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MODULI SPACES OF NONNEGATIVE SECTIONAL

CURVATURE AND NON-UNIQUE SOULS

Igor Belegradek, Slawomir Kwasik & Reinhard Schultz

Abstract

We apply various topological methods to distinguish connected
components of moduli spaces of complete Riemannian metrics of
nonnegative sectional curvature on open manifolds. The new geo-
metric ingredient is that souls of nearby nonnegatively curved met-
rics are ambiently isotopic.

1. Introduction

A fundamental structure result, due to Cheeger-Gromoll [6], is that
any open complete manifold of sec ≥ 0 is diffeomorphic to the total
space of a normal bundle to a compact totally geodesic submanifold,
called a soul. A soul is not unique; e.g. in the Riemannian product
M ×Rk of a closed manifold M with sec ≥ 0 and the standard Rk , the
souls are of the form M ×{x}. Yet Sharafutdinov [44] proved that any
two souls can be moved to each other by a diffeomorphism that induces
an isometry of the souls.

The diffeomorphism class of the soul may depend on the metric; e.g.
any two homotopy equivalent 3-dimensional lens spaces L,L′ become
diffeomorphic after multiplying by R3 [33], so taking non-homeomorphic
L,L′ gives two product metrics on L×R3 = L′ ×R3 with non-homeo-
morphic souls. It turns out that codimension 3 is optimal; indeed,
Kwasik-Schultz proved in [28] that if S , S′ are linear spherical space
forms such that S×R2 , S′×R2 are diffeomorphic, then S , S′ are diffeo-
morphic. Another well-known example is that all homotopy 7-spheres
become diffeomorphic after taking product with R3 (see Remark 5.8);
since some homotopy 7-spheres [16] have metrics of sec ≥ 0, so do their
products with R3 , which therefore have nonnegatively curved metrics
with non-diffeomorphic souls. Codimension 3 is again optimal, because
any simply-connected manifold S of dimension ≥ 5 can be recovered
(up to diffeomorphism) from S × R2 (see [28] or Remark 5.12).

Belegradek in [1] used examples of Grove-Ziller [16] to produce first
examples of infinitely many nondiffeomorphic souls for metrics on the
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same manifold, e.g. on S3 × S4 × R5 . Other examples of simply-
connected manifolds with infinitely many nondiffeomorphic souls, and
better control on geometry, were constructed by Kapovitch-Petrunin-
Tuschmann in [25].

One motivation for the present work was to construct non-diffeo-
morphic souls of the smallest possible codimension; of course, multi-
plying by a Euclidean space then yields examples in any higher codi-
mension. We sharpen examples in [1] by arranging the soul to have
codimension 4 and any given dimension ≥ 7.

Theorem 1.1. For each k ≥ 3, there are infinitely many complete

metrics of sec ≥ 0 on N = S4 × Sk × R4 whose souls are pairwise

non-homeomorphic.

Similarly, in Theorem 3.4 we sharpen theorems B and C in [25] to
make the souls there of codimension 4; in particular, we prove:

Theorem 1.2. There exists an open simply-connected manifold N
that admits infinitely many complete metrics of sec ∈ [0, 1] with pairwise

non-homeomorphic codimension 4 souls of diameter 1. Moreover, one

can choose N so that each soul has nontrivial normal Euler class.

We do not know examples of manifolds with infinitely many non-
diffeomorphic souls of codimension < 4, and in an effort to find such
examples we systematically study vector bundles with diffeomorphic
total spaces, and among other things prove the following:

Theorem 1.3. Suppose there is a manifold N that admits complete

nonnegatively curved metrics with souls Sk of codimension < 4 such

that the pairs (N,Sk) lie in infinitely many diffeomorphism types. If

π1(N) is finite, Sk is orientable, and dim(Sk) ≥ 5, then
(1) π1(N) is nontrivial and dim(Sk) is odd;

(2) the products Sk × R3 lie in finitely many diffeomorphism types.

In Example 5.3 we describe two infinite families of closed manifolds
with the property that if each manifold in the family admits a metric
of sec ≥ 0, then they can be realized as codimension 1 souls in the
same open manifold N . In general, if M is a closed oriented smooth
manifold of dimension 4r − 1 ≥ 7 whose fundamental group contains a
nontrivial finite order element, then there are infinitely many pairwise
non-homeomorphic closed manifolds Mi such that Mi×R3 is diffeomor-
phic to M × R3 (see [9]); thus, if each Mi admits a metric of sec ≥ 0,
then M × R3 carries infinitely many (product) metrics with nondiffeo-
morphic souls.

Another goal of this paper is to study moduli spaces of complete
metrics of nonnegative sectional curvature on open manifolds. Study-
ing moduli spaces of Riemannian metrics that satisfy various geometric
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assumptions is largely a topological activity; see e.g. [13], [14], [26],
[36], [37], [43] [53], and references therein.

Let Rk,u(N) denote the space of complete Riemannian C∞ metrics
on a smooth manifold N with topology of uniform Ck -convergence,
where 0 ≤ k ≤ ∞ , and let Rk,c(N) denote the same set of metrics

with topology of Ck -convergence on compact subsets. Let R
k,u
sec≥0(N),

R
k,c
sec≥0(N) be the subspaces of Rk,u(N), Rk,c(N) respectively, consist-

ing of metrics of sec ≥ 0, and let M
k,u
sec≥0(N), M

k,c
sec≥0(N), Mk,u(N),

Mk,c(N) denote the corresponding moduli spaces, i.e. their quotient
spaces by the Diff(N)-action via pullback. We adopt:

Convention 1.4. If an assertion about a moduli space or a space
of metrics holds for any k , then the superscript k is omitted from the
notation, and if N is compact, then c , u are omitted.

The space Rc(N) is closed under convex combinations [12] and hence
is contractible; in particular, Mc(N) is path-connected. By contrast,
if N is non-compact, Mu(N) typically has uncountably many con-
nected components because metrics in the same component of Mu(N)
lie within a finite uniform distance of each other, while the uniform
distance is infinite between metrics with different asymptotic geome-
try (such as rotationally symmetric metrics on R2 with non-asymptotic
warping functions).

It was shown in [25] that metrics with non-diffeomorphic souls lie in
different components of Mc

sec≥0(N) provided any two metrics of sec ≥ 0
on N have souls that intersect, which can be forced by purely topological
assumptions on N ; e.g. this holds if N has a soul with nontrivial normal
Euler class, or if N has a codimension 1 soul.

A simple modification of the proof in [25] shows (with no extra as-
sumptions on N ) that metrics with non-diffeomorphic souls lie in differ-
ent components of Mu

sec≥0(N). In fact, this result and the result of [44]
that any two souls of the same metric can be moved to each other by a
diffeomorphism of the ambient nonnegatively curved manifold have the
following common generalization.

Theorem 1.5. (i) If two metrics are sufficiently close in Ru
sec≥0(N),

their souls are ambiently isotopic in N .

(ii) The map associating to a metric g ∈ Ru
sec≥0(N) the diffeomorphism

type of the pair (N, soul of g) is locally constant.

(iii) The diffeomorphism type of the pair (N, soul of g) is constant on

connected components of Mu
sec≥0(N).

Theorem 1.5 also holds for Mc
sec≥0(N), provided any two metrics of

sec ≥ 0 on N have souls that intersect.
Thus, to detect different connected components of Mu

sec≥0(N), it is
enough to produce nonnegatively curved metrics on N such that no
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self-diffeomorphism of N can move their souls to each other. From
Theorem 1.1 we deduce:

Corollary 1.6. For any integers k ≥ 3, m ≥ 4 the space Mu
sec≥0(S

4×

Sk×Rm) has infinitely many connected components that lie in the same

component of Mu(S4 × Sk × Rm).

Similarly, Theorem 1.2 yields an infinite sequence of metrics that
lie in different connected components of Mc

sec≥0(N) and in the same

component of Mu(N).
Even if the souls are diffeomorphic, they need not be ambiently iso-

topic, as is illustrated by the following theorem exploiting examples of
smooth knots due to Levine [31].

Theorem 1.7. If L is a closed manifold of sec ≥ 0, then N :=
S7 × L× R4 admits metrics that lie in different connected components

of Mu
sec≥0(N) and in the same component of Mu(N), and such that

their souls are diffeomorphic to S7 × L and not ambiently isotopic in

N .

Here L is allowed to have dimension 0 or 1, and in general, through-
out the paper we treat S1 , R , and a point as manifolds of sec ≥ 0.

Example 1.8. For L = S5 , note that any closed manifold in the

homotopy type of S7 × S5 is diffeomorphic to S7 × S5 ; in fact, the

structure set of S7 ×S5 fits into the surgery exact sequence between the

trivial groups Θ12 and π7(F/O)⊕π5(F/O) [8, theorem 1.5]. Thus, any

soul in S7 × S5 × R4 is diffeomorphic to S7 × S5 , while Theorem 1.7
detects different components of the moduli space.

As mentioned above, there exist exotic 7-spheres with sec ≥ 0 that
appear as codimension 3 souls in S7 × R3 . Examples with non-diffeo-
morphic simply-connected souls of codimension 2 seem considerably
harder to produce, as is suggested by the following:

Theorem 1.9. If a simply-connected manifold N admits complete

nonnegatively curved metrics with souls S , S′ of dimension ≥ 5 and

codimension 2, then S′ is diffeomorphic to the connected sum of S with

a homotopy sphere.

Thus, non-diffeomorphic codimension 2 simply-connected souls are
necessarily homeomorphic, while until now non-diffeomorphic homeo-
morphic closed manifolds of sec ≥ 0 have only been known in dimension
7; see e.g., [16, 26]. In the companion paper [4], we show that for every
integer r ≥ 2 there is an open (4r + 1)-dimensional simply-connected
manifold that admits two metrics with non-diffeomorphic codimension
2 souls.

Non-diffeomorphic simply-connected souls do not exist in codimen-
sion 1, except possibly when the soul has dimension 4; indeed, any
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two codimension 1 simply-connected souls are h-cobordant, and hence
diffeomorphic provided their dimension is 6= 4. By contrast, manifolds
with nontrivial fundamental group may contain non-homeomorphic codi-
mension 1 souls:

Example 1.10. ([33]) Let L,L′ be homotopy equivalent, non-homeo-

morphic 3-dimensional lens spaces, such as L(7, 1), L(7, 2). Then L×
S2k , L′×S2k are non-homeomorphic and h-cobordant for k > 0; hence
they can be realized as non-homeomorphic souls in N := L× S2k × R ,

which is diffeomorphic to L′ × S2k × R . In particular, Mc
sec≥0(N) is

not connected.

The codimension 1 is special both for geometric and topological rea-
sons. As we show in Proposition 2.8, if a manifold N admits a met-
ric with a codimension 1 soul, then the obvious map M

∞,u
sec≥0(N) →

M
∞,c
sec≥0(N) is a homeomorphism, and either space is homeomorphic to

the disjoint union of the moduli spaces of all possible pairwise non-
diffeomorphic souls of metrics in M∞

sec≥0(N).
Kreck-Stolz [26] used index-theoretic arguments to construct a closed

simply-connected 7-manifold B which carries infinitely many metrics
of Ric > 0 that lie in different components of M∞

scal>0(B). It was shown
in [25] that some other metrics on B have sec ≥ 0 and lie in infinitely
many different components of M∞

scal≥0(B). In particular, we conclude

Corollary 1.11. M
∞,c
sec≥0(B×R) has infinitely many connected com-

ponents.

We also give examples of infinitely many isometric metrics that can-
not be deformed to each other through complete metrics of sec ≥ 0.

Theorem 1.12. If n = 4r − 1 and 3 ≤ k ≤ 2r + 1 for some r ≥ 2,
then Ru

sec≥0(S
n × Rk) has infinitely many components that lie in the

same component of Ru(Sn × Rk).

Theorem 1.13. Ru
sec≥0(N) has infinitely many components if

(i) N = L× L(4r + 1, 1) × S2k × R where L is any complete manifold

of sec ≥ 0 and nonzero Euler characteristic, and k ≥ 3, r > 0;
(ii) N = M ×R where M is a closed oriented manifold of even dimen-

sion ≥ 5 with sec ≥ 0 such that G = π1(M) is finite and Wh(G) is

infinite.

The proof of (i) relies on a geometric ingredient of independent in-
terest: if S , S′ are souls of metrics lying in the same component of
Ru

sec≥0(N), then the restriction to S of any deformation retraction

N → S′ is homotopic to a diffeomorphism; e.g. this applies to the
Sharafutdinov retraction.
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Structure of the paper. Section 2 contains various geometric re-
sults on the spaces of nonnegatively curved metrics, including Theo-
rem 1.5. Section 3 contains proofs of Theorems 1.1–1.2, giving examples
with infinitely many codimension 4 souls. Sections 4–5 are a topolog-
ical study of vector bundles with diffeomorphic total spaces, especially
those of fiber dimension ≤ 3; in particular, there we prove Theorems 1.3
and 1.9. In Section 6, we prove Theorem 1.7, implying that diffeomor-
phic souls need not be ambiently isotopic; Theorem 1.12 is also proved
there. Section 7 contains the proof of Theorem 1.13 and the geometric
result stated in the previous paragraph.

On topological prerequisites. This paper employs a variety of
topological tools, which we feel are best learned from the following
sources. We refer to books by Husemoller [23], Milnor-Stasheff [35], and
Spanier [47, chapter 6.10] for bundle theory and characteristic classes;
to books by Cohen [7], and Oliver [38], and Milnor’s survey [34] for
Whitehead torsion and h-cobordisms; and to monographs of Wall [51]
and Ranicki [42] for surgery theory. In the companion paper [4, sections
3 and 8], we survey aspects of surgery that are most relevant to [4] and
to the present paper. We refer to [42, section 9.2 and proposition 9.20]
for results on classifying spaces for spherical fibrations associated with
topological monoids Fk , Gk , F , and their identity components SFk ,
SGk , SF ; observe that Ranicki denotes Fk , Gk by F (k + 1), G(k),
respectively.

Acknowledgments. Belegradek is grateful to A. Dessai for the idea of
Proposition 2.7, V. Kapovitch for helpful conversations about [25], and
B. Wilking and L. Polterovich for useful comments about uniform topol-
ogy on the moduli space. We also appreciate referees’ comments on ex-
position. Belegradek was partially supported by the NSF grant #DMS-
0804038. Kwasik was partially supported by BOR award LEQSF(2008-
2011)-RD-A-24.

2. Moduli Spaces and Souls

In this section we prove Theorem 1.5, Corollary 1.11, and related
results. We focus on moduli spaces with uniform topology; Remark 2.2
discusses when the same results hold for moduli spaces with topology
of convergence on compact subsets. Here and elsewhere in the paper we
follow notational Convention 1.4.

Riemannian metrics are sections of a tensor bundle, so they lie in
a continuous function space, which is metrizable; thus Ru

sec≥0(N) is

metrizable, and in particular, a map with domain Ru
sec≥0(N) is continu-

ous if and only if it sends convergent sequences to convergent sequences.
Theorem 1.5 follows immediately from Lemma 2.1 below. Indeed,

Lemma 2.1 implies that the map sending g in Ru
sec≥0(N) to the diffeo-

morphism class of the pair (N, soul of g) is locally constant, and hence
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continuous with respect to the discrete topology on the codomain, which
implies that it descends to a continuous map from the quotient space
Mu

sec≥0(N).
Let Si be a soul of gi in Ru

sec≥0(N), let pi : N → Si denote the
Sharafutdinov retraction, and let ǧi be the induced metric on Si . Since
Si is convex, ǧi and gi induce the same distance functions on Si , which
is denoted di . For brevity, g0 , S0 , p0 , ǧ0 , d0 are denoted by g , S , p ,
ǧ , d , respectively.

Lemma 2.1. If gi converges to g in Ru
sec≥0(N), then for all large i

(1) pi|S : S → Si is a diffeomorphism,

(2) the pullback metrics (pi|S)
∗ǧi converge to ǧ in R

0,u
sec≥0(S),

(3) Si is C∞ ambiently isotopic to S in N .

Proof. (1) Arguing by contradiction, pass to a subsequence for which
pi|S is never a diffeomorphism. Wilking proved in [52] that Sharafut-
dinov retractions are smooth Riemannian submersions onto the soul.
Note that pi(S) = Si and p(Si) = S because degree one maps are onto.

Since the convergence gi → g is uniform, given any positive ǫ,R and
all large enough i , the distance functions di are ǫ-close to d on any R-
ball in (N, d). Then S has uniformly bounded di -diameter, and since
pi are distance nonincreasing, and pi(S) = Si , we conclude that Si has
uniformly bounded di -diameter; thus the metrics d, di are close on S ,
and on Si . As pi , p are distance-nonincreasing, with respect to di , d ,
respectively, the self-map fi := p◦pi|S of (S, d) is almost distance non-
increasing. Then compactness of S implies via Ascoli’s theorem that
fi subconverges to a self-map of (S, d), which is distance nonincreasing
and surjective, and hence is an isometry.

Any isometry is a diffeomorphism. Diffeomorphisms form an open
subset among smooth mappings, so p◦pi|S is a diffeomorphism for large
i . It follows that pi|S is an injective immersion, and hence a diffeo-
morphism, as S is a closed manifold, giving a contradiction that proves
(1).

(2) Arguing by contradiction, pass to a subsequence for which p∗i ǧi
lies outside a C0 -neighborhood of ǧ . Note that pi : (S, d) → (Si, di) is
a Gromov-Hausdorff approximation; indeed, if x, y ∈ S , then d(x, y) is
almost equal to d(fi(x), fi(y)) ≤ d(pi(x), pi(y)), where the right hand
side is almost equal to di(pi(x), pi(y)) which is ≤ di(x, y), which is
almost equal to d(x, y); thus all the inequalities are almost equalities
and hence d(x, y) is almost equal to di(pi(x), pi(y)).

By Yamaguchi’s fibration theorem [54], there is a diffeomorphism
hi : Si → S such that h∗i ǧ is C0 -close to ǧi . Note that hi◦pi almost

preserves ď so it subconverges to an isometry of (S, ǧ), and in particular,
it pulls ǧ back to a metric that is C0 -close to ǧ . It follows that p∗i ǧi is
C0 -close to ǧ , giving a contradiction which proves (2).
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(3) Let E(νi) denote the total space of the normal bundle νi to Si .
Wilking showed in [52, corollary 7] that there exists a diffeomorphism
ei : E(νi) → N such that pi◦ei is the projection of νi . Thus (1) implies
that the projection of νi restricts to a diffeomorphism from e−1

i (S)

onto Si , whose inverse is a section of νi with image e−1
i (S). Any two

sections of a vector bundle are ambiently isotopic, so applying ei , we
get an ambient isotopy of S and Si in N . q.e.d.

Remark 2.2. We do not know whether the conclusion of Lemma 2.1
holds for Rc

sec≥0(N). The proof of Lemma 2.1 works for Rc
sec≥0(N)

as written, provided dist(S, Si) is uniformly bounded. This happens if
any two metrics in Rc

sec≥0(N) have souls that intersect, which as noted
in [25] is true, e.g. when N contains a soul with nontrivial normal Euler
class. Note that except for examples discussed in Remark 3.6, all the
metrics we construct in this paper have souls with trivial normal Euler
class.

Remark 2.3. Let {Si}i∈I be a collection of pairwise nondiffeomor-
phic manifolds representing the diffeomorphism classes of souls of all
possible complete nonnegatively curved metrics on an open manifold
N , and for g ∈ Ru

sec≥0(N), let i(g) ∈ I be such that Si(g) is diffeo-
morphic to a soul of (N, g). By [44], one has a well-defined map that
associates to g the isometry class of its soul in Msec≥0(Si(g)), which
can be thought of as a map Ru

sec≥0(N) →
∐

iMsec≥0(Si), where the

codomain is given the topology of disjoint union of Msec≥0(Si)’s. This
map descends to a map

soul : M
k,u
sec≥0(N) →

∐

i

Mk
sec≥0(Si).

If k = 0, then part (2) of Lemma 2.1 implies that the map soul is

continuous (the continuity can be checked on sequences in R
0,u
sec≥0(N)

because it is metrizable).

Remark 2.4. Suppose that N has a soul S with trivial normal bun-

dle. Let Mk,u
sec≥0(N,S) denote the union of the components of Mk,u

sec≥0(N)
consisting of the isometry classes of metrics with soul diffeomorphic to
S . Then the map soul restricts to a retraction

M
0,u
sec≥0(N,S) → M0

sec≥0(S)

where M0
sec≥0(S) sits in M0

sec≥0(N,S) as the set of isometry classes
of Riemannian products of nonnegatively curved metrics on S and
the standard Rn . Like any retraction, it induces a surjective map on
homotopy and homology, and hence one potentially could get lower
bounds on the topology of M

0,u
sec≥0(S × Rn) in terms of the topology

of M0
sec≥0(S). Unfortunately, nothing is known about the topology of

M0
sec≥0(S), which naturally leads to the following.
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Problem 2.5. Find a closed manifold S with non-connected
M0

sec≥0(S).

Problem 2.6. Is the map soul : M∞
sec≥0(N) →

∐
i M

∞
sec≥0(Si) con-

tinuous?

The only known examples with non-connected Mk
sec≥0(S) are (mod-

ifications of) those in [26] where k = ∞ (it may suffice to take k
sufficiently large but definitely not k = 0). These examples were mod-
ified in [25] to yield a closed simply-connected manifold B admitting
infinitely many metrics gi with sec ≥ 0 and Ric > 0 that lie in different
components of M∞

scal>0(B). It was asserted in [25] that gi lie in dif-
ferent components of M∞

scal≥0(B), but it takes an additional argument

which hopefully will be written by the authors of [25]. The following
shows that gi lie in different components of M∞

sec≥0(B).

Proposition 2.7. Metrics of sec ≥ 0 and Ric > 0 on a closed

manifold X that lie in different components of M∞
Ric>0(X) also lie in

different components of M∞
sec≥0(X).

Proof. We abuse terminology by not distinguishing a metric from its
isometry class. First we show that each h ∈ M∞

sec≥0(X) has a neigh-

borhood Uh such that any h′ ∈ Uh can be joined to h by a path of
metrics hs with h0 = h , h1 = h′ , and Ric(hs) > 0 for 0 < s < 1. If
there is no such Uh , then using Ebin’s slice theorem [11] one can show
that there is a sequence hi ∈ R∞

sec≥0(X) converging to h such that hi
cannot be joined to h by a path as above. Böhm-Wilking [5] showed
that Ricci flow instantly makes a metric of sec ≥ 0 on a closed mani-
fold with finite fundamental group into a metric with Ric > 0. Thus
hi and h can be flown to nearby metrics hi(t), h(t) of positive Ricci
curvature where hi(t) → h(t) for any fixed small t . Since M∞

Ric>0(X)
is open in the space of all metrics, Ebin’s slice theorem ensures that if
i is large enough, hi(t), h(t) can be joined by a path in M∞

Ric>0(X),
and concatenating the three paths yields a desired path from hi to h
via hi(t) and h(t).

Given an open cover {Uk} of a connected set for any two g, g′ in
this set there exists a finite sequence g0 = g, g1, . . . , gn = g′ such that
gk ∈ Uk and Uk∩Uk−1 6= ∅ for every 0 < k ≤ n [29, section 46, theorem
8] .

Thus, given two metrics g, g′ in a component of M∞
sec≥0(X), we get

a finite sequence gk in this component with g0 = g, g1, . . . , gn = g′ and
such that for each k one can join gk−1 to gk by a path of metrics that
have Ric > 0, except possibly at endpoints. By assumption, g, g′ have
Ric > 0. By construction, the paths backtrack at gk , as they are given
by Ricci flow gk(t) near gk , so the concatenated path from g to g′ can
be cut short at g1, . . . , gn−1 to entirely consist of metrics of Ric > 0.
q.e.d.
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Now Corollary 1.11 follows from the proposition below, applied for
k = ∞ .

Proposition 2.8. For an integer k ≥ 0, set k0 to be the maxi-

mum of 0 and k − 1; for k = ∞, set k0 = ∞. If N admits a com-

plete metric with sec ≥ 0 and a codimension 1 soul, then the maps

soul : M
k,c
sec≥0(N) →

∐
i M

k0(Si) and id : M
k,u
sec≥0(N) → M

k,c
sec≥0(N)

are homeomorphisms.

Proof. It suffices to show that the maps soul : M
k,c
sec≥0(N) →

∐
iM

k0(Si) and soul : M
k,u
sec≥0(N) →

∐
iM

k0(Si) are homeomorphisms,
and the argument below works for both maps.

By the splitting theorem, any complete metric g of sec ≥ 0 on N
locally splits off an R-factor that is orthogonal to the soul. The splitting
becomes global in the cover of order ≤ 2 that corresponds to the first
Stiefel-Whitney class w1 of the normal bundle to the soul. If w1 = 0,
then g is the product of R and a closed nonnegatively curved manifold
Sg , in which case there is a unique soul Sg × {t} through every point.

If w1 6= 0, and if Sg is a soul of g , then g can be written as S̃g×O(1)R ,

where S̃g is the 2-fold cover of Sg induced by w1 , and Sg = S̃g ×O(1)

{0}; in this case, Sg is a unique soul of g because by [55] any soul is
obtained by exponentiating a parallel normal vector field along Sg , but
the existence of a nonzero parallel normal vector field along Sg would
imply triviality of the normal line bundle to Sg , contradicting w1 6= 0.

As follows (e.g. from Section 4) if two real line bundles over closed
manifolds S , S′ have diffeomorphic total spaces, then the line bundles
are either both trivial, or both nontrivial. Thus triviality of w1 depends
only on N , and not on the metric.

If w1 = 0, then the map soul has a continuous inverse induced by
the map that sends a metric on the soul to its product with R .

If w1 6= 0, then each closed nonnegatively curved manifold S that is
homotopy equivalent to N has a 2-fold cover S̃ induced by w1 . Thus
a metric in Msec≥0(S) gives rise to the metric S̃ ×O(1)R , which defines
a continuous inverse for soul.

Finally, we show that soul is continuous. It suffices to do so for

the topology of convergence on compact sets, as id : M
k,u
sec≥0(N) →

M
k,c
sec≥0(N) is continuous. Let gj → g be a converging sequence in

R
k,c
sec≥0(N). By Lemma 2.1, their souls of gj converge in C0 topol-

ogy (as abstract Riemaniann manifolds) to the soul of g . This gives
continuity of soul for k ∈ {0, 1}, so we assume k ≥ 2.

Fix a soul S of g . Then there exists a soul Sj of gj that intersects S ;
indeed, given a complete metric g′ of sec ≥ 0 on N , if w1 = 0, then g′

has a soul through every point of N , and if w1 6= 0, then souls of g′ and
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g must intersect because w1 can be interpreted as the first obstruction
to deforming the homotopy equivalence Sg′ → Sg away from Sg .

As Sj (abstractly) C0 converge to S , their diameters are uniformly
bounded; in particular, they all lie in a compact domain D of N . Con-
vergence gj → g in Ck topology implies convergence ∇l

gj
Rgj → ∇l

gRg

of covariant derivatives of the curvature tensors for every l ≤ k−2, and
in particular, one gets a uniform bound on ‖∇l

gj
Rgj‖ over D . Since Sj

is totally geodesic, the restriction of ∇l
gj
Rgj to Sj is ∇l

gj |Sj

Rgj |Sj
[24,

proposition 8.6], so ‖∇l
gj |Sj

Rgj |Sj
‖ are uniformly bounded for l ≤ k−2.

Since the C0 limit S of Sj has the same dimension, the convergence is
without collapse, so there is a common lower injectivity radius bound
for Sj . Hence the family Sj is precompact in Ck−1 topology [41, page

192], but since Sj converges to S in C0 topology, all Ck−1 limit points
of Sj are isometric to S because Gromov-Hausdorff limits are unique

up to isometry. Thus Sj converges to S in Ck−1 topology, as claimed.
q.e.d.

Question 2.9. Can k0 in Proposition 2.8 be replaced by k?

Remark 2.10. An analog of Proposition 2.8 holds for complete
n-manifolds of Ric ≥ 0 with nontrivial (n − 1)-homology, because
each such manifold is a flat line bundle over a compact totally geo-
desic submanifold [48]. In particular, once it is shown that metrics gi
of [25] lie in different components of M∞

scal≥0(B), we can conclude that

M∞
Ric≥0(B × R) has infinitely many connected components.

As mentioned in the introduction, Mu(N) need not be connected.
It is therefore desirable to arrange our metrics with non-diffeomorphic
souls to lie in the same component of Mu(N). This can be accomplished
under a mild topological assumption:

Proposition 2.11. Suppose an open manifold N admits two com-

plete metrics of sec ≥ 0 with souls S , S′ . If the normal sphere bundle

to S is simply-connected and has dimension ≥ 5, then N admits two

complete metrics of sec ≥ 0 with souls S , S′ which lie in the same

path-component of Ru(N).

Proof. By Proposition 4.1, the normal sphere bundle to S′ is also
simply-connected, and by Lemma 4.8, if normal sphere bundles to S ,
S′ are chosen to be disjoint, then the region between them is a (trivial)
h-cobordism. Thus closed tubular neighborhoods of S , S′ are diffeo-
morphic. The complement of an open tubular neighborhood of the soul
is of course the product of a ray and the boundary of the tubular neigh-
borhood. The diffeomorphism of closed tubular neighborhoods of S , S′

extends to a self-diffeomorphism of N , which can be chosen to preserve
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any given product structures on the complements of tubular neighbor-
hoods, and which is the identity near S and S′ .

By [15], any complete metric of sec ≥ 0 can be modified by changing
it outside a sufficiently small tubular neighborhood of the soul so that
the new metric has the same soul and, outside a larger tubular neigh-
borhood, it is the Riemannian product of a ray and a metric on the
normal sphere bundle. Performing this modification to the metrics at
hand, and pulling back one of the metrics via a self-diffeomorphism of
N as above, we get nonnegatively curved metrics g , g′ with souls S , S′

such that outside some of their common tubular neighborhood D = D′

the metrics are Riemannian products ∂D × R+ , ∂D′ × R+ with the
same R+ -factor. Now the convex combination of g , g′ defines a path
joining g , g′ in Ru(N). q.e.d.

3. Infinitely Many Souls of Codimension 4

This section contains examples of manifolds that admit metrics with
infinitely many non-homeomorphic souls of codimension 4. The exam-
ples are obtained by modifying arguments in [1, 25] and invoking the
new topological ingredient, Proposition 3.1 below, which is best stated
with the following notation.

Given vector bundles α0 , β0 over a space Z , let V(Z,α0, β0) be the
set of pairs (α, β) of vector bundles over Z such that α , β are (unsta-
bly) fiber homotopy equivalent to α0, β0 , respectively, and the rational
Pontryagin classes of α ⊕ β , α0 ⊕ β0 become equal when pullbacked
via the sphere bundle projection b : S(β) → Z . Also denote the fiber
dimension of S(α0), S(β0) by kα0 , kβ0 , respectively.

Proposition 3.1. If kα0 + kβ0 +dim(Z) ≥ 5 and kα0 ≥ 2, and Z is

a closed smooth manifold, then the number of diffeomorphism types of

the disk bundles D(b#α) with (α, β) in V(Z,α0, β0) is finite.

Proof. Denote the sphere bundle projection of α , β , α0 , β0 by a , b ,
a0 , b0 , respectively, and fiber homotopy equivalences by fα : S(α) →
S(α0) and fβ : S(β) → S(β0).

The fiberwise cone construction yields a homotopy equivalence

f̂α : (D(α), S(α)) → (D(α0), S(α0))

that extends fα and satisfies a0◦ f̂α = a . Pulling back f̂α via b gives a
homotopy equivalence b#f̂α : (D(b#α), S(b#α)) → (D(b#α0), S(b

#α0)).

Since b = b0◦fβ , the disk bundle D(b#α0) is the fβ -pullback of D(b#0 α0),

so composing b#f̂α with the bundle isomorphism induced by fβ gives
a homotopy equivalence

Fα,β : (D(b#α), S(b#α)) → (D(b#0 α0), S(b
#
0 α0)).
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Now we show that Fα,β pulls back rational Pontryagin classes. The tan-

gent bundles to D(b#α) and D(b#0 α0) are determined by their restric-
tions to the zero sections, and these restrictions stably are respectively

b#α⊕ τS(β) = b#α⊕ b#(β ⊕ τZ) = b#(α⊕ β ⊕ τZ)

and b#0 (α0 ⊕β0⊕ τZ). The restriction of Fα,β to the zero section is fβ ,
so pulling back the latter bundle via fβ gives two bundles over S(β),

namely, b#(α ⊕ β ⊕ τZ) and b#(α0 ⊕ β0 ⊕ τZ), which by assumption
have the same rational total Pontryagin class.

Arguing by contradiction lets us pass to subsequences; thus, since
rational Pontryagin classes determine a stable vector bundle up to finite
ambiguity, we may pass to a subsequence in V(Z,α0, β0) for which

the F−1
α,β -pullbacks of all the bundles b#(α ⊕ β ⊕ τZ) to D(b#0 α0) are

isomorphic. Fix (α1, β1) in the subsequence so that Gα,β := Fα,β◦F−1
α1,β1

is now tangential for any (α, β).
To finish the proof, we need a well-known tangential surgery exact

sequence

Ls
n+1(π1(Y ), π1(∂Y )) −→ Ss,t(Y, ∂Y ) −→ [Y, F ]

−→ Ls
n(π1(Y ), π1(∂Y ))

described, e.g., in [4, section 8], where Ss,t(Y, ∂Y ) is the tangential sim-
ple structure set for a smooth manifold with boundary Y of dimension
n ≥ 6.

Set Y := D(b#1 α1); then Gα,β : (D(b#α), S(b#α)) → (Y, ∂Y ) repre-
sents an element in Ss,t(Y, ∂Y ). The assumption kα0 ≥ 2 ensures that
∂Y → Y is a π1 -isomorphism so that the Wall groups Ls

∗(π1(Y ), π1(∂Y )
vanish, and the other dimension assumption gives dim(Y ) = kα0+kβ0+
1+dim(Z) ≥ 6. By exactness, Ss,t(Y, ∂Y ) is bijective to the set [Y, F ] ,
which is a finite [42, proposition 9.20(iv)], so that manifolds D(b#α)
fall into finitely many diffeomorphism classes. q.e.d.

Remark 3.2. If in the definition of V(Z,α0, β0) we require that
α⊕β , α0⊕β0 are stably isomorphic, then the number of diffeomorphism
types of manifolds D(b#α) is at most the order of the set [Z,F ] . Indeed,

let b̂ : D(β) → Z , b̂0 : D(β0) → Z denote the disk bundle projections,
and extend Fα,β by the fiberwise cone construction to the homotopy
equivalence of triads

F̂α,β : D(b̂#α) → D(b̂#0 α0),

which is tangential as α⊕β , α0⊕β0 are stably isomorphic. Hence Fα,β is

also tangential, as a restriction of F̂α,β to submanifolds with trivial nor-
mal bundles. The geometric definition of the normal invariant (see [51]
after lemma 10.6) easily implies that the normal invariant of Fα,β is the

restriction of the normal invariant of F̂α,β ; hence the normal invariant
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of Fα,β lies in the image of the restriction [D(b̂#0 α0), F ] → [D(b#0 α0), F ]

whose domain is bijective to [Z,F ] , as D(b̂#0 α0) is homotopy equivalent
to Z . As in the proof of Proposition 3.1, the tangential surgery exact
sequence implies that the number of diffeomorphism types of manifolds
D(b#α) is at most the number of normal invariants of the map Fα,β ,
proving the claim.

Given m ∈ π4(BSO3) ∼= Z , let ξnm be the corresponding rank n
vector bundle over S4 with structure group SO3 sitting in SOn in the

standard way. Let ηk,nl,m denote the pullback of ξnm via the sphere bundle

projection S(ξkl ) → S4 . Theorem 1.1 is obtained from the following by
setting l = 0 = m .

Theorem 3.3. If k, n ≥ 4, then E(ηk,nl,m) admits infinitely many

complete metrics of sec ≥ 0 with pairwise non-homeomorphic souls.

Proof. It is explained in [1] that S(ξkl ), S(ξki ) are fiber homotopy
equivalent if l − i is divisible by 12 for k ≥ 4. (In fact, up to fiber ho-
motopy equivalence there are only finitely many oriented S3 -fibrations
over a finite complex Z that admit a section, because their classify-
ing map in [Z,BSG4] factors through BSF3 and [Z,BSF3] is finite as
BSF3 is rationally contractible; see [42, proposition 9.20(i)].)

Also, it is noted in [1] that ξkl ⊕ξnm and ξki ⊕ξnj are equal in π4(BSO)
if l +m = i + j . Of course, if j := l − i +m and l − i is divisible by
12, then m− j is divisible by 12.

Thus we get an infinite family (ξki , ξ
n
l−i+m) parametrized by i with

l−i divisible by 12 such that ξki ⊕ξnl−i+m = ξkl ⊕ξnm in BSO , and S(ξki ),

S(ξnl−i+m) is fiber homotopy equivalent to S(ξkl ), S(ξ
n
m), respectively.

By Proposition 3.1, D(ηk,ni,l−i+m) lie in finitely many diffeomorphism

classes, one of which must contain D(ηk,nl,m). A priori, this does not

show that there are infinitely many D(ηk,ni,l−i+m)’s that are diffeomorphic

to D(ηk,nl,m). Yet π4(F ) = 0, so Remark 3.2 implies that Fξki ,ξ
n
l−i+m

:

D(ηk,ni,l−i+m) → D(ηk,nl,m) is homotopic to a diffeomorphism. (Without

invoking Remark 3.2, we only get an infinite sequence of D(ηk,ni,l−i+m)’s

that are diffeomorphic to some D(ηk,ni0,l−i0+m).)

As in [1], results of Grove-Ziller show that each E(ηk,ni,l−i+m) is non-

negatively curved with zero section S(ξki ) being a soul, and p1(S(ξ
k
i ))

is ±4i-multiple of the generator; so assuming i ≥ 0, we get that the
souls are pairwise non-homeomorphic. q.e.d.

The proof of Theorem 3.4 below is a slight variation of an argument
in [25]. A major difference is in employing Proposition 3.1, and checking
it is applicable, in place of “above metastable range” considerations
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of [25]. Another notable difference is that to satisfy the conditions of
Proposition 3.1, we have to vary q, r and keep a, b fixed, while exactly
the opposite is done in [25]. This requires a number of minor changes,
so instead of extracting what we need from [25], we find it easier (and
more illuminating) to present a self-contained proof below; we stress
that all computational tricks in the proof are lifted directly from [25].

Recall that for a cell complex Z , each element in H2(Z) can be
realized as the Euler class of a unique SO2 -bundle over Z .

Let X = S2×S2×S2 . Fix an obvious basis in H2(X) whose elements
are dual to the S2 -factors. Let γ , ξ , µ be the complex line bundles
over X with respective Euler classes (a, b, 0), (0, q, r), (0,−q, r) in this
basis, where a, b, q, r are nonzero integers and a, b are coprime. Let
η = ξ ⊕ ǫ and ζ = µ⊕ ǫ , where ǫ is the trivial complex line bundle.

Denote the pullback of η , ζ via πγ : S(γ) → X by η̂ , ζ̂ , respec-
tively, and the pullback of γ via πη : S(η) → X by γ̂ . By definition
of pullback, S(η̂) and S(γ̂) have the same total space, which we de-
note Mγ,η . Denote by πγ̂ , πη̂ the respective sphere bundle projections

S(η̂) → S(η), S(γ̂) → S(γ); note that πγ̂◦πη = πη̂◦πγ . Let ζ̃ be the

pullback of ζ̂ via πη̂ : Mγ,η → S(γ). With these notations we prove:

Theorem 3.4. (i) For a universal c > 0, the manifold E(ζ̃) admits

a complete metric with sec(E(ζ̃)) ∈ [0, c] such that the zero section Mγ,η

of ζ̃ is a soul of diameter 1.
(ii) For fixed γ and variable η , ζ , the manifolds D(ζ̃) lie in finitely

many diffeomorphism classes, while the manifolds Mγ,η lie in infinitely

many homeomorphism classes.

Proof. (i) Recall that any principal S1 -bundle P over (S2)n can
be represented as (S3)n ×ρ S1 where ρ : T n → S1 is a homomor-
phism and T n acts on (S3)n as the product of standard S1 -actions
on S3 . (Indeed, the pullback of the S1 -bundle to (S3)n can be trivi-
alized as H2((S3)n) = 0, and ρ comes from the T n -action on the S1 -
factor.) Therefore, P → (S2)n can be identified with (S3)n/ ker(ρ) →
(S3)n/T n .

Specializing to our situation, let ργ , ρη , ρζ be the homomorphisms
T 3 → S1 corresponding to the principal circle bundles that are (uniquely)
determined by γ, η, ζ , respectively. Thus the principal circle bundle
S(γ) equals (S3)3/ ker(ργ), and the fiber product S(η)⊕ ζ can be writ-
ten as the associated bundle (S3)3 ×ρη S3 ×ρζ R

4 ; this is an S3 × R4 -
bundle over B . The pullback of this latter bundle to S(γ) has total

space E(ζ̃), and it can then be written as (S3)3×ρη|ker(ργ)
S3×ργ |ker(ργ )

R4 .

All the actions are isometric, so giving R4 a rotationally symmetric
metric isometric to S3×R+ outside a compact subset, we see that E(ζ̃)
gets a Riemannian submersion metric of sec ∈ [0, c] for a universal c .
By a standard argument involving a rotationally symmetric exhaustion
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function on R4 , the zero section Mγ,η is a soul. Since Mγ,η is a quotient
of (S3)3×ρη S

3 that can be further Riemannian submersed onto a fixed
manifold S(γ), the diameter of Mγ,η is uniformly bounded above and
below. So the diameter can be rescaled to 1, while keeping universal
curvature bounds on E(ζ̃).

(ii) First, we show that Mγ,η fall into infinitely many homeomorphism
types. Since τX is stably trivial, computing the first Pontryagin class
gives

p1(Mγ,η) = π∗
η̂ p1(η̂ ⊕ τS(γ)) = π∗

η̂π
∗
γp1(η ⊕ γ ⊕ τX) = π∗

η̂π
∗
γp1(ξ ⊕ γ).

Now p1(γ ⊕ ξ) = p1(γ) + p1(ξ) = e(γ)2 + e(ξ)2 and the Gysin sequence
for γ gives π∗

γe(γ)
2 = 0 because the kernel of π∗

γ : H4(X) → H4(S(γ))
is the image of the (cup) multiplication by e(γ).

We compute π∗
η̂π

∗
γp1(ξ) from the commutative diagram below, whose

rows are Gysin sequences for γ , γ̂ , while all vertical arrows are isomor-
phisms for i ≤ 2 because they fit into the Gysin sequences for η , η̂
where injectivity follows as e(η), e(η̂) vanish and surjectivity holds for
i ≤ 2 as X , S(η), Mγ,η are simply-connected, as a, b are coprime.

H i(X)
∪ e(γ)

//

π∗

η

��

H i+2(X)
π∗

γ //

π∗

η

��

H i+2(S(γ))

πη̂
∗

��

// H i+1(X) = 0

H i(S(η))
∪ e(γ̂)// H i+2(S(η))

πγ̂
∗

// H i+2(Mγ,η) // 0

Also, the commutativity of the rightmost square implies that πγ̂
∗ is

onto.
Let x , y , z be the basis in H2(S(η)) corresponding to the chosen

basis in H2(X) = Z3 ; thus π∗
ηe(ξ) = qy+rz, and e(γ̂) = ax+by , which

is primitive as a, b are coprime. Another basis in H2(S(η)) is ax+ by ,
−mx+ny , z where n,m are integers with an+bm = 1. Thus H2(Mγ,η)
is isomorphic to Z2 generated by u := π∗

γ̂(z) and w := π∗
γ̂(−mx+ny).

In particular, π∗
γ̂ maps y to aw because −amx+any = y−m(ax+by),

and similarly π∗
γ̂(x) = −bw , even though we do not use it.

The cup squares of x2 , y2 , z2 vanish because the S2 -factors of X
have trivial self-intersection numbers when computed in some S2 ×S2 -
factor of X . Now π∗

ηe(ξ) = qy + rz implies π∗
ηp1(ξ) = π∗

ηe(ξ)
2 =

(2qr)yz; hence

p1(Mγ,η) = π∗
η̂π

∗
γp1(ξ) = π∗

γ̂π
∗
η p1(ξ) = (2qra)wu.

The basis z(ax + by), z(−mx + ny), xy = (ax + by)(ny + mx) in
H4(S(η)) is projected to 0, wu , 0 by π̂∗

γ ; in particular, wu generates

H4(Mγ,η). It follows that for any fixed a, b by varying q , r , we get
(by the topological invariance of rational Pontryagin classes) that the
manifolds Mγ,η lie in infinitely many homeomorphism types.
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We show that the manifolds D(ζ̃) lie in finitely many diffeomorphism

types by applying Proposition 3.1 for (α, β) = (ζ̂ , η̂). To see it applies,

note that p1(ζ ⊕ η) = p1(µ) + p1(ξ) = e(µ)2 + e(ξ)2 , so p1(ζ̂ ⊕ η̂) =

(−2qr+ 2qr)yz = 0. It remains to check that S(η̂), S(ζ̂) lie in finitely
many fiber homotopy types.

If an oriented S3 -fibration over a finite complex Z has a section,
which is true for S(η̂), S(ζ̂), then it is classified by a map [Z,BSG4]
that factors through BSF3 [42, proposition 9.20(i)]. Since SF3 is
a component of Ω3S3 , the space BSF3 is rationally contractible, so
[Z,BSF3] is finite. Thus, for all choices of parameters a, b, q, r the

S3 -fibrations S(η̂), S(ζ̂) lie in finitely many fiber homotopy types; in
particular, Mγ,η lie in finitely many homotopy types. q.e.d.

Remark 3.5. It is instructive to see why the argument at the end
of the proof fails for oriented S2 -fibrations with a section: the classi-
fying map in [Z,BSG3] only factors through BSF2 and the inclusion
BSF2 → BSG3 is rationally equivalent to BSO2 → BSO3 [19], while
[Z,BSO2] → [Z,BSO3] has infinite image for Z = S2×S2 correspond-
ing to classifying maps in [Z,BSO2] of circle bundle with nonzero e and
p1 . This is the reason we have to assume ζ has rank ≥ 4. Similarly, in
Theorem 3.3 we assume ξnm has rank n ≥ 4 because S2 -bundles over S4

with structure group SO3 lie in infinitely many fiber homotopy classes;
indeed, the inclusion BSO3 → BSG3 is a rational isomorphism [19],
and π4(BSO3) = Z .

Remark 3.6. In view of Remark 2.2, one wants to have a version of
Theorem 3.4 for which the normal Euler class to the soul is nontrivial.
As in [25], this is achieved by modifying the above proof to work for ζ
equal to the Whitney sum of the line bundles over X with Euler classes
(0,−q, r) and (0, c, c) where c, q, r are nonzero integers, c is fixed, and
r = q + 1. Indeed,

e(ζ̂) = (−qy + rz)(cy + cz) = c(r − q)yz = cyz,

so since the Euler class determines an oriented spherical fibration up to
finite ambiguity, there are finitely many fiber homotopy possibilities for
S(ζ̂). Now

p1(ζ̂ ⊕ η̂) = p1(ζ̂) + p1(η̂) = (2c − 2qr + 2qr)yz = 2cyz,

so π∗
η̂(p1(ζ̂ ⊕ η̂)) is constant; hence D(ζ̃) lie in finitely many diffeomor-

phism types. The rest of the proof is the same. Finally, note that the
normal bundle to the soul has nonzero Euler class: e(ζ̃) = π∗

η̂(cyz) =
cawu .

Remark 3.7. More examples of manifolds with infinitely many souls
can be obtained from Theorems 3.3–3.4 by taking products with suitable
complete nonnegatively curved manifold L . The only point we have to
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check is that the souls in the product are pairwise non-homeomorphic,
which is true, e.g., if the soul of L has trivial first Pontryagin class;
then the souls in the product are not homeomorphic because their p1 ’s
are different integer multiples of primitive elements, and this property
is preserved under any isomorphism of their 4th cohomology groups.

Problem 3.8. Find a manifold N with an infinite sequence of com-
plete metrics gk of sec ≥ 0 satisfying one of the following:
(i) souls of (N, gk) are pairwise non-diffeomorphic and have codimen-
sion ≤ 3;
(ii) souls of (N, gk) are all diffeomorphic while the pairs (N, soul of gk)
are pairwise non-diffeomorphic.

Added in proof: Problems 4.8(i) and 4.9 were solved by Sadeeb
Ottenburger in [39] and [40], respectively.

Examples as in (ii), only without nonnegatively curved metrics, can
be found in [2, appendix A].

Problem 3.9. Find a manifold N with two complete metrics of
sec ≥ 0 whose souls S , S′ are diffeomorphic and have codimension
≤ 3, while the pairs (N,S), (N,S′) are not diffeomorphic.

4. Vector Bundles with Diffeomorphic Total Spaces

One of the things we are unable to do in this paper is construct
a manifold that admits metrics with infinitely many nondiffeomorphic
souls of codimension ≤ 3. To get an idea what such a manifold could
look like, in this section we systematically study vector bundles with
diffeomorphic total spaces, especially those of rank ≤ 3.

Throughout this section, N is the total space of vector bundles ξ , η
over closed manifolds Bξ , Bη , respectively. Composing the zero section
of ξ with the projection of η gives a canonical homotopy equivalence
fξ,η : Bξ → Bη .

The map fξ,η pulls TN |Bη to TN |Bξ
because the projection of N →

Bη →֒ N is homotopic to id(N).
Any homotopy equivalence of closed manifold preserves Stiefel-

Whitney classes, as follows from their definition via Steenrod squares,
so f∗

ξ,ηw(TBη) = w(TBξ). Therefore, the Whitney sum formula implies
that fξ,η also pulls back the normal total Stiefel-Whitney class w , i.e.
f∗
ξ,ηw(η)

∼= w(ξ). In fact, Stiefel-Whitney classes of a vector bundle
depend on the fiber homotopy type of its sphere bundle. To this end
we show:

Proposition 4.1. There is a fiber homotopy equivalence S(f#
ξ,ηη)

∼=
S(ξ).

It follows that fξ,η pulls back the normal Euler classes (with any local
coefficients).
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Proof of Proposition 4.1. Use some metric on the fibers to choose tubu-
lar neighborhoods Dr(η), Dρ(ξ), DR(η) of the zero sections of η , ξ , η ,
respectively, such that Dr(η) ⋐ Dρ(ξ) ⋐ DR(η). In the commutative
diagram below, unlabeled arrows are either inclusions or sphere/disk
bundle projections, p is the obvious retraction along radial lines, and
p(Sρ(ξ)) ⊂ Sr(η) because of the above inclusions of disk bundles.

Bξ
// Dρ(ξ) // DR(η) p

// Dr(η) // Bη

Sρ(ξ)

OObbEEEEEEEE
p|S(ξ) // Sr(η)

OO <<yyyyyyyy

The composition of top arrows is fξ,η , which by commutativity is cov-
ered by p|Sρ(ξ) . By a criterion in [10, theorem 6.1], to show that
p|Sρ(ξ) induces a fiber homotopy equivalence of Sρ(ξ) and the pull-
back of Sr(η) via fξ,η , it is enough to check that p|Sρ(ξ) is a homo-

topy equivalence. Lemma 4.8 below implies that WR := DR(η) \ D̊ρ(ξ)

and Wr := Dρ(ξ) \ D̊r(η) are h-cobordisms with ends SR(η), Sρ(ξ)
and Sρ(ξ), Sr(η), respectively. Therefore, the inclusion of Sρ(ξ) into

the trivial h-cobordism W := WR ∪ Wr = DR(η) \ D̊r(η) is a homo-
topy equivalence, and so is p|W : W → Sr(η); hence p|Wr defines a
deformation retraction Dρ(ξ) → Dr(η) that restricts to the homotopy
equivalence p|Sρ(ξ) : Sρ(ξ) → Sr(η). q.e.d.

Corollary 4.2. If ξ has rank i ∈ {1, 2}, then f#
ξ,ηη

∼= ξ , and fξ,η is

tangential.

Proof. Since Oi → Gi is a homotopy equivalence, the fiber homo-

topy equivalence of f#
ξ,ηS(η) and S(ξ) is induced by an isomorphism of

f#
ξ,ηη

∼= ξ . Thus ξ ⊕ TBξ = TN |Bξ
= f#

ξ,ηTN |Bη = f#
ξ,η(η ⊕ TBη) ∼=

ξ ⊕ f#
ξ,ηTBη . Subtracting ξ , we see that fξ,η pulls back stable tangent

bundles. q.e.d.

In codimension 3, all we can say is that fξ,η pulls back rational
Pontryagin classes of normal and tangent bundles; recall that a stable
vector bundle is determined by its rational Pontryagin classes up to
finite ambiguity.

Proposition 4.3. If ξ has rank 3, and p denotes the rational total

Pontryagin class, then f∗
ξ,η p(η)

∼= p(ξ) and f∗
ξ,η p(TBη) ∼= p(TBξ).

Proof. By Proposition 4.1, and Lemma 4.7 below, f∗
ξ,η p1(η)

∼= p1(ξ),

while the higher Pontryagin classes vanish as H∗(BSO3;Q) ∼= Q[p1] .

Now f#
ξ,ηTN |Bη

∼= TN |Bξ
and the Whitney sum formula gives

f∗
ξ,η p(TBη) ∼= p(TBξ). q.e.d.
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Proposition 4.4. If f#
ξ,ηη

∼= ξ , then fξ,η has trivial normal invari-

ant; in particular, fξ,η is tangential.

Proof. Use metrics on ξ , η to find their disk bundles that satisfy
D(ξ) ⋑ D(η) ⋑ Bξ . Lemma 4.8 below implies that D(ξ) \ D̊(η) is an
h-cobordism, so there exists a deformation retraction r : D(ξ) → D(η).
Note that r has trivial normal invariant, because D(ξ) × I can be
thought of as an h-cobordism with boundaries D(ξ), D(η) (cf. [51]
before theorem 1.3), and moreover, the map D(ξ)× I → D(η) given by
composing the coordinate projection with r defines a normal bordism
of r and id(D(η)).

Since f#
ξ,ηη

∼= ξ , there is a diffeomorphism h : D(f#
ξ,ηη) → D(ξ) that

is identity on the base Bξ . Let f̂ξ,η : D(f#
ξ,ηη) → D(η) be the map of

disk bundles induced by fξ,η . Next note that r◦h , f̂ξ,η are homotopic.
Indeed, restricting both maps to Bξ and postcomposing with the pro-

jection pη : D(η) → Bη gives fξ,η , so r◦h and f̂ξ,η glue along Bξ × I
to form a continuous map

F : (Bξ × I) ∪ (D(ξ)× {0, 1}) → Bη.

Since D(ξ)× I deformation retracts to the union of Bξ × I and D(ξ)×
{0, 1}, precomposing F with the retraction defines a homotopy of pη◦r◦h

and pη◦ f̂ξ,η , and hence a homotopy of r◦h and f̂ξ,η , because pη is ho-
motopic id(D(η)).

Homotopic maps have equal normal invariants, so q(f̂ξ,η) = q(r◦h) =
q(r) is trivial. Then Lemma 4.9 below implies that q(fξ,η) is trivial,

because the zero section of D(η) pulls q(f̂ξ,η) back to q(fξ,η). q.e.d.

Remark 4.5. Surgery theory implies (see, e.g., [42, theorem 13.2])
that if f : N → M is a homotopy equivalence of closed smooth simply-
connected manifolds of dimension n ≥ 5, then f has trivial normal
invariant if and only if N is diffeomorphic to the connected sum of M
and a homotopy sphere Σn and f is homotopic to the homeomorphism
N ∼= M#Σn → M#Sn ∼= M where the middle map is the connected
sum of id(M) with a homeomorphism Σn → Sn . Thus Corollary 4.2
implies Theorem 1.9.

Remark 4.6. Proposition 4.4 is optimal for bundles of rank ≥ 3.
Indeed, if a homotopy equivalence of closed manifolds f : N → M has
trivial normal invariant, and if α is a vector bundle over M , then by
Lemma 4.9 the induced map f̂ : D(f#α) → D(α) of disk bundles has

trivial normal invariant. So by Wall’s π−π -theorem, f̂ is homotopic to
a diffeomorphism, provided dim(D(α)) ≥ 6 and the inclusion S(α) →
D(α) is a π1 -isomorphism. The latter holds if the bundle α has rank
≥ 3. If the rank of α is 2, then things are a bit more complicated, and
we have partial answers when M is simply-connected of dimension ≥ 5.
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Namely, if α is trivial, and dim(M) ≥ 5, then N×R2 is diffeomorphic to
M ×R2 if and only if N is diffeomorphic to M (see Remark 5.12). If α
is nontrivial, then π1(S(α)) is a finite cyclic group Zd , and a surgery-

theoretic argument in [4, section 14] shows that f̂ is homotopic to a
diffeomorphism, except possibly when d is even and dim(M) ≡ 1mod 4.

The lemmas below are surely known, yet they do not seem to be
recorded in the literature in the precise form we need.

Lemma 4.7. For SO3 -bundles over finite complexes, the first ratio-

nal Pontryagin class p1 depends only on the fiber homotopy type of the

associated 2-sphere bundles.

Proof. Denote the natural inclusions O3 ⊂ G3 and SO3 ⊂ SG3 by
j and j1 , respectively. The fiber homotopy invariance of p1 will fol-
low, once we show that p1 lies in the image of Bj∗ : H4(BG3;Q) →
H4(BO3;Q). Look at the map induced on rational cohomology by the
commutative diagram, whose rows are projections of the 2-fold cover-
ings corresponding to the first Stiefel-Whitney class.

H∗(BSO3;Q) H∗(BO3;Q)oo

H∗(BSG3;Q)

Bj∗1

OO

H∗(BG3;Q)oo

Bj∗

OO

The horizontal arrows are induced by covering projections; hence by a
standard argument they are monomorphisms onto the subspace fixed by
the covering involution. Now Bj∗1 is an isomorphism [19] which is Z2 -
equivariant because Bj1 is Z2 -equivariant. So Bj∗ is an isomorphism
as well. q.e.d.

Lemma 4.8. Suppose a manifold N is the total space of two vector

bundles over closed manifolds M1 , M2 . If the normal sphere bundles to

M1 , M2 are chosen to be disjoint in N , then the region between these

sphere bundles is an h-cobordism.

Proof. Denote by Sk(r), Dk(r) the normal r -sphere, r -disk bundles
determined by some metric on the normal bundle to Mk ; denote by
pk the line bundle projection N \ Mk → Sk(r). Since Dk(r) exhaust
N , there are positive numbers r < t < R < T such that D1(r) ⋐

D2(t) ⋐ D1(R) ⋐ D2(T ). We are to show that W := D1(R) \ D̊2(t) is
an h-cobordism.

To see that S2(t) →֒ W is a homotopy equivalence, it suffices to note

that N \ D̊2(t) deformation retracts both to W and to S2(t) along the
fibers of p1 , p2 , respectively.

To show that S1(R) →֒ W is a homotopy equivalence, we first observe
that S1(R) →֒ W is π1 -injective, for if a loop in S1(R) is null-homotopic

in W , then it would be null-homotopic in the larger region D1(R)\D̊1(r)
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which deformation retracts to S1(R) along the fibers of p1 , so the null-
homotopy can be pushed to S1(R).

To see that S1(R) →֒ W is π1 -surjective, start with an arbitrary

loop α in W , and since W lies in D2(T ) \ D̊2(t) which deformation
retracts to S2(T ) along the fibers of p2 , the loop α can be homotoped

inside D2(T )\D̊2(t) to some β in S2(T ). Since N \D̊1(R) deformation
retracts to S1(R), the homotopy can be pushed to W , where β gets
mapped into S1(R). Thus α is homotopic in W to a loop in S1(R), as
claimed.

Since S2(t) →֒ W is a homotopy equivalence, the pair (W,S2(t))
has trivial cohomology for any system of local coefficients on W ; hence
by Poincaré Duality, the pair (W,S1(R)) has trivial homology for any
system of local coefficients on W . So by the non-simply-connected
version of Whitehead’s theorem, which is applicable since S1(R) →֒ W
induces a π1 -isomorphism, we conclude that S1(R) →֒ W is a homotopy
equivalence. q.e.d.

Lemma 4.9. For a homotopy equivalence f : N → M of closed

smooth manifolds, and a vector bundle α over M with projection p,
let f̂ : N̂ → M̂ be the induced map of disk bundles N̂ := D(f#α),

M̂ := D(α). Then the normal invariants of f and f̂ satisfy q(f̂) =
p∗q(f).

Proof. Let g be a homotopy inverse of f , and denote by ĝ : M̂ →
N̂ the corresponding map of disk bundles. Fix a large m such that
g postcomposed with the inclusion N → N × Rm is homotopic to a
smooth embedding e : M → N × Rm , where we may assume that its
image is disjoint from N × {0}; let νe denote the normal bundle of
e . By [45, theorem 2.2], the complement of a tubular neighborhood
of e(M) is an open collar; hence N × Rm can be identified with the
total space of νe . By the proof of Proposition 4.1, there are disjoint
normal sphere bundles N×Sm−1 , S(νe) to N×{0}, e(M), respectively,
such that the region between them is an h-cobordism, and the radial
projection N × Rm \ {0} → N × Sm−1 restricted to S(νe) is a fiber
homotopy equivalence. Projecting on the Sm−1 -factor gives a fiber
homotopy trivialization t : S(νe) → Sm−1 . As indicated in [51] (after
lemma 10.6), the pair (νe, t) represents q(f), and moreover, there is
a relative version of the above argument which can be applied to the
embedding of disk bundles ê : M̂ → N̂×Rm obtained as the pullback of
e . Again, the radial projection restricts to a fiber homotopy equivalence
S(ν

ê
) → N̂ ×Sm−1 of normal sphere bundles, which gives rise to a fiber

homotopy trivialization t̂ : S(ν
ê
) → Sm−1 such that (ν

ê
, t̂) represents

q(f̂).
That p#νe is stably isomorphic to ν

ê
follows by a straightforward

computation showing that g#ν
N
⊕ τ

M
⊕ νe and ĝ#ν

N̂
⊕ τ

M̂
⊕ ν

ê
are
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stably trivial, and that p pulls g#ν
N
⊕ τ

M
back to ĝ#ν

N̂
⊕ τ

M̂
, where

ν
X
, τ

X
denote the stable normal and tangent bundles of X . That t̂ is

homotopic to t◦p follows because by construction t = t̂|S(νe) and p is a
deformation retraction. q.e.d.

5. Finiteness Results for Vector Bundles of Rank ≤ 3

In this section we prove Theorem 1.3 and other related results. Let
{Bη} be the set of closed manifolds such that N is the total space of
a vector bundle η of rank ≤ 3 over some Bη . All Bη ’s are homotopy
equivalent to N and hence to each other, so n := dim(Bη) is constant;
thus all η ’s have rank equal to dim(N)− n .

Proposition 5.1. {Bη} can be partitioned into finitely many subsets

such that if Bη , Bξ lie in the same subset, then there is a tangential

homotopy equivalence gξ,η : Bξ → Bη such that g∗ξ,η η
∼= ξ , and further-

more, gξ,η has trivial normal invariant in [Bη, F/O].

Proof. Fix one base manifold Bη0
∈ {Bη} with normal bundle η0

of rank 3, and pullback each η to Bη0
via fη0 ,η . Since f∗

ξ,η p(η)
∼=

p(η), and since an O(k)-bundle is determined by its rational Pontryagin
classes up to finite ambiguity, there are finitely many possibilities for

f#
η0 ,η

η . Each possibility corresponds to a subset in the partition, for if

f#
η0 ,η

η = f#
η0 ,ξ

ξ , then hξ,η := f−1
η0 ,ξ

◦fη0 ,η pulls back η to ξ , and also

is tangential as it preserves TN restricted to the zero sections. If the
rank is ≤ 2, then by Corollary 4.2, the partition consists of one subset
{Bη}; for the sake of uniformity, we set hξ,η := fξ,η .

Now fix an arbitrary Bη in a subset S of the partition. The homo-
topy hξ,η equivalences represent elements (hξ,η, Bξ) in the structure set

Sh(Bη) of homotopy structures. Since hξ,η are tangential, their normal
invariants are in the image of [Bη, F ] → [Bη, F/O] , which is finite, so
by partitioning S further (into finitely many subsets), we get a subset
{Bξi} such that all fi := hξi,η have equal normal invariants. It is for
this subset we find the homotopy equivalencies with desired properties.
Fix any ξ0 ∈ {ξi}. If g0 denotes the homotopy inverse of f0 , then by
the composition formula for normal invariants, recalled in [4, section 3],
we get q(g0◦fi) = f∗

0q(fi) + q(g0), and 0 = q(g0◦f0) = f∗
0 q(f0) + q(g0).

So q(g0◦fi) = f∗
0 (q(fi) − q(f0)) = 0 as q(fi) = q(f0) for all i . Now

gξ,η := g0◦fi = h−1
ξ0,η

◦hξi,η is a tangential homotopy equivalence from

Bξi to Bξ0 that pulls back ξi to ξ0 , and has trivial normal invariant.
q.e.d.

Theorem 5.2. If n = dim(Bη) ≥ 5, then the pairs (N,Bη) lie in

finitely many diffeomorphism types if either (i) Bǫ is simply-connected,

or (ii) Bη is orientable, n is even, and G := π1(Bη) is finite.
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Proof. Fix Bη in a subset of the partition given by Proposition 5.1.
(i) Since Bη is simply-connected, each homotopy equivalence gξ,η is

simple. By Proposition 5.1 and exactness of the surgery sequence, the
element represented by gξ,η in the simple structure set Ss(Bη) lies in
the orbit of Ls

n+1(1) of the identity, which is finite because Ls
n+1(1)-

action factors through the finite group bPn+1 . If {Bη} is infinite, which
is the only interesting case, then there is a subsequence in which all gξ,η
represent the same element in the structure set. So there are diffeo-
morphisms φξ,ζ such that gζ,η ◦φξ,ζ is homotopic to gξ,η . But diffeo-
morphisms pull back normal bundles, so φξ,ζ induces a diffeomorphism
(N,Bξ) → (N,Bη).

(ii) The homotopy equivalence gξ,η represents an element in the struc-

ture set Sh(Bη) that, because of exactness of the surgery sequence and

Proposition 5.1, lies in the orbit of Lh
n+1(G) of the identity. Since n is

even and G is finite, Lh
n+1(G) is a finite group (see, e.g., [22]). If {Bη} is

infinite, then there is a subsequence in which all gξ,η represent the same

element Sh(Bη), and hence they are pairwise h-cobordant. In particu-
lar, there are homotopy equivalences φξ,ζ that identify the boundaries
Bξ and Bζ of the h-cobordism Wξ,ζ such that gζ,η ◦φξ,ζ is homotopic to
gξ,η . Fix orientations on all Bη that are preserved by fζ,η ; then by a
well-known computation (recalled in Lemma 7.1), the torsion τ(φξ,ζ) is
of the form (−1)nσ∗ − σ ∈ Wh(G) where σ = τ(Wξ,ζ , Bζ), the torsion
of the pair (Wξ,ζ , Bζ). By a result of Wall [38, 7.4, 7.5], finiteness of G
implies that the standard involution ∗ acts trivially on the quotient of
Wh(G) by its maximal torsion subgroup SK1(ZG), which is finite, so
σ∗ − σ lies in SK1(ZG), and hence passing to a subsequence we may
assume that τ(φξ,ζ) is constant.

Fix ζ and vary ξ ; i.e. let ξ = ξi . By the composition formula
for torsion, we see that (φξ0,ζ)

−1
◦φξi,ζ : Bξi → Bξ0 has trivial tor-

sion, which by the above-mentioned computation equals the torsion of
the h-cobordism Wξ,ξ0 obtained by concatenating the corresponding
h-cobordisms Wξ,ζ ∪Wξ0,ζ ; thus Wξ,ξ0 is trivial by the s-cobordism the-
orem. It follows that (φξ0,ζ)

−1
◦φξi,ζ is homotopic to a diffeomorphism,

which then pulls back normal bundles, and hence induces a diffeomor-
phism (N,Bξi) → (N,Bξ0). q.e.d.

Example 5.3. Part (ii) fails for n odd (even though it is unclear how
to realize any of the following examples in the nonnegative curvature
setting):

(1) If G is finite cyclic of order 5 or of order ≥ 7, and M is a ho-
motopy lens space with fundamental group G and dimension ≥ 5, then
the h-cobordism class of M contains infinitely many non-homeomorphic
manifolds [34, corollary 12.9] distinguished by Reidemeister torsion.
Thus these manifolds are not even simply homotopy equivalent, while
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their products with R are diffeomorphic. Also see [27] for a similar
result for fake spherical space forms.

(2) By a result of López de Medrano [30], there are infinitely many
homotopy RP4k−1 ’s with k > 1 distinguished by Browder-Livesay in-
variants, and such that their canonical line bundles are diffeomorphic
to the canonical line bundle over the standard RP4k−1 .

(3) More generally, Chang-Weinberger showed in [9] that for any
compact oriented smooth (4r− 1)-manifold M , with r ≥ 2 and π1(M)
not torsion-free, there exist infinitely many pairwise non-homeomorphic
closed smooth manifolds Mi that are simple homotopy equivalent and
tangentially homotopy equivalent to M . As in the proof of Proposi-
tion 5.7 below, we see that the manifolds Mi ×D3 lie in finitely many
diffeomorphism types.

Remark 5.4. If the closed manifolds in (1)–(3) admit metrics of
sec ≥ 0, then they can be realized as souls of codimension 3 with trivial
normal bundle because they lie in finitely many tangential homotopy
types so Proposition 5.7 applies; in fact, examples in (1)–(2) could then
be realized as codimension 1 souls because any real line bundle over
a closed nonnegatively curved manifold admits a complete metric of
sec ≥ 0 with zero section being a soul.

Remark 5.5. It is an (obvious) implication of Theorem 5.2(ii) that
examples (1)–(3) disappear after multiplying by a suitable closed man-
ifold; i.e. if Bη , B are orientable, odd-dimensional, closed manifolds
with finite fundamental groups, then the pairs {(N × B,Bη × B)} lie
in finitely many diffeomorphism types.

Remark 5.6. It seems the assumption in (ii) that Bη is orientable
could be removed by working with the proper surgery exact sequence,
but we choose not to do this here.

The case of trivial normal bundles deserves special attention, e.g.
because the total space always admits a metric of sec ≥ 0, provided the
base does.

Proposition 5.7. Suppose that {Mi} is a sequence of closed man-

ifolds of dimension ≥ 5. Then {Mi} lies in finitely many tangential

homotopy types if and only if {Mi × R3} lies in finitely many diffeo-

morphism types.

Proof. The “if” direction follows from Proposition 5.1, so we focus
on the other direction. As in the proof of Proposition 5.1, after pass-
ing to a subsequence we may assume there are homotopy equivalences
hi : Mi → M0 with trivial normal invariants. Then Hi := hi × id(D3)
is normally cobordant to the identity via the product of D3 with the
normal cobordism from hi to the identity.
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The homotopy equivalence Hi need not be simple, so we replace it
with a simple homotopy equivalence as follows. Attaching a suitable h-
cobordism on the boundary of Mi×D3 turns Mi×D3 into a manifold Qi

with Q̊i = Mi×R3 , and precomposing Hi with a deformation retraction
Qi → Mi×D3 yields a simple homotopy structure equivalence Fi : Qi →
N0×D3 . (Indeed, if W is a cobordism with a boundary component M ,
then τ(W,M) = −τ(r) where r : W → M is a deformation retraction.
By the composition formula for torsion [7], τ(f ◦r) = τ(f) + f∗τ(r), so
we need to find W with τ(f) = f∗τ(W,M), or equivalently, since f∗ is
an isomorphism we need (f∗)

−1τ(f) = τ(W,M), which can be arranged
as any element in Wh(π1(M) can be realized as τ(W,M) for some W .)

Note that Fi still has trivial normal invariant, because Qi× I can be
thought of as an h-cobordism with boundaries Qi , Mi×D3 , so the maps
Fi , Hi are normally cobordant (as explained in [51] before theorem 1.3).
By Wall’s π−π -theorem, Qi is diffeomorphic to M0 ×D3 . Restricting
to interiors gives a desired diffeomorphism Mi ×R3 → M0 ×R3 . q.e.d.

Remark 5.8. The proof shows that if a homotopy equivalence has
trivial normal invariant, then its product with id(D3) is homotopic to
a diffeomorphism; e.g., this applies to the standard homeomorphism
Σk → Sk where Σk is a homotopy sphere that bounds a parallelizable
manifold, so that Σk × D3 and Sk ×D3 are diffeomorphic.

Remark 5.9. Propositions 5.1, 5.7 imply that if there exists a man-
ifold N with infinitely many codimension ≤ 3 souls Si , then after
passing to a subsequence Si×R3 are all diffeomorphic, so one also gets
infinitely many codimension 3 souls with trivial normal bundles, which
proves part (2) of Theorem 1.3. By contrast, Proposition 5.10 below
shows that an analogous statement fails in codimension 2: indeed, for
r > 1 there are infinitely many homotopy RP4r−1 with diffeomorphic
canonical line bundles; hence the products of the line bundles with R

are also diffeomorphic, yet no two non-diffeomorphic homotopy RP4r−1

are h-cobordant because Wh(Z2) = 0.

Proposition 5.10. Suppose {Mi} is a sequence of closed manifolds

of dimension ≥ 5 with finite fundamental group G. Then {Mi} lies in

finitely many h-cobordism types if and only if {Mi ×R2} lies in finitely

many diffeomorphism types.

Proof. The “only if” direction follows because if Mi , Mj are h-
cobordant, then their products with R are diffeomorphic (e.g., by the
weak h-cobordism theorem). For the “if” direction, we pass to a subse-
quence so that all Mi × R2 are diffeomorphic.

By Lemma 4.8, each Mi × S1 is h-cobordant to M0 × S1 , and
the proof of Proposition 4.1 shows that the fiber homotopy equiva-
lence Mi × S1 → M0 × S1 covers the canonical homotopy equivalence
Mi → M0 , so the circle factor is preserved up to homotopy. Passing
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to the infinite cyclic cover corresponding to the circle factor, we get
a proper h-cobordism between Mi × R and M0 × R . The proper h-
cobordisms with one end M0 × R are classified by K̃0(ZG) [46]. The

group G is finite, and hence so is K̃0(ZG) [49]. Thus Mi × R fall
in finitely many diffeomorphism classes, and hence {Mi} is finite up
to h-cobordism because closed manifolds are h-cobordant if their prod-
ucts with R are diffeomorphic (this is well known and follows from
Lemma 4.8). q.e.d.

Remark 5.11. Milnor noted in [34, theorem 11.5] that if B is a
closed orientable manifold with finite fundamental group and even di-
mension ≥ 5, then the h-cobordism class of B contains only finitely
many diffeomorphism classes.

Remark 5.12. It is well known that a closed simply-connected man-
ifold of dimension ≥ 5 can be recovered from its product with R2 . The
proof of Proposition 5.10 immediately gives a slight generalization: if
M0 , M1 are closed n-manifolds with n ≥ 5 and π1(M0) = G = π1(M1)
such that M1 ×R2 and M0 ×R2 are diffeomorphic, and Wh(G) = 0 =

K̃0(ZG), then M1 and M0 are diffeomorphic. This applies, e.g., if G
is Zn for n = 2, 3, 4, 6, Z2 ×Z2 , D2m for m = 3, 4, 6, as well as if G is
torsion-free and virtually abelian (see references in [32]).

6. Smooth Knots and Disconnectedness of Moduli Spaces

In this section we use results of Haefliger and Levine on smooth knots
to investigate how many components of Ru

sec≥0(N) can be visited by the
Diff(N)-orbit of a given metric, and to give an example of disconnected
Mu

sec≥0(N).
We start by recalling some results on smooth knots. According to

Haefliger [17, 18], for n ≥ 5 and k ≥ 3, isotopy classes of (smooth)
embeddings of Sn into Sn+k form an abelian group Σn+k,n under con-
nected sum, which vanishes in metastable range (i.e. for 2k > n + 3),
and equals to Z for n = 4r− 1 and k = 2r+1. In general, Levine [31]
showed that Σn+k,n is either finite, or virtually cyclic, and the latter
occurs if and only if n = 4r − 1 and 3 ≤ k ≤ 2r + 1.

For k ≥ 3, Hirsch [21, theorem 8] showed that any smooth embedding
of Sn into Sn+k can be ambiently isotoped to have a closed tubular
neighborhood equal to the closed tubular neighborhood Sn × Dk of a
standard Sn ⊂ Sn+k . Of course, different elements of Σn+k,n define
non-isotopic embeddings of Sn into Sn × Int(Dk), because any isotopy
of Sn inside Sn × Int(Dk) is also an isotopy in Sn+k .

Levine [31] showed that assigning to each element of Σn+k,n the iso-
morphism class of its normal bundle defines a homomorphism Σn+k,n →
πn(BSOk). The image N0(n, k) of this homomorphism is described
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in [31, theorem 6.9] as the image of the kernel of the stabilization ho-
momorphism πn(SGk, SOk) → πn(SG,SO) under the boundary map
πn(SGk, SOk) → πn−1(SOk) in the long exact sequence of the pair.

The group N0(n, k) is finite for any k , n . Indeed, since tubular neigh-
borhoods of the embeddings ei : Sn → Sn+k can be chosen to equal the
same Sn ×Dk , results of Section 4 imply that the canonical homotopy
equivalence ei(S

n) → Sn×{0} pulls back the normal Euler class, which
is trivial. Also, any homotopy equivalence ei(S

n) → Sn × {0} pulls
back the stable normal bundles because they are trivial. It follows that
the normal bundle to ei has trivial Euler and Pontryagin classes, which
determine an oriented vector bundle up to finite ambiguity.

Theorem 6.1. Let g be any complete metric of sec ≥ 0 on N :=
Sn × Rk with soul S × {0}. If r ≥ 2 is an integer and n = 4r − 1 and

3 ≤ k ≤ 2r + 1, then metrics that are isometric to g lie in infinitely

many components Ru
sec≥0(N) and in the same component of Ru(N).

Proof. As Σn+k,n is infinite, and the above-mentioned homomor-
phism Σn+k,n → πn(BSOk) has finite image, its kernel contains infin-
itely many isotopy classes of embeddings of Sn into Sn+k with trivial
normal bundle. By the above-mentioned result in [21], we ambiently iso-
tope the embeddings into infinitely many pairwise non-isotopic embed-
dings from Sn to Sn× Int(Dk), which is a closed tubular neighborhood
for all the zero sections. Equipping their normal bundles with the metric
g , we get infinitely many metrics on Sn×Rk with pairwise non-isotopic
souls, and the metrics lie in different components of Ru

sec≥0(S
n × Rk)

by Lemma 2.1, and modifying the metrics as in Proposition 2.11, they
can be arranged to lie in the same component of Ru(N). q.e.d.

By convention we treat S1 , R , and a point as having sec ≥ 0.

Theorem 6.2. If L is any closed manifold of sec ≥ 0, then the

moduli space Mu
sec≥0(S

7 × R4 × L) has more than one component with

metrics whose souls are diffeomorphic to S7 × L, and which lie in the

same component of Mu(N).

Proof. A key ingredient of the proof is that the group N0(7, 4) is
nontrivial. In table 7.2 of [31], Levine stated (without proof) that
N0(7, 4) has order 4; for completeness, we justify Levine’s assertion
using results in [18] and [50].

Since π7(SG,SO) vanishes, N0(7, 4) is the image of π7(SG4, SO4) →
π6(SO4), or equivalently, the kernel of π6(SO4) → π6(SG4). To com-
pute the latter, look at the following commutative diagram in which
the rows are exact sequences of the fibrations, and vertical arrows are
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induced by inclusions.

π7(S
3) zero

// π6(SO3) 1−1
//

i

��

π6(SO4)
splits

//

j

��

π6(S
3)

π7(S
3) zero

// π6(SF3) 1−1
// π6(SG4)

splits
// π6(S

3)

The principal SO3 -bundle SO4 → S3 is trivial as π2(SO3) = 0. It
follows that the fibration SG4 → S3 has a section, which explains how
the horizontal arrows are labeled. Furthermore, i is the sum of j and
the identify of π6(S

3); in particular, i, j have isomorphic kernels and
cokernels, and again, the kernels are isomorphic to N0(n, k). The groups
π6(SO3), π6(SF3) = π9(S

3) equal to Z12 , Z3 , respectively, so i is either
trivial, or onto. In the latter case, the kernel of j is Z4 as desired, so
it remains to show that i cannot be trivial, or equivalently, that the
cokernel of j is not Z3 . The cokernel of j lies in π6(SG4, SO4), which
fits in an exact sequence of homotopy groups of the triad (see [18, 4.11])

π7(SG;SO,SG4) → π6(SG4, SO4) → π6(SG,SO).

Now π6(SG,SO) = Z2 and by [18, theorem 8.15] π7(SG;SO,SG4) =
0, which means that π6(SG4, SO4) has no subgroup isomorphic to Z3 ,
as promised.

Actually, Haefliger omits the proof that π7(SG;SO,SG4) = 0, so we
fill in the details. Consider the exact sequence given by [18, theorem
6.4]:

π7(SF4, SG4) → π7(SG;SO,SG4) → π7(SG;SO,SG5) → π6(SF4, SG4).

Here π7(SG;SO,SG5) = 0 by [18, corollary 6.6], so it remains to see
that π7(SF4, SG4) = 0. To this end, consider the exact sequence of the
pair:

π7(G4) → π7(F4) → π7(F4, G4) → π6(G4) → π6(F4) → π6(F4, G4).

As mentioned above, the fibration G4 → S3 has a section so πi(G4)
splits as πi(F3)⊕ πi(S

3) = πi+3(S
3)⊕ πi(S

3). In particular, π6(G4) =
Z3⊕Z12 and also π6(F4) = π10(S

4) = Z3⊕Z24 . By [18, theorem 8.11],
π6(F4, G4) ∼= π3(SO,SO3) which equals to Z2 , so exactness at π6(F4)
implies that π6(G4) → π6(F4) is one-to-one. On the other hand, the
inclusion k : F3 → F4 factors through G3 , so it suffices to show that
k∗ : π7(F3) → π7(F4) is onto. As π7(F3) = π10(S

3) = Z15
∼= π11(S

4) =
π7(F4), it is enough to see that k∗ is one-to-one. In fact, the inclusion
F3 → F , which factors through F4 , is an isomorphism on π7 , because
with the above identifications it corresponds to the iterated suspension
homomorphism π10(S

3) → πS
7 , and the latter homomorphism is an

isomorphism at primes 3, 5 as shown in [50, page 177].
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Thus N0(7, 4) ∼= Z4 , and hence there are 4 different oriented vector
bundles over S7 with total space diffeomorphic to S7 ×R4 .

A result of Grove-Ziller [16] implies that their total spaces admit com-
plete metrics of sec ≥ 0 with souls equal to the zero sections, because
by the discussion preceding corollary 3.13 of [16], all vector bundles in
π7(BSO4) ∼= Z12 ⊕ Z12 classified by elements of orders 1, 2, 4 admit
complete metrics with sec ≥ 0 and souls equal to the zero sections,
which includes all elements of N0(7, 4). In particular, there exists a
nontrivial bundle ξ with these properties.

Thus S7 ×L×R4 is the total space of the vector bundle p#ξ , where
p : S7 × L → S7 is the projection on the first factor. The bundle p#ξ
is nontrivial because its pullback via an inclusion i : S7 → S7 × L is
ξ , which is nontrivial. If some self-diffeomorphism of S7 × L × R4

could take S7 × L × {0} to the zero section of p#ξ , then since trivial
bundles are preserved by pullback, it would follow that p#ξ is trivial.
Hence by Lemma 2.1, the two metrics lie in different components of the
moduli space. Modifying the metrics as in Proposition 2.11, they can
be arranged to lie in the same component of Ru(N). q.e.d.

Remark 6.3. The above proof shows that N0(7, 4) lies in π6(SO3)-
factor of π6(SO4) ∼= π3(SO3) ⊕ π6(S

3), so we can explicitly write
N0(7, 4) = {0, 3, 6, 9} ⊂ Z12 = π7(BSO3). Pulling back the bundle
represented by m ∈ π7(BSO3) by a degree −1 self-map of S4 yields
the bundle represented by −m , so up to the action of homotopy self-
equivalences on the base S7 , we get only 3 different bundles, namely
0, 3, 6. It follows that Mu

sec≥0(S
7 ×R4) has at least 3 components with

metrics whose souls are diffeomorphic to S7 . Note that since all ho-
motopy 7-spheres become diffeomorphic after multiplying by Rk with
k ≥ 3, the moduli space Mu

sec≥0(S
7 × R4) also has other components

with souls diffeomorphic to those homotopy 7-spheres that admit met-
rics of sec ≥ 0.

7. Spaces of Metrics and h-cobordisms

In this section we study components of Ru
sec≥0(N) via various tech-

niques related to h-cobordisms.
Here is a basic idea. If W is an h-cobordism of dimension ≥ 5 with

boundary components M , M ′ , then by the weak h-cobordism theorem
there is a diffeomorphism from W̊ := Int(W ) onto M×R , taking M to
M × {0}, and similarly for M ′ . In particular, if M , M ′ admit metrics

with sec ≥ 0, then W̊ has two complete metrics of sec ≥ 0 with souls
isometric to M , M ′ . Therefore, if M , M ′ are not diffeomorphic, then
Mu

sec≥0(W̊ ) is not connected by Lemma 2.1; this implies Example 1.10.

If M , M ′ are diffeomorphic, but the h-cobordism W is nontrivial, then
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Ru
sec≥0(Int(W )) is not connected because the boundaries of a nontrivial

h-cobordism are not isotopic (as explained, e.g., in [3, lemma 7.3]).
We use [7, 34] as basic references on the Whitehead torsion and h-

cobordisms. The following lemma summarizes the standard formulas
that we need.

Lemma 7.1. (i) If W is an oriented h-cobordism with boundaries M ,

M ′ , and r : W → M is a deformation retraction, then the homotopy

equivalence r|M ′ : M ′ → M has torsion −τ(W,M)+(−1)dim(M)τ∗(W,M).
(ii) Let W1 , W2 be two oriented h-cobordisms attached along their com-

mon boundary component to form an oriented h-cobordism W . Denote

the common component of ∂W and ∂Wk by Mk , and let ik : Mk → W
be the inclusion. Then i1∗τ(W,M1) = i1∗τ(W1,M1) + (−1)dim(M)i2∗τ

∗

(W2,M2).

Proof. (i) First recall that if r : X → Y is a deformation retraction
of finite cell complexes, then τ(r) = −τ(X,Y ), indeed; if i : Y → X is
the inclusion, then τ(r) = −r∗τ(i) = −r∗i∗τ(W,M) = −τ(W,M) [7,
22.3, 22.5]. Now to prove (i), let i , i′ be the inclusions of M , M ′ into
W so that [7, 22.3, 22.4, 22.5] implies that

τ(r◦i′) = τ(r) + r∗τ(i
′) = τ(r) + r∗i

′
∗τ(W,M ′)

where i′∗τ(W,M ′) = (−1)dim(M)i∗τ
∗(W,M) by duality [34, page 394]

where ∗ is the standard involution of Wh(G) induced by g → g−1 in
G.

(ii) Fix deformation retractions R : W → W1 , r : W1 → M1 . Below
we slightly abuse notations by using ik to also denote the inclusion
Mk → Wk . The proof of (i) and the composition formula for torsion [7,
22.4] gives

τ(W,M1) = −τ(r◦R) = −τ(r)− r∗τ(R) = τ(W1,M1) + r∗τ(W,W1).

By excision [7, 20.3] and duality τ(W,W1) = (−1)dim(M)i2∗τ
∗(W2,M2).

Applying i1∗ to both sides of the equation and recalling that i1◦r is
homotopic to id(W1), we get the desired formula. q.e.d.

If G is a finite group, then its Whitehead group Wh(G) is fairly well-
understood; in particular, results of Bass show that Wh(G) is a finitely
generated abelian group whose rank equals the difference between the
number of conjugacy classes of subsets {g, g−1} ⊂ G and the number
of conjugacy classes of cyclic subgroup of G. There is a body of work
computing SK1(ZG), the (finite) torsion subgroup of Wh(G); see [38]
for details.

Theorem 7.2. Let M be a closed oriented manifold of even dimen-

sion ≥ 5 with sec ≥ 0 such that G = π1(M) is finite and Wh(G) is

infinite. Then Rc
sec≥0(M × R) has infinitely many components.
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Proof. Since Wh(G) is infinite, G is finite, and dim(M) ≥ 5, there
is an oriented h-cobordism W0 with one boundary diffeomorphic to M
such that τ(W0,M) has infinite order in Wh(G). We double W0 along
the other boundary, and denote the double by W ; thus both boundary
components of W are diffeomorphic to M . By Lemma 7.1, the torsion
of the double W is given by τ(W,M) = τ(W0,M)+(−1)dim(M)τ∗(W0,M),
where we suppress inclusions. By a result of Wall [38, 7.4, 7.5], the in-
volution ∗ acts trivially on Wh(G)/SK1(ZG), so since dim(M) is even,
τ(W,M) − 2τ(W0,M) has finite order. Since the order of τ(W0,M)
is infinite, stacking k copies of W on top of each other gives a non-
trivial h-cobordism for every k . Stacking countably many copies of W
on top of each other, we get a manifold W∞ diffeomorphic to M × R

and countably many pairwise non-isotopic embeddings ek : M → W∞ .
Since W∞ is diffeomorphic to a tubular neighborhood of every ek , we
conclude that for each k , the manifold W∞ carries a metric isometric
to M ×R with soul ek(M). So by Lemma 2.1, the Diff(N)-orbit of the

metric M × R visits infinitely many components of Rc
sec≥0(W̊ ). q.e.d.

Remark 7.3. The class of groups with infinite Whitehead group
is closed under products with any group. Examples of finite G with
Wh(G) infinite include Zm with m = 5 or m ≥ 7, and the dihedral
group D2p of order 2p , where p ≥ 5 is a prime. See [38] for more
information.

For odd-dimensional souls, doubling produces h-cobordisms with fi-
nite torsion, so we use a different idea based on the following addendum
to Lemma 2.1.

Proposition 7.4. Let S , S′ be souls for the metrics g, g′ that lie

in the same component of Ru
sec≥0(N). If P : N → S′ is a deformation

retraction, then P |S : S → S′ is homotopic to a diffeomorphism. The

same holds for Rc
sec≥0(N) if any two metrics in the space have souls

that intersect.

Proof. The proof below holds for any k , so according to Conven-
tion 1.4 we omit k from notations. By Lemma 2.1, any metric gi ∈
Rsec≥0(N) has an open neighborhood Ui such that for any g ∈ Ui the
Sharafutdinov retraction onto a soul of gi restricted to any soul of g is
a diffeomorphism.

Fix an arbitrary connected component C of Rsec≥0(N); thus {Ui} is
an open cover of C . By a basic property of connected sets [29, section
46, theorem 8], for any two g, g′ ∈ C there exists a finite sequence
g0 = g, g1, . . . , gn = g′ with gi ∈ C ∩ Ui such that Ui ∩ Ui−1 6= ∅ for
every 0 < i ≤ n .

Denote souls of gi by Si and the corresponding Sharafutdinov re-
tractions by pi : N → Si , where S0 = S and Sn = S′ . By construction
pi : N → Si restricted to Si−1 is a diffeomorphism for every 0 < i ≤ n .
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Since each pi : N → Si ⊂ N is homotopic to the identity of N , the
composition

Pn := pn◦ . . . ◦p1 : N → Sn ⊂ N

has the same property, and furthermore, Pn maps S0 diffeomorphically
onto Sn . Both P and Pn are homotopic to the identity of N , so
if F denotes the homotopy joining Pn and P through maps N →
N , then P ◦F is a homotopy of Pn and P through maps N → Sn .
Restricting the homotopy to S0 , we conclude that P |S0 is homotopic
to a diffeomorphism. q.e.d.

In the following proposition we can, e.g., take W to be Milnor’s h-
cobordism from Example 1.10.

Proposition 7.5. Suppose W is an oriented h-cobordism with bound-

aries M , M ′ such that G := π1(W ) is finite, τ(W,M) has infinite

order in Wh(G), and dim(M) is odd and ≥ 5. Suppose L is a man-

ifold with nonzero Euler characteristic. If M , M ′ , L admit complete

metrics with sec ≥ 0, then Ru
sec≥0(L× W̊ ) is not connected.

Proof. Let f : M ′ → M be the homotopy equivalence between the
boundary components of W considered in Lemma 7.1; so

τ(f) = −τ(W,M) + (−1)dim(M)τ∗(W,M),

which equals to −2τ(W,M) plus an element of finite order, as G is finite
and dim(M) is odd. Set S to be L when L is compact, and to be a soul
of L if L is non-compact. The product formula for torsion [7, 23.2b]
implies that τ(f× id(S)) is mapped to χ(S)τ(g) = −2χ(S)τ(W,M) by
the projection M × S → M , and −2χ(S)τ(W,M) is nonzero because
τ(W,M) has infinite order and χ(S) = χ(L) 6= 0. Thus f × id(S) is
not a simple homotopy equivalence, and hence it is not homotopic to a
homeomorphism. Now thinking of W̊ as the result of attaching to W
an open collar along ∂W , we apply Proposition 7.4 to L× W̊ . q.e.d.

Corollary 7.6. For k ≥ 3, r > 0, let M = L(4r + 1, 1) × S2k

and let L be a complete manifold of sec ≥ 0 and χ(L) 6= 0. Then

Ru
sec≥0(L×M × R) has infinitely many components.

Proof. Hausmann [20] showed that there is a nontrivial h-cobordism
W with both boundaries diffeomorphic to M = L(4r + 1, 1) × S2k .
Stacking infinitely many copies of W on top of each other, we get a
manifold diffeomorphic to M×R , and infinitely many embeddings M →
M × R such that the h-cobordism between any two distinct embedded
copies of M is obtained by stacking k copies of W on top of each other
for some positive integer k . By Lemma 7.1, the homotopy equivalence
between its boundaries has torsion −2kτ(W,M) and hence it is not
homotopic to a diffeomorphism, so that Proposition 7.4 applies, yielding
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the special case when L is a point. The general case follows as in the
proof of Proposition 7.5. q.e.d.
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[5] C. Böhm & B. Wilking, Nonnegatively curved manifolds with finite funda-
mental groups admit metrics with positive Ricci curvature, Geom. Funct.
Anal. 17 (2007), no. 3, 665–681, MR2346271, Zbl 1132.53035.

[6] J. Cheeger & D. Gromoll, On the structure of complete manifolds of non-
negative curvature, Ann. of Math. (2) 96 (1972), 413–443, MR0309010, Zbl
0246.53049.

[7] M. M. Cohen, A course in simple-homotopy theory, Springer-Verlag, New
York, 1973, Graduate Texts in Mathematics, Vol. 10, MR0362320, Zbl
0261.57009.

[8] D. Crowley, The smooth structure set of Sp
× Sq , Geom. Dedicata 148

(2010), 15–33, MR2721618, Zbl 1207.57043.

[9] S. Chang & S. Weinberger, On invariants of Hirzebruch and Cheeger-
Gromov, Geom. Topol. 7 (2003), 311–319 (electronic), MR1988288, Zbl
1037.57028.

[10] A. Dold, Partitions of unity in the theory of fibrations, Ann. of Math. (2)
78 (1963), 223–255, MR0155330, Zbl 0203.25402.

[11] D. G. Ebin, The manifold of Riemannian metrics, Global Analysis (Proc.
Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968), Amer. Math. Soc.,
Providence, R.I., 1970, pp. 11–40, MR0267604, Zbl 0205.53702.

[12] H. D. Fegan & R. S. Millman, Quadrants of Riemannian metrics, Michigan
Math. J. 25 (1978), no. 1, 3–7, MR0487890, Zbl 0365.53015.

[13] F. T. Farrell & P. Ontaneda, The moduli space of negatively curved metrics
of a hyperbolic manifold, J. Topol. 3 (2010), no. 3, 561–577, MR2684513,
Zbl 1201.58007.

[14] T. Farrell & P. Ontaneda, Teichmüller spaces and negatively curved fiber
bundles, Geom. Funct. Anal. 20 (2010), no. 6, 1397–1430, MR2738998, Zbl
1207.58013.

[15] L. Guijarro, Improving the metric in an open manifold with nonnega-
tive curvature, Proc. Amer. Math. Soc. 126 (1998), no. 5, 1541–1545,
MR1443388, Zbl 1006.53028.

[16] K. Grove & W. Ziller, Curvature and symmetry of Milnor spheres, Ann. of
Math. (2) 152 (2000), no. 1, 331–367, MR1792298, Zbl 0991.53016.



MODULI SPACES AND NON-UNIQUE SOULS 83

[17] A. Haefliger, Knotted (4k − 1)-spheres in 6k -space, Ann. of Math. (2) 75

(1962), 452–466, MR0145539, Zbl 0105.17407.

[18] , Differentiable embeddings of Sn in Sn+q for q > 2, Ann. of Math.
(2) 83 (1966), 402–436, MR0202151, Zbl 0151.32502.

[19] V. L. Hansen, The homotopy groups of a space of maps between ori-
ented closed surfaces, Bull. London Math. Soc. 15 (1983), no. 4, 360–364,
MR0703761, Zbl 0521.55010.

[20] J.-C. Hausmann, Open books and h-cobordisms, Comment. Math. Helv. 55
(1980), no. 3, 330–346, MR0593050, Zbl 0455.57018.

[21] M. W. Hirsch, Smooth regular neighborhoods, Ann. of Math. (2) 76 (1962),
524–530, MR0149492, Zbl 0151.32604.

[22] I. Hambleton & L. R. Taylor, A guide to the calculation of the surgery
obstruction groups for finite groups, Surveys on surgery theory, Vol. 1,
Ann. of Math. Stud., vol. 145, Princeton Univ. Press, Princeton, NJ, 2000,
pp. 225–274, MR1747537, Zbl 0952.57009.

[23] D. Husemoller, Fibre bundles, third ed., Graduate Texts in Mathematics,
vol. 20, Springer-Verlag, New York, 1994, MR1249482, Zbl 0794.55001.

[24] S. Kobayashi & K. Nomizu, Foundations of differential geometry. Vol. II,
Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II, In-
terscience Publishers John Wiley & Sons, Inc., New York-London-Sydney,
1969, MR1393941, Zbl 0526.53001.

[25] V. Kapovitch, A. Petrunin, & W. Tuschmann, Non-negative pinching, mod-
uli spaces and bundles with infinitely many souls, J. Differential Geom. 71
(2005), no. 3, 365–383, MR2198806, Zbl 1102.53020.

[26] M. Kreck & S. Stolz, Nonconnected moduli spaces of positive sectional cur-
vature metrics, J. Amer. Math. Soc. 6 (1993), no. 4, 825–850, MR1205446,
Zbl 0793.53041.

[27] S. Kwasik & R. Schultz, On h-cobordisms of spherical space forms,
Proc. Amer. Math. Soc. 127 (1999), no. 5, 1525–1532, MR1473672, Zbl
0923.57009.

[28] , Toral and exponential stabilization for homotopy spherical space-
forms, Math. Proc. Cambridge Philos. Soc. 137 (2004), no. 3, 571–593,
MR2103917, Zbl 1077.55005.

[29] K. Kuratowski, Topology. Vol. II, New edition, revised and augmented.
Translated from the French by A. Kirkor, Academic Press, New York, 1968,
MR0259835, Zbl 0849.01044.
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