of M is connected, we can normalize the
rational fundamental class by requiring that for any smooth point z, the
class restricts to the generator of Hoy, (M, M — x,7Z) for the orientation.
Then this class agrees with the class in Proposition 2.5.

For any topological space with a fundamental class, we can define its
simplicial volume. The fundamental class gives a natural class in the
homology with R-coefficients. In the definitions of simplicial volumes
below, all fundamental cycles, i.e., cycles representing the fundamental
class, have R-coefficients.

For any chain of singular n-simplexes ¢ = ) _a,0 with real coeffi-
cients on N, define its ¢1-norm by

el =) lac|.

[

Assume that N is a connected oriented closed manifold (i.e., compact
without boundary). Let [N] also denote the fundamental class in the
homology group with R-coefficients, i.e., the image of the integral fun-
damental class [N] under the natural map H,(N,Z) — H,(N,R). Then
the simplicial volume ||N|| of N is defined by

[|N|| = inf{||c||1 | ¢ is any cycle with R-coefficients representing [N]}.

If N is a connected compact oriented manifold with nonempty bound-
ary ON, using relative cycles with R-coefficients representing the rela-
tive fundamental class [N, dN], one can similarly define the relative
simplicial volume ||N,dN||.

If M is a noncompact connected oriented manifold, using the funda-
mental class [M] in the locally finite homology group with R-coefficients,
the simplicial volume ||M]|| of M can be defined. Since cycles for the
locally finite homology groups are usually not of compact support and
may have infinite /1-norms, the simplicial volume ||M || may be equal to
infinity. For example, ||R!|| = +oc.

If N is a compact topological space of dimension n such that H, (N, Z)
is cyclic and [N] is a fundamental class, then its simplicial volume || V||
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can also be defined by #1-norms of all cycles with R-coefficients repre-
senting the class [N] in H,(N,R).

Proposition 2.7 ([40, Proposition 5.12]). Let N be a compact man-
ifold with nonempty boundary ON, and M the interior of N. Then

[V, ON]| < [[M]].

Remark 2.8. Given a variety V, let V,.., be the subset consisting
of smooth points, and Viipg = V — V¢4 its singular locus. Then the
simplicial volumes ||V,¢4|| of the smooth locus and ||V|| of the whole
variety V' should satisfy

V] < [[Vreg]l-

The reason is that the complement V' — V4. is homeomorphic to
Viegs where Viipg o is a small tubular neighborhood of V4, and a proof
similar to the proof of [40, Proposition 5.12] should work.

Proposition 2.9. Let N be a compact topological space of positive
dimension and [N] a fundamental class. If the fundamental group 71 (N)
is amenable, then the simplicial volume ||N|| = 0.

The reason is that the bounded cohomology groups of N vanish [25,
§3.1].
As a corollary of Proposition 2.9, we now prove Proposition 1.7.

Proof of Proposition 1.7. Since the Ricci curvature of an irreducible
symmetric space is negative if and only if it is of noncompact type, it
follows that I'\ X is of general type if and only if X is of noncompact
type. By Proposition 2.9, if X is compact type, flat, or products of
them, then the simplicial volume of I'\ X is zero, and Proposition 3.2
below completes the proof.

Proposition 2.10. Let Ny, N2 be two compact topological spaces of
the same dimension with fundamental classes [N1] and [Na] respectively.
Let f : N1 — N3 be a continuous map of degree d, i.e., f«([N1]) = d[No].
Then

[IN1]| = d|| N2

A similar result holds for noncompact topological spaces.

Corollary 2.11. If a compact topological space N with a fundamental
class admits a self-map of degree greater than or equal to 2, then ||M|| =
0. If a noncompact topological space N with a fundamental class admits
a self-map of degree greater than or equal to 2, then ||M|| = 0 or ||M]| =
0.

Definition 2.12. For an orbifold M that is quotient of a smooth
manifold Y, let d be the degree of the map Y — M. Define the orbifold
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simplicial volume ||M|| by

Y]]
M||prp = 1.
|| ||07’b d

In the above definition, if M admits several different finite coverings,
then the Proportionality Theorem [25, p. 11] [14] [20] [52] implies that
the orbifold simplicial volume of M is well-defined. We note that the
simplicial volume of finite coverings of closed manifolds is multiplicative.
This is similar to the definition of the Euler characteristic of virtually
torsion-free groups in [11].

Remark 2.13. This definition of orbifold simplicial volume allows
one to remove the restriction in [43, Theorem 1.7, and §1.6] where only
neat arithmetic subgroups are considered, in view of the fact that most
natural arithmetic subgroups are not torsion-free. The usual simplicial
volume may not work.

The above two definitions of simplicial volumes of orbifolds satisfy
the inequality
[|M] < || M][ors,
but they may not agree. To prove the inequality, we note that for
any finite smooth cover, f : Y — M, f.([Y]) = d[M]. Therefore, by

Proposition 2.10,

Y]
M| < —.
[|M]| < l

The following proposition gives an example of the strict inequality. A
natural problem is to determine conditions on M under which ||M]| =
HM ‘ ’orb-

Proposition 2.14. Let M = SL(2,Z)\H?. Then ||M||,s > 0, but
[|M]| = 0.

Proof.  For any finite smooth cover Y of M as an orbifold, ¥ =
'\H? for some torsion-free subgroup of SL(2,Z) of finite index. By the
result of Thurston for hyperbolic manifolds of finite volume [25, §0.3],
0 < |]Y|| < +o0, and hence the simplicial volume ||M ||y is finite and
positive. We note that SL(2,Z)\H? is homeomorphic to R?. One way
to see this is to use the usual fundamental domain of SL(2,Z) in H?
given by Q = {z + iy € H? | —% <z < %,x2 + 42 > 1}. When the
boundary components of €2 are identified (i.e., the left is identified with
the right), we obtain a space homeomorphic to R%. Another way is
to use the j-invariant of elliptic curves to establish a homomorphism
between the moduli space SL(2,Z)\H? of elliptic curves to the complex
space C, which is of course homeomorphic to R2.

We also note that the fundamental class [SL(2,Z)\H?] is mapped to
the fundamental class of R2. Therefore,

IR?| = [|M]] < +o0.
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Since R? admits self-maps of degrees greater than 1, it follows from
Proposition 2.11 that ||R?|| = 0.

As a corollary, we recover a result on vanishing of ||R?|| [25, p. 10]
[41, §6.3.1).

Corollary 2.15. The simplicial volume of R? is equal to 0.

Using the product formula for simplicial volume [40, Theorem C.7]
[25], we obtain

Corollary 2.16. For any n > 1, ||R**|| = 0.

3. A summary of some known results on simplicial volume

Though the notion of simplicial volume is natural, it is not easy to
compute it, or even to determine whether it vanishes or not. In this
section, we summarize several known results, in particular those on the
simplicial volume of locally symmetric spaces, which will motivate the
results in this paper.

Proposition 3.1. If a compact manifold M is a quotient of a sym-
metric space of nonnegative sectional curvature, then the simplicial vol-
ume ||M|| of M is equal to 0.

The reason is that the fundamental group of such a manifold is a
finite extension of an abelian group and hence amenable. It follows
from Proposition 2.9 that ||[M]| = 0.

Proposition 3.2 ([39], [15]). If X is a symmetric space of noncom-
pact type and T\X is a compact smooth quotient by a discrete isometry
group T, then the simplicial volume of T\ X is positive.

The paper [15] proved the nonvanishing of simplicial volume in Propo-
sition 3.2 when X = SL(3,R)/SO(3), and [39] proved all other cases.

The assumption of compactness of the quotient is crucial. For non-
compact locally symmetric spaces, the answer can be quite different.

Proposition 3.3 ([44, Theorem 1.1)). IfT'\ X is an arithmetic locally
symmetric space of Q-rank at least 3, then the simplicial volume of T\ X
s equal to zero.

We recall that an arithmetic locally symmetric space I'\X is com-
pact if and only if it is of Q-rank 0. For example, the Q-rank of
SL(n,Z)\SL(n,R)/SO(n) is equal to n — 1.

The idea of the proof of Proposition 3.3 will be explained in §5 be-
low. If the rank of X is equal to 1, then the sectional curvature of
'\ X is pinched between two negative numbers and hence the simplicial
volume of I'\ X is positive [25, §0.3]. For some Q-rank 1 arithmetic
locally symmetric spaces including smooth Hilbert modular varieties,
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the simplicial volume is positive [43] [37]. The case of Q-rank 2 locally
symmetric spaces is still open (see Remark 5.4).

As mentioned in Remark 2.13 above, by introducing a notion of orb-
ifold simplicial volume, the restriction to neat arithmetic subgroups in
[43] (or Proposition 3.3 above) can be removed.

Besides these results, there are also other results on properties of sim-
plicial volumes under operations such as taking products and fibrations
[28] [12]. See [40] [42] for summaries and references.

The simplicial volume of a manifold is closely related to topological
and geometric properties of the manifold [1] [2] [4] [16] [17] [21] [29]
[38] [47] [50] [51] [53] [55] [46] [22].

4. Vanishing of simplicial volumes

In this section, we extract the main steps of the proof of vanishing of
simplicial volume in Proposition 3.3 [44, Theorem 1.1] and formulate
them as Propositions 4.2, 4.3, and 4.4. In the next sections, we explain
how they can be applied to prove Proposition 3.3 and Propositions 1.4
and 1.5. This will show similarities between locally symmetric spaces
and moduli spaces M ,,.

The proof of [44, Theorem 1.1] uses a vanishing criterion of Gromov
[25, p. 58] [44, p. 221].

Definition 4.1. Let N be a topological space. A subset U C N is
called amenable in N if for every point x € U, the image of the map
m(U,x) — 71 (N, z) is amenable. A sequence of subsets U, i =1,2,--- ,
is called amenable at infinity if there is an increasing exhausting se-
quence of compact subsets K; of N, i = 1,2,---, with U; C N — K,
such that U; is amenable in N — K; when ¢ > 1.

Proposition 4.2. Let M be a manifold without boundary. Let {U;}ien
be a locally finite covering of M by open relatively compact subsets such
that each point of M is contained in at most n subsets of the covering,
where n = dim M. If each U; is amenable in M and the sequence U; is
amenable at infinity, then the simplicial volume ||M|| = 0.

The construction of such a locally finite covering of locally symmet-
ric spaces I'\ X is carried out in the following steps [44, Theorem 5.3,
Corollary 5.4J:

Proposition 4.3. Let M be a manifold and T' = 71 (M). Assume
that I' admits a finite classifying space BI' of dimension k. Then there
1s a locally finite covering of M by relatively compact, amenable, and
open subsets U;, i = 1,---, such that every point of M is contained in
at most k + 2 such subsets.

Proposition 4.4. Let M be the interior of a compact, n-dimensional
manifold W with boundary OW . Assume that B (M) admits a finite
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model of dimension at most n — 2 and for every point x € OW, the
inclusion induces an injection m (OW, z) — w1 (W, x). Then the covering
Ui, 1=1,2,---, constructed in the previous proposition, is amenable at
infinity, and every point in M meets at most n subsets U;. Therefore,
||M]| = 0.

5. Simplicial volume of locally symmetric spaces and their
compactifications

In this section, we recall the proof of Proposition 3.3 ([44, Theorem
1.1]) by showing that the conditions in Proposition 4.4 are satisfied by an
arithmetic locally symmetric space I'\X when its Q-rank rq is at least
3. We will also prove Propositions 1.4 and 1.5 on simplicial volumes of
compactifications of locally symmetric spaces.

First we note that since the invariant Riemannian metric of I'\ X has
bounded sectional curvature and the volume of I'\ X is finite, it is clear
from a lower bound of the minimal volume in terms of the simplicial
volume that the simplicial volume of I'\ X is finite.

We explain the setup of Proposition 3.3 in more detail. Assume
that G C GL(n,C) is a linear algebraic group defined over Q, and
G = G(R) its real locus. By assumption, I' C G is a discrete subgroup
commensurable with G(Q) N GL(n, Z).

Proof of Proposition 3.3. For a torsion-free arithmetic subgroup I,
the locally symmetric space I'\X is a model for BT'. Since the Q-
rank is positive, it is not compact, and hence it is not a finite space
(i.e., not a finite CW-complex). Since the Borel-Serre compactification

———~—BS

\X  is a real analytic manifold with corners [9] and hence admits
———BS

a finite triangulation, and the inclusion '\ X — I'\X  is a homotopy

equivalence, it follows that I‘\—XBS is a finite model of BI'.

It is also known that the cohomological dimension of I', c¢d I', is equal
to dimI"\ X — rg, where rg is the Q-rank of I'\X. When rg > 3, cd
I' < dimI'\X — 3. When rg > 3, it follows easily from the structure
of symmetric spaces that dimI"\X — rg > 3. Then a general result on
classifying spaces implies that I' admits a finite BI'-space of dimension
equal to dimI"\ X — rg. This shows that the first condition on existence
of a finite model of BI" of dimension at most dim I"\ X —2 in Proposition
4.4 is satisﬁe%.

Since I'\X " is a topological manifold with boundary, it can be taken
as W in Proposition 4.4. The remaining condition, that the inclusion
induces an injection 71 (OW, z) — 71 (W, x), follows from [7, Proposition
2.3].

———BS
Proposition 5.1. When rqg > 3, the inclusion 711(8F\XB , ) —

———BS
m(T\X",x) is an isomorphism.
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Before we explain the idea of the proof of Proposition 5.1 outlined
in [7], we recall the construction of the Borel-Serre compactification

————=BS

IMN\X . Fix a basepoint 29 € X = G/K corresponding to a maximal
compact subgroup K of G. For every proper Q-parabolic subgroup P of
G, its real locus P = P(R) admits a rational Langlands decomposition

P = NPAPMP = Np X AP X Mp,

where Np is the unipotent radical of P, Ap is the Q-split component of
P, and Mp is areductive group. The product Ap Mp is the Levi factor of
P which is stable with respect to the Cartan involution of G associated
with K. Define Xp = Mp/(K N Mp). Xp is a symmetric space of
nonpositive sectional curvature and is called the boundary symmetric
space of the Q-parabolic subgroup P. The Langlands decomposition of
P induces a horospherical decomposition of X:

X%'NPXAPXXP.

When X = SL(2,R)/SO(2) = H? and P is the parabolic subgroup of
upper triangular matrices, the associated horospherical decomposition
of X is the z,y-coordinate decomposition of H?Z.

For every P, define its Borel-Serre boundary component by

e(P) = Np X Xp.
Attach these boundary components e(P) to X at infinity by using the

horospherical decomposition to obtain the Borel-Serre partial com-
. . ~BS
pactification g X~ :

oX =X U] Jem®).
P

It is known that QYBS is a real analytic manifold with corners and
the I'-action on X extends to a proper real analytic action on QYBS
with a compact quotient F\QYBS. It is the Borel-Serre compactification
F\—XBS (see [9] for references).

When X = H?, QYBS is obtained by adding a copy R at every
rational boundary point in H? = R U {ico}, and the Borel-Serre com-
pactification of I'\H? is obtained by adding a circle to every end so that
F\—XBS is a compact manifold with boundary in this case. One way
to visualize the Borel-Serre compactification of a higher rank locally
symmetric space is to take products of I'\H?Z.

Proposition 5.2. The boundary GQYBS is homotopy equivalent to
a bouquet of infinitely many spheres of dimension ro—1. When rg > 3,

the boundary OQYBS 1s simply connected.
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Proof. For each Q-parabolic subgroup P, its boundary component
e(P) is contractible. For two proper parabolic subgroups Py, Ps, the
inclusion Py C P3 holds if and only if e(Py) is contained in the closure
of e(P3). This implies that 8@735 is homotopy equivalent to the Q-
Tits building Ag(G) of G, which is an infinite simplicial complex with
one simplex op for each Q-parabolic subgroup P such that maximal Q-
parabolic subgroups P correspond to 0-dimensional simplexes, and op,
is contained in op, as a face if and only if P; is contained in Py. By the
Solomon-Tits Theorem, Ag(G) is homotopy equivalent to a bouquet of
infinitely many spheres of dimension rg—1. This proves the proposition.

Proof of Proposition 5.1. Since QYBS is a manifold with corners
whose interior is equal to X, it can be deformed into X and hence is

contractible. Since the boundary 8@7BS is simply connected and T’
also acts properly without fixed points, we conclude that the inclusion

r \OQYBS — F\@YBS induces an isomorphism
~BS ~BS
m(M\IeX ") = m(MeX ),

ie., Wl(OF\XBS) — Wl(F\XBS) is an isomorphism.

Before we prove Proposition 1.4, we explain the reductive Borel-Serre

——RBS . .
compactification T\ X . For each Q-parabolic subgroup P, define its
boundary component by

é(P) = Xp.

It is a quotient of the Borel-Serre boundary component e(P) by collaps-
ing the unipotent factor Np. By attaching these boundary components
é(P) to X at infinity, we obtain the reductive Borel-Serre partial
compactification

oX P = X uTTeP).
P

It can %% ghown that the I'-action on X ex_t%nB%s to a continuous action
on X with a compact quotient, I'\gX , which is the reductive

——=RB L
Borel-Serre compactification I'\X . The extended I'-action is not
proper. From this definition, it is clear that the identity map on X
extends to I'-equivariant surjective map

QYBS _ QYRBS.

It follows that the identity map on I'\X extends to a continuous sur-
jective map

x> S Tx



SIMPLICIAL VOLUME OF MODULI SPACES OF RIEMANN SURFACES 427

For every point in the boundary OI‘\—XRBS, its inverse image is a nil-
manifold I' N Np\Np for some parabolic subgroup. See [9] for more
details.

For example, when X = H?, the compactification I‘\—XRBS is ob-
tained by adding one point to each end.

Now we prove the following result stated in Proposition 2.4.

Proposition 5.3. Assume that I is torsion-free. Let T'\X be a non-

. . . ——RBS .
compact arithmetic locally symmetric space, and T'\ X the reductive
Borel-Serre compactification. The conditions in Proposition 2.1 are sat-

isfied, and F\XRBS has a fundamental class.

Proof. The singular locus of I'\ X b5 is contained in the boundary
o\ X RBS A neighborhood of 8@YBS can be deformation retracted to

OQYBS by moving along the geodesic action of Q-parabolic subgroups
P. The parameter £ in Proposition 2.1 is determined in terms of the
split component of the horospherical decompositions of X. This de-
formation is I'-equivariant and in the deformation, the Np-components
are preserved (see [48]). Since we can collapse the nilpotent components
during the deformation retraction, this implies that a small neighbor-

———RBS ———RBS
hood of OI'\ X B can be deformation retracted to oM\X fe , and the
other conditions in Proposition 2.1 are also satisfied.

BS RBS
Proof of Proposition 1.4. We note that the map '\ X~ — I'\ X is

of degree one, and maps the relative fundamental cycle [['\ X BS, oM\X BS]

to the fundamental class [I"\ X RBS].

When rg > 3, by Proposition 1.3, the relative simplicial volume of

Mx P55 equal to zero. It follows that the simplicial volume of I'\ X fps

is zero.
When I'\ X is irreducible, the rank of X is at least 2, and rg > 1,

——RBS
by a result of [35], the fundamental group of I'\ X is finite. By
Proposition 2.9, the simplicial volume of T'\ X fBs is zero.
Proof of Proposition 1.5. When I'\X is Hermitian, it admits the

———BB
Baily-Borel compactification I'\ X, which is a normal projective va-
riety and hence admits a fundamental class.
For a finite index subgroup IV C T, the projection I"\X — T\ X

BB BB
induces a holomorphic map I"\X ~~ — I'\X . Therefore, it suffices
to prove vanishing of the simplicial volume of I\ X when I" is torsion-

———RBS
free. This can be proved as in the case of I'\ X RES above or follows as

———RBS
a corollary of Proposition 1.4, since the fundamental class of '\ X

is mapped to the fundamental class of T'\ X BB.
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Remark 5.4. One of the motivations to consider the simplicial vol-

ume of the reductive Borel-Serre compactification F\—XRBS was an at-
tempt to prove that the simplicial volume of arithmetic locally symmet-
ric spaces '\ X of Q-rank 2 is zero and hence to extend the result [44,
Theorem 1.1] (Proposition 3.3 above). It consists of two steps: (1) show

that |[T\X][| = |[TNX ", 0TNX |, and (2) show that the dominating

BS RBS
map N\X ~ —T\X which extends the identity on I'\ X induces an
———BS ———RBS

equality [[TVX ", o X 7| = WX ™).

For Step (1), F\—XBS is a topological manifold with boundary, and its
interior is equal to I'\X. There are some results on when the simplicial
volume of the interior of a compact manifold with nonempty boundary
is equal to the relative simplicial volume (see [40, example 6.20] [43,
Theorem 1.5)).

For Step (2), the fibers of the map I"'\.X Bs Mx RBS are nilman-
ifolds. Since the fundamental group of nilmanifolds is amenable, this
suggests some positive evidence.

In general, Step (2) is not correct. For example, consider a hyper-
bolic surface ¥, of genus 0 with n punctures, where n > 3, as a
locally symmetric space I'\X of finite volume. The Borel-Serre com-

pactification ZomBS is obtained by adding a circle to every end, and

. . . < —RBS . .
the reductive Borel-Serre compactification Eo,nR % is homeomorphic to

the sphere S2. By [40, example 6.20], |[Son" . 0S0m Il = |So.ll.
Since ||Sonl| > 0 by [25, §0.3], [Som " ,0%0. |l > 0. On the
other hand, ||S2|| = 0, and hence |[Sq,. || = [|S?|| = 0. Therefore,

=—BS ,=—BS <—RBS
X055 000 [ # |Xon I
A natural question is whether Step (2) might hold in the higher rank
case.

6. Simplicial volume of moduli spaces

Theorem 1.1 is proved by following the same procedure as in the proof
of Proposition 3.3, i.e., the steps in §3. The difference is to replace the
symmetric space X by the Teichmiiller space 7, ,, and the arithmetic
subgroup I' by the mapping class group Mod, ,. There is an analogue of
the Borel-Serre partial compactification for 7, ,, and the topology of its
boundary is determined by an analogue of the Solomon-Tits Theorem
for curve complexes.

Let Sy, be a Riemann surface of genus g with n punctures. The
moduli space of marked complex structures on Sy, is the Teichmiiller
space Ty, It is a complex manifold diffeomorphic to R2¢, where d =
39 —3+nif 29 —2+mn > 0 so that S, , admits complete hyperbolic
metrics of finite area, and d = 0,1 otherwise. The mapping class group
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Mod,,,, = Diff"(S,.,)/Diff’(S, ) acts on 7Ty, properly and holomorphi-
cally, and the quotient Mody ,\ 7y, is equal to the moduli space My j,.
This implies that M, ,, is a complex orbifold.

It is known that M, , is a quasi-projective variety and admits the

Deligne-Mumford compactification MngM, which is a projective vari-
ety and also a compact complex orbifold. The C-dimension of M, ,, is
given by

3g—34+n if2g—24n>0,
(6.1) dimc My, =41 ifg=1,n=0,
0 if n <2.
A slightly stronger result than Theorem 1.1 holds.

Theorem 6.1. For any finite index subgroup I' C Modg ,,, the simpli-
cial volume of '\ Ty, is equal to 0if g > 2; g=1,n>3; org =0,n > 6;
and the orbifold simplicial volume of I'\Ty,, is positive if g = 1,n =0, 1;
g=0,n=4.

The only unsettled cases are Mg 5 and M ».

To prove the vanishing of the simplicial volume of I'\ 7 ,,, we need an
analogue of the Borel-Serre compactification. Such a compactification
was constructed in [27] (a different proof of a slightly weaker result was
given in [31]). Instead we use the thick part of 7, ,. For simplicity, we
assume that 2g — 2 +n > 0, so that for each complex structure on Sy,
there is a unique complete hyperbolic metric of finite area conformal to
it. For each marked hyperbolic surface ¥, € Ty n, let £(X,,) be the
length of the shortest geodesics in it. For any sufficiently small €, define

7;7,71(5) = {ng € Tgm ’ g(zg,n) > e}

Proposition 6.2. The thick part Ty, () satisfies the following prop-
erties:

1) Tgn(e) is stable under Mody ,,, and the quotient Modg n\Tgn(€) is
compact.

2) Tgn(e) is a real analytic manifold with corners,

3) there is a I'-equivariant deformation retract from Ty, to Tgn(e),
and hence Ty n(€) is contractible.

See [36] for more details of the above proposition. The above propo-
sition shows that 74, (g) can be viewed as a partial compactification of
Tg.n, and the quotient I'\7, »(¢) can be viewed as a compactification of
M\ Tgn.

By [36], we have

Proposition 6.3. 7, ,(¢) is a cofinite model of the universal space
for proper actions of I'. If I' is torsion-free, then I'\Tyn(€) is a finite
model of BT.
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The topology of the boundary of 7;,(¢) can be described in terms
of the curve complex C(Sy,,). Recall that a simple closed curve in Sy,
is called essential if it does not bound a disk or a puncture. Vertices of
C(Sg,n) correspond to homotopy classes of essential simple closed curves
in Sy, and (k4 1) vertices form the vertices of a k-simplex if and only
if they admit disjoint representatives.

By [26] [30] [34], it is known that

Proposition 6.4. C(Sy,) is homotopy equivalent to a bouquet of
infinitely many spheres S%, where

—Xx(Sg) =29 —2 if n=0,
(6.2) d=<{ —x(Sgn)—1=29—-34+n ifg>1andn >0,
—X(Son) —2=n-—4 if g=0.

Proposition 6.5. The boundary faces of Ty (€) are contractible and
parametrized by simplexes of C(Sq). For each simplex o € C(Sqn),
let fs be the corresponding boundary face. Then for any two simplexes
01,02, the simplex o1 is a face of o2 if and only if f, contains f,,
as a face. Consequently, the boundary 0T, n(c) is homotopy equivalent
to C(Sgn), and hence homotopy equivalent to a bouquet of spheres S,
where d is given in the previous proposition.

See [34, Proposition 2.1] for more detail. A corollary of the above
proposition determines the virtual cohomological dimension of Mod, ,
[26] [30].

Corollary 6.6. Mod, ,, is a virtual duality group of dimension d,
where

49 — 5 =dim T4+ x(Sg) — 1 if n =0,

(6.3) d=q49—4+n=dimT,,+ x(Sgn) fg>1andn>0,
n—3=dim7o, + x(Son)+1 ifg=0.

Hence for any torsion-free finite index subgroup I' of Modg p,, cd I' = d.

Proof of Theorem 6.1 and Theorem 1.1. Under the assumption that
g=>2;,9g=1,n2>3;0or g=0,n > 6, the spheres in the homotopy type
of C(Sy,) are of dimension at least 2, and hence C(Sy,) and 07 ,(¢)
are simply connected. Using the results recalled in this section, we see
that the same proof of Proposition 3.3 in §4 goes through to give a proof
of Theorem 6.1, i.e., the conditions of Proposition 4.4 are satisfied, and
Theorem 6.1 can be proved for these cases.

When g = 1,n = 0,1, 7,4, is equal to H? and Mod,,, = SL(2,Z),
and hence Mg, = SL(2,Z)\H?. By Proposition 2.14, ||[M,,||ors > 0.
When g = 0,n = 4, Ty, is equal to H? and Mody,,, is commensurable
with SL(2,7Z). It follows that ||[Mg.||ors > 0. The same result holds for
I'\74,n- This completes the proof of Theorem 6.1.
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Remark 6.7. In Theorem 1.1, when g = 1,n = 0,1, 7,, is equal
to H? and Mod,, = SL(2,Z), and hence M,, = SL(2,Z)\H?. By
Proposition 2.14, |[Mg,|| = 0.

To prove Proposition 1.10, we only need to use Proposition 2.9 and
the following result [45] [8, Proposition 1.2]:

oy —-—DM . .
Proposition 6.8. M, 18 simply connected.

More generally, for some finite index subgroups I' of Mody ,,, a cor-
———DM
responding compactification I'\7 », is also simply connected. Hence

the simplicial volume of F\TngM is also equal to 0. See [8, §3] for
definition and detailed discussion of such groups.

As mentioned in the introduction, a corollary of the vanishing of
the simplicial volume of Mg, in Theorem 6.1 gives an obstruction to
existence of certain metrics on Mg .

Corollary 6.9. If g > 2;, g = 1,n > 3; or g = 0,n > 6, then
My n and any finite cover of it do not admit any complete finite volume
Riemannian metric of negatively pinched sectional curvature.

This result (in fact, a stronger result) was proved in [33, Theorem
1.2]. See also [10, p. 12], [10, Theorem 1.3|, and [10, question 6.1]
for related results and questions on existence of complete nonpositively
curved metrics on My .

7. Open problems

A natural problem is to settle the remaining cases of Theorem 1.1,
ie., when g = 1,n = 2, and ¢ = O,n = 5. It is not clear whether
[|[Mg.nllore = 0 in these two cases. They are probably analogues of lo-
cally symmetric spaces of Q-rank 2 and will require different techniques
to solve them.

It was shown in [44] that unlike the usual simplicial volume, the
Lipschitz simplicial volume of every locally symmetric space of finite
volume is positive. A natural question is

Question 7.1. Is the Lipschitz orbifold simplicial volume of M, ,
positive for all choices of g,n?

A guess is that the answer should be yes. It will probably require
techniques different from the case of locally symmetric spaces. One
important ingredient in [44] is that for every noncompact locally sym-
metric space, its universal cover also admits a compact quotient, i.e., a
compact locally symmetric space, which has positive simplicial volume.
It is known that the Teichmiiller space 74, does not admit cocompact
actions of discrete groups which preserve natural geometric structures
of Tgn [18].
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If a discrete group I' admits a model of classifying space BI' by a
manifold M, i.e., 7 (M) =T, and m;(M) = {1} for i > 2, then we can
define a notion of simplicial volume of the group I'.

If M is a compact manifold, then the dimension of M is equal to the
cohomological dimension cd I of T". If M’ is another compact manifold
model of BI', then M, M’ are homotopy equivalent and have the same
simplicial volume, |[|M|| = ||M’'||. In this case, the simplicial volume
|| M]| is an invariant of I, and we define the simplicial volume ||T'|| of
I' by

[ITI = (1]

It is known that the existence of a compact manifold model M of
BI' imposes strong conditions on I'. For example, it implies that I is a
Poincaré duality group of dimension n.

When T' is not a Poincaré duality group, then we have to consider
manifold models of BI' which are not compact. In this case, we note
that if M is a model of BI', then for every R™, the product M x R™
is also a model of BI'. We also note that for every manifold model M
of BI', dim M is bounded from below by the cohomological dimension
cd T.

For any discrete group I' of finite cohomological dimension, there
exist manifold models of BI'. Briefly, there exists a finite dimensional
contractible complex ET on which I" acts properly and fixed point freely,
and I'\ET gives a model of BT'. By embedding ET into some R" and
taking a tubular neighborhood [6, p. 226, p. 220], we obtain a proper
and fixed point free action of I' on a contractible manifold W, and I'\W
is a manifold model of BT

For a group I', let nr be the smallest dimension of such manifold
models. By the previous graph, nr > cd T.

Define the simplicial volume ||T'|| by

||IT]| = inf{||M]| | M is a manifold of dimension equal to np}.

It is tempting to conjecture that for any two manifold models M, M’
of BT of dimension equal to nr, ||M]|| = ||[M’||. A natural problem is
to relate the simplicial volume ||T'|| to properties of I'. For example, if
I" is amenable and does act properly and freely on some contractible
manifold, then ||T'|| = 0. As the discussion below shows, the situation
is quite unclear if I' is not amenable.

By a result of [5], for a torsion free lattice I" of a semisimple Lie
group G, np = dim X, where X = G/K is the symmetric space of
noncompact type associated with G. When I' is not a uniform lattice,
then c¢d I' < dim X, and hence nr > cd I' in this case.

In terms of the notations just introduced, the results on locally sym-
metric spaces mentioned above can be formulated as follows.
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Proposition 7.2. Let I' be a torsion-free arithmetic subgroup of a
linear algebraic semisimple Lie group G defined over Q. IfT' is uniform,
i.e., the Q-rank of G is equal to 0, then ||T|| > 0; if the Q-rank of G is
greater than or equal to 3, then ||T|| = 0.

Note that the arithmetic subgroup I' in the proposition is not amenable
in both cases.

It is natural to ask whether the following analogue of [5] (see [6, p.
234]) holds for Mody .

Question 7.3. If Mod,, acts properly on a contractible manifold
W, is it true that dim W > dim 7, = 69 — 6 + 2n?

If the answer to the above question is true, then Theorem 1.1 implies
that for any finite index torsion-free subgroup I' of the mapping class
group Mod, ,,, the simplicial volume ||I'|| = 0 when g > 2; g = 1,n > 3;
or g=0,n>6.

The outer automorphism group Out(F},) of the free group F,, shares
many properties with arithmetic subgroups of Lie groups and mapping
class groups Mody ,, and a lot of work on Out(F;,) has been inspired by
them. Then the following two problems seem natural.

Problem 7.4. Determine the smallest dimension of contractible man-
ifolds W on which Out(F;,) acts properly.

It is known that the outer space X, of marked metric graphs with
fundamental group isomorphic to F,, is contractible and Out(F),) acts
properly on it, but X, is not a manifold and Out(F,,)\X,, does not have
a fundamental class.

It is tempting to conjecture that the smallest dimension of such man-
ifolds W in the above problem is equal to 4n — 6, based on the compu-
tation on [6, p. 233]. It is also an interesting problem to find nat-
ural contractible manifolds on which Out(F),) acts properly. (Since
the virtual cohomological dimension of Out(F;,) is finite, finite index
torsion-free subgroup I' of Out(F,,) acts properly and fixed point freely
on a contractible manifold. It does not seem to be obvious whether
Out(F,,) admits a proper action on contractible manifolds, though it
admits many nontrivial actions on contractible manifolds via homomor-
phisms to arithmetic groups.)

Problem 7.5. Show that when n > 3, every finite index torsion-free
subgroup I' C Out(F},) has vanishing simplicial volume, i.e., ||[I'|| = 0.

This problem depends on the assumption that Out(F,,) does act prop-
erly on contractible manifolds. For any such contractible manifold W,
one can also ask whether the simplicial volume ||[T'\W|| = 0.
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