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CURVE COUNTING INVARIANTS
AROUND THE CONIFOLD POINT

Yukinobu Toda

Abstract

In this paper, we investigate the space of certain weak stabil-
ity conditions on the triangulated category of D0-D2-D6 bound
states on a smooth projective Calabi-Yau 3-fold. In the case of a
quintic 3-fold, the resulting space is interpreted as a universal cov-
ering space of an infinitesimal neighborhood of the conifold point
in the stringy Kähler moduli space. We then associate the DT
type invariants counting semistable objects, which give new curve
counting invariants on Calabi-Yau 3-folds. We also investigate the
wall-crossing formula of our invariants and their interplay with the
Seidel-Thomas twist.

1. Introduction

1.1. Motivation. Let X be a smooth projective Calabi-Yau 3-fold over
C, i.e.

3∧
T∨
X

∼= OX , H1(X,OX) = 0.

So far, several curve counting theories on X have been introduced and
studied:

• Gromov-Witten (GW) theory [25]: counting stable maps
f : C → X from projective nodal curves C.

• Donaldson-Thomas (DT) theory [41]: counting 1-dimensional
subschemes C ⊂ X.

• Pandharipande-Thomas (PT) theory [37]: counting stable
pairs (F, s). Here F is a 1-dimensional pure sheaf and s is a
morphism s : OX → F with 0-dimensional cokernel.

The above theories are conjecturally equivalent in terms of generating
functions. The GW/DT correspondence is proved for local toric Calabi-
Yau 3-folds [33], local curves [14], [36], and the DT/PT correspondence
(including the Euler characteristic version) is available in [40], [7], [49].
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The idea of DT/PT correspondence discussed by Pandharipande-
Thomas [37] is to use the wall-crossing formula of DT type invari-
ants in the space of Bridgeland’s stability conditions [11] on the cat-
egory Db(Coh(X)), the bounded derived category of coherent sheaves
on X. Namely, it is expected that there are two stability conditions
σ, τ on Db(Coh(X)) such that the moduli space of σ-stable objects
and that of τ -stable objects with a certain numerical condition coincide
with the moduli spaces which define DT and PT theories, respectively.
Then DT/PT correspondence should follow by investigating the behav-
ior of the invariants under the change of stability conditions. A general
framework for such a study, known as a wall-crossing formula of DT
type invariants, is now established by the work of Joyce-Song [24] and
Kontsevich-Soibelman [26].

However, there have been difficulties in constructing stability condi-
tions on Db(Coh(X)), and not even a single example is available yet.
Instead of working with Bridgeland’s stability conditions, Bayer [1] and
the author [47], [49] independently introduce polynomial stability, limit
stability and weak stability, respectively. These notions are interpreted
as “limiting degenerations” of Bridgeland’s stability conditions. By us-
ing the above degenerated stability conditions, it turns out in [1], [49]
that DT/PT correspondence is realized near a particular point, called
the large volume limit. By analyzing weak stability conditions near the
large volume limit and the relevant wall-crossing formula, the author
proves the Euler characteristic version of DT/PT correspondence [49]
and the rationality conjecture of the generating series of DT and PT
invariants [44].

The space of stability conditions on Db(Coh(X)) is expected to be
related to the stringy Kähler moduli space of X, which is the moduli
space of complex structures of a mirror manifold. For instance, if X is
a quintic Calabi-Yau 3-fold in P4, the mirror family is a simultaneous

crepant resolution Ŷψ of the following one parameter family,

Yψ =

{
4∑

i=0

y5i − 5ψ
4∏

i=0

yi = 0

}
/G ⊂ P4/G,

where G = (Z/5Z)3. The stringy Kähler moduli space is a parameter
space of ψ5, and the large volume limit corresponds to ψ5 = ∞. (See
Figure 1.)

So far, the above studies on curve counting theories appear near the
large volume limit. Now it is natural to address the following question.

Question 1.1. What kinds of curve counting invariants (or
DT type invariants) appear at other limiting points?
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In this paper, we study the above question for another limiting point,
called the conifold point. In the case of a quintic 3-fold, this point corre-

sponds to ψ5 = 1. There is a Lagrangian sphere in a mirror manifold Ŷψ
which vanishes at the conifold point, and it corresponds to the object
OX under the mirror symmetry. In physic terminology, the mass of the
object OX , denoted by m(OX), behaves as

m(OX) →
{

∞, at large volume limit,
0, at conifold point.

(1)

Namely, the conifold point is a point where the object OX becomes
massless, and its effect on the stability should be infinitesimally small.
On the other hand, there is an autoequivalence associated to OX , called
a Seidel-Thomas twist [38],

ΦOX
: Db(Coh(X))

∼→ Db(Coh(X)).

The above equivalence should correspond to the Dehn twist of Ŷψ along
the Lagrangian vanishing cycle under the mirror symmetry, and should
be a monodromy on Db(Coh(X)) around the conifold point. Therefore
the Seidel-Thomas twist must be relevant in studying Question 1.1, and
it seems interesting to see how the twist functor is related to the wall-
crossing.

<--- Large Volume Limit

<--- Conifold point

<--- Gepner point

Figure 1. Stringy Kähler moduli space of a quintic 3-fold

1.2. Weak stability conditions on D0-D2-D6 bound states. In
this paper, we focus on the triangulated category called D0-D2-D6
bound states

DX = 〈OX ,Coh≤1(X)〉tr ⊂ Db(Coh(X)).(2)

This is the smallest triangulated subcategory of Db(Coh(X)) which con-
tains OX and the objects in Coh≤1(X),

Coh≤1(X) = {E ∈ Coh(X) : dimSupp(E) ≤ 1}.
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The category DX is especially important in studying curve counting in-
variants on X. For instance, it contains ideal sheaves of curves, and two
term complexes associated with stable pairs; DT/PT correspondence is
realized there [49].

We use the following finitely generated abelian group Γ,

Γ = H0(X,Z)⊕H2(X,Z)⊕H0(X,Z),

which is the image of the Chern character map from the category DX .
Roughly speaking, a Bridgeland’s stability condition on DX consists of
data (Z,P),

Z : Γ → C, P(φ) ⊂ DX ,

where Z is a group homomorphism and P(φ) is a full subcategory for
φ ∈ R, which satisfies some axiom.

The notion of weak stability conditions on DX is determined after
we specify a filtration Γ• of Γ (cf. Definition 2.1), which is to do with
the limiting direction of Bridgeland stability. The set of weak stability
conditions is denoted by

StabΓ•
(DX),(3)

and it has a natural structure of a complex manifold (cf. Theorem 2.2).
In this paper, we are interested in the following filtration,

Γ0 = H0(X,Z) ⊂ Γ1 = Γ.(4)

A point in the space (3) w.r.t. the filtration (4) corresponds to a lim-
iting degeneration of Bridgeland stability (Z,P) on DX , whose limiting
direction is given by the constraint

|Z(ch(OX))| ≪ |Z(ch(F ))|,
for any non-zero object F ∈ Coh≤1(X). This means that the effect of
OX is infinitesimally small relative to the objects in Coh≤1(X); hence
the space (3) seems to be related to an infinitesimal neighborhood of
the conifold point in Figure 1. In fact, we have the following result.

Theorem 1.2. [Theorem 2.19] Suppose that H2(X,Z) ∼= Z (e.g.
quintic 3-fold). Then there is a connected component

Stab◦Γ•
(DX) ⊂ StabΓ•

(DX)

such that there is an isomorphism

Stab◦Γ•
(DX) ∼= C× G̃L+(2,R),(5)

where G̃L+(2,R) is the universal cover of GL+(2,R). The Seidel-Thomas
twist ΦOX

acts on the space (5), and we have the isomorphism

〈ΦOX
〉\Stab◦Γ•

(DX)/C ∼= C∗ ×H◦.

Here 〈ΦOX
〉 is the subgroup of the group of autoequivalences of DX gen-

erated by ΦOX
, and H◦ = {z ∈ C : Im z > 0}.
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Applying Theorem 1.2, we will construct a commutative diagram
(cf. Subsection 2.8),

R //

exp(πi∗)
��

Stab◦Γ•
(DX)

��

S1 ι
// C∗ ×H◦,

(6)

where ι is an embedding of S1 to (unit circle) × {
√
−1}. When X is a

quintic 3-fold, the image of ι may be interpreted as a loop around the
conifold point in Figure 1, since the monodromy around it is given by
ΦOX

.

1.3. DT theory around the conifold point. Similarly to [49], [43],
we associate DT type invariants counting semistable objects in DX ,
and investigate their wall-crossing phenomena. In order to formulate
the result, we denote the top arrow in the diagram (6) by γ,

γ : R ∋ t 7→ (Zt,Pt) ∈ Stab◦Γ•
(DX).

For the data,

(r, β, n) ∈ H0 ⊕H2 ⊕H0, t ∈ R, φ ∈ R,

we will associate the generalized DT invariant (cf. Definition 3.6),

DTt(r, β, n, φ) ∈ Q,(7)

following the construction by Joyce-Song [24]. The invariant (7) counts
objects E ∈ Pt(φ) satisfying the numerical condition

(ch0(E), ch2(E), ch3(E)) = (r,−β,−n).
The generating series DTt(φ) is defined by

DTt(φ) =
∑

(r,n,β)∈Γ

DTt(r, β, n, φ)x
ryβzn.(8)

The wall-crossing formula by Joyce-Song [24] and Kontsevich-Soibelman
[26] enables us to see how DTt(φ) changes under the change of t. As-
suming a technical result announced by Behrend-Getzler [6] (cf. Con-
jecture 3.3), we will show the following result.

Theorem 1.3. [Lemma 3.8, Theorem 3.9]
(i) For a given k ∈ Z, the series DTt(φ) does not depend on a choice

of t ∈ (φ+ k, φ+ k + 1). In particular, we may write it as DTk(φ).
(ii) The series DTk(φ) is obtained from DTk−1(φ) by the following

transformation:

zn 7→
{

(1− (−1)nx)nzn, if k is even.
xnzn/(1− (−1)nx)n, if k is odd.
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The above theorem implies that the series DTk(φ) is obtained from
DTk−2(φ) by the variable change z 7→ xz, which coincides with the
variable change by the Seidel-Thomas twist ΦOX

. This means that, un-
fortunately, the wall-crossing formula does not provide any information
on the invariant (7), e.g. modularity (cf. Remark 3.11).

On the other hand, the above theorem can be used to compute the
series (8) for a general t if we know it for one point t ∈ R with t /∈ Z+φ.
For instance, we will see that

DTt(1) = −χ(X)
∑

n≥1,m≥1,
m|n.

1

m2
zn,

when 0 < t < 1 in Subsection 4.1. Applying Theorem 1.3, we can write
down the series (8) for φ = 1 and a general t (cf. Theorem 4.2).

1.4. Invariants on a local (−1,−1)-curve. In Subsection 4.2, we
focus on the invariants on a local (−1,−1) curve, and especially inves-
tigate what kinds of objects the invariants (7) count. Let C ⊂ X be
an exceptional locus of a crepant small resolution of an ordinary double
point, f : X → Y . It satisfies that

P1 ∼= C ⊂ X, NC/X
∼= OC(−1)⊕OC(−1).

For instance, we will see that the invariant

DTt=1(r,m[C], n, φ) ∈ Q, 1/2 < φ < 1(9)

is non-zero only if n = ma for some a ∈ Z≥1. In this case, the invariant
(9) counts two term complexes,

O⊕r
X

s→ OC(a− 1)⊕m,

such that the induced morphism,

H0(s) : Cr → H0(C,OC (a− 1))⊕m,

is injective. Applying Theorem 1.3, we will compute the generating se-
ries of our invariants in this situation (cf. Theorem 4.7). It turns out
that there is a curious phenomenon for the rank one generating series:
it coincides with the logarithm of the generating series of stable pairs on
a local (−1,−1)-curve (cf. Equation (75)). Under GW/DT correspon-
dence, this implies that our invariants relate to connected GW theory,
while stable pair theory is related to non-connected GW theory. It seems
interesting to give a geometric understanding of this phenomenon.

1.5. Relation to existing works. Several examples of stability con-
ditions have been studied in the literature, for instance [12], [8], [10],
[42], [32], [18], [2], [19], [46], [48]. However, global descriptions of the
spaces of degenerated stability conditions introduced in [1], [47], [49]
have not been studied so far. The result of Theorem 1.2 is the first
example of such a study.
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The weak stability conditions on DX are also studied in [49], [43]
without giving any global descriptions of the spaces of weak stability
conditions. We note that the filtrations taken in these works are different
from (4), and the resulting spaces should correspond to infinitesimal
neighborhoods of the large volume limit. It is worth mentioning that
the equivalence ΦOX

does not act on the spaces discussed in [49], [43].
In [49], [43], we also investigate the wall-crossing formula of DT

type invariants with respect to certain weak stability conditions on DX .
However, we focus only on the rank one case in these works. Since the
Seidel-Thomas twist is relevant in the study of our invariants, and the
twist functor changes the rank, it is natural to consider higher rank
invariants in our situation. In fact, we observe in Theorem 1.3 that
the wall-crossing formula can be described only when we consider the
generating series of all rank.

Recently there have been studies on higher rank DT type invari-
ants [39], [50], [15], [34], [30]. Since our study naturally involves higher
rank invariants, it seems interesting to see a relationship to these works.

1.6. Notation and convention. For a variety X, the category of co-
herent sheaves on X is denoted by Coh(X), and its derived category is
denoted by Db(Coh(X)). We use the following abelian subcategories of
Coh(X):

Coh≤1(X) = {E ∈ Coh(X) : dimSupp(E) ≤ 1},
Coh0(X) = {E ∈ Coh(X) : dimSupp(E) = 0}.

For a triangulated category D and a set of objects S ⊂ D, the subcat-
egory 〈S〉tr ⊂ D is the smallest triangulated subcategory of D which
contains objects in S ∪{0}. Also the category 〈S〉ex ⊂ D is the smallest
extension-closed subcategory which contains objects in S ∪ {0}. If S is
a set of objects in an abelian category A, the subcategory 〈S〉ex ⊂ A
is also defined in a similar way. The varieties in this paper are defined
over C. For a variety X, we occasionally write H i(X,Z), Hi(X,Z) as
H i, Hi for simplicity.

1.7. Acknowledgments. The author thanks Kentaro Hori and Tom
Bridgeland for valuable discussions. This work is supported by World
Premier International Research Center Initiative (WPI initiative), MEXT,
Japan. This work is also supported by Grant-in-Aid for Scientific Re-
search grant (22684002), and partly (S-19104002), from the Ministry of
Education, Culture, Sports, Science and Technology, Japan.

2. The Space of Weak Stability Conditions

The notion of weak stability conditions on triangulated categories is
introduced in [49] to give limiting degenerations of Bridgeland’s stability
conditions [11]. In this section, we investigate the space of weak stability
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conditions on the triangulated category of D0-D2-D6 bound states on a
smooth projective Calabi-Yau 3-fold.

2.1. Weak stability conditions on triangulated categories. In
this subsection, we recall the notion of weak stability conditions on
triangulated categories, and collect some results we need in the latter
subsections. For the detail, see [49, section 2].

Let D be a triangulated category, and K(D) the Grothendieck group
of D. We fix a finitely generated free abelian group Γ together with a
group homomorphism,

cl : K(D) → Γ.

We also fix a filtration,

Γ0 ⊂ Γ1 ⊂ · · · ⊂ ΓN = Γ,

such that each subquotient Γi/Γi−1 is a free abelian group.

Definition 2.1. A weak stability condition on D consists of data
(Z = {Zi}Ni=0,A),

Zi : Γi/Γi−1 → C, A ⊂ D,
where Zi are group homomorphisms and A is the heart of a bounded
t-structure on D, which satisfies the following.

• For any non-zero E ∈ A with cl(E) ∈ Γi \ Γi−1, we have

Z(E) := Zi([cl(E)]) ∈ H.(10)

Here [cl(E)] ∈ Γi/Γi−1 is the class of cl(E) ∈ Γi \ Γi−1 and

H = {r exp(iπφ) : r > 0, 0 < φ ≤ 1}.
We say E ∈ A is Z-(semi)stable if for any exact sequence 0 →
F → E → G→ 0 in A, we have

argZ(F ) < (≤) argZ(G).

• For any E ∈ A, there is a filtration in A (Harder-Narasimhan
filtration),

0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E,

such that each subquotient Fi = Ei/Ei−1 is Z-semistable with

argZ(Fi) > argZ(Fi+1),

for all i.

Here we remark that for N = 0, the pair (Z,A) determines a stability
condition by Bridgeland [11].

Let (Z,A) be a weak stability condition on D. For 0 < φ ≤ 1, the
subcategory P(φ) ⊂ D is defined to be the category of Z-semistable
objects E ∈ A satisfying

Z(E) ∈ R>0 exp(iπφ).(11)
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For other φ ∈ R, the subcategory P(φ) is determined by the rule,

P(φ+ 1) = P(φ)[1].

The family of subcategories P(φ) for φ ∈ R determines a slicing intro-
duced in [11, definition 3.3]. As in [49, proposition 2.13], giving a weak
stability condition is equivalent to giving the data,

σ = (Z = {Zi}Ni=0,P),(12)

where Z is as above and P is a slicing, satisfying the condition (11) for
any non-zero E ∈ P(φ). In what follows, we occasionally write a weak
stability condition as a pair of group homomorphisms {Zi}Ni=0 and a
slicing P, as in (12). The subcategory P(φ) ⊂ D is called the category
of σ-semistable objects of phase φ. The category P(φ) is easily seen to
be an abelian category, and we denote by Ps(φ) ⊂ P(φ) the subcategory
of simple objects. An object in Ps(φ) is called a σ-stable object of phase
φ.

For an interval I ⊂ R, we set

P(I) := 〈P(φ) : φ ∈ I〉ex.
We also need the following technical conditions.

• (Support property): There is a constant C > 0 such that for
any E ∈ P(φ) with cl(E) ∈ Γi \ Γi−1, we have

‖[cl(E)]‖i ≤ C · |Z(E)|.
Here ‖∗‖i is a fixed norm on (Γi/Γi−1)⊗Z R.

• (Local finiteness): There is ε > 0 such that the quasi-abelian
category P((φ − ε, φ+ ε)) is of finite length for any φ ∈ R.

Here we refer to [11, Definition 4.1, Definition 5.7] for the detail on
the notion of quasi-abelian categories and their finite length property.
The set of weak stability conditions satisfying the above two properties
is denoted by StabΓ•

(D). The following result is an analogue of [11,
theorem 7.1] and proved in [49, Theorem 2.15].

Theorem 2.2. There is a natural topology on StabΓ•
(D) such that

the forgetting map

Π: StabΓ•
(D) ∋ (Z,A) 7→ Z ∈

N∏

i=0

HomZ(Γi/Γi−1,C)

is a local homeomorphism. In particular, each connected component of
StabΓ•

(D) is a complex manifold.

Remark 2.3. As mentioned in [49, remark 2.16], the set of σ ∈
StabΓ•

(D) in which a fixed object E ∈ D is σ-semistable is a closed
subset.
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There is a continuous C-action on the space StabΓ•
(D) in the follow-

ing way. For a pair σ = (Z,P) as in (12) and λ ∈ C, we set

λ · σ = (exp(−iπλ)Z,P ′),

where P ′ is a slicing given by P ′(φ) = P(φ +Reλ) for all φ ∈ R.
For the heart of a bounded t-structure A ⊂ D, we denote by

Hi
A : D → A,

the i-th cohomology functor with respect to the t-structure with heart
A. We will use the following notions of torsion pair and tilting to
construct weak stability conditions.

Definition 2.4. Let A be the heart of a bounded t-structure on a
triangulated category D. A pair of subcategories (T ,F) in A is called a
torsion pair if the following conditions hold.

• For any T ∈ T and F ∈ F , we have Hom(T, F ) = 0.
• For any E ∈ A, there is an exact sequence

0 → T → E → F → 0,

for T ∈ T and F ∈ F .

Given a torsion pair (T ,F) as above, its tilting is defined by

A† :=

{
E ∈ D :

H0
A(E) ∈ F , H1

A(E) ∈ T ,
Hi(E) = 0 for all i 6= 0, 1.

}
,

= 〈F ,T [−1]〉ex.
The category A† is also the heart of a bounded t-structure on D (cf. [17,
proposition 2.1]).

2.2. Construction of weak stability conditions. LetX be a smooth
projective Calabi-Yau 3-fold satisfying

H1(X,OX ) = 0.(13)

We define the triangulated category DX to be

DX = 〈OX ,Coh≤1(X)〉tr ⊂ Db(Coh(X)).

We set the finitely generated abelian group Γ to be

Γ = H0(X,Z)⊕H2(X,Z)⊕H0(X,Z).

By the Poincaré duality, the Chern characters of E define a group ho-
momorphism cl : K(DX) → Γ,

cl(E) = (ch0(E), ch2(E), ch3(E)).

We set the two step filtration of Γ to be

Γ0 = H0(X,Z) ⊂ Γ1 = Γ.
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We are going to study the space of weak stability conditions StabΓ•
(DX).

Note that

Hom(Γ0,C) ∼= C,

Hom(Γ1/Γ0,C) ∼= H2(X,C)⊕ C.

The forgetting map (Z,A) 7→ Z is as follows,

Π: StabΓ•
(DX) → C×H2(X,C)× C.(14)

Remark 2.5. As mentioned in [49, remark 2.21], a weak stability
condition in this situation may be interpreted to be a limiting point
m→ ∞ of some sequence of stability conditions,

σ(m) = (Z(m), C(m)),

where C(m) ⊂ DX is the heart of a bounded t-structure and Z(m) : Γ → C

is written as

Z(m)(r, β, n) = Z0(r) +mZ1(β, n).

Here Zi : Γi/Γi−1 → C are group homomorphisms for i = 0, 1. Note
that we have

|Z(m)(cl(OX))| ≪ |Z(m)(cl(F ))|, m≫ 0,

where F ∈ DX satisfies cl(F ) ∈ Γ1\Γ0. This implies that the mass of the
object OX is infinitesimally small w.r.t. our weak stability conditions.

Here we construct three types of weak stability conditions on DX .

Lemma 2.6. (i) There is the heart of a bounded t-structure A ⊂ DX ,
written as

A = 〈OX ,Coh≤1(X)[−1]〉ex.
(ii) There is the heart of a bounded t-structure B+ ⊂ DX , written as

B+ = 〈A+,OX [−1]〉ex.
Here A+ = {E ∈ A : Hom(OX , E) = 0}.

(iii) There is the heart of a bounded t-structure B− ⊂ DX , written as

B− = 〈OX [1],A−〉ex.
Here A− = {E ∈ A : Hom(E,OX ) = 0}.

Proof. The proof of (i) is given in [49, lemma 3.5]. For the proof of
(ii), note that the pair

〈〈OX〉ex,A+〉ex
is a torsion pair. This is easily checked by the fact that A is a noetherian
abelian category [49, lemma 6.2]. The tilting with respect to the above
torsion pair yields the heart B+. The proof of (iii) is similar. q.e.d.
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For the given data,

u = (z,B + iω) ∈ C×H2(X,C),

we associate the element

Zu = {Zu,i}1i=0 ∈
1∏

i=0

HomZ(Γi/Γi−1,C)(15)

as follows:

Zu,0 : Γ0 = H0(X,Z) ∋ r 7→ rz,(16)

Zu,1 : Γ1/Γ0 = H2(X,Z)⊕H0(X,Z)

∋ (β, n) 7→ n− (B + iω) · β.(17)

Let A(X)C ⊂ H2(X,C) be the complexified ample cone

A(X)C = {B + iω ∈ H2(X,C) : ω is ample}.
We have the following lemma.

Lemma 2.7. (i) The pairs

σu = (Zu,A), u ∈ H×A(X)C(18)

determine points in StabΓ•
(DX).

(ii) The pairs

τu± = (Zu,B±), u ∈ (−H)×A(X)C

determine points in StabΓ•
(DX).

Proof. The proofs of some technical conditions (Harder-Narasimhan
property, support property, local finiteness) are postponed until Sec-
tion 5. Here we only check that the condition (10) is satisfied.

(i) For E ∈ A, let us write

cl(E) = (r,−β,−n) ∈ H0 ⊕H2 ⊕H0.

Suppose that cl(E) ∈ Γ1 \ Γ0. Then the description (18) shows that β
is an effective curve class or β = 0, n > 0. Hence Zu(E) ∈ H follows. If
cl(E) ∈ Γ0, then E ∈ 〈OX〉ex, hence we have Zu(E) = rz ∈ H.

(ii) For simplicity, we check the case of (Zu,B+). For an object E ∈
B+, there is an exact sequence in B+,

0 → T → E → F → 0,

with T ∈ A+ and F ∈ 〈OX [−1]〉ex. If cl(E) ∈ Γ1 \ Γ0, then T 6= 0 and
we have

Zu(E) = Zu(T ) ∈ H,

by the same argument of (i). If cl(E) ∈ Γ0, then we have E ∈ 〈OX [−1]〉ex;
hence we have Zu(E) = rz ∈ H. q.e.d.
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2.3. Standard regions in the space StabΓ•
(DX). The constructions

of weak stability conditions in the last subsection yield some standard
regions in the space StabΓ•

(DX). We set U and U±1 to be

U = {σu ∈ StabΓ•
(DX) : u ∈ H×A(X)C},(19)

U±1 = {τu± ∈ StabΓ•
(DX) : u ∈ (−H)×A(X)C}.(20)

The above subspaces lie in the space of normalized weak stability con-
ditions,

StabΓ•,n(DX) = {(Z,A) ∈ StabΓ•
(DX) : Z(Ox) = −1},

where x ∈ X is a closed point. The forgetting map (14) restricts to the
local homeomorphism,

Πn : StabΓ•,n(DX) → C×H2(X,C).

We have the following lemma.

Lemma 2.8. (i) The map Πn restricts to the homeomorphisms,

Πn : U ∼→ H×A(X)C,

Πn : U±1
∼→ (−H)×A(X)C.

(ii) The map Πn restricts to the homeomorphisms,

Πn : U ∩ U+1
∼→ R<0 ×A(X)C,

Πn : U ∩ U−1
∼→ R>0 ×A(X)C.

Proof. Since B± is obtained from A by tilting, both of (i) and (ii)
follow by applying Lemma 2.9 below. q.e.d.

We have used the following lemma, whose proof is given in [49, lemma 7.1].

Lemma 2.9. [49, lemma 7.1] Let C be the heart of a bounded t-
structure on DX and (T ,F) a torsion pair on C. Let C′ = 〈F ,T [−1]〉ex
be the associated tilting. Let

[0, 1) ∋ t 7→ Zt ∈
1∏

i=0

HomZ(Γi/Γi−1,C),

be a continuous map such that σt = (Zt, C) for 0 < t < 1 and σ0 =
(Z0, C′) determine points in StabΓ•

(DX). Then we have limt→0 σt = σ0.

By Lemma 2.8, the subspaces U , U±1 are contained in the same con-
nected component, which we denote by

Stab◦Γ•,n(DX) ⊂ StabΓ•,n(DX).
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2.4. Weak stability conditions and Seidel-Thomas twist. By our
assumption (13), the object OX is a spherical object, i.e.

ExtiX(OX ,OX) =

{
C, i = 0, 3,
0, otherwise.

We have the associated derived equivalence, called the Seidel-Thomas
twist [38],

ΦOX
: Db(Coh(X))

∼→ Db(Coh(X)).(21)

The above equivalence has the property that there is a distinguished
triangle,

RHom(OX , E)⊗C OX → E → ΦOX
(E),(22)

for any object E ∈ Db(Coh(X)).

Lemma 2.10. The equivalence ΦOX
preserves the subcategory DX ,

and we have the commutative diagram,

K(DX)
ΦOX

//

cl
��

K(DX)

cl
��

Γ
φOX

// Γ.

(23)

Here φOX
is given by

φOX
(r, β, n) = (r − n, β, n),

for (r, β, n) ∈ H0 ⊕H2 ⊕H0.

Proof. By the distinguished triangle (22), it is obvious that the equiv-
alence ΦOX

preserves DX . Since ch1(E) = 0 for any E ∈ DX , the
Riemann-Roch theorem yields

∑

i

(−1)i dimHom(OX , E[i]) = ch3(E).

Then the distinguished triangle (22) implies that the diagram (23) is
commutative. q.e.d.

Note that φOX
preserves the filtration Γ• and the induced map on gr(Γ•)

is identity. Hence by Lemma 2.10 and [43, lemma 2.9], we have the
commutative diagram

StabΓ•
(DX)

ΦOX∗
//

Π
��

StabΓ•
(DX)

Π
��

gr(Γ•)
∨ ⊗ C

id
// gr(Γ•)

∨ ⊗ C.

Here ΦOX∗ is given by

ΦOX∗(Z,A) = (Z,ΦOX
(A)),
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where A ⊂ DX is the heart of a bounded t-structure. It is obvious that
ΦOX∗ preserves the normalized weak stability conditions, so there is a
commutative diagram,

StabΓ•,n(DX)

Πn

��

ΦOX∗
// StabΓ•,n(DX)

Πn

��

C×H2(X)C
id

// C×H2(X)C.

Under the Seidel-Thomas twist (21), the regions (20) are related as
follows.

Lemma 2.11. We have

ΦOX∗U−1 = U+1.

In particular, ΦOX∗ preserves the connected component Stab◦Γ•,n(DX).

Proof. By the construction of U±1, it is enough to show that

ΦOX
(B−) = B+.

Since both sides are hearts of bounded t-structures, it is enough to see
that the LHS is contained in the RHS. By Lemma 2.6 (ii), this follows
by showing that

ΦOX
(OX [1]) ∈ B+, ΦOX

(A−) ⊂ B+.

First it is easy to see that

ΦOX
(OX [1]) = OX [−1] ∈ B+,(24)

using the distinguished triangle (22). Next let us take E ∈ A−, and
show that ΦOX

(E) ∈ B+. We set

ri = dimHom(OX , E[i]).

The Serre duality implies that r3 = 0. ApplyingH•
A to the distinguished

triangle (22) and noting that OX ∈ A is a simple object, it is easy to
see that

Hi
A(ΦOX

(E)) = 0, i 6= 0, 1, H1
A(ΦOX

(E)) ∼= O⊕r2
X .

Also this implies that

Hom(OX ,H0
A(ΦOX

(E))) ∼= Hom(OX ,ΦOX
(E))

∼= Hom(OX [2], E)
∼= 0.

Therefore H0
A(ΦOX

(E)) ∈ A+. By the construction of B+, we conclude
that ΦOX

(E) ∈ B+. q.e.d.
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Applying the twist functor ΦOX
to the regions (19), (20), we can con-

struct other regions in the space Stab◦Γ•,n(DX). For k ∈ Z, they are
defined in the following way:

U2k = Φ
(k)
OX∗(U),(25)

U2k+1 = Φ
(k)
OX∗(U+1).(26)

We have the following lemma.

Lemma 2.12. For σ = (Z,P) ∈ Uk, we have

OX ∈ Ps(φ), k < φ ≤ k + 1.

Proof. It is easy to check that the objects

OX ∈ A, OX [−1] ∈ B+

are simple objects in A, B+ respectively. Therefore, the statement fol-
lows for k = 0, 1. Since ΦOX

(OX) = OX [−2], the result also follows for
all k ∈ Z. q.e.d.

2.5. Semistable sheaves and semistable objects. In this subsec-
tion, we recall the classical notion of (semi)stability on the category
Coh≤1(X), and compare it with our weak stability conditions. For
B + iω ∈ A(X)C and F ∈ Coh≤1(X), we set

µ(B,ω)(F ) =
ch3(E) +B · ch2(E)

ω · ch2(E)
.

Definition 2.13. We say F is a (B,ω)-(semi)stable sheaf if for any
non-zero proper subsheaf F ′ ⊂ F , we have

µ(B,ω)(F
′) < (≤)µ(B,ω)(F ).

IfB = 0, we simply write µ(0,ω)(∗) = µω(∗) and call a (0, ω)-(semi)stable
sheaf just an ω-(semi)stable sheaf. Note that we have the inclusions,

Coh≤1(X)[−1] ⊂ A, B±,

and hence it is natural to relate (B,ω)-stability with our weak stability
conditions. The following lemma will not be needed except in showing
Lemma 2.16 below, but it helps us to see what kind of objects appear
as semistable objects w.r.t. our weak stability conditions. The proof
will be given in Section 5.

Lemma 2.14. (i) Take u = (z,B + iω) ∈ H×A(X)C and a (B,ω)-
semistable sheaf F ∈ Coh≤1(X) Then the object F [−1] ∈ A is a Zu-
semistable object.

(ii) Take u = (z,B + iω) ∈ (−H) × A(X)C and a (B,ω)-semistable
sheaf F ∈ Coh≤1(X). Then we have the following.

• Suppose that argZu(F [−1]) > arg(−z). Then the object F [−1] ∈
B+ is Zu-semistable.
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• Suppose that argZu(F [−1]) < arg(−z). Then we have ΦOX
(F [−1]) ∈

B+ and it is Zu-semistable.

2.6. The space of normalized weak stability conditions. Let {Ui}i∈Z
be the family of regions constructed in (25), (26). We have the following
description of the space of normalized weak stability conditions.

Theorem 2.15. Assume that

H2(X,Z) ∼= Z.(27)

Then we have the following:

Stab◦Γ•,n(DX) =
∐

i∈Z

Ui.(28)

In particular, the forgetting map is a universal covering map,

Πn : Stab◦Γ•,n(DX) → C∗ ×H◦,

with Galois group generated by ΦOX∗.

Proof. By Lemma 2.8, the RHS of (28) is an open subset in the LHS.
Hence it is enough to show that the RHS is closed in the LHS. By
Lemma 2.12, the RHS is a locally finite union, i.e. for any compact
subset B ⊂ Stab◦Γ•,n(DX), the number of i ∈ Z satisfying Ui ∩B 6= ∅ is
finite. This implies that

∐

i∈Z

Ui =
∐

i∈Z

Ui.

Hence it is enough to show that Ui is contained in the RHS of (28).
Furthermore, applying ΦOX

, we may assume that i = 0 or i = 1. For
simplicity, we show the case of i = 1. The other case is similarly dis-
cussed.

Let us take a point σ ∈ U1 \ U1. We can write σ = (Zu,P) for
u = (z,B + iω) ∈ (−H)×A(X)C and a slicing P. Since OX is stable in
U1, it is also semistable in σ; hence we have z 6= 0. By the assumption
(27), we have the following possibilities.

(i) z ∈ R<0, ω 6= 0.
(ii) z ∈ −H \ {0}, ω = 0.

Suppose that (i) holds. Then σ ∈ U0 by Lemma 2.8, and σ is contained
in the RHS of (28). We show that the case (ii) doesn’t happen.

Suppose by contradiction that (ii) holds. We set

φ0 =
1

π
arg(−z) ∈ [0, 1].

Since ω = 0, we have P(φ) = {0} unless φ ∈ Z or φ ∈ Z+φ0. Therefore
we can find ψ ∈ (0, 1) and 0 < ε≪ 1 satisfying

(ψ − 2ε, ψ + 2ε) ⊂ (0, 1) \ {φ0}.
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Since σ ∈ U1, there is τ = (Z ′,P ′) ∈ U1 satisfying P ′(φ) ⊂ P((φ− ε, φ+
ε)) for all φ ∈ R. Then we obtain

P ′((ψ − ε, ψ + ε)) ⊂ P((ψ − 2ε, ψ + 2ε)) = {0}.
However, this contradicts Lemma 2.16 below. The result for the for-
getting map easily follows from (28), Lemma 2.8, and Lemma 2.12.
q.e.d.

We have used the following lemma, whose proof will be given in Sec-
tion 5.

Lemma 2.16. For u ∈ (−H) × A(X)C, we write τu+ = (Zu,P) for
a slicing P. Then the set

{φ ∈ R : P(φ) 6= {0}} ⊂ R(29)

is dense in R.

2.7. The space of non-normalized weak stability conditions.
In this subsection, we investigate the space of non-normalized weak
stability conditions. Let

Stab◦Γ•
(DX) ⊂ StabΓ•

(DX)

be the connected component which contains U . We show the following
lemma.

Lemma 2.17. For any σ = (Z,P) ∈ Stab◦Γ•
(DX), we have Z(Ox) 6=

0 for any closed point x ∈ X.

Proof. Suppose by contradiction that Z(Ox) = 0. We define the set
of objects S to be

S = {E ∈ DX : cl(E) = (0, 0, 1)}.
By the condition Z(Ox) = 0, there is no a, b ∈ R satisfying

0 < b− a ≤ 1, P((a, b]) ∩ S 6= {0}.
By deforming σ, we can find τ = (W,Q) ∈ Stab◦Γ•

(DX) such that
W (Ox) 6= 0 and there is no a, b ∈ R satisfying

0 < b− a ≤ 1/2, Q((a, b]) ∩ S 6= {0}.
This in particular implies that there is no τ -semistable object E ∈ S.
Since W (Ox) 6= 0, we can apply C-action on Stab◦Γ•

(DX) to find

σ′ = (Z ′,P ′) ∈ Stab◦Γ•,n(DX),

such that there is no σ′-semistable object E ∈ S. However, it is easy
to check that the object Ox[−1] for a closed point x ∈ X is a simple
object in both A and B−; hence Ox ∈ S is a stable object in U and U−1.
Applying ΦOX

-action and Theorem 2.15, we obtain a contradiction.
q.e.d.
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The relationship between normalized stability conditions and non-normalized
stability conditions is described as follows.

Proposition 2.18. The C-action on Stab◦Γ•
(DX) induces a commu-

tative diagram,

Stab◦Γ•,n(DX)× C
α

//

Πn×id

��

Stab◦Γ•
(DX)

Π
��

C∗ ×H◦ × C
e

// C3.

Here α is an isomorphism and e is a map defined by

e(s, t, u) = (exp(−iπu)s, exp(−iπu)t, exp(−iπu)).
Proof. The diagram is obviously commutative by the construction,

so it is enough to show that α is an isomorphism. By Lemma 2.17, the
map α is surjective, and it remains to check that α is injective. Take
two elements,

(σi, λi) ∈ Stab◦Γ•,n(DX)× C, i = 1, 2,

which are mapped to the same element under α. We may assume that
λ1 = 0, and σ1 ∈ U0 ∪U1 by Theorem 2.15. For simplicity, we show the
case of σ1 ∈ U0. The other case is similarly discussed.

Let us write σ1 = (Z1,A) and σ2 = (Z2,A2) for the heart of a
bounded t-structure A2 ⊂ DX . Since λ1 = 0 and Zi(Ox) = −1 for
i = 1, 2, we obtain exp(−iπλ2) = 1. Hence we may write λ2 = 2m for
some m ∈ Z. By Theorem 2.15 and Lemma 2.12, we can write the heart
A2 in two ways,

A2 = A[2m] = Φ
(m)
OX

(A).

Therefore we have the autoequivalence,

(ΦOX
[−2])(m) : A ∼→ A,(30)

which takes OX to OX . Since the equivalence (30) takes simple objects
to simple objects, it takes an object Ox[−1] for x ∈ X to an object of
the form Ox′ [−1] for some x′ ∈ X. Then a standard argument (cf. [13,
theorem 2.5]) shows that

(ΦOX
[−2])(m) ∼= f∗,(31)

for an automorphism f : X
∼→ X. However, by Lemma 2.10, the iso-

morphisms on Γ induced by both sides of (31) are equal only if m = 0.
Therefore λ2 = 0, and σ1 = σ2 follows. q.e.d.

Note that we have

Im e = C∗ ×GL+(2,R).
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Here GL+(2,R) is the subgroup of GL(2,R) preserving the orientation
of R2, and it is embedded into C2 via

(
a b
c d

)
7→ (a+ ci, b + di).

Therefore we obtain the following theorem.

Theorem 2.19. We have the isomorphism,

Stab◦Γ•
(DX) ∼= C× G̃L+(2,R),(32)

and the isomorphism of the double quotient space,

〈ΦOX
〉\Stab◦Γ•

(DX)/C ∼= C∗ ×H◦.

2.8. A loop around the conifold point. Let S1 ⊂ C∗ be the unit
circle, and ι be the embedding,

ι = (id,
√
−1): S1 →֒ C∗ ×H◦.

The embedding ι lifts to a map from the universal cover R → S1, i.e.
there is a commutative diagram,

R //

exp(iπ∗)
��

Stab◦Γ•
(DX)

��

S1 ι
// C∗ ×H◦.

(33)

The top arrow of (33) is denoted by γ,

γ : R ∋ t 7→ γ(t) = (Zt,Pt) ∈ Stab◦Γ•
(DX),(34)

where Pt is a slicing of DX and the commutative diagram (33) implies

Zt = Z(exp(iπt),iω),

for an ample generator ω ∈ H2(X,Z). Here the RHS is defined by (15)
with u = (exp(iπt), iω). The map γ is uniquely determined by requiring
that

γ((k, k + 1]) ⊂ Uk, for all k ∈ Z.

Namely, we have Pt((0, 1]) = Ak for t ∈ (k, k+1] with k ∈ Z, where Ak

are hearts of bounded t-structures given as

Ak =

{
Φ
(k′)
OX

(A), k = 2k′,

Φ
(k′)
OX

(B+1), k = 2k′ + 1.
(35)

In what follows, we fix the continuous map (34). We will use the fol-
lowing lemma.

Lemma 2.20. For E ∈ Ak, we have cl(E) ∈ Γ0 if and only if E ∈
〈OX [−k]〉ex. In this case, E is a Zt-semistable object of phase t.
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Proof. Since ΦOX
preserves the filtration Γ• and we have (24), we may

assume that k = 0 or k = 1. In both cases, the assertion is easily checked
by the construction of weak stability conditions and Lemma 2.12. q.e.d.

For t ∈ R, the slicing Pt defined in (34) satisfies the following.

Lemma 2.21. For fixed φ ∈ R and k ∈ Z, the subcategory Pt(φ) ⊂
DX does not depend on t ∈ (φ+ k, φ+ k + 1).

Proof. Let us take

φ+ k < t1 < t2 < φ+ k + 1,

and show that Pt1(φ) ⊂ Pt2(φ). The other inclusion Pt2(φ) ⊂ Pt1(φ) is
similarly discussed. We take an object E ∈ Pt1(φ) and set

I = {t ∈ [t1, t2] : E ∈ Pt(φ)}.
Since I is a closed subset (cf. Remark 2.3), it is enough to see that
t0 := sup I satisfies t0 = t2. Suppose by contradiction that t0 < t2.
Then there is a distinguished triangle,

E′ → E → E′′,(36)

which destabilizes E w.r.t. the weak stability condition γ(t) for 0 <
t− t0 ≪ 1. If both cl(E′) and cl(E′′) are not contained in Γ0, we have

argZt0(E
′) = argZt(E

′) > argZt(E
′′) = argZt0(E

′′).

This contradicts that E ∈ Pt0(φ); therefore either cl(E′) or cl(E′′) is
contained in Γ0. Then by Lemma 2.20, there is k′ ∈ Z such that E1 or
E2 is contained in 〈OX [k

′]〉ex. This implies that

t+ k′ > φ ≥ t0 + k′ or t0 + k′ ≥ φ > t+ k′,

respectively. Obviously both cases do not happen. q.e.d.

Let us take 0 < φ < 1, k ∈ Z and set t0 = φ+ k. We take t− < t0 < t+
satisfying

[t−, t+] ⊂ (k, k + 1).(37)

Note that γ(t) ∈ Uk for t ∈ [t−, t+]. We have the following proposition.

Proposition 2.22. For an object E ∈ Pt0(φ), the HN filtrations with
respect to γ(t±) yield short exact sequences in Ak respectively,

0 → E1 → E → E2 → 0,(38)

0 → E′
1 → E → E′

2 → 0,(39)

satisfying the following.

• E1 ∈ 〈OX [−k]〉ex and E′
2 ∈ 〈OX [−k]〉ex.

• E2 ∈ Pt+(φ) and E′
1 ∈ Pt−(φ).

Conversely, if an object E ∈ Ak fits into an exact sequence (38) or (39)
satisfying the above conditions, then E ∈ Pt0(φ).
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Proof. For simplicity, we only see the sequence (38). The result
follows from Lemma 2.20 if cl(E) ∈ Γ0; therefore we assume that
cl(E) ∈ Γ \ Γ0. Also we may assume that E is not Zt+-semistable;
hence there is an exact sequence in Ak,

0 → E′ → E → E′′ → 0,

such that argZt+(E
′) > argZt+(E

′′). Then the same argument in
the proof of Lemma 2.21 shows that cl(E′) or cl(E′′) is contained in
〈OX [−k]〉ex. This implies that the HN filtration w.r.t. γ(t+) consists of
a two step filtration in Ak, which we denote by (38), and either E1 or
E2 is contained in 〈OX [−k]〉ex. Since t+ > t0, we have

argZt+(OX [−k]) = π(t+ − k)

> π(t0 − k)

= argZt0(E)

= argZt+(E).

Therefore we must have cl(E1) ∈ 〈OX [−k]〉ex and E2 ∈ Pt+(φ).
Conversely, suppose that E ∈ Ak fits into an exact sequence (38). By

Lemma 2.20, Lemma 2.21, and noting Remark 2.3, we have

Pt+(φ) ⊂ Pt0(φ), OX [−k] ∈ Pt0(φ).

Therefore we have E ∈ Pt0(φ). q.e.d.

Remark 2.23. As we discussed in the introduction, the image of ι in
the diagram (33) may be interpreted as a loop around the conifold point
in Figure 1 if X is a quintic 3-fold, since the covering transformation of
the left arrow of (33) is induced by the action of ΦOX

.

Remark 2.24. Although the result of Theorem 2.19 holds under the
assumption (27), the continuous map γ exists without that assump-
tion once we fix an ample divisor ω. The results of Lemma 2.21 and
Proposition 2.22 hold as well without (27).

3. Donaldson-Thomas Theory

In this section, we introduce generalized DT invariants counting semi-
stable objects in DX with respect to our weak stability conditions, and
establish their wall-crossing formula. Originally DT theory is introduced
in [41] as counting stable coherent sheaves on Calabi-Yau 3-folds, and
defined only when semistable sheaves and stable sheaves coincide. The
generalized DT theory introduced by Joyce-Song [24] is also defined
when there is a semistable but not stable sheaf, and the notion of Hall
algebra is used for the definition. The same construction is also applied
in our situation, and we first give some notions needed for the definition.
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3.1. Hall algebra. In this subsection, we recall the notion of Hall al-
gebra via moduli stacks. See [27] for the introduction of stacks and [20]
for the detail on the Hall algebra.

Let M be the moduli stack of objects E ∈ Db(Coh(X)) satisfying

ExtiX(E,E) = 0, i < 0.(40)

By the result of Lieblich [31], M is an algebraic stack locally of finite
type over C. For each element

σ = (Z, C) ∈ Stab◦Γ•
(DX),

where C ⊂ DX is the heart of a bounded t-structure, we have the (ab-
stract) substack,

Obj(C) ⊂ M,

which parameterizes objects E ∈ C. The stack Obj(C) decomposes as
follows:

Obj(C) =
∐

v∈Γ

Objv(C),

where Objv(C) is the stack of objects E ∈ C with cl(E) = v.
Suppose for instance that Obj(C) is an algebraic stack locally of finite

type over C. The Q-vector space H(C) is generated by the isomorphism
classes of symbols,

[X f→ Obj(C)],
where X is an algebraic stack of finite type over C, and f is a 1-morphism

of stacks. Here two symbols [Xi
fi→ Obj(C)] for i = 1, 2 are isomorphic

if there is an isomorphism of stacks,

g : X1
∼→ X2,

such that f2 ◦ g ∼= f1. The relations are generated by

[X f→ Obj(C)] ∼ [U f |U→ Obj(C)] + [Z f |Z→ Obj(C)],
where U ⊂ X is an open substack and Z = X \ U .

Let Ex(C) be the stack of short exact sequence in C,
0 → A1 → A2 → A3 → 0.(41)

By sending the exact sequence (41) to the object Ai, we obtain mor-
phisms,

pi : Ex(C) → Obj(C), i = 1, 2, 3.

For two elements

ρi = [Xi fi→ Obj(C)] ∈ H(C), i = 1, 2,
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we have the diagram

Z h
//

��

Ex(C) p2
//

(p1,p3)
��

Obj(C)

X1 × X2
(f1,f2)

// Obj(C)×2.

Here the left diagram is a Cartesian square. We define the ∗-product
ρ1 ∗ ρ2 to be

ρ1 ∗ ρ2 = [Z p2◦h→ Obj(C)] ∈ H(C).
It is proved in [20, theorem 5.2] that ∗ is an associative product on H(C)
with unit given by

1 = [SpecC → Obj(C)],
whose image corresponds to 0 ∈ C. The algebra H(C) is Γ-graded,

H(C) =
⊕

v∈Γ

Hv(C),

where Hv(C) is spanned by symbols [X f→ Obj(C)] such that f factors
through the substack Objv(C) ⊂ Obj(C).

We will use certain completions of the algebra H(C). Let V ⊂ H be
a subset written as

V = {r exp(iπφ) : r > 0, φ1 ≤ φ ≤ φ2}(42)

for some φ1, φ2 ∈ R with 0 ≤ φ2 − φ1 < 1. We define Ĥ(C)Z,V to be

Ĥ(C)Z,V =
∏

v∈Γ, Z(v)∈V

Hv(C).

3.2. Elements δv(Z) and ǫv(Z). For σ = (Z, C) ∈ Stab◦Γ•
(DX) and

v ∈ Γ, the stack of Z-semistable objects E ∈ C with cl(E) = v is
denoted by

Mv(Z) ⊂ Objv(C).
Suppose for instance that Mv(Z) is an algebraic stack of finite type
over C. Then the above stack defines the element,

δv(Z) = [Mv(Z) →֒ Objv(C)] ∈ Hv(C).
We say a subset l ⊂ H is a ray if there is φ ∈ (0, 1] such that l =
R>0 exp(iπφ). For each ray l, we define δl(Z) to be

δl(Z) = 1 +
∑

Z(v)∈l

δv(Z) ∈ Ĥ(C)Z,l.(43)

Then we define the element ǫl(Z) to be

ǫl(Z) = log δl(Z) ∈ Ĥ(C)Z,l.
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Namely, ǫl(Z) is given by

ǫl(Z) =
∑

Z(v)∈l

ǫv(Z),

where ǫv(Z) is written as

ǫv(Z) =
∑

m≥1, v1,...,vm∈Γ,
Z(vi)∈R>0Z(v),
v1+···+vm=v.

(−1)m−1

l
δv1(Z) ∗ · · · ∗ δvm(Z).(44)

The above definition makes sense by the following lemma, whose proof
will be given in Section 5.

Lemma 3.1. The sum (44) is a finite sum.

So far we have assumed that the stacks Obj(C) and Mv(Z) are
algebraic stacks locally of finite type, finite type, respectively. How-
ever, these conditions are too strong for the applications. In fact, it is
enough to show the following lemma, by discussing with the framework
of Kontsevich-Soibelman [26, section 3]. The proof will be given in
Section 5.

Lemma 3.2. For any σ = (Z, C) ∈ Stab◦Γ•
(DX) and v ∈ Γ, we have

the following.
(i) The C-valued points of the substack Objv(C) ⊂ M are a countable

union of constructible subsets in M.
(ii) The C-valued points of the substack Mv(Z) ⊂ M form a con-

structible subset in M.

3.3. Generalized DT invariants. For a quasi-projective variety Y ,
we define

Υ(Y ) =
∑

j,k≥0

(−1)k dimWj(H
k
c (Y,Q))qj/2 ∈ Q[q1/2],

where W• is the weight filtration on the compact support cohomology
groupH∗

c (Y,Q). The assignment Y 7→ Υ(Y ) extends to the Hall algebra
H(C),

Υ: H(C) → Q(q1/2),

such that we have

Υ([[Y/G] → Obj(C)]) = Υ(Y )/Υ(G),

where Y is a quasi-projective variety, G is a special algebraic group
acting on G, and [Y/G] is the quotient stack with respect to the G-
action (cf. [22, theorem 4.9]). Here an algebraic group G is special if
any principal G-bundle is Zariski locally trivial (cf. [22, definition 2.1]).
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Recall that for any variety Y , there is a canonical constructible func-
tion by Behrend [3],

νY : Y → Z.

The above function satisfies the following properties.

• For p ∈ Y , suppose that there is an analytic open neighborhood
p ∈ U ⊂ Y , and a holomorphic function f : V → C on a complex
manifold V such that U ∼= {df = 0}. Then we have

νY (p) = (−1)dimV (1− χ(Mf (p))).(45)

Here Mf (p) is a Milnor fiber of f at p.
• If there is a symmetric perfect obstruction theory on Y , we have∫

[Y ]vir
1 =

∑

m∈Z

m · χ(ν−1
Y (m)).

The Behrend’s constructible function can be generalized to any algebraic
stack Y,

νY : Y → Z.

Namely, if Y is written as a global quotient stack Y = [Y/G], then
νY = (−1)dimGνY . For a general case, the existence of νY is proved
in [24, proposition 4.4].

Let M be the moduli stack of objects E ∈ Db(Coh(X)) satisfying
(40). By the above argument, there is Behrend’s constructible function
νM on M. The function νM should be calculated by the Euler charac-
teristic of some holomorphic function as in (45). In fact, the following
conjecture, which is a derived category version of [24, theorem 5.5],
should be true.

Conjecture 3.3. For any [E] ∈ M(C), let G be a maximal reduc-
tive subgroup in Aut(E). Then there exists a G-invariant analytic open
neighborhood V of 0 in Ext1(E,E), a G-invariant holomorphic func-
tion f : V → C with f(0) = df |0 = 0, and a smooth morphism of
complex analytic stacks Φ: [{df = 0}/G] → M of relative dimension
dimAut(E)− dimG.

The above conjecture is proved in [24, theorem 5.5] if E ∈ Coh(X).
We believe that similar arguments show the above conjecture for any
[E] ∈ M(C), although several details have to be checked. Also Behrend-
Getzler [6] have announced a similar result, so in what follows we assume
that the above conjecture is true.

The Behrend function on M defines the map ν· : H(C) → H(C),

ν · ([X f→ Obj(C)]) =
∑

m∈Z

m · [X ×Obj(C) νM|−1
Obj(C)(m) → Obj(C)].

The generalized DT invariant is defined as follows.
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Definition 3.4. [24, definition 5.13] We define DTZ(v) as follows:

DTZ(v) := − lim
q1/2→1

(q − 1)Υ(ν · ǫv(Z)) ∈ Q.

The existence of the limit is essentially proved in [22, section 6.2].

3.4. Lie algebra homomorphism. Let χ : Γ × Γ → Z be an anti-
symmetric bilinear form on Γ, defined by

χ((r, β, n), (r′, β′, n′)) = rn′ − r′n.

By the Riemann-Roch theorem and the Serre duality, we have

χ(cl(E), cl(F )) =dimHom(E,F ) − dimExt1(E,F )

+ dimExt1(F,E)− dimHom(F,E),(46)

for E,F ∈ DX .
Let g be the Q-vector space spanned by symbols cv for v ∈ Γ,

g =
⊕

v∈Γ

Qcv.

There is a Lie-algebra structure on g with bracket given by

[cv , cv′ ] = (−1)χ(v,v
′)χ(v, v′)cv+v′ .

For a weak stability condition σ = (Z, C) ∈ Stab◦Γ•
(DX), we can

define the Lie algebra of virtual indecomposable objects,

H(C) ⊂ H(C),

in the same way as [20, definition 5.14]. The definitions of virtual
indecomposable objects and the Lie algebra H(C) are complicated, and
we omit the detail. The Lie algebra H(C) is also Γ-graded,

H(C) =
⊕

v∈Γ

Hv(C), Hv(C) = Hv(C) ∩H(C).

For v ∈ Γ, the element δv(Z) is not necessary virtual indecomposable,
but ǫv(Z) is always virtual indecomposable (cf. [21, theorem 8.7]). As-
suming Conjecture 3.3, the following result can be proved along the
same lines as [24, theorem 5.14].

Theorem 3.5. [24, theorem 5.14] There is a homomorphism as Γ-
graded Lie algebras,

Ψ: H(C) → g,(47)

which takes ǫv(Z) to −DTZ(v)cv.
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Let V ⊂ H be a subset defined by (42). We can similarly define the
completions of the Lie algebras,

Ĥ(C)Z,V =
∏

v∈Γ, Z(v)∈V

Hv(C),

ĝ(C)Z,V =
∏

v∈Γ, Z(v)∈V

gv(C),

and (47) induces the Lie algebra homomorphism,

Ψ: Ĥ(C)Z,V → ĝ(C)Z,V .(48)

3.5. DT invariants around the conifold point. For t ∈ (k, k + 1]
with k ∈ Z, let

γ(t) = (Zt,Ak) = (Zt,Pt) ∈ StabΓ•
(DX)

be the weak stability condition defined in (34). Here Ak is the heart
of a bounded t-structure given by (35) and Pt is the associated slicing.
For an element v ∈ Γ, the associated element, ǫv(Zt) ∈ H(Ak), defines
the invariant,

DTZt(v) = − lim
q1/2→1

(q − 1)Υ(ν · ǫv(Zt)),

in the same way as Definition 3.4.

Definition 3.6. For data

(r, β, n) ∈ Γ, t ∈ R, φ ∈ R,

we define the invariant DTt(r, β, n, φ) ∈ Q as follows.
When 0 < φ ≤ 1, suppose that the following holds:

Zt(r,−β,−n) ∈ R>0 exp(iπφ).(49)

Then we define

DTt(r, β, n, φ) := DTZt(r,−β,−n).
If (49) is not satisfied, we set DTt(r, β, n, φ) = 0.

In a general case, writing φ = m + φ0 with m ∈ Z and 0 < φ0 ≤ 1,
we define

DTt(r, β, n, φ) := DTt((−1)mr, (−1)mβ, (−1)mn, φ0).(50)

Note that DTt(r, β, n, φ) is a counting invariant of objects E ∈ DX

satisfying

E ∈ Pt(φ), cl(E) = (r,−β,−n).
In case of β = n = 0, the invariant is already computed.

Lemma 3.7. For 0 < φ ≤ 1 and t ∈ (k, k + 1] with k ∈ Z, we have

DTt(r, 0, 0, φ) =

{
1
r2
, if t = φ+ k, (−1)kr > 0,

0, otherwise.
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Proof. As in the previous subsection, let M(r,0,0)(Zt) be the substack
of Obj(Ak), which parameterizes Zt-semistable objects E ∈ Ak with
cl(E) = (r, 0, 0). By Lemma 2.20 and the assumption (13), we have the
isomorphism of stacks,

M(r,0,0)(Zt) ∼= [SpecC/GLr′(C)],

where r′ = (−1)kr. The unique C-valued point of the RHS corresponds

to the object OX [−k]⊕r′ ∈ Ak, and it has phase t− k by Lemma 2.20.
Hence DTt(r, 0, 0, φ) is non-zero only if t = φ+k, and the contribution of

the object OX [−k]⊕r′ is computed in the same way as [24, example 6.2].
q.e.d.

We set the following generating series:

DTt(φ) =
∑

(r,β,n)∈Γ

DTt(r, β, n, φ)x
ryβzn.

We have the following lemma.

Lemma 3.8. For a fixed φ ∈ R and k ∈ Z, the generating series
DTt(φ) does not depend on t ∈ (φ+ k, φ+ k + 1).

Proof. The result immediately follows from Lemma 2.21. q.e.d.

In what follows, we set

DTk(r, β, n, φ) := DTt(r, β, n, φ),

DTk(φ) := DTt(φ),

if t ∈ (φ+ k, φ+ k+1) with k ∈ Z. The above notation makes sense by
Lemma 3.8.

3.6. Wall-crossing formula. In this subsection, we give a proof of the
following theorem, assuming Conjecture 3.3.

Theorem 3.9. For φ ∈ R and k ∈ Z, the series DTk(φ) is obtained
from DTk−1(φ) by the following transformation:

zn 7→
{

(1− (−1)nx)nzn, if k is even.
xnzn/(1− (−1)nx)n, if k is odd.

Proof. Since DTt(φ) = DTt(φ + 2), we may assume that 0 < φ ≤ 2.
First we discuss the case of 0 < φ < 1. Let us take k ∈ Z and set
t0 = φ+ k. We take 0 < ε≪ 1 so that (t0− ε, t0 + ε) ⊂ (k, k+1) holds.
We set t± = t0 ± ε, and V ⊂ H to be

V = {r exp(iπθ) : r > 0, θ ∈ [φ− ε, φ + ε]}.
For each t ∈ (k, k + 1], the proof of Lemma 3.7 shows that

δ((−1)kr,0,0)(Zt) = [[SpecC/GLr(C)] → Obj(Ak)] ∈ H(Ak),
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which corresponds to the object OX [−k]⊕r. The above element of

H(Ak) does not depend on t ∈ (k, k+1], and we denote it by δ((−1)kr,0,0)

for simplicity. We define the elements δk and ǫk to be

δk := 1 +
∑

r≥1

δ((−1)kr,0,0) ∈ Ĥ(Ak)Zt0 ,V
,

ǫk := log δk ∈ Ĥ(Ak)Zt0 ,V
.

The element ǫk is shown to be well-defined in the same way as Lemma 3.1.
Let us set the ray l = R>0 exp(iπφ). By the same argument as [23, the-
orem 5.11], the result of Proposition 2.22 can be expressed in terms of

a relationship in the completed Hall algebra Ĥ(Ak)Zt0 ,V
,

δk ∗ δl(Zt+) = δl(Zt0) = δl(Zt−) ∗ δk.(51)

Therefore we obtain the formula in Ĥ(Ak)Zt0 ,V
,

exp(ǫl(Zt+)) = exp(ǫk)−1 ∗ exp(ǫl(Zt−)) ∗ exp(ǫk).

Here δl(Zt) is defined in (43). Now we can apply a version of the Baker-
Campbell-Hausdorff formula, and the RHS coincides with

exp


ǫl(Zt−) +

∑

m≥1

(−1)m

m!
Admǫk(ǫ

l(Zt−))


 .

Here we have set

Admǫk(ǫ
l(Zt−)) =

m︷ ︸︸ ︷
[ǫk[ǫk[· · · [ǫk, ǫl(Zt−)] · · · ]].

By taking the logarithms of both sides, we obtain the equality in Ĥ(Ak)Zt0 ,V
,

ǫl(Zt+) = ǫl(Zt−) +
∑

m≥1

(−1)m

m!
Admǫk(ǫ

l(Zt−)).

Let us set

DTt(φ) =
∑

(r,−β,−n)∈Γ,
Zt(r,−β,−n)∈l

DTt(r, β, n, φ)c(r,−β,−n) ∈ ĝZt0 ,V
,

Ek =
∑

r≥1

1

r2
c((−1)kr,0,0) ∈ ĝZt0 ,V

.

Applying the Lie algebra homomorphism (48) and using Lemma 3.7, we
obtain the equality in ĝZt0 ,V

,

DTt+(φ) = DTt−(φ) +
∑

m≥1

1

m!
Adm

Ek(DTt−(φ)).
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By expanding the RHS, we can easily obtain the following:

DTt+(r, β, n, φ) = DTt−(r, β, n, φ)+

∑

m≥1,
r0∈Z,r1,...,rm≥1,

r0+
∑m

i=1
(−1)kri=r.

(−1)n(
∑m

i=1
ri)+m(k+1)nm

m!
∏m
i=1 ri

DTt−(r0, β, n, φ).(52)

For a fixed (β, n) ∈ H2 ⊕H0, we set

DTt(β, n, φ) =
∑

r∈Z

DTt(r, β, n, φ)x
r .

Then the equality (52) implies that

DTt+(β, n, φ) =
∑

m≥0

1

m!

∑

r1,··· ,rm≥1

m∏

i=1

(−1)k+1n

ri
{(−1)nx}(−1)kri


DTt−(β, n, φ).

Then the assertion follows from Lemma 3.10 below.
When φ = 1, we consider the rotated weak stability condition,

1

2
· γ(t0) = (−iZt0 ,Pt0((1/2, 3/2])).

Then the equality similar to (51) holds in the Hall algebra of Pt0((1/2, 3/2]).
The argument for 0 < φ < 1 is also applied in this situation, and we
obtain the same wall-crossing formula.

Finally when 1 < φ ≤ 2, then the assertion holds, noting that

DTk(r, β, n, φ) = DTk+1(−r,−β,−n, φ − 1).

q.e.d.

We have used the following lemma.

Lemma 3.10.

∑

m≥0

1

m!

∑

r1,...,rm≥1

m∏

i=1

(−1)k+1n

ri
{(−1)nx}(−1)kri

=

{
(1− (−1)nx)n, if k is even,

xn/(1− (−1)nx)n, if k is odd.
(53)
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Proof. We can calculate as follows.

∑

m≥0

1

m!

∑

r1,...,rm≥1

m∏

i=1

(−1)k+1n

ri
{(−1)nx}(−1)kri

= exp


∑

r≥1

(−1)k+1n

r
{(−1)nx}(−1)kr




= exp log
(
1− {(−1)nx}(−1)k

)(−1)kn

=
(
1− {(−1)nx}(−1)k

)(−1)kn
.

The last one is written as the RHS of (53). q.e.d.

Remark 3.11. By Theorem 3.9, the series DTk+2(φ) is obtained
from DTk(φ) by the variable change z 7→ xz. On the other hand,
DTk+2(φ) and DTk(φ) are related by the equivalence ΦOX

by our con-
struction of γ, and the variable change by ΦOX

is given by z 7→ xz
by Lemma 2.10. This indicates that the wall-crossing formula does not
indicate any modularity of our invariants. This is unfortunate in some
sense, since there are situations in which the wall-crossing formula in-
dicates some modularity of the invariants, e.g. the invariants on K3
surfaces [45].

3.7. Euler characteristic version. We can also investigate the Euler
characteristic version of our invariants, which are defined in a similar
way to DTt(r, β, n, φ) without the Behrend function. For (r, β, n) ∈ Γ
and t ∈ R, suppose that (49) holds. When 0 < φ ≤ 1, we define

Eut(r, β, n, φ) := lim
q1/2→1

(q − 1)Υ(ǫ(r,−β,−n)(Zt)) ∈ Q,

and set Eut(r, β, n, φ) = 0 if (49) is not satisfied. Here recall that we
defined ǫ(r,−β,−n)(Zt) as an element of H(Ak) if t ∈ (k, k+1] for k ∈ Z.
For a general φ ∈ R, writing φ = m+ φ0 with 0 < φ0 ≤ 1, we define

Eut(r, β, n, φ) := Eut((−1)mr, (−1)mβ, (−1)mn, φ0).

The generating series is also defined as well:

Eut(φ) =
∑

(r,β,n)∈Γ

Eut(r, β, n)x
ryβzn.

The following theorem can be proved in a similar way to Theorem 3.9,
using a version of [20, theorem 6.12] instead of Theorem 3.5.

Theorem 3.12. (i) For a given k ∈ Z, the series Eut(φ) does not
depend on a choice of t ∈ (φ+k, φ+k+1). In particular, we may write
it as Euk(φ).
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(ii) The series Euk(φ) is obtained from Euk−1(φ) by the following
transformation:

z 7→
{

(1 + x)z, if k is even,
xz/(1 + x), if k is odd.

Remark 3.13. Since the Behrend function is not involved in the
definition of Eut(r, β, n, φ), we do not rely on Conjecture 3.3 to show
Theorem 3.12.

4. Examples

In this section, we explicitly compute the generating series DTk(φ)
in some concrete examples. We also classify semistable objects in DX

w.r.t. our weak stability conditions in these examples.

4.1. D0-D6 states. In this subsection, we investigate the family of
generating series,

DTk(φ), k ∈ Z, φ ∈ Z.(54)

Note that a series in (54) does not contain the variable y, since we have

DTt(r, β, n, 1) = 0, if β 6= 0,

which follows from ImZt(r,−β,−n) 6= 0 if β 6= 0.
By Theorem 3.9 and the relation (50), it is enough to study the series

DT−1(1) to know all of the series (54). By definition, DT−1(1) = DTt(1)
for 0 < t < 1, and DTt(1) is a generating series of invariants counting
objects E ∈ Pt(1). Such objects can be described in the following way.

Lemma 4.1. For 0 < t < 1, we have

Pt(1) = Coh0(X)[−1].

Proof. Let us take an object E ∈ Pt(1) ⊂ A. Since ch2(E) = 0, we
have

E ∈A ∩ 〈OX ,Coh0(X)〉tr,
= 〈OX ,Coh0(X)[−1]〉ex.(55)

By [50, proposition 2.2], any object in the category (55) is isomorphic
to a two term complex,

· · · → 0 → O⊕r
X → F → 0 → · · · ,

where r ∈ Z≥0, F ∈ Coh0(X) and O⊕r
X is located in degree zero. In

particular, there is an exact sequence in A,

0 → F [−1] → E → O⊕r
X → 0,

for some F ∈ Coh0(X). If r 6= 0 and F 6= 0, then we have

π = argZt(F [−1]) > argZt(O⊕r
X ) = πt,
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which contradicts the Zt-semistability of E. Therefore we have r = 0
or F = 0. If F = 0, then E ∈ 〈OX〉ex ⊂ Pt(t) by Lemma 2.20, which
contradicts E ∈ Pt(1). Hence r = 0 and E ∈ Coh0(X)[−1] follows.

Conversely, if E ∈ Coh0(X)[−1], the Zt-semistability of E follows
from the fact that Coh0(X)[−1] ⊂ A is closed under subobjects and
quotients. q.e.d.

The above lemma and the computations in [24, paragraph 6.3], [26,
paragraph 6.5], [49, remark 8.13] show that

DT−1(0, 0, n, 1) = −χ(X)
∑

m≥1,m|n

1

m2
,

and DT−1(r, β, n, 1) = 0 if (r, β) 6= (0, 0). Therefore we have

DT−1(1) = −χ(X)
∑

n≥1,m≥1,
m|n

1

m2
zn.

Applying Theorem 3.9, we obtain the following.

Theorem 4.2. For k ∈ Z, we have

DT2k−1(1) = −χ(X)
∑

n≥1,m≥1,
m|n

1

m2
xknzn,

DT2k(1) = −χ(X)
∑

n≥1,m≥1,
m|n

1

m2
(1− (−1)nx)nxknzn.

Let us consider the series

DT0(1) = −χ(X)
∑

n≥1,m≥1,
m|n

1

m2
(1− (−1)nx)nzn.

This is a generating series of invariants counting E ∈ Pt(1) for 1 < t <
2. The following lemma shows that such objects are certain two term

complexes (O⊕r
X

s→ F ) with F ∈ Coh0(X).

Lemma 4.3. For 1 < t < 2, an object E ∈ DX is contained in Pt(1)
if and only if E is isomorphic to a two term complex,

· · · → 0 → O⊕r
X

s→ F → 0 → · · · ,(56)

where O⊕r
X is located in degree zero and F ∈ Coh0(X), such that the

induced morphism

H0(s) : Cr → H0(X,F )(57)

is injective.
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Proof. Let us take E ∈ Pt(1) for 1 < t < 2. We see that E is
isomorphic to a two term complex (56) such that (57) is injective. Since
Pt(1) ⊂ B+, there is an exact sequence in B+,

0 → E1 → E → E2 → 0,

such that E1 ∈ A+ and E2 ∈ 〈OX [−1]〉ex. If E2 6= 0, then E1 6= 0 and
we have

π = argZt(E1) > argZt(E2) = π(t− 1),

which contradicts the Zt-semistability of E. Therefore E2 = 0 and
E ∈ A+ ⊂ A follows. Since ch2(E) = 0, the same argument in the proof
of Lemma 4.1 shows that the E is isomorphic to a two term complex of
the form (56), and we need to see that H0(s) is injective. There is an
exact sequence in A,

0 → F [−1] → E → O⊕r
X → 0.(58)

Applying Hom(OX , ∗), we obtain the exact sequence,

0 → Hom(OX , E) → Cr
H0(s)→ H0(X,F ).(59)

Since E ∈ A+, we have Hom(OX , E) = 0 and the morphism H0(s) is
injective.

Conversely, suppose that E ∈ DX is isomorphic to a two term com-
plex (56) such that H0(s) is injective. Then E ∈ A and we have the
same exact sequences (58), (59). Then we have Hom(OX , E) = 0 since
H0(s) is injective, and we have E ∈ A+ ⊂ B+. It remains to check that
E is Zt-semistable in B+. Let us take an exact sequence in B+,

0 → E1 → E → E2 → 0,(60)

with non-zero E1, E2 ∈ B+. Since ch2(E) = 0, we have

ch2(E1) = ch2(E2) = 0.(61)

Applying H•
A(∗) to (60), we have the long exact sequence in A,

0 → H0
A(E1) → E → H0

A(E2) → H1
A(E1) → 0,

and H1
A(E2) = 0. Therefore H0

A(E2) 6= 0, and hence

ch3(H0
A(E2)) = ch3(E2) 6= 0.

This together with (61) implies that

argZt(E1) ≤ argZt(E2) = π,

which shows the Zt-semistability of E. q.e.d.

Let us consider the rank one generating series. The above lemma shows
that the invariant DT0(1, 0, n, 1) counts two term complexes,

· · · → 0 → OX
s→ F → 0 → · · · ,
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such that F ∈ Coh0(X) is of length n and s is non-zero. By Theorem 4.2,
the rank one generating series satisfies the following curious equality:

∑

n≥0

DT0(1, 0, n, 1)zn = −χ(X)
∑

n≥1,m≥1,
m|n

1

m2
(−1)n−1nzn,

= logM(−z)χ(X).(62)

Here M(z) is the MacMahon function,

M(z) =
∏

n≥1

1

(1− zn)n
.

Recall thatM(−z)χ(X) is the generating series of DT invariants counting
ideal sheaves of points (cf. [29], [5], [28]).

4.2. D0-D2-D6 states on a (−1,−1)-curve. Let

f : X → Y

be a crepant small resolution of an ordinary double point p ∈ Y ,

ÔY,p
∼= C [[x1, x2, x3, x4]] /(x1x2 + x3x4).

The exceptional locus C ⊂ X satisfies that

C ∼= P1, NC/X
∼= OC(−1)⊕OC(−1).

Let CohC(X) be

CohC(X) := {E ∈ Coh(X) : Supp(E) ⊂ C},
and we define the triangulated category DX/Y to be

DX/Y := 〈OX ,CohC(X)〉tr ⊂ DX .

Similarly to the case of DX , we can consider the space of weak stability
conditions on DX/Y . The required data is as follows. We set Γ′ to be

Γ′ = H0(X,Z) ⊕ Z[C]⊕H0(X,Z),

and define cl : K(DX/Y ) → Γ′ to be

cl(E) = (ch0(E), ch2(E), ch3(E)),

for E ∈ DX/Y . Also we choose the filtration Γ′
• as

Γ′
0 = H0(X,Z) ⊂ Γ′

1 = Γ′.

The associated space of weak stability conditions is denoted by StabΓ′
•
(DX/Y ).

Similarly to the map (34), we can construct a continuous map,

γ′ : R → StabΓ′
•
(DX/Y ),

such that if t ∈ (k, k + 1] for k ∈ Z, we have

γ′(t) = (Z ′
(exp(πit),iω),A′

k).
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Here

Z ′
(exp(πit),iω) ∈

1∏

i=0

HomZ(Γ
′
i/Γ

′
i−1,C)

is defined in a similar way to (16), (17) for the fixed ample divisor ω on
X, and A′

k are hearts of bounded t-structures, satisfying the following.

• For k = 0, we have

A′
0 = 〈OX ,CohC(X)[−1]〉ex.

• For k = 1, we have

A′
1 = 〈A′

0,+,OX [−1]〉ex,
where A′

0,+ = {E ∈ A′
0 : Hom(OX , E) = 0}.

• The other A′
k are determined by the rule,

A′
k+2 = ΦOX

A′
k.

Let us write

γ′(t) = (Z ′
t,P ′

t), t ∈ R,

for a slicing P ′
t on DX/Y . Similarly to Definition 3.6, we can define the

DT type invariants,

DTt(r,m, n, φ) ∈ Q,(63)

counting objects E ∈ DX/Y satisfying

E ∈ P ′
t(φ), cl(E) = (r,−m[C],−n).

By abuse of notation, we define the generating series as well:

DTt(φ) =
∑

(r,m[C],n)∈Γ′

DTt(r,m, n, φ)x
rymzn.

A result similar to Theorem 3.9 also holds as follows. The proof is
similar and we omit the proof.

Theorem 4.4. (i) For a given k ∈ Z, the series DTt(φ) does not
depend on a choice of t ∈ (φ+k, φ+k+1). In particular, we may write
it as DTk(φ).

(ii) The series DTk(φ) is obtained from DTk−1(φ) by the following
transformation:

zn 7→
{

(1− (−1)nx)nzn, if k is even.
xnzn/(1− (−1)nx)n, if k is odd.

Let us investigate what kinds of objects the invariants DTt(r,m, n, φ)
count. Recall that there is the heart of a bounded t-structure, called
the perverse t-structure [9], [16],

Per(X/Y ) ⊂ Db(CohC(X)).
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Its generator is given in [16, proposition 3.5.7],

Per(X/Y ) = 〈OC(−1)[1],OC 〉ex.(64)

We have the following lemma.

Lemma 4.5. For 1/2 < t ≤ 3/2, we have

P ′
t((1/2, 3/2]) = 〈OX ,Per(X/Y )[−1]〉ex.(65)

Proof. The argument of [43, lemma 3.2 (ii)] shows that the RHS side
is the heart of a bounded t-structure on DX/Y . Hence it is enough to
check that the RHS is contained in the LHS. It is straightforward to
check that

{OX ,OC(−1),OC [−1]} ⊂ P ′
t((1/2, 3/2]).

Since OX , OC(−1) and OC [−1] generates the RHS of (65), we obtain
the result. q.e.d.

By the description (64), we can easily see that

Hom(OX , E[i]) = 0, i > 0,

for any E ∈ Per(X/Y ). Then the same argument of [50, proposition 2.2]
shows that the RHS of (65) is equivalent to the abelian category of
triples,

(O⊕r
X , F, s),(66)

where r ∈ Z≥0, F ∈ Per(X/Y ) and s is a morphism, s : O⊕
X → F . The

set of morphisms is given by the commutative diagram,

O⊕r1
X

s1
//

g

��

F1

h

��

O⊕r2
X

s2
// F2,

and the equivalence is given by sending the triple (66) to the total

complex of the double complex (O⊕r
X

s→ F ). The above category of
triples (66) is nothing but the category of perverse coherent systems
considered in [35]. Noting this, we have the following lemma.

Lemma 4.6. For 1/2 < t < φ ≤ 3/2 with φ 6= 1, we have P ′
t(φ) 6=

{0} if and only if there is a ∈ Z satisfying

−a+ (ω · C)
√
−1 ∈ R exp(iπφ).(67)

In this case, we have

P ′
t(φ) =

{
〈OC(a− 1)[−1]〉ex, if 1/2 < φ < 1,
〈OC(a− 1)〉ex, if 1 < φ < 3/2.

(68)
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Proof. Let us take a non-zero object E ∈ P ′
t(φ). Note that we have

P ′
t(φ) ⊂ P ′

t((1/2, 3/2]),

and E is a semistable object in P ′
t((1/2, 3/2]) with respect to the rotated

weak stability condition,

1

2
· γ′(t) = (−iZ ′

t,P ′
t((1/2, 3/2])).

By Lemma 4.5 and the subsequent argument, any object in P ′
t((1/2, 3/2])

is isomorphic to the total complex associated to a triple (66). Hence
there is an exact sequence in P ′

t((1/2, 3/2]),

0 → F [−1] → E → O⊕r
X → 0,

for r ∈ Z≥0 and F ∈ Per(X/Y ). Suppose that r 6= 0. Then we have

πφ = argZ ′
t(F [−1]) > argZ ′

t(O⊕r
X ) = πt,

which contradicts the −iZ ′
t-semistability of E. Here we have taken the

arguments in (π/2, 3π/2]. Therefore we have r = 0 or F = 0. If F = 0,
then E ∈ 〈OX〉ex ⊂ P ′

t(t), which contradicts E ∈ P ′
t(φ). Therefore

r = 0, and E ∈ Per(X/Y )[−1] follows.
Let W : K(DX/Y ) → C be the group homomorphism defined by

W (E) = − ch3(E) + iω · ch2(E).(69)

Then the pair

(W,CohC(X))(70)

is a Bridgeland’s stability condition on Db(CohC(X)), and the set ofW -
(semi)stable objects in CohC(X) coincides with the set of ω-(semi)stable
sheaves in CohC(X). Let us write the stability condition (70) as the
pair (W,Q) for a slicing Q in Db(CohC(X)), and consider the rotated
stability condition

(
−1

2

)
· (W,CohC(X)) = (iW,Q((−1/2, 1/2])).(71)

It is easy to see thatOC(−1) andOC [−1] are contained inQ((−1/2, 1/2]);
hence we have

Q((−1/2, 1/2]) = Per(X/Y )[−1].

Under the above identification, the set of iW -(semi)stable objects in
Q((−1/2, 1/2]) coincides with that of−iZ ′

t-(semi)stable objects in Per(X/Y )[−1].
Since an ω-stable sheaf in CohC(X) is of the formOC(a) orOx for x ∈ C,
the set of −iZ ′

t-stable objects in Per(X/Y )[−1] is given as follows:

{OC(a− 1) : a ≤ 0} ∪ {OC(a− 1)[−1] : a ≥ 1} ∪ {Ox[−1] : x ∈ C}.
Since we have

Z ′
t(OC(a− 1)) = a− (ω · C)

√
−1,
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there is non-zero E ∈ P ′
t(φ) only if the condition (67) is satisfied, and

in this case P ′
t(φ) is given by (68). q.e.d.

In the situation of Lemma 4.6, any non-zero object E ∈ P ′
t(φ) is written

as

E ∼=
{

OC(a− 1)⊕m[−1], if 1/2 < φ < 1,
OC(a− 1)⊕m, if 1 < φ < 3/2,

for some m ∈ Z≥1, noting that

Ext1X(OC ,OC) = 0.

Then a computation similar to Lemma 3.7 shows that

DT−1(r,m, n, φ) =

{
1
m2 , if r = 0, n = ma,m ≥ 1,
0, otherwise,

for 1/2 < φ < 1 and

DT0(r,m, n, φ) = DT−1(−r,−m,−n, φ+ 1)

=

{
1
m2 , if r = 0, n = ma,m ≥ 1,
0, otherwise,

for 0 < φ ≤ 1/2. Applying Theorem 4.4, we obtain the following.

Theorem 4.7. For 0 < φ < 1, suppose that there is a ∈ Z satisfying
(67). For k ∈ Z, we obtain the following.

(i) If 0 < φ < 1/2, we have

DT2k−1(φ) =
∑

m≥1

1

m2
xkmaymzma,

DT2k(φ) =
∑

m≥1

1

m2
(1− (−1)max)maxkmaymzma.

(ii) If 1/2 ≤ φ < 1, we have

DT2k(φ) =
∑

m≥1

1

m2
xkmaymzma,

DT2k+1(φ) =
∑

m≥1

1

m2
(1− (−1)max)maxkmaymzma.

Similarly to Lemma 4.3, we can investigate what kinds of objects the
invariants (63) count. The case of φ − 1 ≪ t < φ is already studied
in Lemma 4.6. The case after crossing the wall t = φ, i.e. the case of
φ < t≪ φ+ 1, is given as follows.

Lemma 4.8. For 1/2 < φ < t ≤ 3/2 with φ 6= 1, we have Pt(φ) 6=
{0} if and only if there is a ∈ Z satisfying (67). In this case, an object
E ∈ DX is contained in Pt(φ) if and only if the following holds.
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• If 1/2 < φ < 1, then E is quasi-isomorphic to a two term complex,

· · · → 0 → O⊕r
X

s→ OC(a− 1)⊕m → 0 → · · · ,(72)

where O⊕r
X is located in degree zero, such that the induced mor-

phism,

H0(s) : Cr → H0(C,OC (a− 1))⊕m,

is injective.
• If 1 < φ < 3/2, then E fits into the exact sequence of sheaves,

0 → OC(a− 1)⊕m → E → O⊕r
X → 0,(73)

such that the induced morphism,

Cr → H1(C,OC (a− 1))⊕m,

is injective.

Proof. Let us take an object E ∈ P ′
t(φ). By Lemma 4.5 and the

subsequent argument, E is isomorphic to the total complex of a double
complex,

O⊕r
X

s→ F,(74)

for some r ≥ 0 and F ∈ Per(X/Y ). In particular, we have the exact
sequence in P ′

t((1/2, 3/2]),

0 → F [−1] → E → O⊕r
X → 0.

Applying Hom(OX , ∗), we obtain the exact sequence,

0 → Hom(OX , E) → Cr
H0(s)→ Hom(OX , F ).

Since OX ∈ P ′
t(t), E ∈ P ′

t(φ) and t > φ, we have Hom(OX , E) = 0;
hence the map H0(s) is injective.

Next we classify the objects F ∈ Per(X/Y ) which appear in (74).
Let 0 6= F ′ ⊂ F be a subobject in Per(X/Y ). Then we have injections

F ′[−1] →֒ F [−1] →֒ E,

in P ′
t((1/2, 3/2]). As in the proof of Lemma 4.6, we consider rotated

weak stability condition on DX/Y , stability condition on Db(CohC(X)),
respectively,

(−iZ ′
t,P ′

t((1/2, 3/2])),

(iW,Per(X/Y )[−1]).
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Here W is given by (69). By the −iZ ′
t-semistability of E, we have the

inequality in (π/2, 3π/2],

argW (F ′) = argZ ′
t(F

′[−1])

≤ argZ ′
t(E)

= argZ ′
t(F [−1])

= argW (F ).

Therefore F [−1] is an iW -semistable object in Per(X/Y )[−1]. As in
the proof of Lemma 4.6 and the subsequent argument, there is m ≥ 1
such that

F ∼=
{

OC(a− 1)⊕m, if 1/2 < φ < 1,
OC(a− 1)⊕m[1], if 1 < φ < 3/2.

Therefore E is isomorphic to a two term complex (72) when 1/2 < φ <
1, and isomorphic to a sheaf which fits into the exact sequence (73)
when 1 < φ < 3/2.

Conversely, suppose that E ∈ DX is an object given by (72) or (73).
Then E is the total complex of a double complex (74) for some F ∈
Per(X/Y ), which satisfies the property that F [−1] ∈ Per(X/Y )[−1] is
iW -semistable and H0(s) is injective. In particular, E is an object in
P ′
t((1/2, 3/2]) by Lemma 4.5. Let us take an exact sequence

0 → E1 → E → E2 → 0,

in P ′
t((1/2, 3/2]) with non-zero E1 and E2. The above exact sequence

corresponds to an exact sequence of triples (66),

0 → (O⊕r1
X

s1→ F1) → (O⊕r
X

s→ F ) → (O⊕r2
X

s2→ F2) → 0.

Since H0(s) is injective, we have F1 6= 0. If we also have F2 6= 0, then
the iW -semistability of F [−1] implies the inequality in (π/2, 3π/2],

argZ ′
t(E1) = argW (F1)

≤ argW (F2)

= argZ ′
t(E2).

If F2 = 0, we have

πφ = argZ ′
t(E1) < argZ ′

t(E2) = πt.

The above inequalities show that E is −iZ ′
t-semistable in P ′

t((1/2, 2/3]),
and E ∈ P ′

t(φ) follows. q.e.d.

Remark 4.9. In the case of φ = 1, the generating series and the
relevant semistable objects are described in a way similar to the results
in Subsection 4.1.
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In a similar way to (62), Theorem 4.7 can be used to write down the
rank one generating series,

∑

φ∈(0,1),
(m,n)∈Z⊕2.

DT0(1,m, n, φ)ymzn =
∑

a≥1,
m≥1.

1

m2
(−1)ma−1maymzma,

= log
∏

m≥1

(1− (−1)myzm)m.(75)

By Lemma 4.8, the above series is a generating series of invariants count-
ing two term complexes of the form

OX
s→ OC(a− 1)⊕m,

such that s is non-zero. Here we have again observed a curious phenom-
enon, since the series

∏

m≥1

(1− (−1)myzm)m(76)

coincides with the generating series of stable pairs on a local (−1,−1)-
curve (cf. [37]). Under the GW/DT correspondence [33], the series
(75) corresponds to the connected GW theory, while the series (76)
corresponds to the non-connected GW theory [4].

Remark 4.10. Although we rely on Conjecture 3.3 to prove The-
orem 3.9, we can check a version of Conjecture 3.3 needed in showing
Theorem 4.2 and Theorem 4.7 by hand, following the same strategy
of [50, proposition 2.12]. Therefore, the results in this subsection are
completely rigorous.

5. Some Technical Lemmas

5.1. Proof of Lemma 2.7. For simplicity, we give a proof for the pair
(Zu,B+) with u = (z,B + iω) ∈ (−H) × A(X)C. We divide the proof
into 3 steps.

Step 1. The pair (Zu,B+) satisfies the Harder-Narasimhan property.

Proof. By [49, proposition 2.12], it is enough to check that the fol-
lowing conditions are satisfied.

• The abelian category B+ is noetherian.
• There are no infinite sequences of subobjects in B+,

· · ·Ej+1 ⊂ Ej ⊂ · · · ⊂ E2 ⊂ E1,(77)

with the following inequality for all j:

argZu(Ej+1) > argZu(Ej/Ej+1).(78)
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First we show that the abelian category B+ is noetherian. For an object
E ∈ B+, suppose that there is an infinite sequence of inclusions in B+,

F1 ⊂ F2 ⊂ · · · ⊂ E.(79)

Applying H•
A, we obtain the sequence of inclusions in A,

H0
A(F1) ⊂ H0

A(F2) ⊂ · · · ⊂ H0
A(E).

SinceA is noetherian by [50, lemma 6.2], we may assume thatH0
A(Fi)

∼=→
H0

A(Fi+1) for all i. Then taking the quotients of (79) by H0
A(F1), we

may assume that H0
A(Fi) = 0 for all i. This means that we have

Fi ∼= O⊕ri
X [−1], ri ∈ Z≥0.

Since r1 ≤ r2 ≤ · · · and Hom(OX [−1], E) is finite dimensional, the
sequence (79) terminates.

Next suppose that there is a sequence (77) satisfying (78). Note that
for any object E ∈ B+, we have ch2(E) ·ω ≤ 0 by the description of B+

in Lemma 2.6. Therefore we have

ch2(E1) · ω ≤ · · · ≤ ch2(Ej) · ω ≤ ch2(Ej+1) · ω ≤ · · · ≤ 0.

Hence we may assume that ch2(Ej) · ω = ch2(Ej+1) · ω for all j. This
implies that ch2(Ej/Ej+1) = 0, and we have either

Zu(Ej/Ej+1) ∈ R<0, or Ej/Ej+1 ∈ 〈OX [−1]〉ex.
Since we have the inequality (78), we have Zu(Ej/Ej+1) /∈ R<0. There-
fore we have Ej/Ej+1 ∈ 〈OX [−1]〉ex, and hence E1/Ej is written as
OX [−1]⊕rj for some rj ∈ Z≥0. There is a sequence of surjections,

E1 ։ · · · ։ E1/E3 ։ E1/E2,

and hence we have r2 ≤ r3 ≤ · · · . Since Hom(E1,OX [−1]) is finite
dimensional, the above sequence must terminate. q.e.d.

Step 2. The weak stability condition (Zu,B+) satisfies the local finite-
ness property.

Proof. Let {P(φ)}φ∈R be the slicing determined by the pair (Zu,B+).
It is enough to check that the following quasi-abelian categories,

P((0, 1)), P((1/2, 3/2)),

are of finite length. The category P((0, 1)) is contained in B+, and the
same argument of Step 1 shows that P((0, 1)) is of finite length. Let
us check that P((1/2, 3/2)) is of finite length. We take a sequence of
strict epimorphisms in P((1/2, 3/2)) (see [11, section 4] for the notion
of strict epimorphisms and strict monomorphisms),

E1 ։ E2 ։ · · · ։ Ej ։ Ej+1 ։ · · · ,(80)
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and exact sequences in P((1/2, 3/2)),

0 → Fj → Ej → Ej+1 → 0.

Note that ch3(E) ≤ 0 for any E ∈ P((1/2, 3/2)), and the inequality is
strict if cl(E) /∈ Γ \ Γ0. Therefore we have the inequalities

ch3(E1) ≤ · · · ≤ ch3(Ej) ≤ ch3(Ej+1) ≤ · · · ≤ 0.

Hence we may assume that ch3(E1) = ch3(Ej), which implies that
ch3(Fj) = 0 for all j. Then we have cl(Fj) ∈ Γ0, and Lemma 2.20
shows that

Fj ∼=





O⊕rj
X , if Re z < 0,
0, if Re z = 0,

OX [−1]⊕rj , if Re z > 0,

for some rj ∈ Z≥0. Then the same argument of Step 1 shows that the
sequence (80) terminates, i.e. P((1/2, 3/2)) is noetherian. A similar
argument also shows that P((1/2, 3/2)) is artinian with respect to the
strict monomorphisms; hence P((1/2, 3/2)) is of finite length. q.e.d.

Step 3. The pair (Zu,B+) satisfies the support property.

Proof. Let us take a non-zero object B+, and we set cl(E) = (r,−β,−n).
If (β, n) = (0, 0), we have

‖[cl(E)]‖0
|Z(E)| =

1

|z| .

Suppose that (β, n) 6= (0, 0). Then we have

‖[cl(E)]‖1
|Z(E)| =

√
‖β‖2 + n2

(n−B · β)2 + (ω · β)2 .(81)

Here ‖∗‖ is a fixed norm on H2 ⊗ R. If β = 0, then (81) equals to 1. If
β 6= 0, then (81) coincides with

√
1 + µ2

(µ −B0)2 + ω2
0

.(82)

Here we have set

µ =
n

‖β‖ , B0 = B · β

‖β‖ , ω0 = ω · β

‖β‖ .

The values B0 and ω0 > 0 are bounded w.r.t. non-zero β ∈ H2. Also for
fixed B0 and ω0, the value (82) is bounded w.r.t. all µ ∈ Q. Therefore
(82) is bounded w.r.t. all B0, ω0 and µ. q.e.d.
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5.2. Proof of Lemma 2.14.

Proof. (i) It is easy to see that Coh≤1(X)[−1] is closed under subob-
jects and quotients in the abelian category A. Then it is easy to see that
the (B,ω)-semistability of F ∈ Coh≤1(X) yields the Zu-semistability of
F [−1] ∈ A.

(ii) First we suppose that

argZu(F [−1]) > arg(−z).(83)

Let us take an exact sequence in B+,

0 →M → F [−1] → N → 0,(84)

with M,N 6= 0. We want to show the inequality,

argZu(M) ≤ argZu(N),(85)

to show the Zu-semistability of F [−1]. Applying H•
A to the sequence

(84), we obtain the long exact sequence in A,

0 → H0
A(M) → F [−1]

s→ H0
A(N) → H1

A(M) → 0,(86)

and the vanishing H1
A(N) = 0. Note that H1

A(M) ∈ 〈OX〉ex by the
construction of B+.

Suppose that H0
A(M) = 0. Then we have

argZu(M) = argZu(OX [−1])

= arg(−z).

By our assumption (83), this implies the inequality (85).
Suppose that H0

A(M) 6= 0. Then H0
A(M) and the image of s are

written as F ′[−1], F ′′[−1] for some F ′, F ′′ ∈ Coh≤1(X), respectively.
Note that we have

Zu(M) = Zu(F
′[−1]), Zu(N) = Zu(F

′′[−1]).

The exact sequence (86) and the (B,ω)-semistability of F yield

argZu(F
′[−1]) ≤ argZu(F

′′[−1]).

Therefore the inequality (85) holds and F [−1] is Zu-semistable.
Next suppose that

argZu(F [−1]) < arg(−z).

In this case, a similar argument to that above shows that F [−1] is
a Zu-semistable object in B−. Applying the twist functor ΦOX

and
using Lemma 2.11, we conclude that ΦOX

(F [−1]) ∈ B+, and it is Zu-
semistable. q.e.d.
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5.3. Proof of Lemma 2.16.

Proof. For a non-zero object F ∈ Coh≤1(X), we have

Zu(ΦOX
(F [−1])) = Zu(F [−1]).

Therefore, by Lemma 2.14, it is enough to show the density of the slope
of (B,ω)-semistable sheaves.

Let D ⊂ X be a sufficiently ample divisor. For each l ≥ 1 and k ∈ Z,
we choose the following:

Cl ∈ |OD(lD)|, Ll,k ∈ Pic(Cl).

Here Cl is a smooth member and the degree of Ll,k is equal to k. Note
that Ll,k is a (B,ω)-stable sheaf onX. Setting C = C1 and d =

∫
X D

3 ∈
Z, we have

cl(Ll,k) = (0, l[C], k − dl(l + 1)/2).

Therefore we obtain

Zu(Ll,k[−1]) = −k + (B · C)l +
dl(l + 1)

2
+ (ω · C)l

√
−1.

Then it is easy to see that
{
ReZu(Ll,k[−1])

ImZu(Ll,k[−1])
: l ≥ 1, k ∈ Z

}
= Q+

{
B · C
ω · C

}
.

This implies the density of (29). q.e.d.

5.4. Proof of Lemma 3.1.

Proof. By Theorem 2.15 and Proposition 2.18, we may assume that
σ ∈ U0 or σ ∈ U1. For simplicity, we show the case of σ ∈ U1. In this
case, we can write σ as a pair,

σ = (Zu,B+), u = (z,B + iω) ∈ (−H)×A(X)C,(87)

as in Lemma 2.7 (ii). We fix v = (r,−β,−n) ∈ Γ and take

m ≥ 1, vi = (ri,−βi,−ni), 1 ≤ i ≤ m,

which appears in a non-zero term of the RHS of (44). We set

m′ := ♯{1 ≤ i ≤ m : (βi, ni) 6= (0, 0)}.
Note that if (βi, ni) 6= (0, 0), then we have βi · ω > 0 or βi = 0, ni > 0.
Also we have

Zu(vi) = −ni + (B + iω) · βi,
if (βi, ni) 6= (0, 0), and they are contained in the same line. This implies
that m′ is bounded above and the possibilities of (βi, ni) are finite. By
Lemma 5.1 below, the ri is also bounded above, depending only on
(β, n). Therefore the possibilities of m and vi are finite. q.e.d.

We have used the following lemma.
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Lemma 5.1. For a fixed (r,−β,−n) ∈ Γ, the following set of objects
is bounded: {

E ∈ B+ :
E is Zu-semistable satisfying
cl(E) = (r′,−β,−n), r′ ≥ r.

}
.

Proof. Let us take a Zu-semistable object E ∈ B+ with cl(E) =
(r′,−β,−n) for some r′ ≥ r. If (β, n) = 0, then E ∈ 〈OX [−1]〉ex and the
result is obvious. We assume that (β, n) 6= (0, 0). By the construction
of B+ in Lemma 2.6 (ii), there is an exact sequence in B+,

0 → E′ → E → E′′ → 0,(88)

such that E′ ∈ A+ and E′′ ∈ 〈OX [−1]〉ex. Moreover, by the construction
of A and A+ in Lemma 2.6, there is a filtration of E′ in A,

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ EN = E′,(89)

such that we have

Ei/Ei−1
∼=

{
Fi[−1], if i is odd,

O⊕ri
X , if i is even,

for some Fi ∈ Coh≤1(X) and ri ∈ Z≥1. Note that ch2(Fi) · ω ≥ 0;
hence ch2(Fi) and the length of the filtration N have a finite number of
possibilities. Let us take the exact sequence in A,

0 → Ei → E′ → E′/Ei → 0.

Applying H•
B+

, we obtain the exact sequence in B+,

0 → H−1
B+

(E′/Ei) → H0
B+

(Ei)
ι→ E′.

Since H−1
B+

(E/Ei) ∈ 〈OX〉ex, the Zu-semistability of E implies that

argZu(⊕j≤iFj [−1]) = argZu(Ei),

= argZu(H0
B+

(Ei)),

= argZu(Im ι),

≤ argZu(E
′),

= argZu((0,−β,−n)),
for all i. The above inequality implies that the pairs (ch2(Fi), ch3(Fi))
have a finite number of possibilities. By taking Harder-Narasimhan
filtrations of Fi with respect to ω-stability and applying the same argu-
ment, we can also show that the Chern characters of Harder-Narasimhan
factors of each Fi have a finite number of possibilities. Since ω-semistable
sheaves with a fixed numerical class are bounded, we conclude that pos-
sible Fi which appear in the filtration (89) are contained in a bounded
family.

We show by induction on i that the possible Ei in the filtration (89)
are contained in a bounded family. Note that we have already proved
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the boundedness for i = 1. Suppose that the claim holds for i− 1. We
have the exact sequence in A,

0 → Ei−1 → Ei → Ei/Ei−1 → 0.

If i is odd, then Ei/Ei−1 is isomorphic to Fi[−1], which is contained
in a bounded family. The object Ei−1 is also contained in a bounded
family by the inductive assumption; hence Ei is contained in a bounded
family. If i is even, then Ei/Ei−1 is written as O⊕ri

X for some ri ∈ Z≥0.
The inductive assumption implies that there is R > 0 such that we have

dimHom(OX , Ei−1[1]) ≤ R,

for any possible Ei−1 which appears in (89). Therefore if ri > R, then
there is a non-trivial morphism OX → Ei which contradicts E ∈ A+.
Hence ri ≤ R and Ei is contained in a bounded family.

The above argument shows that the object E′ in (88) is contained in a
bounded family. Since r′ ≥ r and E′′ ∈ 〈OX [−1]〉ex, the boundedness of
E′ implies the boundedness of E′′. Therefore the object E is contained
in a bounded family. q.e.d.

5.5. Proof of Lemma 3.2.

Proof. As in the proof of Lemma 3.1, we may assume that σ ∈ U1;
hence it is written as (87). First we show that Mv(Zu) is a constructible
subset in M. For n ≥ 1, let Filn(B+) be the stack of n-step filtrations
in B+. Namely, a C-valued point of Filn(B+) corresponds to a filtration
in B+,

E1 ⊂ E2 ⊂ · · · ⊂ En.

We have the morphisms of stacks,

pi : Filn(B+) ∋ E• 7→ Ei/Ei−1 ∈ Obj(B+),

and the diagram,

Filn(B+)
qn

//

rn
��

Obj(B+),

Obj(B+)
×n,

where qn(E•) = En and rn = (p1, . . . , pn). Note that qn and rn are
piecewise constructible bundles. The proof of Lemma 5.1 shows that
for each v ∈ Γ, there are N ≥ 1, finite subset,

Sn ⊂
n︷ ︸︸ ︷

Γ× · · · × Γ,

for each 1 ≤ n ≤ N and algebraic substacks of finite type,

M(v1,...,vn) ⊂ Obj(B+)
×n,
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such that we have

Mv(Zu) =
⋃

1≤n≤N,
(v1,...,vn)∈Sn.

qnr
−1
n (M(v1,...,vn)).

Since the RHS is a finite union of constructible subsets, Mv(Zu) is a
constructible set in M.

Next the existence of the Harder-Narasimhan filtration implies that

Obj(B+) =
⋃

n≥1,
v1,...,vn∈Γ.

qnr
−1
n (Mv1(Zu)× · · · ×Mvn(Zu)).

Since Mvi(Zu) is a constructible subset in M, the RHS is a countable
union of constructible subsets in M. q.e.d.
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