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EXTENSION OF TWISTED HODGE METRICS FOR

KÄHLER MORPHISMS

Christophe Mourougane & Shigeharu Takayama

Abstract

Let f : X −→ Y be a holomorphic map of complex manifolds,
which is proper, Kähler, and surjective with connected fibers, and
which is smooth over Y \Z the complement of an analytic subset
Z. Let E be a Nakano semi-positive vector bundle on X . In
our previous paper, we discussed the Nakano semi-positivity of
Rqf∗(KX/Y ⊗ E) for q ≥ 0 with respect to the so-called Hodge
metric, when the map f is smooth. Here we discuss the extension
of the induced metric on the tautological line bundle O(1) on the
projective space bundle P(Rqf∗(KX/Y ⊗ E)) “over Y \ Z” as a
singular Hermitian metric with semi-positive curvature “over Y ”.
As a particular consequence, if Y is projective, Rqf∗(KX/Y ⊗ E)
is weakly positive over Y \ Z in the sense of Viehweg.

1. Introduction

The subject in this paper is the positivity of direct image sheaves of
adjoint bundles Rqf∗

(
KX/Y ⊗ E

)
, for a Kähler morphism f : X −→ Y

endowed with a Nakano semi-positive holomorphic vector bundle (E,h)
on X. In our previous paper [28], generalizing a result in [2] in case
q = 0, we obtained the Nakano semi-positivity of Rqf∗

(
KX/Y ⊗ E

)

with respect to a canonically attached metric, the so-called Hodge met-
ric, under the assumption that f is smooth. However the smoothness
assumption on f is rather restrictive, and it is desirable to remove it.
This is the aim of this paper.

To state our result precisely, let us fix notations and recall basic facts.
Let f : X −→ Y be a holomorphic map of complex manifolds. A real
d-closed (1, 1)-form ω on X is said to be a relative Kähler form for f , if
for every point y ∈ Y , there exists an open neighbourhood W of y and a
smooth plurisubharmonic function ψ on W such that ω+ f∗(

√
−1∂∂ψ)

is a Kähler form on f−1(W ). A morphism f is said to be Kähler, if
there exists a relative Kähler form for f ([35, 6.1]), and f : X −→ Y
is said to be a Kähler fiber space, if f is proper, Kähler, and surjective
with connected fibers.
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Set up 1.1. (General global setting.) (1) Let X and Y be complex
manifolds of dimX = n +m and dimY = m, and let f : X −→ Y be
a Kähler fiber space. We do not fix a relative Kähler form for f , unless
otherwise stated. The discriminant locus of f is the minimum closed
analytic subset ∆ ⊂ Y such that f is smooth over Y \ ∆.

(2) Let (E,h) be a Nakano semi-positive holomorphic vector bundle
on X. Let q be an integer with 0 ≤ q ≤ n. By Kollár [22] and Takegoshi
[35], Rqf∗

(
KX/Y ⊗ E

)
is torsion free on Y , and moreover it is locally

free on Y \∆ ([28, 4.9]). In particular we can let Sq ⊂ ∆ be the minimum
closed analytic subset of codimY Sq ≥ 2 such that Rqf∗

(
KX/Y ⊗ E

)
is

locally free on Y \ Sq. Let π : P(Rqf∗
(
KX/Y ⊗ E

)
|Y \Sq

) −→ Y \ Sq be
the projective space bundle, and let π∗(Rqf∗(KX/Y ⊗E)|Y \Sq

) −→ O(1)
be the universal quotient line bundle.

(3) Let ωf be a relative Kähler form for f . Then we have the Hodge
metric g on the vector bundle Rqf∗

(
KX/Y ⊗ E

)
|Y \∆ with respect to

ωf and h ([28, §5.1]). By the quotient π∗(Rqf∗
(
KX/Y ⊗ E

)
|Y \∆) −→

O(1)|π−1(Y \∆), the metric π∗g gives the quotient metric g◦O(1) on

O(1)|π−1(Y \∆). The Nakano, even weaker Griffiths, semi-positivity of
g (by [2, 1.2] for q = 0, and by [28, 1.1] for q general) implies that g◦O(1)

has a semi-positive curvature. �

In these notations, our main result is as follows (see also §6.2 for some
variants).

Theorem 1.2. Let f : X −→ Y , (E,h) and 0 ≤ q ≤ n be as in Set
up 1.1.

(1) Unpolarized case. Then, for every relatively compact open subset
Y0 ⊂ Y , the line bundle O(1)|π−1(Y0\Sq) on P(Rqf∗

(
KX/Y ⊗ E

)
|Y0\Sq

)
has a singular Hermitian metric with semi-positive curvature, and which
is smooth on π−1(Y0 \ ∆).

(2) Polarized case. Let ωf be a relative Kähler form for f . Assume
that there exists a closed analytic set Z ⊂ ∆ of codimY Z ≥ 2 such that
f−1(∆)|X\f−1(Z) is a divisor and has a simple normal crossing support
(or empty). Then the Hermitian metric g◦O(1) on O(1)|π−1(Y \∆) can be

extended as a singular Hermitian metric gO(1) with semi-positive curva-

ture of O(1) on P(Rqf∗
(
KX/Y ⊗ E

)
|Y \Sq

).

If in particular in Theorem 1.2, Rqf∗
(
KX/Y ⊗ E

)
is locally free and Y

is a smooth projective variety, then the vector bundle Rqf∗
(
KX/Y ⊗ E

)

is pseudo-effective in the sense of [9, §6]. The above curvature property
of O(1) leads to the following algebraic positivity of Rqf∗

(
KX/Y ⊗ E

)
.

Theorem 1.3. Let f : X −→ Y be a surjective morphism with con-
nected fibers between smooth projective varieties, and let (E,h) be a
Nakano semi-positive holomorphic vector bundle on X. Then the torsion
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free sheaf Rqf∗
(
KX/Y ⊗ E

)
is weakly positive over Y \ ∆ (the smooth

locus of f), in the sense of Viehweg [38, 2.13].

Here is a brief history of the semi-positivity of direct image sheaves,
especially in case the map f : X −→ Y is not smooth. The origin is
due to Fujita [12] for f∗KX/Y over a curve, in which he analyzed the
singularities of the Hodge metric. After [12], there are a lot of works
mostly in algebraic geometry to try to generalize [12], for example by
Kawamata [17] [18] [19], Viehweg [37], Zucker [39], Nakayama [30],
Moriwaki [25], Fujino [11], Campana [5]. Their methods heavily depend
on the theory of a variation of Hodge structures. While Kollár [22] and
Ohsawa [33, §3] reduce the semi-positivity to their vanishing theorems.
We refer to [10] [31, V.§3] [38] for further related works. There are
more recent related works from the Bergman kernel point of view, by
Berndtsson-Păun [3] [4] and Tsuji [36]. Their interests are the positivity
of a relative canonical bundle twisted with a line bundle with a singular
Hermitian metric of semi-positive curvature, or its zero-th direct image,
which are slightly different from ours in this paper. In [3] [4], they rely
on [2] and an extension theorem of Ohsawa-Takegoshi type, and give a
new perspective.

The position of this paper is rather close to the original work of Fujita.
We work in the category of Kählerian geometry. We will prove that a
Hodge metric defined over Y \∆ can be extended across the discriminant
locus ∆, which is a local question on the base. Because of the twist with
a Nakano semi-positive vector bundle E which may not be semi-ample,
one can not take (nor reduce a study to) the variation of Hodge struc-
tures approach. The algebraic approach quoted above only concludes
that the direct image sheaves have algebraic semi-positivities, such as
nefness, or weak positivity. It is like semi-positivity of integration of the
curvature along subvarieties. These algebraic semi-positivities already
requires a global property on the base, for example (quasi-)projectivity.
In the algebraic approach, to obtain a stronger result, they sometimes
pose a normal crossing condition of the discriminant locus ∆ ⊂ Y of
the map, and/or a unipotency of local monodromies. We are free from
these conditions, but we must admit that our method does not tell lo-
cal freeness nor nefness of direct images sheaves. We really deal with
Hodge metrics, and we do not use the theory of a variation of Hodge
structures, nor global geometry on the base, in contrast to the algebraic
approach.

In connection with a moduli or a deformation theory, a direct image
sheaf on a parameter space defines a canonically attached sheaf quite
often, and then the curvature of the Hodge metric describes the ge-
ometry of the parameter space. Then, especially as a consequence of
our previous paper [28], the Nakano semi-positivity of the curvature
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on which the family is smooth, is quite useful in practice. If there ex-
ists a reasonable compactification of the parameter space, our results in
this paper can be applied to obtain boundary properties. There might
be further applications in this direction, we hope. While the algebraic
semi-positivity is more or less Griffiths semi-positivity, which has nice
functorial properties but is not strong enough especially in geometry.

Our method of proof is to try to generalize the one in [12]. The
main issue is to obtain a positive lower bound of the singularities of
a Hodge metric g. It is like a uniform upper estimate for a family of
plurisubharmonic functions − log g(u, u) around ∆ ⊂ Y , where u is any
nowhere vanishing local section of Rqf∗

(
KX/Y ⊗ E

)
. In case dimY = 1

and arbitrary q ≥ 0, we can obtain rather easily the results we have
stated, by combining [12] and our previous work [28]. In case dimY ≥
1, a major difficulty arises. If the fibers of f are reduced, it is not difficult
to apply again the method we took in case dimY = 1. However in
general, a singular fiber is not a divisor anymore, and in addition it can
be non-reduced. To avoid such an analytically uncomfortable situation,
we employ a standard technique in algebraic geometry; a semi-stable
reduction and an analysis of singularities which naturally appear in the
semi-stable reduction process (§3). A Hodge metric after a semi-stable
reduction would be better and would be handled by known techniques,
because fibers become reduced. Then the crucial point in the metric
analysis is a comparison of the original Hodge metric and a Hodge metric
after a semi-stable reduction. As a result of taking a ramified cover and
a resolution of singularities in a semi-stable reduction, we naturally
need to deal with a degenerate Kähler form, and then we are forced to
develop a theory of relative harmonic forms (as in [35]) with respect to
the degenerate Kähler form (§4). After a series of these observations, we
bound singularities of the Hodge metric, and obtain a uniform estimate
to extend the Hodge metric (§5). The proof is not so simple to mention
more details here, because we need to consider a uniform estimate, when
a rank one quotient πL : Rqf∗

(
KX/Y ⊗ E

)
−→ L moves and a section

of the kernel of πL moves. There is a technical introduction [29], where
we explain the case dimY = 1, or the case where the map f has reduced
fibers.

Acknowledgements. The first named author would like to express
his thanks to Sébastien Boucksom and Mihai Păun for discussions in
this topic. The second named author would like to express his thanks
to Professor Masanori Ishida for answering questions on toric geometry.

2. Hodge Metric

2.1. Definition of Hodge metric. Let us start by recalling basic def-
initions and facts. Let f : X −→ Y be a Kähler fiber space as in
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Set up 1.1. For a point y ∈ Y \ ∆, we denote by Xy = f−1(y), ωy =
ω|Xy , Ey = E|Xy , hy = h|Xy , and for an open subset W ⊂ Y , we denote

by XW = f−1(W ). We set Ωp
X/Y =

∧p(Ω1
X/(Im f∗Ω1

Y )) rather formally

for the natural map f∗Ω1
Y −→ Ω1

X , because we will only deal with Ωp
X/Y

where f is smooth. For an open subset U ⊂ X where f is smooth, and
for a differentiable form σ ∈ Ap,0(U,E), we say σ is relatively holomor-
phic and write [σ] ∈ H0(U,Ωp

X/Y ⊗ E), if for every x ∈ U , there exists

an coordinate neighbourhood W of f(x) ∈ Y with a nowhere vanishing

θ ∈ H0(W,KY ) such that σ∧f∗θ ∈ H0(U ∩XW ,Ω
p+m
X ⊗E) ([28, §3.1]).

We remind the readers of the following basic facts, which we will use
repeatedly. See [35, 6.9] for more general case when Y may be singular,
[28, 4.9] for (3), and also [22].

Lemma 2.1. Let f : X −→ Y and (E,h) be as in Set up 1.1. Let q be
a non-negative integer. Then (1) Rqf∗

(
KX/Y ⊗ E

)
is torsion free, (2)

Grauert-Riemenschneider vanishing: Rqf∗
(
KX/Y ⊗ E

)
= 0 for q > n,

and (3) Rqf∗
(
KX/Y ⊗ E

)
is locally free on Y \ ∆.

Using Grauert-Riemenschneider vanishing, a Leray spectral sequence
argument shows that Rqf∗

(
KX/Y ⊗ E

)
does not depend on smooth

bimeromorphic models of X. Choices of a smooth bimeromorphic model
of X and of a relative Kähler form for the new model give rise to a Her-
mitian metric on the vector bundle Rqf∗

(
KX/Y ⊗ E

)
|Y \∆ as follows.

Definition 2.2. (Hodge metric [28, §5.1].) In Set up 1.1, assume
that f is smooth, Y is Stein with KY

∼= OY (with a nowhere vanishing
θY ∈ H0(Y,KY )), and X is Kähler. A choice of a Kähler form ω on

X gives an injection Sω := Sqf : Rqf∗
(
KX/Y ⊗ E

)
−→ f∗(Ω

n−q
X/Y ⊗ E).

Then for every pair uy, vy ∈ Rqf∗
(
KX/Y ⊗ E

)
y
, we define

g(uy, vy) =

∫

Xy

(cn−q/q!) ω
q
y ∧ Sω(uy) ∧ hySω(vy).

Here cp =
√
−1

p2
for every integer p ≥ 0. Since f is smooth, these point-

wise inner products define a smooth Hermitian metric g onRqf∗(KX/Y⊗
E), which we call the Hodge metric with respect to ω and h. �

Details for the construction of the map Sω will be provided in Step
2 in the proof of Proposition 4.4. In Definition 2.2, another choice of
a Kähler form ω′ on X gives another metric g′ on Rqf∗

(
KX/Y ⊗ E

)
.

However in case ω and ω′ relate with ω|Xy = ω′|Xy for any y ∈ Y , these
metrics coincide g = g′ ([28, 5.2]). Thus a Hodge metric is defined for a
polarized smooth Kähler fiber space in Set up 1.1. In case when q = 0,
the Hodge metric does not depend on a relative Kähler form. In fact,
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it is given by

g(uy , vy) =

∫

Xy

cnuy ∧ hyvy

for uy, vy ∈ H0(Xy,KXy ⊗Ey).

2.2. Localization. We consider the following local setting, around a
codimension 1 general point of ∆ ⊂ Y (possibly after taking a modifi-
cation of X).

Set up 2.3. (Generic local, relative normal crossing setting.) Let
f : X −→ Y , (E,h) and 0 ≤ q ≤ n be as in Set up 1.1. Let us assume
further the following:

(1) The base Y is (biholomorphic to) a unit polydisc in Cm with
coordinates t = (t1, . . . , tm). Let KY

∼= OY be a trivialization by a
nowhere vanishing section dt = dt1 ∧ . . . ∧ dtm ∈ H0(Y,KY ).

(1.i) f is flat, and the discriminant locus ∆ ⊂ Y is ∆ = {tm = 0} (or
∆ = ∅),

(1.ii) the effective divisor f∗∆ has a simple normal crossing support,
and

(1.iii) the morphism Suppf∗∆ −→ ∆ is relative normal crossing (see
below).

(2) Rqf∗
(
KX/Y ⊗ E

) ∼= O⊕r
Y , i.e., globally free and trivialized of rank

r > 0.
(3) X admits a Kähler form ω. Let g be the Hodge metric on

Rqf∗
(
KX/Y ⊗ E

)
|Y \∆ with respect to ω and h.

We may replace Y by slightly smaller polydiscs, or may assume ev-
erything is defined over a slightly larger polydisc. �

In the above, Suppf∗∆ −→ ∆ is relative normal crossing means
that, around every x ∈ X, there exists a local coordinate (U ; z =
(z1, . . . , zn+m)) such that f |U is given by t1 = zn+1, . . . , tm−1 = zn+m−1,

tm = z
bn+m

n+m

∏n
j=1 z

bj
j with non-negative integers bj and bn+m.

Then the following version of Theorem 1.2 (2) is our main technical
statement.

Theorem 2.4. Let f : (X,ω) −→ Y ⊂ Cm, (E,h) and 0 ≤ q ≤ n
be as in Set up 2.3. The pull-back metric π∗g of the Hodge metric g on
Rqf∗

(
KX/Y ⊗ E

)
|Y \∆ with respect to ω and h gives the quotient metric

g◦O(1) on O(1)|π−1(Y \∆). The smooth Hermitian metric g◦O(1) extends as

a singular Hermitian metric gO(1) on O(1) with semi-positive curvature.

We shall see Theorem 1.2, by taking Theorem 2.4 for granted in the
rest of this section. For a general Kähler fiber space f : X −→ Y , we
can reduce the study of a Hodge metric to the study which is local on
Y as in Set up 2.3, possibly after taking blowing-ups of X.
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Lemma 2.5. Let f : X −→ Y , (E,h) and 0 ≤ q ≤ n be as in Set
up 1.1. Let Y0 ⊂ Y be a relatively compact open subset. Let Z0 ⊂ ∆ be
a closed analytic subset of codimY Z0 ≥ 2 such that ∆ \ Z0 is a smooth
divisor (or empty). Possibly after restricting everything on a relatively
compact open neighbourhood over Y0, let µ : X ′ −→ X be a birational
map from a complex manifold X ′, which is obtained by a finite number
of blowing-ups along non-singular centers, and which is biholomorphic
over X \ f−1(∆), such that f∗(∆ \ Z0) is a divisor with simple normal
crossing support on X \ f−1(Z0). Let ωf ′ be a relative Kähler form for
f ′ := f ◦ µ over Y0. Then

(1) there exist (i) a closed analytic subset Z ⊂ ∆ of codimY Z ≥ 2, (ii)
an open covering {Wi}i of Y0 \Z, and (iii) a Kähler form ωi on X ′

Wi
=

f ′−1(Wi) for every i, such that (a) for every i, Wi is biholomorphic
to the unit polydisc, and the induced f ′i : (X ′

Wi
, ωi) −→ Wi ⊂ Cm,

(µ∗E,µ∗h)|X′

Wi

and 0 ≤ q ≤ n satisfy all the conditions in Set up 2.3,

and that (b) ωi|X′

y
= ωf ′ |X′

y
for every i and y ∈ Wi. Moreover one

can take {Wi}i so that, the same is true, even if one replaces all Wi by
slightly smaller concentric polydiscs.

(2) Via the isomorphism Rqf∗
(
KX/Y ⊗ E

) ∼= Rqf ′∗(KX′/Y ⊗ µ∗E),
the Hodge metric on Rqf ′∗(KX′/Y ⊗ µ∗E)|Y0\∆ with respect to ωf ′ and
µ∗h induces a smooth Hermitian metric g with Nakano semi-positive
curvature on Rqf∗

(
KX/Y ⊗E

)
|Y0\∆.

Proof. In general, a composition f◦µ of f and a blow-up µ : X ′ −→ X
along a closed complex submanifold of X, is only locally Kähler ([35,
6.2.i-ii]). (We do not know if f ◦ µ is Kähler. This is the point, why
we need to mention “on every relatively compact open subset Y0 ⊂ Y ”
in Theorem 1.2 (1).) Hence our modification f ′ : X ′ −→ Y is locally
Kähler, and we can take a relative Kähler form ωf ′ for f ′ over Y0. As we

explained before, we have Rq(f ◦µ)∗(KX′/Y ⊗µ∗E) = Rqf∗
(
KX/Y ⊗ E

)

by Lemma 2.1.
To see (1), we note Lemma 2.1 that Rqf ′∗(KX′/Y ⊗ µ∗E) is locally

free in codimension 1 on Y . We then take Z ⊃ Z0 to be the union of
all subvarieties along which one of (1) – (2) in Set up 2.3 fails for f ′.
Other items are almost clear (by construction). q.e.d.

The following is a more precise statement of Theorem 1.2 (1).

Proposition 2.6. Let f : X −→ Y , (E,h) and 0 ≤ q ≤ n be as in
Set up 1.1. Let Y0 ⊂ Y be a relatively compact open subset. After tak-
ing a modification µ : X ′ −→ X (on a neighbourhood of X0 = f−1(Y0))
and a relative Kähler form ωf ′ for f ′ = f ◦ µ over Y0 as in Lemma 2.5,
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the Hermitian metric g on Rqf∗
(
KX/Y ⊗ E

)
|Y0\∆ in Lemma 2.5 (2) in-

duces the quotient metric g◦O(1) on O(1)|π−1(Y0\∆) with semi-positive cur-

vature. Then the smooth Hermitian metric g◦O(1) extends as a singular

Hermitian metric gO(1) on O(1)|π−1(Y0\Sq) with semi-positive curvature.

Proof of Theorem 1.2. (1) It is enough to show Proposition 2.6. We use
the notations in Lemma 2.5. We apply Theorem 2.4 on each Wi ⊂
Y0 \ Z. Then we see, at this point, the smooth Hermitian metric
g◦O(1) on O(1)|π−1(Y0\∆) extends as a singular Hermitian metric g′O(1)

on O(1)|π−1(Y0\Z) with semi-positive curvature. Then by Hartogs type

extension, the singular Hermitian metric g′O(1) on O(1)|π−1(Y0\Z) extends

as a singular Hermitian metric gO(1) on O(1)|π−1(Y0) with semi-positive
curvature.

(2) We can find a closed analytic subset Z ′ ⊂ ∆ of codimY Z
′ ≥ 2,

containing Z, so that we can describe f : X \ f−1(Z ′) −→ Y \ Z ′ as a
union of Set up 2.3 as in Lemma 2.5 without taking any modifications µ :
X ′ −→ X. Then we obtain the Hodge metric on Rqf∗

(
KX/Y ⊗ E

)
|Y \∆

with respect to ωf and h. The rest of the proof is the same as (1).
q.e.d.

3. Semi-Stable Reduction

Now our aim is to show Theorem 2.4. We shall devote this and next
two sections for the proof. Throughout these three sections, we shall
discuss under Set up 2.3 and also §3.1 below.

3.1. Weakly semi-stable reduction. ([20, Ch. II], [24, §7.2], [38,
§6.4].) Let

f∗∆ =
∑

j

bjBj

be the prime decomposition. Let Y ′ be another copy of a unit polydisc in
Cm with coordinates t′ = (t′1, . . . , t

′
m−1, t

′
m). Let ℓ be the least common

multiple of all bj . Let τ : Y ′ −→ Y be a ramified covering given by

(t′1, . . . , t
′
m−1, t

′
m) 7→ (t′1, . . . , t

′
m−1, t

′
m
ℓ), and X◦ = X ×Y Y

′ be the fiber
product. Let ν : X ′ −→ X◦ be the normalization, and µ : X ′′ −→ X ′

be a resolution of singularities, which is biholomorphic on the smooth
locus of X ′.

X ′′ µ−−−−→ X ′ ν−−−−→ X◦ = X ×Y Y
′ τ◦−−−−→ X

f ′′
y f ′

y f◦
y

yf

Y ′ −−−−→
id

Y ′ −−−−→
id

Y ′ −−−−→
τ

Y

Then there are naturally induced objects: τ◦ : X◦ −→ X, τ ′ : X ′ −→
X, τ ′′ : X ′′ −→ X, f◦ : X◦ −→ Y ′, f ′ : X ′ −→ Y ′, f ′′ : X ′′ −→ Y ′, E◦ =
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τ◦∗E,E′ = τ ′∗E,E′′ = τ ′′∗E, and h′′ = τ ′′∗h the induced Hermitian
metric on E′′ with Nakano semi-positive curvature. We denote by jX◦ :
X◦ ⊂ X × Y ′ the inclusion map, and by pX : X × Y ′ −→ X and
pY ′ : X × Y ′ −→ Y ′ the projections. We may also denote by

F = Rqf∗
(
KX/Y ⊗ E

)
, F ′ = Rqf ′′∗

(
KX′′/Y ′ ⊗ E′′) ,

where F is globally free (Set up 2.3), and F ′ is torsion free (Lemma
2.1). Let ∆′ = {t′m = 0} ⊂ Y ′. The discriminant loci of f◦, f ′, f ′′ are
contained in ∆′. We can write

f ′′∗∆′ =
∑

j

B′′
j +B′′

exc,

where
∑
B′′
j is the prime decomposition of the non-µ-exceptional divi-

sors in f ′′∗∆′, and B′′
exc is the sum of µ-exceptional divisors in f ′′∗∆′.

As we will see in Lemma 3.2, all coefficients in
∑
B′′
j are 1. (As in [20],

f ′′∗∆′ may be semi-stable in codimension 1. However we do not need
this stronger result for B′′

exc.)
We add a remark on the choice of the smooth model X ′′. We can

assume, possibly after replacing Y by a smaller polydisc, that X ′′ can
be obtained in the following way. We take an embedded resolution

δ : X̃ × Y ′ −→ X × Y ′ of X◦, by a finite number of blowing-ups along
smooth centers, which are biholomorphic outside SingX◦. Let us denote

by X ′′ ⊂ X̃ × Y ′ the smooth model of X◦, and by µ : X ′′ −→ X ′ the
induced morphism. We may assume further that Suppf ′′∗∆′ is simple
normal crossing.

3.2. Direct image sheaves and analysis of singularities. We will
employ algebraic arguments to compare direct image sheaves on Y and
Y ′, and to study the singularities on X ′. We start with an elementary
remark.

Lemma 3.1. The variety X ′ is smooth on X ′ \ τ ′−1(Sing f−1(∆)),
and the induced map jX◦ ◦ν : X ′ −→ X×Y ′ is locally embedding around
every point on X ′ \ τ ′−1(Sing f−1(∆)).

Proof. We take a smooth point x0 of f−1(∆). If x0 ∈ Bj in f∗∆ =∑
bjBj, the map f is given by z = (z1, . . . , zn+m) 7→ t = (zn+1, . . .,

zn+m−1, z
bj
n+m) for an appropriate local coordinate (U ; z = (z1, . . . ,

zn+m)) around x0. Then U◦ = U×Y Y
′ is defined by U◦ = {(z, t′) ∈ U×

Y ′; f(z) = τ(t′)}, namely zn+1 = t′1, . . . , zn+m−1 = t′m−1, z
bj
n+m = t′m

ℓ.
We write ℓ = bjcj with a positive integer cj . Let ε be a bj-th primitive
root of unity. Then U◦ is a union of

U◦
p =

{
(z, t′) ∈ U × Y ′; zn+1 = t′1, . . . , zn+m−1 = t′m−1, zn+m = εpt′m

cj
}

for p = 1, . . . , bj . Each U◦
p itself is smooth, and the normalization U ′ of

U◦ is just a disjoint union ∐bjp=1U
◦
p . q.e.d.
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The normal variety X ′ is almost smooth. For example the following
properties are known.

Lemma 3.2. [24, 7.23] ([20, Ch. II]). (1) The canonical divisor KX′

is Cartier, (2) X ′ has at most toric, abelian quotient singularities, (3)
a pair (X ′, 0) is canonical, and a pair (X ′,D′) is log-canonical, where
D′ = f ′∗∆′ which is reduced.

Since canonical singularities are Cohen-Macaulay, combined with
Lemma 3.2 (1), we see X ′ is Gorenstein (refer [24, §2.3] including defi-
nitions).

Lemma 3.3. (cf. [37, Lemma 3.2] [31, V.3.30].) There exists a nat-
ural inclusion map

ϕ : F ′ = Rqf ′′∗
(
KX′′/Y ′ ⊗ E′′) −→ τ∗F = τ∗Rqf∗

(
KX/Y ⊗E

)
,

which is isomorphic over Y ′ \ ∆′.

Proof. Recall that dualizing sheaves when they exist are flat and com-
patible with any base change [21, (9)]. The morphism ν being finite,
there exists a dualizing sheaf ωX′/X◦ such that ν∗ωX′/X◦ =
HomX◦(ν∗OX′ ,OX◦). By base change, ωX◦/Y ′ = τ◦∗KX/Y is an in-

vertible dualizing sheaf for f◦. Because Y ′ is smooth, ωX◦ = ωX◦/Y ′ ⊗
f◦∗KY ′ is an invertible dualizing sheaf for X◦. In particular X◦ is
Gorenstein, in fact X◦ is locally complete intersection. Now, by com-
position [21, (26.vii)], ωX′/Y ′ = ωX′/X◦ ⊗ ν∗ωX◦/Y ′ is a dualizing sheaf
for f ′. Because ωX◦/Y ′ is locally free, the projection formula reads
ν∗ωX′/Y ′ = (ν∗ωX′/X◦) ⊗ ωX◦/Y ′ = HomX◦(ν∗OX′ ,OX◦ ⊗ ωX◦/Y ′) =
HomX◦(ν∗OX′ , ωX◦/Y ′). Then we have a natural homomorphism α :
ν∗ωX′/Y ′ −→ ωX◦/Y ′ . Since X ′ is Gorenstein and canonical (Lemma
3.2), we have KX′′ = µ∗KX′ +C for an effective µ-exceptional divisor C,
and hence ν∗µ∗KX′′/Y ′ = ν∗µ∗(µ∗ωX′/Y ′ ⊗OX′′(C)) = ν∗ωX′/Y ′ . Then
the map α induces ν∗µ∗KX′′/Y ′ −→ ωX◦/Y ′ = τ◦∗KX/Y . We apply

Rqf◦∗ to obtain a map Rqf◦∗ (ν∗µ∗(KX′′/Y ′ ⊗E′′)) −→ Rqf◦∗ (τ◦∗(KX/Y ⊗
E)).

Since ν ◦µ : X ′′ −→ X◦ is birational, we have Rq(ν ◦ µ)∗KX′′ = 0 for
q > 0 ([35, 6.9]). Noting E′′ = (ν ◦ µ)∗E◦, we have Rqf ′′∗ (KX′′ ⊗E′′) =
Rqf◦∗ (R0(ν ◦ µ)∗(KX′′ ⊗ E′′)). This gives Rqf◦∗ (ν∗µ∗(KX′′/Y ′ ⊗ E′′)) =

Rqf ′′∗
(
KX′′/Y ′ ⊗ E′′). On the other hand, since τ is flat, the base

change map τ∗Rqf∗
(
KX/Y ⊗ E

)
−→ Rqf◦∗ (τ◦∗(KX/Y ⊗ E)) is isomor-

phic. Thus we obtain a sheaf homomorphism

ϕ : Rqf ′′∗
(
KX′′/Y ′ ⊗ E′′) −→ τ∗Rqf∗

(
KX/Y ⊗ E

)
.

It is not difficult to see ϕ is isomorphic over Y ′\∆′, and hence the kernel
of ϕ is a torsion sheaf on Y ′. The injectivity of ϕ is then a consequence
of the torsion freeness of Rqf ′′∗

(
KX′′/Y ′ ⊗ E′′), by Lemma 2.1. q.e.d.
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As we saw in Lemma 3.2, the singularities of X ′ are mild. However
we need informations not only on the canonical sheaf of X ′, but also on
the sheaf of holomorphic p-forms on X ′. There are two canonical choices
of the definition on a normal variety. Fortunately both of them coincide
for our X ′. In the rest of this subsection, p denotes a non-negative
integer.

Definition 3.4. For every p, we define the sheaf of holomorphic p-
forms on X ′ by Ωp

X′ := j∗Ω
p
X′

reg
, where j : X ′

reg −→ X ′ is the open

immersion of the regular part.

Lemma 3.5. [7, 1.6] [34, 1.11]. µ∗Ω
p
X′′ = Ωp

X′ holds.

Due to [7, 1.6], this lemma is valid not only for our X ′ and X ′′ here,
but also more general toric variety X ′ and any resolution of singularities
µ : X ′′ −→ X ′. Our X ′ is not an algebraic variety, however at every
point x′ ∈ X ′, there exists an affine toric variety Z with a point 0 such
that (X ′, x′) ∼= (Z, 0) as germs of complex spaces. Hence this lemma
follows from [7, 1.6]. This is also implicitly contained in the proof of
[16, Lemma 3.9].

Another key property which we will use, due to Danilov, is the fol-
lowing

Lemma 3.6. The sheaf Ωp
X′ is Cohen-Macaulay (CM for short), i.e.,

at each point x′ ∈ X ′, the stalk Ωp
X′,x′ is CM as a module over a noe-

therian local ring (OX′,x′ ,mX′,x′).

Proof. Let x′ ∈ X ′. Since X ′ has a toric singularity at x′, there exists
an affine toric variety Z with a point 0 such that (X ′, x′) ∼= (Z, 0) as
germs of complex spaces. Let σ be a cone in a finite dimensional vector
space NR corresponding Z (or a fan F in NR corresponding Z). Since
(X ′, x′) ∼= (Z, 0) is an abelian quotient singularity (Lemma 3.2), the
cone σ is simplicial ([6, 3.7]). Then by a result of Danilov ([32, 3.10]),
Ωp
X′ is CM. q.e.d.

Corollary 3.7. Let y′ ∈ ∆′, and let (t′1, . . . , t
′
m) be (other) coordi-

nates of Y ′ centered at y′ such that ∆′ = {t′m = 0}. Then the central
fiber X ′

y′ ⊂ X ′ defined by f ′∗t′1 = · · · = f ′∗t′m = 0 as a complex subspace

is pure n-dimensional and reduced ([24, 7.23 (1)]). Let x′ ∈ X ′
y′ . Let

sm+1, . . . , sm+n ∈ mX′,x′ ⊂ OX′,x′ be a sequence of holomorphic func-
tions such that dimx′(X

′
y′ ∩ {sm+1 = · · · = sm+k = 0}) = n− k for any

1 ≤ k ≤ n. Then f ′∗t′1, . . . , f
′∗t′m, sm+1, . . . , sm+n is an Ωp

X′,x′-regular
sequence.

Proof. Since we already know that Ωp
X′,x′ is CM, it is enough to check

that

dimx′ Supp
(
Ωp
X′,x′/(f

′∗t′1, . . . , f
′∗t′m, sm+1, . . . , sm+n)Ω

p
X′,x′

)
= 0.
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(cf. [24, 5.1 (1) iff (2)] [1, III.4.3].) This is clear by our choice of
sm+1, . . . , sm+n. q.e.d.

3.3. Non-vanishing. Recall f ′′∗∆′ =
∑
B′′
j +B′′

exc, where
∑
B′′
j is the

prime decomposition of the non-µ-exceptional divisors in f ′′∗∆′, and
B′′
exc is the sum of µ-exceptional divisors.

Lemma 3.8. Let v ∈ H0(X ′′,Ωn+m−q
X′′ ⊗ E′′). Let y′ ∈ ∆′ such that

Suppf ′′∗∆′ −→ ∆′ is relative normal crossing around y′. Assume that v
does not vanish at y′ as an element of an H0(Y ′,OY ′)-module, i.e., f ′′∗ v
is non-zero in f ′′∗ (Ωn+m−q

X′′ ⊗E′′)/(mY ′,y′f
′′
∗ (Ωn+m−q

X′′ ⊗E′′)). Then there
exists a non-µ-exceptional component B′′

j in f ′′∗∆′ such that v does not

vanish identically along B′′
j ∩ f ′′−1(y′).

Proof. Let us denote by p = n+m−q. We have µ∗v ∈ H0(X ′, (µ∗Ω
p
X′′)

⊗E′). Recalling Lemma 3.5 that µ∗Ω
p
X′′ = Ωp

X′ , we then have f ′′∗ v ∈
H0(Y ′, f ′′∗ (Ωp

X′′ ⊗E′′)) = H0(Y ′, f ′∗(Ω
p
X′ ⊗E′)). Assume on the contrary

that v does vanish identically along B′′
j ∩ f ′′−1(y′) for all j. Then it is

enough to show that µ∗v ∈ H0(X ′, f ′−1
mY ′,y′ · (Ωp

X′ ⊗ E′)). In fact it
implies that f ′∗(µ∗v) vanishes at y′, and gives a contradiction to that
f ′′∗ v = f ′∗(µ∗v) ∈ H0(Y ′, f ′′∗ (Ωp

X′′ ⊗ E′′)) does not vanish at y′. Let

α := (µ∗v)|X′

y′
∈ H0

(
X ′
y′ ,

(
Ωp
X′/(f

′∗t′1, . . . , f
′∗t′m)Ωp

X′

)
⊗ E′) .

Then, α = 0 leads to a contradiction as we want.
We would like to show that the support of α is empty. Assume on the

contrary that there is a point x′ ∈ X ′
y′ such that d := dimx′ Suppα ≥

0. Noting that µ : X ′′ −→ X ′ is isomorphic around every point
on RegX ′

y′ , we see Suppα ⊂ SingX ′
y′ , because of our assumption

that v vanishes identically along B′′
j ∩ f ′′−1(y′) for all j. In particu-

lar d < n. We take general sm+1, . . . , sm+n ∈ mX′,x′ ⊂ OX′,x′ such
that dimx′(X

′
y′ ∩ {sm+1 = · · · = sm+k = 0}) = n − k for any 1 ≤

k ≤ n, and dimx′(Suppα ∩ {sm+1 = · · · = sm+k = 0}) = d − k
for any 1 ≤ k ≤ d. By the CM property of Ωp

X′,x′ : Corollary 3.7,

f ′∗t′1, . . . , f
′∗t′m, sm+1, . . . , sm+n form an Ωp

X′,x′ ⊗ E′-regular sequence.

Assume d ≥ 1. We set Σd := X ′
y′ ∩ {sm+1 = · · · = sm+d = 0}

around x′ on which sm+1, . . . , sm+n are defined, and consider α|Σd
∈

H0(Σd, (Ω
p
X′/(f ′

∗t′1, . . . , f
′∗t′m, sm+1, . . ., sm+d)Ω

p
X′) ⊗ E′). Then

Supp (α|Σd
) is contained in the zero locus of the function sm+d+1 around

x′. Since α|Σd
is non-zero, (some power of sm+d+1 and hence) sm+d+1 is

a zero divisor for (Ωp
X′,x′/(f

′∗t′1, . . . , f
′∗t′m, sm+1, . . . , sm+d)Ω

p
X′,x′)⊗E′

x′ ,

see [13, §2.2] Rückert Nullstellensatz, cf. [15, II.Ex.5.6]. This gives a
contradiction to the fact that f ′∗t′1, . . . , f

′∗t′m, sm+1, . . ., sm+d+1 is an
Ωp
X′,x′ ⊗ E′

x′-regular sequence.
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We also obtain a contradiction assuming d = 0, by a similar manner
as above without cutting out by sm+1 and so on. q.e.d.

4. Hodge Metric on the Ramified Cover

We still discuss in Set up 2.3 and §3.1. To compare the Hodge metric
g of F = Rqf∗

(
KX/Y ⊗ E

)
on Y \ ∆ and a Hodge metric of F ′ =

Rqf ′′∗
(
KX′′/Y ′ ⊗ E′′) on Y ′ \ ∆′, we need to put an appropriate metric

on X ′′. We can not take arbitrary Kähler metric on X ′′ of course. The
problem is that the pull-back τ ′′∗ω on X ′′ is not positive definite any
more. To overcome this problem, we introduce a modified degenerate
Kähler metric and a sequence of auxiliary Kähler metrics.

4.1. Degenerate Kähler metric. We consider a direct sum

ω̃ := p∗Xω + p∗Y ′

√
−1

∑
dt′j ∧ dt′j ,

which is a Kähler form on X × Y ′. Via the map jX◦ ◦ ν ◦ µ : X ′′ −→
X × Y ′, we let

ω′′ := (jX◦ ◦ ν ◦ µ)∗ω̃ = (δ∗ω̃)|X′′ = τ ′′∗ω + f ′′∗
√
−1

∑
dt′j ∧ dt′j

be a d-closed semi-positive (1, 1)-form on X ′′, which we may call a de-
generate Kähler form. We do not take τ ′′∗ω as a degenerate Kähler
form on X ′′, because it may degenerate totally along f ′′−1(∆′). While
it is not the case for ω′′, as we see in the next lemma. We will denote
by Excµ ⊂ X ′′ the exceptional locus of the map µ.

Lemma 4.1. There exists a closed analytic subset V ′′ ⊂ X ′′ of
codimX′′V ′′ ≥ 2 and f ′′(V ′′) ⊂ ∆′ such that ω′′ is a Kähler form on
X ′′ \ (V ′′ ∪ Excµ).

Proof. We look at V ′ = τ ′−1(Sing f−1(∆)) first, which is a closed
analytic subset of X ′ of codimX′V ′ ≥ 2 with f ′(V ′) ⊂ ∆′ and V ′ ⊃
SingX ′ by Lemma 3.1. We can see that (jX◦ ◦ (ν|X′\V ′))∗ω̃ is positive
definite (i.e., a Kähler form) on X ′ \ V ′ as follows. We continue the
argument in the proof of Lemma 3.1, and use the notations there. On

each U◦
p in U ′ = ∐bjp=1U

◦
p ⊂ X ′, the (1, 1)-from (jX◦ ◦ ν|U ′)∗ω̃ is ω̃|U◦

p
,

and needless to say it is Kähler. Then our assertion follows from this
observation, because we can write µ−1(V ′) ∪ Excµ = V ′′ ∪ Excµ for
some V ′′ ⊂ X ′′ as in the statement. q.e.d.

The replacement of τ ′′∗ω by ω′′ may cause troubles when we compare
Hodge metrics on Y \ ∆ and Y ′ \∆′. However it is not the case by the
following isometric lemma.

Lemma 4.2. Let t ∈ Y \ ∆ and take one t′ ∈ Y ′ \ ∆′ such that
τ(t′) = t, and let ϕt′ : F ′

t′ −→ (τ∗F )t′ = Ft be the isomorphism of fibers
in Lemma 3.3. The fiber Ft (resp. F ′

t′) has a Hermitian inner product:
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the Hodge metric g = gω with respect to ω and h (resp. g′ = gω′′ with
respect to ω′′ and h′′). Then ϕt′ is an isometry with respect to these
inner products.

Proof. We take a small coordinate neighbourhood W (resp. W ′)
around t (resp. t′) such that τ |W ′ : W ′ −→ W is isomorphic, and
that f ′′ : X ′′

W ′ −→ W ′ and f : XW −→ W are isomorphic as fiber
spaces over the identification τ |W ′ : W ′ −̃→W . The Hermitian vec-
tor bundle (E′′, h′′) is τ ′′∗(E,h) by definition. If we put a Hermit-
ian inner product gτ ′′∗ω on Ft′ with respect to τ ′′∗ω and h′′, the map
ϕt′ : (F ′

t′ , gτ ′′∗ω) −→ (Ft, gω) is an isometry. Although ω′′ 6= τ ′′∗ω, ω′′

and τ ′′∗ω are the same as relative Kähler forms over W ′, more con-
cretely ω′′ = τ ′′∗ω + f ′′∗

√
−1

∑
dtj ∧ dt′j . Then we have gω′′ = gτ ′′∗ω,

by a part of the definition of Hodge metrics [28, 5.2]. q.e.d.

Definition 4.3. Let g′ be the Hodge metric on Rqf ′′∗ (KX′′/Y ′ ⊗
E′′)|Y ′\∆′ with respect to ω′′ and h′′.

4.2. Hodge metric with respect to the degenerate Kähler met-

ric. We would like to develop Takegoshi’s theory of “relative harmonic
forms” with respect to the degenerate Kähler form ω′′ on X ′′. The goal
is the following

Proposition 4.4. (cf. [35, 5.2].) There exist H0(Y ′,OY ′)-module
homomorphisms

∗H : H0
(
Y ′, Rqf ′′∗

(
KX′′/Y ′ ⊗ E′′)) −→ H0

(
X ′′,Ωn+m−q

X′′ ⊗ E′′
)
,

Lq : H0
(
X ′′,Ωn+m−q

X′′ ⊗ E′′
)
−→ H0

(
Y ′, Rqf ′′∗

(
KX′′/Y ′ ⊗ E′′))

such that (cn+m−q/q!)Lq ◦ ∗H = id. Moreover for every u ∈ H0(Y ′,
Rqf ′′∗

(
KX′′/Y ′ ⊗ E′′)), there exists a relative holomorphic form [σu] ∈

H0(X ′′ \ f ′′−1(∆′),Ωn−q
X′′/Y ′

⊗ E′′) such that

(∗H(u))|X′′\f ′′−1(∆′) = σu ∧ f ′′∗dt′.

Proof. Step 1: a sequence of Kähler forms. We take {W ′
k; k =

1, 2, . . .} a fundamental system of neighbourhoods of ∆′ in Y ′, such
as W ′

k = {t′ ∈ Y ′; |t′m| < 1/(k + 1)}. Let k be a positive integer.

Since δ : X̃ × Y ′ −→ X × Y ′ in §3.1 is a composition of blowing-ups
along smooth centers laying over SingX◦, there exists a d-closed real

(1, 1)-form ξk on X̃ × Y ′ with Supp ξk ⊂ (pY ′ ◦ δ)−1(W ′
k) such that

ckδ
∗ω̃+ ξk > 0 on X̃ × Y ′ for a large constant ck (possibly after shrink-

ing Y and Y ′). Possibly after replacing ck by a larger constant, we may
assume ‖ξk‖∞/ck → 0 as k → ∞. Here ‖ξk‖∞ is the sup-norm with re-

spect to any fixed Hermitian metric on X̃ × Y ′ (possibly after shrinking
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Y and Y ′). Thus we obtain a sequence of Kähler forms
{
ω̃k := δ∗ω̃ + c−1

k ξk
}
k

on X̃ × Y ′ such that ω̃k = δ∗ω̃ on X̃ × Y ′\(pY ′ ◦δ)−1W ′
k, and ω̃k → δ∗ω̃

uniformly on X̃ × Y ′ as k → ∞. For every positive integer k, we let

ω′′
k := ω̃k|X′′

be a Kähler form on X ′′.
Step 2: Relative hard Lefschetz type theorem. We first recall the the-

ory of Takegoshi with respect to the Kähler forms ω′′
k on X ′′. Let

W ′ ⊂ Y ′ be a Stein subdomain with a strictly plurisubhamonic ex-
haustion function ψ. We take a global frame dt′ = dt′1 ∧ . . . ∧ dt′m
of KY ′ . Recalling Rqf ′′∗

(
KX′′/Y ′ ⊗ E′′) = K

⊗(−1)
Y ′ ⊗ Rqf ′′∗ (KX′′ ⊗ E′′),

this trivialization of KY ′ gives an isomorphism Rqf ′′∗
(
KX′′/Y ′ ⊗ E′′) ∼=

Rqf ′′∗ (KX′′ ⊗ E′′) on Y ′. Since W ′ is Stein, we have also a natural
isomorphism H0(W ′, Rqf ′′∗ (KX′′ ⊗ E′′)) ∼= Hq(X ′′

W ′ ,KX′′ ⊗ E′′), where

X ′′ = f ′′−1(W ′). We denote by αq the composed isomorphism

αq : H0
(
W ′, Rqf ′′∗

(
KX′′/Y ′ ⊗ E′′)) −̃→Hq

(
X ′′
W ′ ,KX′′ ⊗ E′′) .

Let k be a positive integer. With respect to the Kähler form ω′′
k on

X ′′ in Step 1, we denote by ∗k the Hodge ∗-operator, and by

Lqk : H0
(
X ′′
W ′ ,Ω

n+m−q
X′′ ⊗ E′′

)
−→ Hq

(
X ′′
W ′ ,KX′′ ⊗E′′)

the Lefschetz homomorphism induced from ω′′
k
q ∧ •. Also with respect

to ω′′
k and h′′, we set

Hn+m,q
(
X ′′
W ′ , ω′′

k , E
′′, f ′′∗ψ

)

=
{
u ∈ An+m,q(X ′′

W ′ , E′′); ∂u = ϑh′′u = 0, e(∂(f ′′∗ψ))∗u = 0
}

(see [35, 4.3 or 5.2.i]). By [35, 5.2.i], Hn+m,q(X ′′
W ′ , ω′′

k , E
′′, f ′′∗ψ) repre-

sents Hq(X ′′
W ′ ,KX′′ ⊗ E′′) as an H0(Y ′,OY ′)-module, and there exists

a natural isomorphism

ιk : Hn+m,q
(
X ′′
W ′ , ω′′

k , E
′′, f ′′∗ψ

)
−̃→Hq

(
X ′′
W ′ ,KX′′ ⊗ E′′)

given by taking the Dolbeault cohomology class. We have an isomor-
phism Hk := ι−1

k ◦ αq;
Hk : H0

(
W ′, Rqf ′′∗

(
KX′′/Y ′ ⊗E′′)) −̃→Hn+m,q

(
X ′′
W ′ , ω′′

k , E
′′, f ′′∗ψ

)
.

Also by [35, 5.2.i], the Hodge ∗-operator gives an injective homomor-
phism

∗k : Hn+m,q
(
X ′′
W ′ , ω′′

k , E
′′, f ′′∗ψ

)
−→ H0

(
X ′′
W ′ ,Ω

n+m−q
X′′ ⊗ E′′

)
,

and induces a splitting ∗k ◦ ι−1
k : Hq(X ′′

W ′ ,KX′′ ⊗ E′′) −→ H0(X ′′
W ′ ,

Ωn+m−q
X′′ ⊗ E′′) for the homomorphism Lqk such that (cn+m−q/q!)L

q
k ◦
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∗k ◦ ι−1
k = id. (The homomorphism δq in [35, 5.2.i] with respect to ω′′

k

and h′′ is ∗k ◦ ι−1
k times a universal constant.) In particular

(cn+m−q/q!)
(
(αq)−1 ◦ Lqk

)
◦ (∗k ◦ Hk) = id.

All homomorphisms αq, ∗k, Lqk, ιk,Hk are as H0(W ′,OY ′)-modules.

Let u ∈ H0(W ′, Rqf ′′∗
(
KX′′/Y ′ ⊗ E′′)). Then we have ∗k ◦ Hk(u) ∈

H0(X ′′
W ′ ,Ω

n+m−q
X′′ ⊗ E′′), and then by [35, 5.2.ii]

∗k ◦ Hk(u)|X′′

W ′
\f ′′−1(∆′) = σk ∧ f ′′∗dt′

for some [σk] ∈ H0(X ′′
W ′ \ f ′′−1(∆′),Ωn−q

X′′/Y ′
⊗E′′). It is not difficult to

see [σk] ∈ H0(X ′′
W ′ \ f ′′−1(∆′),Ωn−q

X′′/Y ′
⊗ E′′) does not depend on the

particular choice of a frame dt′ of KY ′ .
Step 3: Takegoshi’s theory with respect to ω′′. We then consider the

theory for ω′′. In case a Stein subdomain W ′ ⊂ Y ′ as above is contained
in Y ′ \∆′, the theory is the same because ω′′ is Kähler on X ′′ \f ′′−1(∆′)
(see Lemma 4.1). Hence we explain, how to avoid the degeneracy of ω′′

along a part of f ′′−1(∆′).
Let k1 and k2 be any pair of positive integers. We take any Stein

subdomain W ′ ⊂ Y ′ \ (W ′
k1

∪ W ′
k2

), which admits a smooth strictly
plurisubharmonic exhaustion function ψ. Due to [35, 5.2.iv], there are
two commutative diagrams for i = 1, 2:

Hq (X ′′,KX′′ ⊗ E′′)
∗ki

◦ι−1

ki−−−−−→ H0
(
X ′′,Ωn+m−q

X′′ ⊗ E′′
)

y
y

Hq
(
X ′′
W ′ ,KX′′ ⊗ E′′) −−−−−→

∗ki
◦ι−1

ki

H0
(
X ′′
W ′ ,Ω

n+m−q
X′′ ⊗ E′′

)
.

Here the vertical arrows are restriction maps. The bottom horizontal
maps depend only on ω′′

ki
|X′′

W ′

. Recall that ω′′
k = ω′′ on X ′′ \ f ′′−1(W ′

k).

Because of ω′′ = ω′′
k1

= ω′′
k2

on X ′′
W ′ , the bottom horizontal maps are

independent of k1 and k2.
Let us take u ∈ H0(Y ′, Rqf ′′∗

(
KX′′/Y ′ ⊗ E′′)). Then by the ob-

servation above, two holomorphic forms ∗k1 ◦ Hk1(u), ∗k2 ◦ Hk2(u) ∈
H0(X ′′,Ωn+m−q

X′′ ⊗ E′′) coincide on an open subset X ′′
W ′ , and hence

∗k1 ◦ Hk1(u) = ∗k2 ◦ Hk2(u) on X ′′. (Note that it may happen that

Hk1(u) 6= Hk2(u) around f ′′−1(∆′), because Hk(u) = (cn+m−q/q!)ω′′
k ∧

(∗k ◦ Hk(u)) and ω′′
k1

6= ω′′
k2

around there.) We denote by

∗H(u) ∈ H0
(
X ′′,Ωn+m−q

X′′ ⊗E′′
)

instead of arbitrary ∗k ◦ Hk(u). Since ω′′ may not be positive definite

along a part of f ′′−1(∆′), the operators ∗ and H with respect to ω′′ may
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not be defined across f ′′−1(∆′). However

∗H : H0
(
Y ′, Rqf ′′∗

(
KX′′/Y ′ ⊗ E′′)) −→ H0

(
X ′′,Ωn+m−q

X′′ ⊗ E′′
)

is defined. Recalling Hk(u) = (cn+m−q/q!)ω′′
k ∧ (∗k ◦ Hk(u)) in Hq(X ′′,

KX′′ ⊗ E′′), since Hk1(u) and Hk2(u) are in the same Dolbeault coho-
mology class αq(u) ∈ Hq(X ′′,KX′′ ⊗ E′′), we have Lqk1(∗k1 ◦ Hk1(u)) =

Lqk2(∗k2 ◦ Hk2(u)). We put

Lq = (αq)−1 ◦ Lqk :

H0
(
X ′′,Ωn+m−q

X′′ ⊗ E′′
)
−→ H0

(
Y ′, Rqf ′′∗

(
KX′′/Y ′ ⊗ E′′))

for one arbitrary fixed large k. A different choice of k will give a different
Lq, however the relation (cn+m−q/q!)((αq)−1◦Lqk)◦(∗k◦Hk) = id in Step
2 implies our assertion (1). Recall (∗k ◦Hk(u))|X′′\f ′′−1(∆′) = σk∧f ′′∗dt′
for some [σk] ∈ H0(X ′′ \ f ′′−1(∆′),Ωn−q

X′′/Y ′
⊗ E′′). Then we see, [σk] is

also independent of k, and hence (∗H(u))|X′′\f ′′−1(∆′) can be written as

(∗H(u))|X′′\f ′′−1(∆′) = σu ∧ f ′′∗dt′

for some [σu] ∈ H0(X ′′ \ f ′′−1(∆′),Ωn−q
X′′/Y ′

⊗ E′′). This is (2). q.e.d.

Remark 4.5. (1) We recall the definition of the Hodge metric g′ of
Rqf ′′∗

(
KX′′/Y ′ ⊗ E′′) |Y ′\∆′ with respect to ω′′ and h′′. We remind that

ω′′ is Kähler on X ′′ \ f ′′−1(∆′). We only mention it for a global section
u ∈ H0(Y ′, Rqf ′′∗

(
KX′′/Y ′ ⊗ E′′)). It is given by

g′(u, u)(t′) =

∫

X′′

t′

(cn−q/q!)
(
ω′′q ∧ σu ∧ h′′σu

)
|X′′

t′

at t′ ∈ Y ′ \ ∆′.
(2) This is only a side remark, which we will not use later. The

Hodge metric g′k of Rqf ′′∗
(
KX′′/Y ′ ⊗ E′′) |Y ′\∆′ with respect to ω′′

k and

h′′ is given, for u ∈ H0(Y ′, Rqf ′′∗
(
KX′′/Y ′ ⊗ E′′)), by

g′k(u, u)(t
′) =

∫

X′′

t′

(cn−q/q!)
(
ω′′
k
q ∧ σuk

∧ h′′σuk

)
|X′′

t′

=

∫

X′′

t′

(cn−q/q!)
(
ω′′
k
q ∧ σu ∧ h′′σu

)
|X′′

t′

at t′ ∈ Y ′ \ ∆′. Since ω′′
k → ω′′ uniformly as k → ∞, we have

g′k(u, u)(t
′) → g′(u, u)(t′) as k → ∞, for any fixed t′ ∈ Y ′ \ ∆′. �
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4.3. Uniform estimate of Fujita type. We will give a key estimate
of the singularities of the Hodge metric g′ on Rqf ′′∗

(
KX′′/Y ′ ⊗ E′′) |Y ′\∆′

with respect to ω′′ and h′′. This is the main place where we use the fact
that, by weakly semi-stable reduction, we achieve f ′′∗∆′ is reduced plus
µ-exceptional.

In this subsection we pose the following genericity condition around
a point of ∆′.

Assumption 4.6. The map f ′ : X ′′ −→ Y ′, (E′′, h′′) and F ′ =
Rqf ′′∗

(
KX′′/Y ′ ⊗ E′′) satisfy the conditions (1)–(2) in Set up 2.3. �

We then take a global frame e′1, . . . , e
′
r ∈ H0(Y ′, F ′) of F ′ ∼= O⊕r

Y ′ .
For a constant vector s = (s1, . . . , sr) ∈ Cr, we let us =

∑r
i=1 sie

′
i ∈

H0(Y ′, F ′). We denote by S2r−1 = {s ∈ Cr; |s| = (
∑ |si|2)1/2 = 1} the

unit sphere.
We note the following two things. Since e′1, . . . , e

′
r generate F ′ over

Y ′, us is nowhere vanishing on Y ′ as soon as s 6= 0, namely us is non-zero
in F ′/(mY ′,y′F

′) at any y′ ∈ Y ′. The map Cr −→ H0(X ′′,Ωn+m−q
X′′ ⊗E′′)

given by s 7→ us 7→ ∗H(us) =
∑r

i=1 si(∗H(e′i)) is continuous, with re-

spect to the standard topology of Cr and the topology ofH0(X ′′,Ωn+m−q
X′′

⊗ E′′) of uniform convergence on compact sets.

Lemma 4.7. (cf. [12, 1.11].) Under Assumption 4.6 and notations
above, let y′ ∈ ∆′ and let s0 ∈ S2r−1. Then there exist a neighbourhood
S(s0) of s0 in S2r−1, a neighbourhood W ′

y′ of y′ in Y ′ and a positive

number N such that g′(us, us)(t′) ≥ N for any s ∈ S(s0) and any t′ ∈
W ′
y′ \ ∆′.

Proof. (1) We first claim the following variant of Lemma 3.8. Let
u ∈ H0(Y ′, F ′), and assume u does not vanish at y′. Then there exists
a non-µ-exceptional component B′′

j in f ′′∗∆′ =
∑
B′′
j +B′′

exc, such that

∗H(u) ∈ H0(X ′′,Ωn+m−q
X′′ ⊗ E′′) does not vanish identically along B′′

j ∩
f ′′−1(y′).

In fact, by Proposition 4.4, the image ∗H(H0(Y ′, F ′)) is a direct

summand of H0(Y ′, f ′′∗ (Ωn+m−q
X′′ ⊗ E′′)) as an H0(Y ′,OY ′)-module. In

particular, ∗H(u) ∈ H0(X ′′,Ωn+m−q
X′′ ⊗ E′′) does not vanish at y′ ∈ Y ′

as an element of an H0(Y ′,OY ′)-module. Then we apply Lemma 3.8.
(2) For our nowhere vanishing us0 , we take a non-µ-exceptional com-

ponent
B′′ = B′′

j

in f ′′∗∆′ such that ∗H(us0) does not vanish identically along B′′ ∩
f ′′−1(y′). We take a general point x0 ∈ B′′ ∩ f ′′−1(y′), and a local
coordinate (U ; z = (z1, . . . , zn+m)) centered at x0 ∈ X ′′ such that f ′′ is
given by t′ = f ′′(z) = (zn+1, . . . , zn+m) on U . In particular (f ′′∗∆′)|U =
B′′|U = {zn+m = 0}. Over U , we may assume that the bundle E′′ is
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also trivialized, i.e., E′′|U ∼= U × Cr(E), where r(E) is the rank of E.
Using these local trivializations on U , we have a constant a > 0 such
that (i) ω′′ ≥ aωeu on U , where ωeu =

√
−1/2

∑n+m
i=1 dzi ∧ dzi (recall

ω′′ is positive definite around x0 by Lemma 4.1!!), and (ii) h′′ ≥ aId on
U as Hermitian matrixes. Here we regard h′′|U (z) as a positive definite

Hermitian matrix at each z ∈ U in terms of E′′|U ∼= U×Cr(E), and here
Id is the r(E) × r(E) identity matrix.

(3) Let s ∈ S2r−1. By Proposition 4.4, there exists σs ∈ An−q,0(X ′′ \
f ′′−1(∆′), E′′) such that (∗H(us))|X′′\f ′′−1(∆′) = σs ∧ f ′′∗dt′. We write

σs =
∑

I∈In−q
σsIdzI + Rs on U \ B′′. Here In−q is the set of all

multi-indexes 1 ≤ i1 < . . . < in−q ≤ n of length n − q (not in-
cluding n + 1, . . . , n + m), σsI = t(σsI,1, . . . , σsI,r(E)) is a row vector

valued holomorphic function with σsI,i ∈ H0(U \ B′′,OX′′), and here
Rs =

∑m
k=1Rsk ∧ dzn+k ∈ An−q,0(U \B′′, E′′). Then

σs ∧ f ′′∗dt′ =

( ∑

I∈In−q

σsIdzI

)
∧ dzn+1 ∧ . . . ∧ dzn+m

on U \ B′′. Since σs ∧ f ′′∗dt′ = (∗H(us))|X′′\f ′′−1(∆′) and ∗H(us) ∈
H0(X ′′,Ωn+m−q

X′′ ⊗ E′′), all σsI can be extended holomorphically on U .
We still denote by the same latter σsI = t(σsI,1, . . . , σsI,r(E)) its exten-
sion.

At the point s0 ∈ S2r−1, since ∗H(us0) does not vanish identically

along B′′ ∩ f ′′−1(y′), and since x0 ∈ B′′ ∩ f ′′−1(y′) is general, we have
at least one σs0J0,i0 ∈ H0(U,OX′′) such that σs0J0,i0(x0) 6= 0. We take
such

J0 ∈ In−q and i0 ∈ {1, . . . , r(E)}.

(4) By the continuity of s 7→ us 7→ ∗H(us), we can take an ε-polydisc
U(ε) = {z = (z1, . . . , zn+m) ∈ U ; |zi| < ε for any 1 ≤ i ≤ n + m}
centered at x0 for some ε > 0, and a neighbourhood S(s0) of s0 in
S2r−1 such that

A := inf {|σsJ0,i0(z)|; s ∈ S(s0), z ∈ U(ε)} > 0.

We set W ′
y′ := f ′′(U(ε)), which is an open neighbourhood of y′ ∈ Y ′,

since f ′′ is flat (in particular it is open). Then for any s ∈ S(s0) and
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any t′ ∈W ′
y′ \ ∆′, we have
∫

X′′

t′

(cn−q/q!)
(
ω′′q ∧ σs ∧ h′′σs

)
|X′′

t′

≥ a

∫

X′′

t′
∩U

(cn−q/q!)
(
ω′′q ∧ σs ∧ σs

)
|X′′

t′
∩U

= aq+1

∫

z∈X′′

t′
∩U

∑

I∈In−q

r(E)∑

i=1

|σsI,i(z)|2dVn

≥ aq+1

∫

z∈X′′

t′
∩U(ε)

A2 dVn = aq+1A2(πε2)n.

Here dVn = (
√
−1/2)n

∧n
i=1 dzi ∧ dzi is the standard euclidean volume

form on Cn. q.e.d.

Lemma 4.8. (cf. [12, 1.12].) Under Assumption 4.6 and notations
after that, let y′ ∈ ∆′. Then there exist a neighbourhood W ′

y′ of y′ in Y ′

and a positive number N , such that g′(us, us)(t′) ≥ N for any s ∈ S2r−1

and any t′ ∈W ′
y′ \ ∆′.

Proof. Since S2r−1 is compact, this is clear from Lemma 4.7. q.e.d.

5. Plurisubharmonic Extension

We still discuss in Set up 2.3 and §3.1. We are ready to talk about,
say “the plurisubharmonic extension” of the quotient metric g◦O(1) of

O(1)|π−1(Y \∆) in Theorem 2.4. Since such an extension is a local ques-
tion on P(F ), we shall discuss around a fixed point P ∈ P(F ). We take a
quotient line bundle F −→ L so that P corresponds to Fπ(P ) −→ Lπ(P ).

We also take a trivialization of F given by e1, . . . , er ∈ H0(Y, F ), so
that the kernel M of F −→ L is generated by e1, . . . , er−1. A choice
of a frame e1, . . . , er also gives a trivialization P(F ) ∼= Y × Pr−1. From
now on, we identify P(F ) and Y × Pr−1.

5.1. Quotient metric. We first describe the quotient metric g◦O(1)

around P . Let [a] = (a1 : . . . : ar) be the homogeneous coordinates
of Pr−1. Then P = π(P ) × (0 : . . . : 0 : 1) in Y × Pr−1. Let

U = Y ×
{
[a] ∈ Pr−1; ar 6= 0

}

be a standard open neighbourhood of P . This neighbourhood of P (or
of Fπ(P ) −→ Lπ(P )) is also described as follows. Let a = (a1, . . . , ar−1) ∈
Cr−1 (be an inhomogeneous coordinate of Pr−1). We set eia = ei+aier ∈
H0(Y, F ) for every 1 ≤ i ≤ r − 1, and era = er, and let Ma be the
subbundle of F generated by e1a, . . . , er−1a, and let La = F/Ma be the
quotient line bundle on Y . Every point t × a ∈ U corresponds to a
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subspace Mat ⊂ Ft generated by e1(t) + a1er(t), . . . , er−1(t) + ar−1er(t)
and hence the quotient space Lat = Ft/Mat. For every fixed a ∈ Cr−1,
we have a nowhere vanishing section

êra ∈ H0(Y,La)

defined by êra : t ∈ Y 7→ êra(t) ∈ Lat. Here êra(t) is the image of
er(t) ∈ Ft under the quotient Ft −→ Lat. We have a canonical nowhere
vanishing section

êr ∈ H0(U,O(1))

defined by êr : t× a ∈ U 7→ êra(t) ∈ Lat.
Let a ∈ Cr−1. With respect to the global frame {eia}ri=1 of F , the

Hodge metric g on F |Y \∆ is written as gija := g(eia, eja) ∈ A0(Y \∆,C)

for 1 ≤ i, j ≤ r. At each point t ∈ Y \ ∆, (gija(t))1≤i,j≤r is a positive

definite Hermitian matrix, in particular (gija(t))1≤i,j≤r−1 is also positive

definite. We let (gija (t))1≤i,j≤r−1 be the inverse matrix. The pointwise

orthogonal projection of er to (Ma|Y \∆)⊥ with respect to g is given by

Pa(er) = er −
r−1∑

i=1

r−1∑

j=1

eiag
ij
a gjra ∈ A0(Y \ ∆, F ).

Then the quotient metric gLa on the line bundle La|Y \∆ is described as

gLa(êra, êra) = g(Pa(er), Pa(er)).

Then, at each t× a ∈ U \ π−1(∆) = (Y \ ∆) × Cr−1, we have

g◦O(1)(êr, êr)(t× a) = gLa(êra, êra)(t).

We already know that − log(g◦O(1)(êr, êr)|(Y \∆)×Cr−1) is plurisubhar-

monic ([2, 1.2] [28, 1.1]). What we want to prove is

Lemma 5.1. Let ε be a real number such that 0 < ε < (2(r − 1))−2,

and let Dε = {a = (a1, . . . , ar−1) ∈ Cr−1;
∑r−1

i=1 |ai|2 < ε}. Then
− log(g◦O(1)(êr, êr)|(Y \∆)×Dε

) extends as a plurisubharmonic function on

Y ×Dε.

In case r = 1, this (as well as Lemma 5.2 and 5.4 below) should
be read that − log(g◦O(1)(êr, êr)|Y \∆) = − log(g(e1, e1)|Y \∆) extends as

a plurisubharmonic function on Y . Since P ∈ P(F ) is arbitrary, this
lemma implies Theorem 2.4.

5.2. Boundedness and reduction on the ramified cover. In Lem-
ma 3.3, we have a natural inclusion ϕ : F ′ −→ τ∗F , which is isomorphic
over Y ′ \∆′. We will reduce our study of F to that of F ′ via this ϕ. Let
L′ ⊂ τ∗L be the image of the composition F ′ −→ τ∗F −→ τ∗L, and let



152 CH. MOUROUGANE & S. TAKAYAMA

M ′ be the kernel of the quotient F ′ −→ L′. Then we have the following
commutative diagram:

0 −−−−→ M ′ −−−−→ F ′ −−−−→ L′ −−−−→ 0
y

yϕ
y

0 −−−−→ τ∗M −−−−→ τ∗F −−−−→ τ∗L −−−−→ 0.

Here, horizontals are exact, verticals are injective. Since F ′, L′ and M ′

are all torsion free OY ′-module sheaves, we can find a closed analytic
subset Z ′ ⊂ ∆′ of codimY ′Z ′ ≥ 2 such that F ′, L′ and M ′ are all locally
free on Y ′ \ Z ′. We may also assume that f ′′ is flat over Y ′ \ Z ′, and
Suppf ′′∗∆′ −→ ∆′ is relative normal crossing over ∆′ \ Z ′. We set
Z = τ(Z ′) ⊂ ∆ a closed analytic subset of codimY (Z) ≥ 2. We then
take an arbitrary point

y ∈ ∆ \ Z and let y′ = τ−1(y) ∈ ∆′ \ Z ′.

Then Lemma 5.1 is reduced to the following

Lemma 5.2. There exists a neighbourhood Wy of y in Y such that
g◦O(1)(êr, êr) is bounded from below by a positive constant on (Wy \∆)×
Dε, for Dε in Lemma 5.1.

In fact, since y ∈ ∆ \ Z is arbitrary, by Riemann type extension,
− log(g◦O(1)(êr, êr)) becomes plurisubhamonic on (Y \Z)×Dε, and then

it is plurisubhamonic on Y ×Dε by Hartogs type extension.
To show Lemma 5.2, we need to analyze the map ϕ : F ′ −→ τ∗F

and its inverse. We shall formulate and prove a quantitative version of
Lemma 5.2 as Lemma 5.4.

Since our assertion in Lemma 5.2 is local around the point y (and
y′) and over there for π : P(F ) −→ Y , by replacing Y (resp. Y ′) by a
small polydisc centered at y (resp. y′), we can also assume that F ′ ∼=
O⊕r
Y ′ . In particular the assumption to use Lemma 4.7 and Lemma 4.8

is satisfied (remind also the choice of Z ′). We take a global frame
e′1, . . . , e

′
r ∈ H0(Y ′, F ′) of F ′ such that e′1, . . . , e

′
r−1 generate M ′ and the

image ê′r ∈ H0(Y ′, L′) of e′r under F ′ −→ L′ generates L′. We still use
(the restriction of) the same global frame e1, . . . , er ∈ H0(Y, F ) of F ,
although the point π(P ) may not belong to the new Y any more.

In terms of those frames {τ∗ej} and {e′j}, we represent the bundle

map ϕ : F ′ −→ τ∗F on Y ′. For each j, we write ϕ(e′j) =
∑r

i=1(τ
∗ei)ϕij

for some ϕij ∈ H0(Y ′,OY ′). Then ϕ is given by Φ = (ϕij)1≤i,j≤r
an r × r-matrix valued holomorphic function on Y ′. Since ϕ(e′j) for

1 ≤ j ≤ r − 1 belongs to H0(Y ′, τ∗M), we have ϕr1 = . . . = ϕrr−1 ≡ 0.
We write

Φ =

(
Φ0 ϕ∗r

0 · · · 0 ϕrr

)
,
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accordingly so that (ϕ(e′1), . . . , ϕ(e′r)) = (τ∗e1, . . . , τ∗er)Φ. Here ϕ∗r =
t(ϕ1r, . . . , ϕr−1r), and the last part ϕrr represents the line bundle ho-
momorphism L′ −→ τ∗L on Y ′.

By replacing Y and Y ′ by smaller polydiscs, we may assume that
there exists a constant CΦ1 > 0 such that

|ϕij(t′)| < CΦ1

for any pair 1 ≤ i, j ≤ r and any t′ ∈ Y ′. Since ϕ is isomorphic over
Y ′ \ ∆′, we can talk about the inverse there. Let Φ−1 = (ϕij)1≤i,j≤r be

the inverse on Y ′ \∆′. Then Φ−1
0 = (ϕij)1≤i,j≤r−1, ϕ

r1 = . . . = ϕrr−1 ≡
0, ϕrr = ϕ−1

rr , and ϕir = −(
∑r−1

j=1 ϕ
ijϕjr)ϕ

−1
rr :

Φ−1 =

(
Φ−1

0 −Φ−1
0 ϕ∗rϕ−1

rr

0 · · · 0 ϕ−1
rr

)
.

Needless to say, (τ∗e1, . . . , τ∗er) = (ϕ(e′1), . . . , ϕ(e′r))Φ
−1.

Lemma 5.3. Assume r > 1. Let Ψ := Φ0
tΦ0 ∈ A0(Y ′,M(r − 1,C))

be a matrix valued smooth function on Y ′. Then there exists a constant
CΦ2 > 0 such that

λ1(Ψ
−1(t′)) ≥ 1/CΦ2

for any t′ ∈ Y ′ \∆′, where λ1(Ψ
−1(t′)) is the smallest eigenvalue of the

Hermitian matrix Ψ−1(t′).

Proof. (1) At each t′ ∈ Y ′, Ψ(t′) is a Hermitian matrix which is semi-
positive. Moreover it is positive definite for any t′ ∈ Y ′ \ ∆′, since Φ0

is non-singular on it. All entries of Ψ are also bounded by a constant
on Y ′, namely if Ψ = (ψij)1≤i,j≤r with ψij ∈ A0(Y ′,C), then |ψij(t′)| <
(r − 1)C2

Φ1 for any pair 1 ≤ i, j ≤ r and any t′ ∈ Y ′. In particular, as
we will see below (2), there exists a constant CΦ2 = (r − 1)2C2

Φ1 > 0
such that λr−1(Ψ(t′)) ≤ CΦ2 for any t′ ∈ Y ′, where λr−1(Ψ(t′)) is the
biggest eigenvalue of the matrix Ψ(t′). On Y ′ \ ∆′, we have the inverse
Ψ−1, whose pointwise matrix value Ψ−1(t′) is also positive definite at
each t′ ∈ Y ′ \ ∆′. Then λ1(Ψ

−1(t′)) = 1/λr−1(Ψ(t′)) ≥ 1/CΦ2 for any
t′ ∈ Y ′ \ ∆′.

(2) We consider in general, a non-zero matrix A = (aij) ∈ M(n,C).
Let C = max{|aij | ; 1 ≤ i, j ≤ n}. Then we have |λ| ≤ nC for any
eigenvalue λ of A as follows. Let v = t(v1, . . . , vn) be a non-zero vector
such that Av = λv, and take p such that |vp| = max{|vj | ; 1 ≤ j ≤
n} > 0. Then λvp =

∑n
j=1 apjvj , and |λ||vp| ≤

∑n
j=1 |apj||vj | ≤ nC|vp|.

Hence |λ| ≤ nC. q.e.d.

We set CΦ = max{CΦ1, CΦ2, 1}.
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5.3. Final uniform estimate. The following is a quantitative version
of Lemma 5.2:

Lemma 5.4. Let y ∈ ∆ \ Z and y′ ∈ ∆′ \ Z ′ as above in Lemma
5.2. Let W ′

y′ be a neighbourhood of y′ and N be a positive number

as in Lemma 4.8, and set Wy = τ(W ′
y′) a neighbourhood of y. Then

gLa(êra, êra)(t) ≥ N(2CΦ)−2 for any t ∈Wy \ ∆ and any a ∈ Dε.

Proof. We take arbitrary t ∈ Wy \ ∆ and a ∈ Dε, and take one
t′ ∈ W ′

y′ such that τ(t′) = t. In case r = 1, we have g◦O(1)(êr, êr)(t) =

g(e1, e1)(t) = g′(e′1, e
′
1)(t

′)|ϕ−1
11 (t′)|2. While g′(e′1, e

′
1)(t

′)|ϕ−1
11 (t′)|2 ≥

NC−2
Φ1 by Lemma 4.8. These prove Lemma 5.2 in case r = 1. For

the rest, we consider in case r > 1.
(1) We reduce an estimate on gLa to that on g′ as follows. We set

σia =
∑r−1

j=1 g
ij
a gjra for 1 ≤ i ≤ r−1 and σra = 1−∑r−1

i=1 σiaai, which are

in A0(Y \∆,C). We can write as Pa(er) = σraer−
∑r−1

i=1 σiaei on Y \∆.

Then τ∗Pa(er) = σraϕ
−1
rr ϕ(e′r)+

∑r−1
i=1 (σraϕ

ir −∑r−1
j=1 σjaϕ

ij)ϕ(e′i), and

ϕ−1τ∗Pa(er) = σraϕ
−1
rr e

′
r +

r−1∑

i=1

(
σraϕ

ir −
r−1∑

j=1

σjaϕ
ij

)
e′i

on Y ′ \ ∆′. Recall gLa(êra, êra)(t) = g(Pa(er), Pa(er))(t), and then
g(Pa(er), Pa(er))(t) = g′(ϕ−1

t′ τ
∗Pa(er), ϕ

−1
t′ τ

∗Pa(er))(t′) by Lemma 4.2.

We set sr = σra(t
′)ϕ−1

rr (t′) and si = σra(t
′)ϕir(t′) − ∑r−1

j=1 σja(t
′)ϕij(t′)

for 1 ≤ i ≤ r − 1. We obtain a non-zero vector s = (s1, . . . , sr) ∈ Cr.
Then ϕ−1

t′ τ
∗Pa(er) = us(t

′) =
∑r

i=1 sie
′
i(t

′) at the t′. Hence it is enough

to show g′(us, us)(t′) ≥ N(2CΦ)−2.
(2) We claim that |s|2 :=

∑r
i=1 |si|2 ≥ (2CΦ)−2. This claim, combined

with Lemma 4.8, implies that g′(us, us)(t′) = |s|2g′(us/|s|, us/|s|)(t′) ≥
|s|2N ≥ N(2CΦ)−2.

(3) We prove the claim in (2). By using the formula on Φ−1, we have

si = −
r−1∑

j=1

{
σra(t

′)ϕ−1
rr (t′)ϕjr(t

′) + σja(t
′)
}
ϕij(t′)

for 1 ≤ i ≤ r− 1. We set vj = σra(t
′)ϕ−1

rr (t′)ϕjr(t′)+σja(t
′) for 1 ≤ j ≤

r−1. Then t(s1, . . . , sr−1) = −Φ−1
0 (t′) · t(v1, . . . , vr−1), and

∑r−1
i=1 |si|2 =

〈Φ−1
0 (t′)v,Φ−1

0 (t′)v〉 = 〈Ψ(t′)−1v, v〉. Here v = t(v1, . . . , vr−1), and the
bracket 〈 〉 is the standard Hermitian inner product on Cr−1, and recall

Ψ = Φ0
tΦ0. Then 〈Ψ(t′)−1v, v〉 ≥ ∑r−1

i=1 |vi|2/CΦ by Lemma 5.3.
In case |sr| ≥ (2CΦ)−1, our claim in (2) is clear. Hence we as-

sume |sr| < (2CΦ)−1, namely |σra(t′)||ϕ−1
rr (t′)| < (2CΦ)−1. Then |1 −∑r−1

i=1 σia(t
′)ai| = |σra(t′)| < |ϕrr(t′)|(2CΦ)−1 < 1/2. We have at least
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one 1 ≤ j ≤ r − 1 such that |σja(t′)||aj | > 1/(2(r − 1)). In par-
ticular |σja(t′)| > 1/(2(r − 1)|aj |) > 1/(2(r − 1)

√
ε). Then for such

j, |vj | = |σja(t′) + σra(t
′)ϕ−1

rr (t′)ϕjr(t′)| ≥ |σja(t′)| − |sr||ϕjr(t′)| >
1/(2(r−1)

√
ε)−(2CΦ)−1CΦ. Using ε < (2(r−1))−2, we have vj > 1/

√
2.

Then we have
∑r−1

i=1 |si|2 >
∑r−1

i=1 |vi|2/CΦ > (2CΦ)−1, and hence our
claim in (2). q.e.d.

Thus we have proved all Lemma 5.2, Lemma 5.1, and hence Theorem
2.4.

6. Proof of Theorem 1.3 and Variants

6.1. Proof of Theorem 1.3. The projectivity assumption on Y is only
used to define the weakly positivity of sheaves. As we will see in the
proof below, it is enough to assume that f : X −→ Y is a Kähler fiber
space over a smooth projective variety Y .

After obtaining Theorem 1.2, the proof is standard and classical. A
minor difficulty in analytic approach will be that the sheaf Rqf∗(KX/Y ⊗
E) may not be locally free in general.

Let F be, in general, a torsion free coherent sheaf on a smooth pro-
jective variety Y , and let Y1 be the maximum Zariski open subset of Y
on which F is locally free. Let Y0 be a Zariski open subset of Y , which
is contained in Y1. The sheaf F is said to be weakly positive over Y0 in
the sense of Viehweg [38, 2.13], if for any given ample line bundle A on
Y and any given positive integer a, there exists a positive integer b such

that Ŝab(F )⊗A⊗b is generated by global sections H0(Y, Ŝab(F )⊗A⊗b)
over Y0. Here Ŝm(F ) is the double dual of the m-th symmetric ten-
sor product Symm(F ). We note [38, 2.14] that this condition does not
depend on the choice of A. We refer also [31, V.3.20].

Now we turn to our situation in Theorem 1.3. Let us denote by F =
Rqf∗

(
KX/Y ⊗ E

)
which is a torsion free sheaf on Y . Then by [38, 2.14],

it is enough to show that there exists an ample line bundle A on Y with
the following property: for any positive integer a, there exists a positive

integer b such that Ŝab(F ) ⊗ A⊗b is generated by H0(Y, Ŝab(F ) ⊗A⊗b)
over Y \ ∆.

Associated to F on Y , we have a scheme

P(F ) = Proj
( ⊕

m≥0

Symm(F )
)

over Y , say π : P(F ) −→ Y , and the tautological line bundle O(1)
on P(F ). Let P′(F ) −→ P(F ) be the normalization of the component
of P(F ) containing π−1(Y \ Sq), and let Z ′ −→ P′(F ) be a birational
morphism from a smooth projective variety that is an isomorphism over
Y \Sq ([31, V.§3.c]). In particular P(F )\π−1(Sq) is a Zariski open subset
of a smooth projective variety Z ′, in particular it admits a complete
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Kähler metric [8, 0.2]. We denote by Z = P(F ) \ π−1(Sq), and take a
complete Kähler form ωZ on Z. The volume form will be denoted by
dV .

We take a very ample line bundle A on Y such that A ⊗ K−1
Y ⊗

(d̂etF )−1 is ample, where d̂etF is the double dual of
∧r F and r is the

rank of F . Let hKY
(resp. hcdetF

) be a smooth Hermitian metric on

KY (resp. d̂etF ), and let hA be a smooth Hermitian metric on A with
positive curvature, and such that hAh

−1
KY
h−1

cdetF
has positive curvature

too. Let a be a positive integer. Then, noting that Ŝab(F ) ⊗ A⊗b is
reflexive, it is enough to show that the restriction map

H0
(
P(F )\π−1(Sq),O(ab)⊗π∗A⊗b)−→ H0

(
P(Fy), (O(ab)⊗π∗A⊗b)|P(Fy)

)

is surjective for any y ∈ Y \ ∆ and any integer b > m + 1, where
m = dimY . We now fix y ∈ Y \ ∆ and b > m+ 1.

We take general members s1, . . ., sm ∈ H0(Y,A) such that the zero
divisors (s1)0, . . ., (sm)0 are smooth, and intersect transversally, and
such that y is isolated in

⋂m
i=1(si)0. Let Wy ⊂ Y \ ∆ be an open

neighbourhood of y, which is biholomorphic to a ball in Cm of radius 2,
Wy ∩

⋂m
i=1(si)0 = {y}, and F |Wy is trivialized. Let ρ ∈ A0(Y,R) be a

cut-off function around y such that 0 ≤ ρ ≤ 1 on Wy, Suppρ ⊂Wy, and
ρ ≡ 1 on W ′

y the ball of radius 1 in Wy. Let φ = log(
∑m

i=1 hA(si, si))
m ∈

L1
loc(Y,R). Then hmA e

−φ is a singular Hermitian metric on A⊗m with
semi-positive curvature.

We set

L := O(ab+ r)|Z ⊗ π∗
(
A⊗b ⊗K−1

Y ⊗ (d̂etF )−1
)
|Z .

We note (O(ab) ⊗ π∗A⊗b)|Z = KZ ⊗ L. By Theorem 1.2, O(1)|Z has a
singular Hermitian metric gO(1) with semi-positive curvature. Then the
line bundle L over Z has a singular Hermitian metric

gL := gab+rO(1) π
∗
(
hb−m−1
A · hmA e−φ · hAh−1

KY
h−1

cdetF

)

of semi-positive curvature. Let hL be a smooth Hermitian metric on L.
Then gL can be written as gL = hLe

−ψ for a function ψ ∈ L1
loc(Z,R),

which is a sum of a smooth function and a plurisubharmonic function
around every point of Z. Let

√
−1∂∂ψ =

√
−1(∂∂ψ)c +

√
−1(∂∂ψ)s be

the Lebesgue decomposition into the absolute continuous part√
−1(∂∂ψ)c and the singular part

√
−1(∂∂ψ)s. We set c(L,ψ) =

∂∂ log hL + (∂∂ψ)c. Then
√
−1c(L,ψ) is a semi-positive (1, 1)-current,

because it is the absolute continuous part of the curvature current of
gL. We also note that

√
−1c(L,ψ) ≥ (b−m− 1)

√
−1 ∂∂ log(π∗hA).

We take a section σ ∈ H0(P(Fy), (O(ab) ⊗ π∗A⊗b)|P(Fy)), and take a

local extension σ′ ∈ H0(P(F |Wy),O(ab) ⊗ π∗A⊗b). We consider u :=

∂((π∗ρ)σ′) = ∂(π∗ρ) · σ′, which can be seen as an L-valued (p, 1)-form
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on Z, where p = dimZ = m + r − 1. At each point z ∈ Z, we set
|u|2c(L,ψ)(z) = inf{α ∈ R≥0 ∪ {+∞}; |(u, β)|2 ≤ α2(

√
−1c(L,ψ)Λβ, β)

for any β ∈ Ωp,1
Z,z ⊗ Lz} (see [8, p. 468]). Here ( , ) is the Hermit-

ian inner product of Ωp,1
Z ⊗ L with respect to ωZ and hL, and Λ is

the adjoint of the Lefschetz operator ωZ ∧ •. Assume for the moment
that

∫
Z |u|2c(L,ψ)e

−ψdV < ∞. Then by [8, 5.1], for u with ∂u = 0 and∫
Z |u|2c(L,ψ)e

−ψdV < ∞, there exists v ∈ L2
p,0(Z,L, loc) (an L-valued

(p, 0)-form on Z with locally square integrable coefficients) such that
∂v = u and

∫
Z |v|2e−ψdV ≤

∫
Z |u|2c(L,ψ)e

−ψdV . Since u ≡ 0 on π−1(W ′
y),

v is holomorphic on π−1(W ′
y). The integrability

∫
Z |v|2e−ψdV < ∞, in

particular
∫
π−1(Wy) |v|2e−π

∗φdV <∞ ensures v|P(Fy) ≡ 0. (In a modern

terminology, the multiplier ideal sheaf I(π−1(Wy), e
−ψ) is the defining

ideal sheaf IP(Fy) of the fiber.) Then σ̃ := (π∗ρ)σ′−v ∈ H0(Z,KZ ⊗L)

and σ̃|P(Fy) = σ′|P(Fy) = σ.

Let us see the integrability
∫
Z |u|2c(L,ψ)e

−ψdV <∞. Because Suppu ⊂
π−1(Wy \W ′

y), and ψ is smooth on π−1(Wy \W ′
y), it is enough to check

that |u|2c(L,ψ) <∞ on π−1(Wy \W ′
y). Let us take z0 ∈ Z such that y0 =

π(z0) ∈Wy \W ′
y. Let (U, (z1, . . . , zp)) be a local coordinate centered at

z0 such that dz1, . . . , dzp form an orthonormal basis of Ω1
Z at z0 so that

ωZ =
√
−1
2

∑p
i=1 dz

i ∧ dzi at z0. Let (y1, . . . , ym) be a local coordinate

centered at y0. We will use indexes i, j (resp. k, ℓ) for 1, . . . , p of zi

(resp. 1, . . . ,m of yk). We have π∗(dyk) =
∑p

i=1 c
k
i dz

i at z0, where

cki = ∂yk

∂zi (z0), and π∗(∂ρ) =
∑

i(
∑

k ρkc
k
i )dz

i at z0, where ρk = ∂ρ
∂yk (y0).

The canonical bundle KZ is trivialized by dz = dz1 ∧ . . .∧ dzp. We take
a nowhere vanishing section e ∈ H0(U,L) such that hL(e, e)(z0) = 1.
Then we can write as u = π∗(∂ρ) ∧ sdz ⊗ e with some s ∈ H0(U,OZ).

We write the curvature form of hA as
√
−1ΘA =

√
−1
2

∑
k,ℓ akℓdy

k ∧ dyℓ

at y0. Then
√
−1π∗ΘA =

√
−1
2

∑
i,j(

∑
k,ℓ akℓc

k
i c
ℓ
j)dz

i ∧ dzj at z0. Let

β ∈ Ωp,1
Z,z0

⊗ Lz0 , which is written as β = (
∑

i bidz ∧ dzi) ⊗ e. We

set bk =
∑

i c
k
i bi for 1 ≤ k ≤ m. Since

√
−1c(L,ψ) ≥

√
−1π∗ΘA, we

have (
√
−1c(L,ψ)Λβ, β) ≥ (

√
−1π∗ΘAΛβ, β) = 2p+1

∑
k,ℓ akℓb

kbℓ. Let

λ1 > 0 be the smallest eigenvalue of the positive matrix (akℓ)k,ℓ. Then∑
k,ℓ akℓb

kbℓ ≥ λ1
∑

k |bk|2. On the other hand, we have |(u, β)|2 =

|(∑i(
∑

k ρkc
k
i )dz

i∧sdz⊗e, (∑i bidz∧dzi)⊗e)|2 = (2p+1)2|s|2|∑k ρkb
k|2,

and hence |(u, β)|2 ≤ (2p+1)2|s|2 ∑
k |ρk|2

∑
k |bk|2. Then |(u, β)|2 ≤

2p+1λ−1
1 |s|2 ∑

k |bk|2(
√
−1c(L,ψ)Λβ, β). We finally have

|u|2c(L,ψ)(z0) ≤ 2p+1λ−1
1 |s|2

∑

k

|bk|2 <∞.
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Then the proof is complete. q.e.d.

6.2. Variants. We shall give some variants of the results in the intro-
duction. In Theorem 1.2 (1), we need to restrict ourselves on a relatively
compact subset Y0 ⊂ Y (see the proof of Lemma 2.5 for the reason).
We remove it in some cases.

Variant 6.1. Let f : X −→ Y be a proper surjective morphism with
connected fibers between smooth algebraic varieties, and let (E,h) be a
Nakano semi-positive holomorphic vector bundle on X. Then the line
bundle O(1) for π : P(Rqf∗

(
KX/Y ⊗ E

)
|Y \Sq

) −→ Y \Sq has a singular
Hermitian metric with semi-positive curvature, and which is smooth on
π−1(Y \ ∆′) for a closed algebraic subset ∆′ ( Y .

Proof. By Chow lemma [15, II.Ex.4.10], there exists a modification
µ : X ′ −→ X from a smooth algebraic variety X ′ such that f ′ :=
f ◦ µ : X ′ −→ Y becomes projective. Moreover by Hironaka, we may
assume Supp f ′−1(∆′) is simple normal crossing. Here ∆′ ⊂ Y is the
discriminant locus of f ′, which ∆′ may be larger than ∆ for f . Since a
projective morphism is Kähler ([35, 6.2.i]), we can take a relative Kähler
form ωf ′ for f ′. We then have a Hodge metric onRqf∗

(
KX/Y ⊗ E

)
|Y \∆′

with respect to ωf ′ and µ∗h. The rest of the proof is the same as
Theorem 1.2, after Proposition 2.6. q.e.d.

Variant 6.2. Let f : X −→ Y and (E,h) be as in Set up 1.1, and let
q = 0. Then, the line bundle O(1) for π : P(f∗(KX/Y ⊗E)|Y \S0

) −→ Y \
S0 has a singular Hermitian metric gO(1) with semi-positive curvature,

and whose restriction on π−1(Y \∆) is the quotient metric g◦O(1) of π∗g,
where g is the Hodge metric with respect to h.

Proof. In case q = 0, we have the Hodge metric g on f∗(KX/Y ⊗
E)|Y \∆ with respect to h, which does not depend on a relative Kähler
form. This Hodge metric does not change, even if we take a modifi-
cation µ : X ′ −→ X (more precisely, for any relatively compact open
subset Y0 ⊂ Y and a modification µ : X ′

0 −→ X0 = f−1(Y0)) which
is biholomorphic over X \ f−1(∆). Once a global metric is obtained,
the extension problem is a local issue. Hence it is reduced to see that
on every small coordinate neighbourhood Y0 ⊂ Y , g◦O(1)|π−1(Y0\∆) ex-

tends as a singular Hermitian metric on O(1)|π−1(Y0) with semi-positive
curvature. As we saw in the proof of Theorem 1.2, this is reduced to
Theorem 2.4 (or Theorem 1.2 itself). q.e.d.

We have the following standard consequence of our theorems. Corol-
lary 6.3 can be also formulated under other assumptions as in two vari-
ants above. We leave it for the readers.
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Corollary 6.3. Let f : X −→ Y , (E,h) and 0 ≤ q ≤ n be as in
Set up 1.1. Let L be a holomorphic line bundle on Y with a surjec-
tion Rqf∗

(
KX/Y ⊗ E

)
|Y \Z −→ L|Y \Z on the complement of a closed

analytic subset Z ⊂ Y of codimY Z ≥ 2.
(1) Unpolarized case. For every relatively compact open subset Y0 ⊂

Y , L|Y0
has a singular Hermitian metric with semi-positive curvature.

(2) Polarized case. Assume the simple normal crossing condition in
Theorem 1.2 (2), and let ωf be a relative Kähler form for f . Then L
has a singular Hermitian metric with semi-positive curvature, whose
restriction on Y \ ∆ is the quotient metric of the Hodge metric g on
Rqf∗

(
KX/Y ⊗ E

)
|Y \∆ with respect to ωf and h.

Proof. (1) Denote by F = Rqf∗
(
KX/Y ⊗ E

)
. We put a Hermitian

metric g on F |Y0\∆ as in Proposition 2.6. Assume for the moment
Sq = Z = ∅. Then the line bundle L corresponds to a section s :
Y −→ P(F ) of π : P(F ) −→ Y such that L ∼= s∗O(1). Moreover the
Hodge metric g on F |Y0\∆ induces a quotient metric g◦L (resp. g◦O(1)) of

L|Y0\∆ by quotient F −→ L (resp. O(1)|π−1(Y \∆) by π∗F −→ O(1)), and
g◦L = s∗g◦O(1) over Y0 \∆ by the definition. Let gO(1) be the extension of

g◦O(1) as a singular Hermitian metric on O(1)|π−1(Y0) with semi-positive

curvature. Then gL = s∗gO(1) over Y0 is a (unique) extension of g◦L with
semi-positive curvature.

In case Sq∪Z may not be empty, by virtue of Hartogs type extension
as in the proof of Theorem 1.2, we can extend further the singular
Hermitian metric gL on L|Y0\(Sq∪Z) with semi-positive curvature as a
singular Hermitian metric on L|Y0

with semi-positive curvature. (2) is
similar. q.e.d.
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