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QUASI-FUCHSIAN MANIFOLDS WITH PARTICLES

Sergiu Moroianu & Jean-Marc Schlenker

Abstract

We consider 3-dimensional hyperbolic cone-manifolds which are
“convex co-compact” in a natural sense, with cone singularities
along infinite lines. Such singularities are sometimes used by
physicists as models for massive spinless point particles. We prove
an infinitesimal rigidity statement when the angles around the sin-
gular lines are less than π: any infinitesimal deformation changes
either these angles, or the conformal structure at infinity with
marked points corresponding to the endpoints of the singular lines.
Moreover, any small variation of the conformal structure at infin-
ity and of the singular angles can be achieved by a unique small
deformation of the cone-manifold structure. These results hold
also when the singularities are along a graph, i.e., for “interacting
particles”.

1. Introduction

Quasi-Fuchsian hyperbolic 3-manifolds. Let M be the interior of
a compact manifold with boundary. A complete hyperbolic metric g
on M is convex co-compact if M contains a compact subset K which
is convex: any geodesic segment c in (M,g) with endpoints in K is
contained in K. Such convex co-compact metrics (considered up to
isotopy) determine a conformal structure on the boundary at infinity of
M (also considered up to isotopy), i.e., an element of the Teichmüller
space of ∂M . According to a celebrated theorem of Ahlfors and Bers
(see e.g., [2, 1]), convex co-compact metrics are uniquely determined by
the induced conformal structure at infinity, and all conformal structures
on ∂M can be achieved in this way.

A topologically simple but already interesting instance is obtained
when M is the product of a closed surface Σ by an interval. The space of
convex co-compact metrics on Σ×R, which are called “quasi-Fuchsian”
metrics, is parametrized by the product of two copies of the Teichmüller
space TΣ of Σ, one corresponding to each boundary component of M . In
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this manner the geometry of quasi-Fuchsian manifolds has much to say
on the Teichmüller theory of Σ; among many examples we can mention
the fact that the renormalized volume of quasi-Fuchsian metrics provides
a Kähler potential for the Weil-Petersson metric on Teichmüller space,
see [29].

Teichmüller theory with marked points. The main motivation here
is to extend these ideas by replacing the Teichmüller space TΣ of Σ by
its Teichmüller space with N marked points, TΣ,N , and by attaching
to each marked point an angle in (0, π). The quasi-Fuchsian metrics
on Σ × R are then replaced by hyperbolic metrics with conical singu-
larities along infinite lines going from one connected component of the
boundary to the other; the marked points on each boundary component
are the endpoints of those infinite lines, and the numbers attached to
the marked points are the angles around the singular lines. We require
that the total angle around each singular curve is less than π, a re-
striction which appears naturally at different stages. In the limit case
where those angles tend to 0 we obtain geometrically finite hyperbolic
manifolds with rank one cusps.

The main result of this paper is the first step one has to take when
extending the quasi-Fuchsian theory to encompass those manifolds with
conical singularities along infinite lines: we prove a local deformation
result, namely that the small deformations of the “quasi-Fuchsian cone-
manifolds” described above are parametrized by the small variations
of the angles at the singular lines and of the conformal structures at
infinity, marked by the endpoints of the singular lines. The results are
actually stated in a more general context of “convex co-compact cone-
manifolds”, again with “particles” – cone singularities along infinite
arcs. Note that some results in this direction, albeit in special cases of
manifolds with finite volume, were obtained by Weiss [34].

Our results actually hold for cone-manifolds with singularities along
graphs which have a finite number of vertices, still under the condition
that the cone angle at each singular curve is less than π (as in [33, 34]).
Under this condition the singular graph has valence 3. The vertices can
be understood heuristically as “interactions” of “particles”.

We now describe in a more detailed way the content of the paper.

Hyperbolic cone-manifolds. Hyperbolic cone-manifolds were intro-
duced by Thurston (see [30]). They are basically hyperbolic manifolds
which are singular along a stratified subset. In the special case of 3-
dimensional cone-manifolds with a singular set which is a disjoint union
of curves, a simple definition can be used (and is given at the beginning
of section 3). In this case, the behavior of the metric in the neighborhood
of a point of the singular locus is entirely determined by a real number,
the total angle around the singularity, which is locally constant on the
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singular locus. When the singularity is along a graph, the behavior of
the metric close to the vertices is more complicated. However, under
the condition that the cone angles are less than π, the valence of the
singular graph is 3, and it remains true that the cone angles determine
completely a local model of the metric.

Hodgson and Kerckhoff [14] considered compact such hyperbolic cone-
manifolds, for which the singular set is a disjoint union of closed curves.
They showed that, when the total angle around each singular curve is
less than 2π, those manifolds are infinitesimally rigid: any non-trivial
small deformation induces a deformation of the complex angle around
at least one of the connected curves in the singular locus. Weiss [33]
showed that the same rigidity result holds when the singular locus is a
graph, under the condition that the angles at the singular curves are
less than π.

The rigidity result of Hodgson and Kerckhoff was extended by Brom-
berg [6], who considered complete, non-compact hyperbolic cone-mani-
folds, again with singular locus a disjoint union of closed curves, but
also with some non-singular infinite ends similar to the ends of convex
co-compact hyperbolic 3-manifolds. In this more general case, any non-
trivial infinitesimal deformation of the hyperbolic metric induces a non-
trivial deformation either of the conformal structure at infinity, or of
the angle around at least one of the connected curves in the singular
locus.

Convex co-compact manifolds with particles. We consider in this
paper complete hyperbolic cone-manifolds, with singularities along a
disjoint union of open curves, or possibly along a graph. The difference
with the situation considered by Hodgson and Kerckhoff [14] or by
Bromberg [6] is that the curves in the singular locus are not compact,
but are instead complete, with endpoints on the boundary at infinity.
A precise definition is given in section 3, it includes a description of a
neighborhood of the endpoints, ensuring in particular that two singular
curves can not be asymptotic to each other.

It might be possible to extend the setting considered here to include
hyperbolic cone-manifolds of finite volume, with cusps. This more gen-
eral setting is left for further investigations.

We will use the following definition of convexity, which is stronger
than the condition of having locally convex boundary.

Definition 1.1. Let M be a hyperbolic cone-manifold. A subset
C ⊂ M is convex if it is non-empty and any geodesic segment in M
with endpoints in C is contained in C.

For instance, with this definition, points are not convex — unlessM is
topologically trivial. It follows from the definition that the intersection
of two convex subsets of M is either empty or convex. We show in the
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appendix that, when the angles at the singular curves of M are less
than π and under some weak topological assumptions on M , any closed
geodesic in M is contained in any convex subset. It follows that the
intersection of two convex subsets of M is convex (unless π1(M) = 0).

Definition 1.2. Let M be a complete, non-compact hyperbolic cone-
manifold, with singular locus a graph with a finite number of vertices.
M is convex co-compact with particles if the angles at each singular line
is less than π and if M contains a compact subset C which is convex.

It follows from this definition, and more precisely from Lemma A.11
in the appendix, that M is then homeomorphic to the interior of a
compact manifold with boundary which we will call N (N is actually
homeomorphic to the compact convex subset C in the definition). The
singular set of M corresponds under the homeomorphism with a graph
Γ embedded in N , such that vertices of Γ adjacent to only one edge are
in the boundary of N .

We will in particular use the term interacting particles when the sin-
gular locus has at least one vertex, and non-interacting particles when
the singular locus is a disjoint union of curves.

A special case is of interest to us, although it does not play a central
role here (except in the title).

Definition 1.3. A convex co-compact manifold with particles M is
called a quasifuchsian manifold with particles if it is homeomorphic to
Σ×R, where Σ is a closed surface, with the singular locus corresponding
to lines {xi} × R, for x1, · · · , xn ∈ Σ.

We hope that the local rigidity result proved here, along with some
compactness statements that will be stated elsewhere, can be used to ex-
tend to quasifuchsian manifolds with particles certain results which are
either classical or known for convex co-compact (non-singular) hyper-
bolic manifolds: a Bers-type theorem on the possible conformal struc-
tures at infinity, and statements on what induced metrics or measured
bending laminations can be prescribed on the boundary of the convex
core. Proving those results in the general setting of convex co-compact
hyperbolic cone-manifolds appears to be more difficult.

Given a hyperbolic manifold (which is not necessarily complete, so
that this includes the complement of the singular set in the cone-mani-
folds considered here) there is a basic setting, recalled in section 2,
which can be used to understand its infinitesimal deformations. It uses
a description of those deformations as closed 1-forms with values in a
vector bundle of “local” Killing fields defined on the manifold, called
E here, an idea going back to Weil [31] and recently used for cone-
manifolds by Hodgson and Kerckhoff [14].

Among those deformations, some do not change the underlying ge-
ometry of the manifold; they are the differentials (with respect to a
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natural flat connection on E) of sections of E, they are called trivial
deformations.

Main statements. The first result of this paper is an infinitesimal
rigidity result, stating that infinitesimal deformations of one of the cone-
manifolds considered here always induces a infinitesimal variation of one
of the “parameters”: the conformal structure at infinity, or the angle
around the singular curves.

Theorem 1.4. Let (M,g) be a convex co-compact manifold with par-
ticles. Any non-trivial infinitesimal deformation of the hyperbolic cone-
metric g induces a non-trivial deformation of the conformal structure
with marked points at infinity or of one of the angles around the singular
lines.

The second, related, result is that the small deformations of these
“parameters” are actually in one-to-one correspondence with the small
deformations of the cone-manifolds. Let R(Mr) be the representation
variety of π1(Mr) into PSL2(C) and ρ the holonomy representation of
Mr. We call Rcone(Mr) the subset of representations for which the
holonomy of meridians of the singular curves have no translation com-
ponent, that is, the holonomy of the meridians are rotations. Thus
ρ ∈ Rcone(Mr), and, in the neighborhood of ρ, the points of Rcone(Mr)
are precisely the holonomies of cone-manifolds.

Theorem 1.5. Let (M,g) be a convex co-compact manifold with par-
ticles. Let c be the conformal structure at infinity, and let θ1, · · · , θN ∈
(0, π) be the angles around the singular lines. In the neighborhood of
ρ, the quotient of Rcone(Mr) by PSL(2,C) is parameterized by small
deformations of c, θ1, · · · , θn.

Note that these results could be somewhat extended, at the cost of
more complicated statements but without any significant change in the
proof; it should be possible to include singularities along closed curves,
still under the hypothesis that the angles around those singularities are
less than π (or perhaps even 2π as in [14]). On the other hand, the
condition that the angle around the “open” singular curves is less than
π appears to be necessary, at least it occurs at several distinct points in
the proof given here, and it also comes up naturally in other properties
of those cone-manifolds “with singular infinity” that will not be treated
here (in particular the geometry of the boundary of their convex cores).

More about the motivations. It was mentioned above that the main
motivation for our work is the search for a generalization to manifolds
with particles of the classical result, due to Ahlfors and Bers, describ-
ing convex co-compact hyperbolic metrics in terms of the conformal
structure on their boundary at infinity.



80 S. MOROIANU & J.-M. SCHLENKER

It appears conceivable that a proof of such a statement could follow
a “deformation” approach: proving that, given the angles around the
singular lines, the natural map sending a cone-manifold to its confor-
mal structure at infinity (marked by the position of the endpoints of
the singular lines) is a homeomorphism. The topology that one should
consider on the space of cone-manifolds would then come from the asso-
ciated representations of the fundamental group of the complement of
the singular locus. Three main difficulties would arise:

• showing that the map is a local homeomorphism — this is precisely
the content of Theorem 1.5,

• showing that the map is proper — which translates as a compact-
ness question for convex co-compact manifolds with particles (see
[19]),

• showing that some conformal data have a unique inverse image —
a point which appears not to be difficult for some particular values
of the angles (of the form 2π/k, k ∈ N) for which finite coverings
can be used.

So, given the results presented here, a kind of “double uniformization”
theorem for manifolds with particles would follow from some compact-
ness results. Since such statements depend on geometric methods which
are completely different from the more analytic tools used here, we have
decided not to include any developments concerning them, and hope to
treat them in a subsequent work.

This line of arguments also leads to applications to Teichmüller the-
ory, in particular for the Teichmüller space of hyperbolic metrics with
cone singularities of prescribed angle on a closed surface. Having a Bers-
type theorem for quasifuchsian manifolds with particles would make it
possible to use in this context renormalized volume arguments as those
used in [17] to recover results of [29], and to show that the natural
Weil-Petersson metric on those Teichmüller spaces is Kähler, and has
the renormalized volume as a Kähler potential.

The geometry of the convex core. It is possible to define the convex
core of hyperbolic cone-manifold as for non-singular convex co-compact
hyperbolic 3-manifolds. This appears natural but proving it properly
leads to some technical considerations which have been moved to the ap-
pendix to keep the main part of the paper focused. With respect to the
properties of the convex core, the “convex co-compact” manifolds with
particles that we consider here appear to share some important prop-
erties of (non-singular) convex co-compact hyperbolic manifolds (the
hypothesis that the cone angles are less than π is relevant here). This
is beyond the scope of this paper, however we do need some definitions,
since they will be helpful in the geometric constructions of sections 3
and 4.
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Definition 1.6. The convex core CC(M) is the smallest non-empty
subset of M which is convex.

The term “convex” should be understood here as in Definition 1.1,
and “smallest” is for the inclusion. The existence of CC(M) is clear
as soon as M is non-contractible. Indeed, M itself is convex, while
the intersection of two convex subsets of M is convex and contains any
closed geodesic of M (see Lemma A.12).

It follows from this definition that CC(M) is a convex set without
extremal points (outside the singular locus of M), and therefore that the
intersection of its boundary with the regular set in M is a “pleated sur-
face” as for (non-singular) quasi-Fuchsian manifolds (see [30]). When
the angles around the singular lines are less than π, a simple but in-
teresting phenomenon occurs: the convex core CC(M) contains all the
vertices, and its boundary is “orthogonal” to the singular locus of M , so
that its induced metric is a hyperbolic metric with cone singularities (at
the intersection with the singular locus) of angle equal to the angle of
the corresponding curve of the singular locus. Moreover, still under the
hypothesis that the singular angles are less than π, the support of the
bending lamination of ∂CC(M) does not contain its intersection with
the singular lines.

These aspects of the geometry of quasi-Fuchsian cone-manifolds,
which will not be developed much here, are important as motivations
since they appear to indicate that several interesting questions con-
cerning quasi-Fuchsian manifolds can also be asked for quasi-Fuchsian
manifolds with particles as defined here, for instance whether any couple
of hyperbolic metrics with cone singularities of prescribed angles can be
uniquely obtained as the induced metric on the boundary of the con-
vex core, or whether any couple of “reasonable” measured laminations,
on a surface with some marked points, can be uniquely obtained as the
bending lamination of the boundary of the convex core (for non-singular
quasi-Fuchsian manifolds, see [4, 18]). Other similar questions concern-
ing domains with smooth boundary can also be considered (see [28] for
the non-singular analog).

AdS manifolds and 3d gravity. G. Mess [23] discovered that there is
a class of anti-de Sitter manifolds, sometimes called “globally hyperbolic
maximal compact” (GHMC), which is in many ways analogous to the
quasi-Fuchsian hyperbolic manifolds. One such analogy is the fact that
the space of GHMC AdS manifolds of given topology is parametrized
by the product of two copies of Teichmüller space, and the geometry
of the convex core presents striking similarities with the quasifuchsian
case.

Cone singularities along time-like lines are quite natural in the context
of those AdS manifolds, since they are used in the physics literature to
model point particles. It appears (see [16, 5]) that some properties of
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hyperbolic and AdS manifolds with cone singularities along open lines
(which are time-like in the AdS case) are quite parallel.

Acknowledgments. We are grateful to Sylvain Golénia for pointing
out a gap from a previous version of Section 5, and to an anonymous ref-
eree for many helpful comments and remarks which lead to considerable
improvements.

2. Local deformations

We recall the link between infinitesimal deformations of hyperbolic
metrics and the first cohomology group of the bundle of infinitesimal
Killing fields.

2.1. The developing map of a hyperbolic metric. Let Mr be a
connected 3-manifold, with a hyperbolic metric g (i.e., Riemannian met-
ric with constant sectional curvature −1); this metric does not have to
be complete, we are interested in the regular set of a hyperbolic cone-
manifold. Each point x ∈ Mr has a neighborhood which is isometric
to an open subset of hyperbolic 3-space H3. This isometry can be ex-
tended uniquely to a local isometry from the universal cover (M̃r, g) to
H3, called the developing map of (Mr, g). We denote it by devg, it is
well defined up to composition on the left by a global isometry of H3.

If (Mr, g) is the regular part of a hyperbolic cone-manifold M , then
devg is defined outside the singular set of M . It is usually not injective.

Deformations of hyperbolic metrics. Let ġ be a infinitesimal de-
formation of the hyperbolic metric g; ġ is a section of the bundle of
symmetric bilinear forms over M . We suppose that ġ is such that the
metric remains hyperbolic, i.e., the infinitesimal variation of the sec-
tional curvature of g induced by ġ vanishes.

One obvious way to define such “hyperbolic” deformations of g is by
considering the Lie derivative of g under the action of a vector field u
on M . We call such infinitesimal deformations trivial.

The vector field associated to a deformation. Consider the germ
at t = 0 of a smooth 1-parameter family (gt)0≤t<ǫ of hyperbolic metrics
on M with g0 = g and (∂tgt)t=0 = ġ. Choose a smooth 1-parameter
family of developing maps devgt for the metrics gt. One way to do this

is as follows: fix a point x0 in M̃ , a point p0 in H3 and an isometry
I between Tx0

M̃ and Tp0
H3, then there exists a unique devgt with the

property

devgt(x0) = p0, (devgt)∗(x0) = I.

Any other choice must be of the form

dev′gt
= atdevgt
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for some smooth family (at)0≤t<ǫ of isometries of H3.

For each x ∈ M̃ the curve

t 7→ dev−1
g (devgt(x))

is well-defined for some positive time, in particular it defines a vector
at x. Denote by u the vector field on M̃ obtained in this way.

Let G be the group of deck transformations of M̃ . Then u is auto-
morphic with respect to the action of G, in the sense that for all γ ∈ G,
the vector field γ∗u− u is Killing (we follow here the terminology used
in [14]). Indeed, by definition γ∗gt = gt, so there exists an isometry
aγ(t) of H3 such that

devgt ◦ γ = aγ(t) ◦ devgt.

By differentiation at t = 0 this implies

uγx = γ∗ux + dev∗gȧγ .

2.2. The bundle E of germs of Killing fields. Over an arbitrary
Riemannian manifold M consider the vector bundle

E := TM ⊕ Λ2T ∗M

with connection D given by

DV (u, α) = (∇V u+ V yα,∇V α−RuV )

where R is the curvature tensor (we identify vectors and 1-forms using
the Riemannian metric). Define a differential operator s : C∞(M,TM)→
C∞(M,E) by the formula

u 7→ su :=

(

u,−
1

2
(∇u)anti-sym

)

.

The operator s is called the canonical lift, see [14]. The following ele-
mentary lemma is well-known (see [15]):

Lemma 2.1. On every Riemannian manifold, the canonical lift op-
erator induces an isomorphism between the space of Killing vector fields
and the space of parallel sections of E.

We specialize now to M orientable of dimension 3, so we identify
Λ2T ∗M with TM via the Hodge star and duality. Keeping into account
that the sectional curvature is −1, RuV is mapped under this identifi-
cation to u × V . Let v be the vector corresponding to the 2-form α,
then V yα is dual to v × V . Hence under this identification of E with
TM ⊕ TM , the connection D becomes

DV (u, v) = (∇V u+ v × V,∇V v − u× V ).

To simplify even further, note that E is isomorphic to the complexified
tangent bundle TCM via

(u, v) 7→ u+ iv.
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We extend by linearity the Levi-Cività connection and the vector prod-
uct to TCM . Hence the bundle with connection (E,D) is isomorphic to
TCM with the connection (again denoted by D) given by

(1) DV φ = ∇V φ+ iV × φ .

Clearly D commutes with complex multiplication. In this framework,
the canonical lift operator is given by the expression

(2) su = u− i
curl(u)

2
.

Using the fact that M is hyperbolic, a straightforward computation
shows that D is flat. Note that in general D is flat if and only if M has
constant sectional curvature.

2.3. The closed 1-form associated to an infinitesimal deforma-

tion of a hyperbolic metric. Starting from a 1-parameter family of
hyperbolic metrics on M we have constructed above an automorphic
vector field u on M̃ . Let su be its canonical lift. We claim that su is
itself automorphic, in the sense that γ∗su − su is a parallel section in
E. Indeed, since the group of deck transformations acts by isometries
on M̃ , it commutes with curl, hence from (2) it also commutes with the
linear operator s:

sγ∗u = γ∗su, for all γ ∈ π1(M).

We have seen in Section 2.1 that κ := γ∗u − u is Killing. Thus by
Lemma 2.1

γ∗su − su = sγ∗u − su = sκ

is parallel as claimed.
Let dD be the de Rham differential twisted by the flat connection D.

Let ω̃ be the 1-form

ω̃ = dDsu.

Since dD commutes with the action of G, we see that ω̃ is G-invariant
on M̃ :

γ∗ω̃ = dDγ
∗
su = dD(su + sκ) = ω̃.

Thus ω̃ descends to a 1-form ω on M with values in E = TCM . This
form is closed since by construction it is locally exact.

2.4. Link between infinitesimal deformations and H1(M,E). Let
us gather below a few facts about ω.

The closed 1-form ω does not depend on the choice of the

family of developing maps devgt. Indeed, if we replace devgt by
dev′gt

= atdevgt , then u′ = u+ κ where κ = dev∗g0
ȧt is a Killing field, so

dDsu′ = dDsu + dDsκ = ω.
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The 1-form ω is exact if and only if the infinitesimal deforma-

tion ġ of the hyperbolic metric is trivial. In one direction this is
clear: a vector field u on M determines a germ of a 1-parameter group
of local diffeomorphisms Φt; choose gt := Φ∗

t g. Then devgt may be cho-

sen as dev0 ◦ Φ̃ so the vector field of the deformation will be precisely
the lift of u to M̃ . Thus sũ is the lift to M̃ of the section su in E over
M defined by (2), in other words ω is exact already on M . Conversely,

assume that there exists α ∈ C∞(M,E) with dDα = ω. Lifting to M̃
we get

dDα̃ = dDsu

so by Lemma 2.1, there exists a Killing vector field κ on M̃ with α̃−su =
sκ. Replace devgt by dev′gt

= atdevgt, where at = exp(tdevg∗κ) is

a family of isometries of H3. Thus α̃ = su+κ = su′ . Since α̃ is G-
invariant, so must be u′, therefore u′ defines a vector field on M , which
by definition means that the deformation is trivial.

Any closed form α ∈ Λ1(M,E) is cohomologous to dDsu for an

automorphic vector field u on M̃ . Indeed, the lift of α to M̃ is
exact, since M̃ is simply connected. Thus α̃ = dDa. Now decompose
C∞(M̃,E) as follows:

C∞(M̃,E) = Range(s) ⊕ iC∞(M̃, TM̃ )

where s is the differential operator (2). Note that both spaces in the
right-hand side are G-invariant. With respect to this decomposition we
write a = su + iv, so

α̃ = dDa = dDsu + idDv.

Let γ ∈ G; since α̃ = dDa is invariant, it follows that a is automorphic,
thus there exists a Killing vector field κ with γ∗a − a = sκ. Put this
together with

a = su + iv, γ∗a = sγ∗u + iγ∗v.

Since Range(s) and iC∞(M̃ , TM̃) are transversal in C∞(M̃,E) we de-
duce

γ∗u− u = κ, γ∗v − v = 0.

Hence iv descends to a section of E on M ; by subtracting dD of this
section from α we get the cohomologous form dDsu with u automorphic
as required.

In summary, we have shown that the application

ġ 7→ [ω]H1(M,E)

is a well-defined isomorphism between the space of infinitesimal defor-
mations of the hyperbolic structures on M modulo trivial deformations,
and H1(M,E). Note that the argument holds more generally for defor-
mations of metrics of constant sectional curvature of any sign.
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2.5. The variety of representations. To go from infinitesimal de-
formations (as in Theorem 1.4) to small deformations (as in Theorem
1.5) it is necessary to understand the structure of the space of represen-
tations of π1(Mr) in PSL(2,C) in the neighborhood of the holonomy
representation ρ of a convex co-compact manifold with particles M .

We call R(Mr) the space of representations of π1(Mr) in PSL(2,C),
that is, the space of homomorphisms of π1(Mr) in PSL(2,C). The
representation ρ is irreducible: note (as in [7]) that the restriction of ρ
to each boundary component of M is the holonomy representation of a
complex projective structure on the complement of the singular points,
and as such it is irreducible because any reducible representation fixes a
point in CP 1 and is therefore the holonomy representation of an affine
structure.

It then follows from a result of Thurston [30, 9] (see [14], Theorem
4.3) that the irreducible component of R(Mr) containing ρ is a complex
variety.

Following a classical construction of Weil [32], one can associate to
R(N) a scheme R(N), based on the choice of a presentation of π1(N).
Then the Zariski tangent space of R(N) at ρ is naturally associated to
the space of 1-cocycles Z1(π1(N);Ad(ρ)) (see [14], Proposition 4.1).

We will see in subsection 6.3 that R(Mr)/PSL(2,C) is actually a
smooth complex manifold in the neighborhood of ρ, and that its tangent
space is canonically identified with H1(M,E).

3. The geometry of convex co-compact manifolds with

particles

The goal of the next two sections is to find a convenient way to
“normalize” infinitesimal deformations of convex co-compact manifolds
with particles close to infinity. This will then be used to prove an
infinitesimal rigidity statement for hyperbolic manifolds with particles,
Theorem 1.4. Here “normalize” means to write them as sections of a
certain bundle which are in L2. Theorem 1.4 will then follow from an
analytical argument; this argument was originally due to Calabi [8] and
Weil [31], and has been extended recently to hyperbolic cone-manifolds
by Hodgson and Kerckhoff [14]. The treatment here of deformations
close to infinity is inspired by the recent work of Bromberg [6, 7], while
the general approach is related to the argument used by Weiss [33].
It would also be interesting to compare the methods used here to the
ones developed by Montcouquiol [25, 24, 26] to treat similar questions
in higher dimensions, in the setting of Einstein manifolds with conical
singularities.

3.1. Hyperbolic cone-manifolds.

Definitions. Hyperbolic cone-manifolds were defined by Thurston [30],
using a recursive definition. We define first the special case when the
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singular locus is a disjoint union of lines (i.e. a graph without vertices).
Consider a fixed, oriented hyperbolic geodesic ∆0 in H3, and let U be
the universal cover of the complement of ∆0 in H3. Let V be the metric
completion of U , so that V \U is canonically identified with ∆0; it will
be called the singular set of V . For each α > 0, let Vα be the quotient of
V by the rotation of angle α around ∆0; the image under this quotient of
the singular set of V is called the singular set of Vα. Another description
of Vα is as the hyperbolic cone over the spherical surface Sα with two
cone singularities, both of angle α:

Vα =
(

Sα × R>0, dt
2 + sinh2(t)h

)

,

where h is the metric on Sα.
A hyperbolic cone-manifold with singular locus a union of lines is a

complete metric space for which each point has a neighborhood which
is isometric of an open subset of Vα, for some α > 0. The points which
have a neighborhood isometric to an open subset of the complement of
the singular set in Vα are called regular points, and the others singular
points. The set of regular points of a hyperbolic cone-manifold is a
(non-complete) hyperbolic 3-manifold.

We are interested here in a more general notion of cone-manifolds, for
which the singular set is a graph, that is, three singular lines can meet
at a “vertex”. We require however the number of vertices and edges
to be finite. Such cone-manifolds are made of three kinds of points: in
addition to the regular points and to the points of the singular lines,
already described above, there can be “vertices”, i.e., points which have
a neighborhood isometric to a hyperbolic cone over a 2-dimensional
spherical cone-manifold (see [30]). Given such a vertex v in a cone-
manifold M , the 2-dimensional spherical cone-manifold over which the
neighborhood of v in M is “built” is called the link of v. Each singular
point of the link of v corresponds to one of the singular lines ending at
v, and the angle around the singular point in the link is equal to the
angle around the corresponding singular curve.

Here we suppose that the angle at each singular line is less than π, it
follows that the same condition holds at each singular point of the link
of v, so that the corresponding singular curvature is larger than π. So
it follows from the Gauss-Bonnet theorem that the link of each vertex
can have at most 3 cone points. The picture is further simplified by
the fact that a spherical cone-manifold with 3 singular points where the
singular curvature is positive is the double cover of a spherical triangle
(this is a special case of a theorem of Alexandrov, see [3, 21]).

Let M be a hyperbolic cone-manifold. Each singular point x of M
other than the vertices has a neighborhood which is isometric to a subset
of Vα for a unique α > 0; we call α the angle of M at x. By construction,
the angle is locally constant on the singular lines of M .
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We will consider here only hyperbolic cone-manifolds which are home-
omorphic to the interior of a compact manifold with boundary, with the
singular set sent by this homeomorphism to an embedded graph, with a
finite number of vertices, and with the exterior vertices on the boundary.

We can follow the definition of Vα above using the Poincaré model of
H3, taking as ∆0 the intersection with the ball of a lineD0 going through
the origin. This leads to a conformal model of Vα: Vα is conformal
to the quotient by a rotation of angle α of the universal cover of the
complement of D0 in the Euclidean ball of radius 1.

Hyperbolic manifolds with particles. The specific class of hyper-
bolic cone-manifolds that we consider contains the convex co-compact
hyperbolic manifolds, as well as analogous cone-manifolds, see Definition
1.2. Those convex co-compact cone-manifolds are required to contain a
non-empty, compact, geodesically convex subset.

The properties of convex subsets in hyperbolic manifolds with parti-
cles are quite reminiscent of the corresponding properties in non-singular
hyperbolic manifolds. Some considerations on this can be found in the
appendix. One key property, which we will need here, is Lemma A.11.

Consider a convex subsetK in a convex co-compact cone-manifold M ,
let N1(K) be the unit normal bundle of K, as defined in the Appendix.
N1K contains all unit vectors in TM which are orthogonal to a support
plane of K (and oriented towards the exterior), as well as some vectors
based at the intersection of ∂K with the singular set ofM (see Definition
A.8). When ∂K is smooth and “orthogonal” to the singular locus, N1K
is homeomorphic to ∂K, and diffeomorphic outside the singular points,
but in general N1K is only a C1,1 surface, it has one singular point for
each intersection point between ∂K and the singular set of M . (The
C1,1 structure on N1K is clear if K is the convex core of M and the
support of its bending lamination is a disjoint union of closed curves. It
is almost as clear if ∂K is polyhedral. In the general case its existence
follows from a limiting argument.)

We consider the restriction of the exponential map to the normal
bundle of K, as the map

expK : N1K × (0,∞) →M

such that expK(v, s) = exp(sv), where exp is the usual exponential map.
The content of Lemma A.11 is that, for any non-empty, convex, com-

pact subset K of M , expK is a homeomorphism from N1K × (0,∞) to
M \K.

3.2. Induced structures at infinity. Let M be a hyperbolic man-
ifold with particles, let Mr and Ms be the subsets of its regular and
of its singular points, respectively. Mr has a natural (non-complete)

hyperbolic metric, and its universal cover M̃r has a locally isometric
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projection dev to H3 which is unique up to composition on the left by
an isometry of H3.

The metric completion of M̃r is the union of M̃r with a union of
connected sets, each of which projects to a connected component of Ms

and also, by dev, to a complete graph in H3.
Let ∂∞H

3 be the boundary at infinity of H3. Then dev has a natural
extension as a local homeomorphism:

˜dev : M̃r ∪ ∂∞M̃r → H3 ∪ ∂∞H
3 ,

where ∂∞M̃r can be defined, as ∂∞H
3, as the space of equivalence

classes of geodesic rays in M̃r, for which the distance to the singular
locus is bounded from below by a positive constant, where two rays are
in the same class if and only if they are asymptotic.

The boundary at infinity of H3 can be canonically identified to CP 1,
so that ˜dev induces on ∂∞M̃r a complex projective structure. We get
the same CP 1-structure if we compose ˜dev to the left by an isometry.
Furthermore, since the hyperbolic isometries act on ∂∞H

3 by complex
projective transformations, the fundamental group of Mr acts on M̃r

by hyperbolic isometries which extend to ∂∞M̃r as complex projective
transformations. Therefore, Mr has a well-defined boundary at infinity,
which is the quotient of ∂∞M̃r by the fundamental group of Mr, and
which carries a canonical complex projective structure.

Let K ⊂ M be a compact convex subset. The map exp : N1K ×
(0,∞) → M \K can be used to define a “limit” exp∞ : N1K → ∂∞M
(technically, the image of a point (x, v) ∈ N1K is the equivalence class
of the geodesic ray t 7→ exp((x, v), t)). Lemma A.11 shows that this
map is a homeomorphism from N1K to ∂∞M , by construction it sends
the singular points of N1K to the endpoints at infinity of the singular
curves of M . This shows in particular that two cone singularities in M
end at different points in ∂∞M (i.e., they can not be asymptotic). The
following statement is a consequence.

Lemma 3.1. Each point x ∈ ∂∞M has a neighborhood which is
isometric either to a half of the hyperbolic space H3 (when x is not an
endpoint of one of the singular curves) or to a neighborhood of one of
the endpoints of D0 in the Poincaré model of Vα described above (when
x is an endpoint of one of the singular curves, of angle α).

Proof. Suppose that x is the endpoint at infinity of a singular ray p in
the singular set of M . Since, by Lemma A.11, K intersects all singular
rays in Ms, p intersects ∂K at a point y. Let n be the singular point in
N1K corresponding to the intersection with p, so that the projection of
n to ∂K is y and n is directed along p.

Let U be a neighborhood of n in N1K, and let C = exp(U × (0,∞)).
Then C contains a cylinder of exponentially expanding radius around p
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– this follows from standard arguments on the normal exponential map
of a convex surface in H3 – and the statement of the lemma follows.

q.e.d.

Clearly the complex projective structure at infinity is defined on
∂∞Mr only, and does not extend to the endpoints at infinity of the sin-
gular curves in M . An extension is however possible. For this note that
∂∞Mr is projectively equivalent, in the neighborhood of an endpoint at
infinity x of a cone singularity, to a neighborhood in the boundary at
infinity of Vθ of one of the endpoints of the singular line (here θ has to
be equal to the angle at the singular line ending at x). Considering such
model neighborhoods leads to a natural notion of “complex projective
structure with cone singularities”.

One can also consider the conformal structure underlying the complex
projective structure at infinity ; we will call it the conformal structure
at infinity of M . It is defined in the complement, in ∂N , of the points
which are the endpoints of the singular graph. (Recall that N is the
compact manifold with boundary introduced after Definition 1.2). We
will see in Remark 4.9 that this conformal structure can be extended
to the singular points, hence it can also be considered as a conformal
structure on ∂N with some marked points.

3.3. The L2 deformations. The regular set Mr of a hyperbolic cone-
manifold M carries by definition a (non-complete) hyperbolic metric.
The deformation theory outlined in section 2 for hyperbolic manifolds
therefore applies to this setting. There is a natural vector bundle over
Mr, which we still call E, with fiber at a point the vector space of Killing
fields in a neighborhood of this point. Moreover E can be identified
with TCMr with its natural metric and the flat connection (1) (see also
[14]), which we still call D, with flat sections the sections corresponding
to a fixed Killing field. Finally, the infinitesimal deformations of the
hyperbolic cone-manifold structure are associated to closed 1-forms with
values in E, with two 1-forms corresponding to equivalent deformations
if and only if the difference is the differential of a section of E.

Let ω be a closed 1-form on Mr with values in E. Then ω is in L2 if:
∫

Mr

‖ω‖2
Edv <∞ ,

where the norm of ω is measured with respect to the hyperbolic metric
on M and the natural metric, at each point of M , on E. The tensor
product connection ∇ ⊗ D, where ∇ is the Levi-Cività connection of
M , can be applied to ω, to obtain a tensor Dω whose norm can also
be measured with respect to the same metrics; again, Dω is L2 if the
integral of the square of its norm converges over M .

The following lemma is a key point of this paper. It is proved at
the end of the next section, after some preliminary constructions, since
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it uses some details on the normalization of a deformation near the
singular set and in the neighborhood of infinity.

Lemma 3.2. Let (M,g) be a hyperbolic manifold with particles. Let
ġ be a infinitesimal deformation of g, among hyperbolic manifolds with
particles, which changes neither the conformal structure at infinity nor
the angles at the singular arcs. Then there is a deformation 1-form ω
associated to ġ which is L2 and such that Dω is L2.

Here again, the conformal structure at infinity which is considered
is the conformal structure with marked points corresponding to the
endpoints of the singular lines. Note that the fact that Dω is in L2 is
not used in the sequel, it is included in the lemma since it follows from
the proof and because it could be of interest in different situations.

Convex surfaces close to infinity. It will be useful, in order to obtain
a good normalization of the infinitesimal deformations of the hyperbolic
metrics close to infinity, to find a foliation of the ends by convex surfaces
which are “orthogonal” to the singularities. We first consider another
notion of “convex core” containing the singular locus of M . We suppose
from here on that M is not one of the model spaces Vθ defined above.

Definition 3.3. The smallest convex subset of M containing Ms is
called the singular convex core of M and is denoted by CS(M).

Here “smallest” should be understood for the inclusion; the existence
of CS(M) is clear since M itself is convex, and the intersection of two
convex subsets of M containing Ms is itself convex in the sense of Defi-
nition 1.1, it cannot be empty since it always contains Ms.

Close to infinity, CS(M) is “thin” and concentrated near the singular
locus, as stated in the next proposition. For each r > 0, we define
CCr(M) as the set of points of M which are at distance at most r from
the convex core CC(M). It is not difficult to check that, for any r > 0,
CCr(M) is convex (this follows from the arguments in the appendix).

Proposition 3.4. There exists a constant C > 0 such that, for each
r > 0, any point x ∈ CS(M) which is not in CCr(M) is at distance at
most Ce−r from the singular locus.

Proof. In the Poincaré model of Vα described above, the intersection
of the model with a Euclidean ball, with boundary orthogonal to the
boundary of the model, which does not intersect the singular segment, is
isometric to a hyperbolic half-space. Considering such balls which are
tangent to the singular segment at its endpoint, and which are small
enough to fit in the neighborhood of the endpoint which appears in
Lemma 3.1, we can find for each endpoint x∞ of the singular graph
Ms in M a finite set of half-spaces H1, . . . ,Hp ⊂ M , disjoint from the
singular set Ms, such that any point y which is at distance at most cer
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from Ms \ CCr(M) but not in ∪n
i=1Hi is actually at distance at most

c′e−r from Ms (for some c, c′ > 0).
By construction, CS(M) is contained in the complement of theHi, 1 ≤

i ≤ p. It follows that, maybe after changing the constants c and c′, any
point in CS(M)∩ (M \CCr(M)) which is at distance at most cer from
one of the singular curves is actually at distance at most c′e−r from this
singular curve.

However, for r large enough, a point y ∈ M \ CCr(M) which is at
distance at least cer from all the singular curves can not be contained
in CS(M), since one can construct a half-space in M , disjoint from the
singular locus, which contains it. The statement follows. q.e.d.

Definition 3.5. Let Σ be a surface in Mr, and let Σ be its closure as
a subset of M ; suppose that Σ \ Σ ⊂ Ms. We say that Σ is orthogonal
to the singular locus if, for each x ∈ Σ \ Σ and each sequence (xn)n∈N

of points of Σ converging to x, the ratio between the distance from xn

to x in Σ and the distance from xn to Ms in M converges to 1.

Lemma 3.6. There exists a constant k0 > 0 (e.g. k0 = 2) and a
compact, convex subset K ⊂ M , with K ⊃ CC(M), such that the com-
plement of K in M is foliated by equidistant surfaces, which are smooth
and locally convex outside the singular locus, with principal curvatures
at most equal to k0, and orthogonal to the singular locus.

Proof. Choose r > 0, on which more details will be given below. Let
Ms be the singular graph of M , and let x be a point in Ms at distance
r from CC(M). By the definition of a cone-manifold given above, there
is a neighborhood Ω of x in M which is isometric to a ball Ω′ centered
at a point y of ∆0 in Vα, for some α ∈ R+.

Recall that the universal cover of Vα \ ∆0 has a canonical projection
to the complement of a line (which we also call ∆0) in H3. The metric
completion of the universal cover of Vα\∆0 is obtained by adding a line,
which we still call ∆0, which contains a unique point y′ corresponding
to y.

Let y′′ be the image of y′ in H3, and let Q be the plane orthogonal to
∆0 at y′′. Then the lift of Q to the universal cover of Vα \∆0 is a totally
geodesic subspace Q′ which is orthogonal to ∆0 at y′. Q′ projects to Vα

as a totally geodesic subset Q which is also orthogonal to ∆0 at y.
We call P the subset of Ω ⊂ M which corresponds to the subset

Q ∩ Ω′ of Ω′ ⊂ Vα. If r is large enough, Proposition 3.4 indicates that
CS(M) \P has two connected components, one of which is contained in
an ǫ-neighborhood of the subset of γ which is bounded by x on the side
opposite to CC(M).

Since the same construction can be done for each of the points at
distance r from CC(M) in the singular locus of M , we can “cut out”
the neighborhoods in CS(M) of the parts of the singular curves which
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are at distance more than r + 1 from CC(M). Since this is done by
cutting along totally geodesic surfaces which are orthogonal to the sin-
gular locus, we obtain in this way a compact subset K ′ of M , contained
in CS(M) and in Cr+1(M), which is convex. However the boundary of
K ′ is not smooth.

We can now call K the set of points of M at distance at most 1
from K ′; it is again compact and convex, and its boundary is C1,1

smooth and strictly convex. Smoothing this boundary surface by any
of the classical techniques – without changing it in a neighborhood of
its intersections with the singular curves, where it is totally umbilic
– yields a convex, compact subset K of M with a boundary which is
smooth and orthogonal to the singular locus. The statement is then
obtained by considering the foliation of the complement of K by the
surfaces at constant distance from K.

Consider an integral curve of the unit vector field orthogonal to these
surfaces, towards infinity. Since the surfaces are equidistant, this inte-
gral curve is a geodesic, and a classical computation (see e.g. [12]) shows
that, along it, the second fundamental form of the surfaces satisfies a
Riccati equation:

B′ = I −B2 .

It follows that the principal curvatures of the equidistant surfaces con-
verge to 1 close to infinity in each of the ends of M . Therefore, replacing
K by a larger compact subset if necessary, we obtain that the principal
curvatures of the equidistant surfaces are at most k0, for any choice of
k0 > 1. q.e.d.

In the sequel, for each end e of M , we call (Se,t)t∈R+
the family of

surfaces obtained in the previous lemma, which foliates a neighborhood
of infinity in the end e.

The metric at infinity associated to an equidistant foliation.

Such an equidistant foliation (Se,t)t∈R+
determines a natural metric g∞,e

on the connected component of ∂∞M corresponding to e, it is defined
as:

g∞,e = lim
t→∞

e−2tIt ,

where It is the induced metric on Se,t. The surfaces (Se,t)t∈R+
, and the

boundary at infinity, are identified through the orthogonal projections
on the Se,t. The homothety factor e−2t is designed to compensate the
divergence of It as t→ ∞.

Clearly, the conformal structure of g∞,e is equal to the conformal
structure underlying the CP 1-structure on ∂∞M which was already
mentioned above. It also follows quite directly from its definition that
g∞,e is a smooth metric with conical singularities at the endpoints of
the singular lines of M , where its singular angle is equal to the singular
angles around the corresponding singular lines of M .
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Note that g∞,e is not in general hyperbolic, it depends on the choice
of the equidistant foliation (Se,t)t∈R+

. Actually it is possible to choose
g∞,e and deduce from it an equidistant foliation, which might however
only be defined for t ≥ t0, for some t0 ∈ R (see e.g. [11, 13] where
related questions are treated in the more general context of conformally
compact Einstein manifolds, but without singularities, or [17] for the
3-dimensional hyperbolic case).

It is perhaps worth noting that there is another possible definition
of the metric at infinity ge,∞: it is equal to e−2tI∗t , where I∗t is the
“horospherical metric” of Se,t, i.e., It + 2IIt + IIIt (where It, IIt and IIIt
are the induced metric, second and third fundamental forms of Se,t,
respectively) for any choice of t — the result does not depend on the
choice of t. Details on this can be found in [10, 27].

Geodesics close to infinity. A direct consequence of the existence
of the foliation by parallel, convex surfaces orthogonal to the singular
locus, obtained in the previous paragraph, is the existence of another
foliation, by geodesics going to infinity and normal to those surfaces.

Lemma 3.7. For each end e of M , for each x ∈ Se,0, there exists
a geodesic ray he,x with endpoint x which is orthogonal to the surfaces
Se,t, t ∈ R+. The geodesic rays he,x, x ∈ Se,0, foliate ∪t∈R+

Se,t, and, for
each x ∈ Se,0, the point at distance t from x in he,x, called he,x(t), is in
Se,t.

Proof. This is a direct consequence of the previous lemma, taking as
the he,x the curve orthogonal to the equidistant surfaces and starting
from x. q.e.d.

Lemma 3.8. For each end e of M , there exists a constant Ce > 0
with the following property. Let γ : [0, 1] → Se,0 be a smooth curve,
then, for each t ∈ R+:

∥

∥

∥

∥

∂he,γ(s)(t)

∂s

∥

∥

∥

∥

≥ Ce‖γ
′(s)‖et .

Proof. The he,γ(s) are geodesics, and are orthogonal to γ. Moreover:

∂

∂t

∥

∥

∥

∥

∂he,γ(s)(t)

∂s

∥

∥

∥

∥

|t=0

≥ 0 ,

because Se,0 is convex. So the estimate follows directly from classically
known estimates on the behavior of Jacobi fields along a geodesic, see
e.g., [12]. q.e.d.

4. The normalization of infinitesimal deformations

The goal of this section is to prove Lemma 3.2. The argument uses
some additional notations, which we first introduce. We denote by M̃
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the universal cover of M , with its singular locus. So M̃ is a quotient of
the metric completion of the universal cover M̃r of Mr, already defined
above, with ramification at the lift to M̃ of the singular locus Ms. The
boundary at infinity ∂∞M̃ of M̃ can be defined in the same way as
the boundary at infinity of M̃r (as the space of geodesic rays up to the
equivalence relation “being asymptotic”). The complement of the sin-

gular points in ∂∞M̃ is the quotient of the complement of the endpoints
of the singular curves in the boundary at infinity of M̃r by the group
acting on M̃r with quotient the complement of the singular curves in
M̃ .

There are three main steps in the proof of Lemma 3.2. The first is
to normalize a family of hyperbolic cone-metrics gs with cone angles
constant in s by a family of isotopies, so that the automorphic vector
field v on M̃ associated to the deformation extends to an automorphic
vector field V on ∂∞M̃ . Moreover, V will turn out to be equivalent to
a holomorphic vector field V + W ′, where W ′ is the lift to ∂∞M̃ of a
vector field defined on ∂∞M , and the behavior of W ′ near the singular
points of ∂∞M can be understood thoroughly.

The second step is to construct from V +W ′ a section F of a bundle of
quadratic polynomials on ∂∞M̃ , which is strongly related to the bundle
E of local Killing fields on M̃ , and use the description of W ′ at the
singular points to show that F also behaves rather nicely close to the
singular points.

Finally the third step uses the section F to construct a deformation
1-form ω in M equivalent to the initial deformation. The estimates on
F then translate as the required estimates on ω.

4.1. The vector field at infinity.

Lemma 4.1. Let gs be a 1-parameter family of hyperbolic cone-
metrics on M with constant angles at the singular graph. There exists
a 1-parameter family Φs of isotopies of M such that for all s,

1) the hyperbolic cone-metric g′s := Φ∗
sgs coincides with g0 in a model

neighborhood of the singular locus near infinity, and near the ver-
tices;

2) the geodesic half-lines he,x(t), defined using g0, are also geodesic
for g′s;

3) the deformation 1-form for the family g′s is uniformly bounded in
norm near the singular graph, and vanishes in a model neighbor-
hood of the singular half-lines outside the convex core.

Proof. From Lemma 3.1, if the cone angles are fixed then the metrics
gs are all isometric in a neighborhood of the singular lines near infinity to
a subset in a fixed model neighborhood Vα. Also near the vertices of the
singular graphs, hyperbolic metrics with fixed cone angles are rigid (see
Proposition A.2). However the metrics gs may vary in a neighborhood
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of the singular graph, even if the angles are fixed: there may appear an
elongation of the singular segments, and also a twist of the graph along
such a segment.

If we fix these lengths and the twists of the graph along segments,
the hyperbolic cone-metric is clearly rigid near the singular graph. We
construct now some explicit metrics g′s with the same lengths and twists
as gs, which are therefore isometric to gs on the ǫ-neighborhood Uǫ of the
singular graph. Let lgs(e) be the length of the edge e with respect to gs,
and θgs(e) the additional twisting angle of gs along e, as compared to g0.
Choose ǫ sufficiently small so that the singular graph is a deformation-
retract of its ǫ-neighborhood Uǫ. Cut this neighborhood into pieces
using totally geodesic disks orthogonal to the singular graph at some
fixed distance δ from the vertices. We obtain in this way for each edge
e a finite-length cone-manifold Ce of angle α(e) around a singular curve
of length lg0

(e) − 2δ. Replace this cylinder by the cylinder of the same
type of length lgs(e) − 2δ, and glue it back with a twist of angle θs.

One can realize this metric on Uǫ (outside the singular locus) as fol-
lows: fix an edge e, let ls be the length of e with respect to gs, also θs the
twist of gs along e (relative to g0). Let (x, z) be coordinates adapted to
g0 on the cylinder corresponding to e, where x ∈ [δ, l0 − δ] is the height
function and z ∈ C is a complex variable in the disk of radius ǫ, written
z = (r, θ) in polar coordinates:

g0 = dr2 + cosh(r)2dx2 + sinh(r)2dθ2.

Let φ be a cut-off function on [0, l0], which vanishes for x < δ, is in-
creasing, and equals 1 for x > l0 − δ. Pull back (at time s) the metric
g0 through the map

(3) (x, r, θ) 7→ (x+ φ(x)(ls − l0), r, θ + φ(x)θs).

These maps for different edges do not glue nicely to Uǫ (they do not
agree near the vertices) but the pulled-back metric does extend to Uǫ,
and is isometric to gs since they have the same elongation and twist
along each edge.

Since the metrics gs and g′s are isometric on Uǫ, we can pull-back gs

through a family of isotopies of M starting from the identity at s = 0,
such that the resulting metrics are equal to g′s near the singular locus.
The surface Se,0 constructed in Section 3 is convex also for the metrics
g′s for sufficiently small s. Choose a second family of isotopies which is
the identity on a neighborhood of the singular locus near infinity and
on the convex core, and which maps the normal geodesics flow from
Se,0 (with respect to gs) onto the corresponding flow with respect to g0.
The points where the surfaces Se,0 (for different values of s) intersect
the singular lines may lay at varying distance from the convex core; we
choose this second family of isotopies to be given by (3) between these



QUASI-FUCHSIAN MANIFOLDS WITH PARTICLES 97

intersection points and the convex core, with θs = 0 and the necessary
elongation ls.

The metrics g′s coincide near the singular locus at infinity and near
the vertices, hence the associated deformation vector field v is Killing
so the deformation 1-form ω vanishes in the above region as claimed. It
remains to check that ω is bounded on the cylinders near each singular
segment e. Recall that ω = dDsv, where s is the canonical lift operator
(2), and v is the vector field tangent in s = 0 to the 1-parameter family
of maps (3):

v = φ(x)
(

l̇∂x + θ̇∂θ

)

where the constants l̇, θ̇ are the infinitesimal variations of the length
and twist of the edge e. It is not hard to see that ∂x and ∂θ are Killing
fields, which correspond to translations along e, respectively rotations
around e, therefore dDs∂x

= dDs∂θ
= 0. Also one sees easily that

sφ∂x
= φs∂x

, sφ∂θ
= φs∂θ

−
i

2
φ′(x) tanh(r)∂r.

It follows that

ω = φ′(x)dx⊗
(

l̇s∂x
+ θ̇s∂θ

)

−
iθ̇

2
dD

(

φ′(x) tanh(r)∂r

)

.

The volume form is sinh(r) cosh(r)drdθdx. A straightforward computa-
tion shows that ω is bounded uniformly near e. q.e.d.

Remark 4.2. The same computation shows that DdDsv is also uni-
formly bounded at finite distance from the convex core.

The deformation vector field in the ends. Let v be the automorphic
vector field on M̃r defined as in section 2 from a family of hyperbolic
cone-metrics with constant cone angles, normalized as in Lemma 4.1.
Note that the normalization from Lemma 4.1 gives in particular an
identification of the boundaries at infinity for the different metrics.

Let E be an end of M , i.e., a connected component of the comple-
ment in M of a non-empty, compact, convex subset K. The singular
set of E is a disjoint union of singular rays p1, · · · , pN . The boundary
at infinity ∂∞M̃r is the disjoint union of (possibly countably) copies of
the ∂∞Er, where E runs through all the ends of M . Consider v on each
such copy of Ẽr; as can be checked locally in hyperbolic space H3, it
extends smoothly to ∂∞Ẽr. Moreover v is Killing in a neighborhood of
the singular locus near infinity, since the family gs was normalized to
be constant there. We call V the automorphic vector field on ∂∞M̃r

obtained by extending v in this manner. Since v is Killing in a neigh-
borhood of the singular lines near infinity, it follows that V is locally a
projective vector field near the singular points.
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A holomorphic vector field on ∂∞M̃ . We will need an elementary
and well-known statement: given an automorphic vector field on a Rie-
mann surface, it is equivalent to a holomorphic automorphic vector field
if and only if the induced infinitesimal variation of the complex structure
(considered up to isotopy) vanishes.

Lemma 4.3. Let Σ be a closed surface with marked points x1, . . . , xn,
endowed with a CP 1-structure σ with singularities at the xi. Set Σr :=
Σ \ {x1, . . . , xn}. Let φ : Σ̃r → CP 1 be the developing map of σ, and let

V , a section of T Σ̃r, be an automorphic vector field corresponding to a
infinitesimal variation of σ (among the CP 1-structures). Suppose that
the infinitesimal variation of the complex structure on Σ, marked by the
position of the xi, vanishes up to isotopy. Moreover, suppose that V is
projective in the lift of a uniform neighborhood of the singular points.
Then there exists a smooth vector field W on Σ (i.e., smooth at the xi),

vanishing at the xi, such that if W ′ is the lift of W to Σ̃r, then V +W ′

is a holomorphic vector field.

The smoothness of W at xi is to be understood for the underlying
complex structure on Σ. Since V is projective, in particular it does not
change, at first order, the angle around the singular points.

Proof. Let J be the complex structure underlying the CP 1-structure
σ. By our hypothesis, V does not change the complex structure —
marked by the position of the singular points — on Σ, considered up
to diffeomorphisms isotopic to the identity. This means precisely that
the action of V on the complex structure is the same as the action of
a vector field defined on Σ, which we call −W , which vanishes at the
singular points. Calling W ′ the lift of W to Σ̃, it is clear that V +W ′

does not change pointwise the complex structure on Σ (again, marked
by the position of the singular points) so that V +W ′ is a holomorphic
vector field. It follows thatW is holomorphic in the neighborhood where
V is projective. q.e.d.

Since v was normalized to be Killing near infinity in a neighborhood
of the singular locus, it follows that V is indeed projective near the
singular points. It follows from the previous lemma that we can replace
the vector field V on ∂∞M̃ by another vector field V +W ′, corresponding
to the same infinitesimal variation of the CP 1-structure, but which is
holomorphic.

4.2. A vector bundle of quadratic polynomials. We recall here
some well-known notions on a natural bundle of polynomials of degree
at most 2 on a surface with a complex projective structure.

Complex polynomials and Killing fields. It is necessary to under-
stand the relationship (partly based on the Poincaré half-space model)



QUASI-FUCHSIAN MANIFOLDS WITH PARTICLES 99

between hyperbolic Killing fields, projective vector fields on CP 1, and
polynomials of degree at most 2 over C (or in other terms holomorphic
vector fields over CP 1).

Remark 4.4. Let κ be a Killing field on H3. Let κ be the image of
κ in the Poincaré half-space model. Then κ has a continuous extension
as a vector field on the closed half-space {z ≥ 0}. On the boundary
{z = 0}, the restriction of this extension is tangential to the boundary
plane, and its coordinates are given — after identification of {z = 0}
with C — by a polynomial of degree at most 2.

Proof. Let (Φt)t∈[0,1] be a one-parameter family of hyperbolic isome-
tries, with Φ0 = I. For all t ∈ [0, 1], let φt be the action of Φt on the
boundary at infinity, identified with C. Then, for all t ∈ [0, 1], φt acts
on C as:

φt(z) =
a(t)z + b(t)

c(t)z + d(t)
,

with a(0) = d(0) = 1, b(0) = c(0) = 0. Taking the derivative at t = 0,
we find that:

(

∂

∂t
φt(z)

)

|t=0

= (a′(0)z + b′(0)) − z(c′(0)z + d′(0)) ,

and the result follows. q.e.d.

In other words, the hyperbolic Killing fields act on the boundary
at infinity of H3, identified with CP 1, as holomorphic vector fields.
Moreover, given any point z0 ∈ CP 1, CP 1 \ {z0} can be identified with
C, and can therefore be given a complex coordinate z. The action at
infinity of the Killing fields are of the form:

v(z) = P (z)∂z ,

where P is a polynomial of degree at most 2. The set of these polynomi-
als is invariant under the action of the Möbius transformations, so that
the notion of polynomial of degree at most 2 makes sense on any surface
endowed with a CP 1-structure. More details on the relation between
quadratic polynomials and Killing vector fields can be found in [6, 7].

Estimates on Killing fields in terms of polynomials. The different
monomials have a simple interpretation in terms of hyperbolic Killing
fields:

• Polynomials of degree 0 correspond to Killing fields that vanish
at the point at infinity in C, and fix (globally) the horospheres
“centered” at this point at infinity.

• Homogeneous polynomials of degree 1 correspond to Killing fields
that fix (globally) the hyperbolic geodesic corresponding, in the
Poincaré half-space model, to the vertical line containing 0. They
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are sums of infinitesimal rotations around this geodesic and infin-
itesimal translations along it.

• Homogeneous polynomials of degree 2 correspond to Killing fields
that vanish at the origin, and fix (globally) the horospheres “cen-
tered” at this point.

These three types of Killing fields, and their interpretation, have a
direct generalization to the more general situation of a hyperbolic 3-
manifold M , in terms of the behavior at infinity, near a point z0 ∈
∂∞M̃ , of the Killing vector fields defined on M̃ . We consider an affine
complex coordinate z defined in the neighborhood of z0, i.e., the actions
at infinity of the Killing vector fields are of the form P (z)∂z , where P
is a polynomial of degree at most 2.

Lemma 4.5. There exists a constant C > 0 with the following prop-
erty. Let x ∈ H3 and let N ∈ TxH

3 be a unit vector such that
lims→∞ expx(sN) = z0 ∈ ∂∞H

3. Let P be the totally geodesic plane
orthogonal to N at x, let g0 be the induced metric on P , and let G :
P → ∂∞H

3 be the hyperbolic Gauss map. Suppose that, at z0, G∗g0 =
e2r|dz|2. Then:

• the Killing vector field κ1 corresponding to the polynomial (z −
z0)∂z, considered as a flat section of E, has norm bounded, at x,
by C.

• the Killing vector field κ2 corresponding to the polynomial (z −
z0)

2∂z has norm bounded, at x, by Ce−r.

The norm which is considered here is not the norm of Killing fields,
considered as vector fields on H3, but rather their norm considered as
(flat) sections of the vector bundle E; recall that this norm depends on
the point of H3 where they are considered.

Proof. Both statements follow from a direct computation, for instance
using the Poincaré half-space model. q.e.d.

Clearly the previous statement could be extended to include Killing
vector fields corresponding to polynomials of degree 0, however this will
not be of any use here. It is also worth noting that a possible proof uses
the invariance under the multiplication of z − z0 by a constant λ; then
(z − z0)∂z does not change, while (z − z0)

2∂z is multiplied by λ. Under
the same homothety, κ1 does not change along the “vertical” geodesic
ending at z0, while κ2 is multiplied by λ because it corresponds to a
parabolic isometry fixing the horospheres “centered” at z0.

The vector bundle of quadratic polynomials. The remarks in the
previous paragraph lead naturally to define a bundle over CP 1, which
is strongly related to the bundle of local Killing fields, which is used
on H3 or on any hyperbolic manifolds. Although the definition is given
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here on CP 1, it should be clear that it is of a local nature, and makes
sense for any surface with a CP 1-structure.

Definition 4.6. We call P the trivial bundle over CP 1, with fiber at
each point the vector space of holomorphic vector fields on CP 1.

Clearly P has a natural flat connection DP , such that the flat sec-
tions are those which correspond, at each point of CP 1, to the same
holomorphic vector field. In other terms, DP is the trivial connection
on the trivial bundle P .

The section of P associated to a vector field. Given a vector field
on CP 1, or more generally on a surface with a CP 1-structure, one can
associate to it a section of the bundle P , defined by taking at each point
the “best approximation” by polynomial vector fields of degree at most
2.

Definition 4.7. Given a holomorphic vector field v defined on an
open subset Ω ⊂ CP 1, there is a section F of P which is naturally asso-
ciated to v; at each point z0 ∈ Ω, Fz0

is equal to the holomorphic vector
field on CP 1 which best approximates f . Given any affine identification
of CP 1 (minus a point) with C, if v := f∂z, this translates in C as:

Fz0
(z) =

(

f(z0) + (z − z0)f
′(z0) +

(z − z0)
2

2
f ′′(z0)

)

∂z .

Lemma 4.8. Let v be a holomorphic vector field on Ω ⊂ CP 1. Let
F be the associated section of P . Then, at each point z0 ∈ Ω, DPF has
values in the subspace of Pz0

of vector fields which vanish, along with
their first derivatives, at z0.

Proof. Since the statement is local, the proof takes place in C, and
we write v = f(z)∂z. Let z0 ∈ Ω , and let Z ∈ Tz0

C. We identify vector
fields on C with complex functions on C and obtain, using the definition
of the flat connection DP , that for all z in some open subset of C:
(

DP
ZF
)

(z0) = (Z∂z0
Fz0

(z)) ∂z

= Z∂z0

(

f(z0) + (z − z0)f
′(z0) +

(z − z0)
2f ′′(z0)

2

)

∂z

= Z

(

f ′(z0) − f ′(z0) + (z − z0)f
′′(z0) − (z − z0)f

′′(z0)

+
(z − z0)

2f ′′′(z0)

2

)

∂z,

so that:

(4)
(

DP
ZF )(z0

)

=

(

Z
(z − z0)

2f ′′′(z0)

2

)

∂z .
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This shows that (DPF )(z0) takes its values in the vector space of ho-
mogeneous polynomials of degree 2, as needed. q.e.d.

4.3. The geometry of ∂∞M near the singular points. We now
concentrate on an explicit description of the complex structure and
complex projective structure on ∂∞M near its singular points, which
will be necessary in estimates below.

The boundary at infinity of M̃ . We have already noted that the
boundary at infinity of M̃ carries a CP 1 structure, with singular points
corresponding to the endpoints of the singular arcs. It also carries a
vector bundle, P , with fiber at each point x the vector space of vec-
tor fields in the neighborhood of x which are obtained as continuous
extensions to the boundary (for instance in a local Poincaré model) of
hyperbolic Killing vector fields.

By the (local) considerations above, the fiber of P at x can also be
identified with the vector space of projective vector fields in a neigh-
borhood of x. Again, P has a natural flat connection, still called DP ,
with flat sections the sections corresponding to a given projective vector
field. Since its statement is of a local nature, Lemma 4.8 still holds on
∂∞Mr.

Special coordinates near the singular points. We now consider
more carefully what happens on the boundary at infinity of M in the
neighborhood of a singular point. Let x1, · · · , xn be the singular points
on ∂∞M , i.e., the endpoints of the singular arcs. For each i ∈ {1, · · · , n},
the CP 1-structure of ∂∞Mr in the neighborhood of xi is projectively
equivalent to a neighborhood of the vertex in a “complex cone” which
we call Cθi

: it is the quotient of the universal cover of the complement
of 0 in C by a rotation of center 0 and angle θi, where θi is the angle at
xi.

We choose a neighborhood Ωi of xi, and a complex projective map
u : Ωi → Cθi

sending xi to 0, which is a diffeomorphism from Ωi\{xi} to
its image. The map u is uniquely determined (by the complex projective
structure) up to composition on Cθi

with a rotation and a homothety;
we choose this homothety so that, as x→ xi, the metric g∞ on Tx∂∞M
behaves as |du|2. It follows that there is a constant C, independent of
i, such that, on the Ωi \ {xi}:

|du|2

C
≤ g∞ ≤ C|du|2 .

There is a natural holomorphic local diffeomorphism from Cθi
to C.

With obvious notations, it is defined by sending a point u ∈ Cθi
to

u2π/θi . With the same notations we set z := u2π/θi , this defines a
complex coordinate z on Ωi. Therefore we have proved:

Remark 4.9. The boundary at infinity ∂∞M can be canonically
considered as a smooth surface, with a smooth complex structure; only
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the complex projective structure and the metric at infinity, g∞, have
singularities at the endpoints of the singular arcs of M . (The “singu-
larities” of the complex projective structure are in the sense explained
just before subsection 3.3.)

Estimates on the deformation field at infinity. We now have most
of the tools necessary to “normalize” the infinitesimal deformations of
the hyperbolic structure of a manifold with particles. This means that,
given a infinitesimal deformation ġ of the metric g keeping the cone
angles and the conformal structure at infinity fixed, we will show that
it is associated to a 1-form ω with values in the bundle E which is of a
very special form. It will then follow that ω and Dω are in L2.

The first step is to associate to ġ an automorphic vector field v, along
the ideas at the end of section 2, using the infinitesimal deformation of
the development map. We have seen that v can be chosen to have a
continuous extension to the boundary at infinity of the universal cover
of M . We call V the automorphic vector field on ∂∞M̃ obtained by
extending v in this manner. Since v can be chosen to be Killing near
the singular curves, it follows that V is projective near the singular
points of ∂∞M̃ .

According to Lemma 4.3, there exists a holomorphic vector field V +
W ′ on ∂∞M̃r such that W ′ is the lift to ∂∞M̃r of a vector field W defined
on ∂∞M . It is then clear that V + W ′ is automorphic. Note that W ′

is holomorphic in a neighborhood of the singular points and vanishes
at the singular points. Indeed, V is projective, hence holomorphic, in
a small enough neighborhood, therefore W ′ itself must be holomorphic.
Moreover, by construction W preserves the marked smooth structure of
∂∞M , which means that it vanishes at the singular points.

Choose i ∈ {1, · · · , n}. Let F be the section of P , associated by
Definition 4.7 to V + W ′. We use the coordinate u on the Ωi defined
above, so a vector tangent to ∂∞M can be identified with a complex
number.

Lemma 4.10. Let i ∈ {1, · · · , n} and choose u0 ∈ Ωi \ {xi}. For all

vectors fields U,U ′ defined in a neighbourhood of u0 ∈ ∂∞M̃ we have:

DP
UF (u0) = Uα(u0)(u− u0)

2∂u ,

while

DP
U ′DP

UF (u0) = UU ′
(

β(u0)(u− u0)
2 + γ(u0)(u− u0)

)

∂u .

Moreover, α and γ are bounded by a constant C > 0, and there exists
another constant ǫ0 ∈ (0, 1) such that:

(5) |β(u0)| ≤ C/|u0|
1−ǫ0 .

Proof. On compact sets disjoint from the singular points, the esti-
mates follow directly from Lemma 4.8. Thus we consider only points u0
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in a neighborhood of xi where V is projective. Now W ′ is holomorphic
near xi and vanishes at xi, so it admits a Taylor series decomposition

W ′ =
(

w1z + w2z
2 + w3z

3 · · ·
)

∂z

in a neighborhood of xi.
Let u be an “affine coordinate” at xi for the CP 1-structure induced

on ∂∞M , as defined above. Let µ := 2π/θ, then µ > 2 since θ ∈ (0, π).
Then dz = µuµ−1du, so that ∂z = µ−1u1−µ∂u, and it follows that:

W ′ =
(

w1u+ w2u
1+µ + w3u

1+2µ + · · ·
)

∂u .

The section of P associated to V is parallel by definition on the set where
V is projective, so it is enough to estimate the covariant derivatives of
the section associated to the vector field W ′. Thus we may assume that
F is the section in P associated to W ′. Equation (4) shows that:

DP
UFu0

=

U

2

(

w2µ(µ2 − 1)uµ−2
0 + 2w3µ(4µ2 − 1)u2µ−2

0 + · · ·
)

(u− u0)
2∂u .

Taking one more differential leads to:

DP
U ′DP

UFu0
=

−UU ′
(

w2µ(µ2 − 1)uµ−2
0 + 2w3µ(4µ2 − 1)u2µ−2

0 + · · ·
)

(u− u0)∂u

+
UU ′

2

(

w2µ(µ2 − 1)(µ − 2)uµ−3
0

+ 2w3µ(4µ2 − 1)(2µ− 2)u2µ−3
0 + · · ·

)

(u− u0)
2∂u .

Moreover, µ > 2, so the estimates announced in the lemma follow di-
rectly from the two previous equations, by taking ǫ0 := µ− 2. q.e.d.

It follows by compactness from this statement that the same estimates
hold on ∂∞M , with Eq. (5) replaced by |β(u0)| ≤ C in the complement
of the union of the Ωi, 1 ≤ i ≤ n, with u taken to be an “affine”
coordinate, compatible with the complex projective structure, defined
on a finite number of compact domains covering ∂∞M .

4.4. The deformation 1-form in the ends. It remains now to define
from the automorphic section F a section of E over M̃r which is also
well-mannered close to infinity, in the same way as in [6].
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Normalization from infinity. By Lemma 3.8, there is a compact sub-
set K ⊂ M whose complement is foliated by geodesic rays he,x, with

x ∈ ∂K. These rays lift to geodesic rays h̃e,x in M̃r, where e is a lift of

an end of Mr and x ∈ ∂K̃r.
We now define a section κ of E over M̃r \ K̃ as follows: for each

y ∈ M̃r \ K̃ , let e, x be the unique elements such that y ∈ h̃e,x. Then κx

is the Killing field (defined in the neighborhood of he,x) with extension

at infinity (in the neighborhood of the endpoint z of h̃e,x) the projective
vector field corresponding to Fz. Clearly the section κ of E defined in
this way over M̃r \ K̃ is smooth. Let sv be the canonical lift of the
deformation vector field v to a section of E. By lemma 4.3, sv − κ
is G-invariant on the ends. Let φ(t) be a cut-off function depending
on the distance function t to the convex core, which vanishes for t ≤
1 and equals 1 for large t. Then φ(t)(sv − κ) is well-defined and G-

invariant on M̃r. Thus sv − φ(t)(sv − κ) is automorphic, differs from
sv by a G-invariant section and behaves near infinity like κ. Consider
the invariant 1-form ω := dD(sv − φ(t)(sv − κ)) on M̃r with values in
E. By construction, this form and the initial 1-form dD(sv) correspond
to equivalent infinitesimal deformations of the hyperbolic cone-manifold
structure on M . Moreover, both ω and Dω vanish in the direction of
the lines he,x near infinity.

Different metrics on ∂∞M . It is natural to consider, on the boundary
at infinity ofM , the metric g∞ which was already defined above in terms
of the foliation of the ends near infinity. On the leafs of this foliation,
however, there are two metrics which are quite natural:

• the “horospherical metric” I∗t := It + 2IIt + IIIt. It is conformal —
through the Gauss map — to the metric g∞ at infinity,

• the metric gt which is defined as follows. For each x ∈ Se,t, let Px

be the totally geodesic plane tangent to Se,t at x, then TxSe,t =
TxPx, and the metric gt, on TxSe,t, is equal to the pull-back of g∞
to Px through the Gauss map G : Px → ∂∞M .

Note that gt is not equal to the pull-back to Se,t of g∞ by the Gauss
map G : Se,t → ∂∞M . However each is bounded by a constant times
the other. Recall that k0 was defined above as an upper bound on the
principal curvatures of the surfaces Se,t.

Remark 4.11. For all t ∈ R+, we have:

1) for all x ∈ Se,t, if G : Se,t → ∂∞M is the hyperbolic Gauss map,
then:

gt ≤ G∗g∞ ≤ (1 + k0)
2gt ,

2) I∗t = e2tG∗g∞, where G : Se,t → ∂∞M is the hyperbolic Gauss
map.
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Proof. In the first point, the first inequality follows from the convexity
of Se,t, because the differential on TxSe,t of the Gauss map of Se,t is
“larger” than the differential of the Gauss map of the totally geodesic
plane tangent to Se,t at x. The second inequality follows in the same
way from the fact that the principal curvatures of Se,t are bounded by
k0.

The second point is a direct consequence of the fact, already men-
tioned above, that the horospherical metric changes in a very simple
way along an equidistant foliation (see [27]). q.e.d.

Moreover, the metric gt is the one appearing in Lemma 4.5, which
yields an estimate in terms of t of the Killing vector fields associated to
special quadratic polynomials on ∂∞M .

Corollary 4.12. There exists a constant C ′ > 0 as follows. Let
x ∈ Se,t, and let u0 := G(x), where G is the hyperbolic Gauss map
of Se,t. Let u be an affine coordinate system in the neighborhood of
u0 (for the CP 1-structure on ∂∞M), chosen so that |du|2 = g∞ on
Tu0

∂∞M . Then the Killing vector field κ1 corresponding to the vector
field (u − u0)∂u (considered as a flat section of E) has norm, at x,
bounded by C ′, while the Killing vector field κ2 corresponding to the
vector field (u− u0)

2∂u has norm bounded, at x, by C ′e−t.

Proof. Direct consequence of Lemma 4.5. q.e.d.

Estimates on ω and Dω. It is now possible to estimate the L2 norm
of ω, and then of Dω, so as to prove Lemma 3.2. Let x ∈ Se,t, and
let X ∈ TxM . We are interested in ω(X), and we already know that ω
vanishes along the lines orthogonal to the surfaces Se,t, so we suppose
that X ∈ TxSe,t.

Let U := G∗X, where G : Se,t → ∂∞M is the Gauss map. Remark
4.11 shows that:

‖U‖g∞ ≤ ce−t‖X‖M ,

for some constant c > 0.
Recall that ω(X) = DXκ, where κ is the section of E corresponding

to F . So ω(X) corresponds to the vector field DP
UF on ∂∞M . According

to Lemma 4.10, DP
UF = Uα(u0)(u− u0)

2∂u, where α is bounded and u
is an affine coordinate system near u0. Using Corollary 4.12 we see that
ω(X) has norm (at x) bounded by C ′′e−t‖U‖g∞ , or in other terms by
C ′′e−2t‖X‖, where C ′′ > 0 is some constant.

This means that, at x, ‖ω‖ ≤ C ′′e−2t, so that by Fubini:
∫ ∞

0

∫

Se,t

‖ω‖2dadt ≤

∫ ∞

0
(C ′′)2e−4tA(Se,t)dt ≤ C3

∫ ∞

0
e−2tdt ≤ C3/2 ,

where C3 > 0 is yet another constant, and A(Se,t) denotes the area
of the surface Se,t (for the ambient metric). Since the same estimate
applies to each end of M , we conclude that ω ∈ L2 near infinity.
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A similar argument can be used to estimate Dω. Let X,X ′ ∈ TxSe,t,
and let U := G∗X,U

′ := G∗X
′. As above we have:

‖U‖g∞ ≤ ce−t‖X‖, ‖U ′‖g∞ ≤ ce−t‖X ′‖ .

But (DXω)(X ′) corresponds to the vector field

DP
UD

P
U ′F −DP

G∗(∇XX′)F

on ∂∞M , which itself can be written using Lemma 4.10 as:

UU ′
(

β(u0)(u− u0)
2 + γ(u0)(u− u0)

)

∂u ,

where γ is bounded and where β(u0) is bounded by C/|u0| in the Ωi

and by C in their complement, C being a constant.
This can be written, using Corollary 4.12, as the following estimates

when u0 is in one of the Ωi, 1 ≤ i ≤ n:

‖(DXω)(X ′)‖E ≤ ‖U‖g∞‖U ′‖g∞

(

C4e
−t

|u0|1−ǫ0
+C5

)

≤ ‖X‖‖X ′‖e−2t

(

C4e
−t

e−tdSe,t(x, Se,t ∩Ms)1−ǫ0
+ C5

)

which translates as:

(6) ‖Dω‖ ≤ e−2t

(

C4

dSe,t(x, Se,t ∩Ms)1−ǫ0
+ C5

)

.

The same estimates can be used when u0 is not in one of the Ωi and
yields:

‖(DXω)(X ′)‖E ≤ ‖U‖g∞‖U ′‖g∞

(

C4e
−t + C5

)

≤ ‖X‖‖X ′‖e−2t
(

C4e
−t + C5

)

.

and a simple compactness argument then shows that, perhaps after
changing the constants C4 and C5, Eq. (6) holds on all Se,t.

We can now integrate the square of this norm over the ends of M ,
and obtain that:

∫ ∞

0

∫

Se,t

‖Dω‖2dxdt

≤

∫ ∞

0

∫

Se,t

e−4t

(

C4

dSe,t(x, Se,t ∩Ms)1−ǫ0
+ C5

)2

dxdt .

Using the comparison between the induced metric It on Se,t and the
metric at infinity g∞, the previous equation translates as:

∫ ∞

0

∫

Se,t

‖Dω‖2dxdt ≤

∫ ∞

0

∫

∂∞M
e−2t

(

C ′
4

dg∞(x, S∞)1−ǫ0
+ C ′

5

)2

dxdt ,
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for some constants C ′
4, C

′
5 > 0, so that, calling S∞ = {x1, · · · , xn} the

set of singular points on ∂∞M :
∫ ∞

0

∫

Se,t

‖Dω‖2dxdt

≤

∫ ∞

0
e−2tdt

∫

∂∞M

(

(C ′
4)

2

dg∞(x, S∞)2−2ǫ0
+

2C ′
4C

′
5

dg∞(x, S∞)1−ǫ0
+ (C ′

5)
2

)

dx .

Note that the area element of g∞, close to the singular points, behaves
as ρdρdθ (where ρ is again the distance to the singular points consid-
ered). So 1/ρ2−2ǫ0 is integrable, and it follows that all the terms in
the integral over ∂∞M converge, with the contribution of the terms
in 1/dg∞(x, S∞)2−2ǫ0 and 1/dg∞(x, S∞)1−ǫ0 bounded for each singular
point of S∞. (Note that the hypothesis that the angles around the sin-
gular lines are less than π is used here.) This shows that, for each end
of M , the integral of ‖Dω‖2 is bounded. Since this holds for all ends of
M , the integral of ‖Dω‖2 is bounded near infinity.

Now by Lemma 4.1 and Remark 4.2, both dDsv and DdDsv are
bounded (hence L2) near the convex core. We still need to check the
integrability of φ′(t)dt ⊗ (sv − κ) and similarly for the D-covariant de-
rivative of this form. The support of φ′ is compact and contained in the
ends; thus it is enough to check that sv − κ and D(sv − κ) are bounded
in norm on the ends. Recall that in a neighborhood of a singular line,
sv −κ is the G-invariant section in E corresponding to the holomorphic
vector field W on the boundary at infinity. Therefore the required esti-
mate follows again (as in the arguments right above) from the behavior

of the section F on ∂∞M̃ as described in Lemma 4.10 and from the
relation between projective vector fields at infinity and Killing fields in
M̃ which can be read from Corollary 4.12.

This finishes the proof of Lemma 3.2.

5. Infinitesimal rigidity

In this section we first prove a general result about L2 cohomology
and then we show how to apply it in our setting.

5.1. A general argument. Let E →M be a vector bundle over a Rie-
mannian manifold together with a flat connection D and a Riemannian
metric along the fibers. Let

dD : Λ∗(M,E) → Λ∗(M,E)

denote the twisted de Rham differential with coefficients in E, and δD
its formal adjoint. Consider the symmetric operator P := dD + δD :
Λ∗(M,E) → Λ∗(M,E). Let L2 denote the Hilbert space of square-
integrable sections in Λ∗(M,E). We view P as an unbounded operator
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with domain C∞
c , the space of smooth compactly supported E-valued

forms on M , which is dense in L2.
The elements of L2 act as distributions on C∞

c and thus they can be
differentiated. For k ∈ Z define the Sobolev space Hk as the space of
those section φ ∈ L2 such that P kφ ∈ L2 in the sense of distributions
(or equivalently, Hk = Dom(P k)∗). This is a Hilbert space with the
graph norm

‖φ‖2
Hk := ‖φ‖2 + ‖(P ∗)kφ‖2.

Define also Hk
min as the completion of C∞

c with respect to the norm
‖ · ‖Hk . It is a small lemma that Hk

min injects naturally in Hk.
By the Friedrichs extension theorem, the operator

P ∗P : H1
min ∩H

2 → L2

is self-adjoint and non-negative. Note that a form belongs to H1
min∩H

2

if and only if its components in all degrees do.

Lemma 5.1. Let α ∈ L2(M,ΛkM ⊗ E). Assume that the inequality

(7) (dD + δD)2 − 1 ≥ 0

holds on C∞
c (M,Λk ⊗E). Then there exists a unique γ ∈ H1

min ∩H
2 of

degree k such that P ∗Pγ = α. Moreover, if α is smooth then γ is also
smooth.

Proof. Let (P ∗P )k denote the restriction of P ∗P to k-forms. By
continuity, Eq. (7) implies that (P ∗P )k ≥ 1, therefore 0 does not belong
to its spectrum. In other words, (P ∗P )k is invertible from the k-form
part of H1

min ∩H2 to L2. Finally, if α is smooth then γ is also smooth
by elliptic regularity. q.e.d.

Of course, the lemma holds for any strictly positive constant instead
of 1.

We make now the assumption that H1
min = H1, which is another way

of saying that P = dD+δD is essentially self-adjoint. Let dmin, dmax, δmin,
δmax denote the minimal, respectively maximal extensions of the oper-
ators dD and δD. An L2 form α is called closed if dmaxα = 0, and exact
if there exists γ ∈ Dom(dmin) with dminγ = α.

Proposition 5.2. Assume that

• the inequality (7)holds on C∞
c (M,ΛkM⊗E) for k = 0, . . .,dim(M);

• the operator P is essentially self-adjoint.

Then for each k, every closed form α in L2(M,ΛkM ⊗ E) must be
exact. Moreover, there exists a primitive γ which is in H1

min, coexact,
and which is smooth if α is smooth.

Proof. The second hypothesis, which translates to Dom(P ∗) = H1
min,

will be used throughout the proof without further explanation.
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We first claim that L2(M,ΛkM ⊗ E) decomposes orthogonally into

L2(M,ΛkM ⊗ E) = Ran(dk−1
min ) ⊕ Ran(δk+1

min ).

Let α ∈ L2(M,ΛkM ⊗ E). By Lemma 5.1 and the first hypothe-
sis, there exists β ∈ H1

min ∩ H2(M,ΛkM ⊗ E) such that P ∗Pβ = α.

Clearly Dom(P ) ⊂ Dom(dmin) ∩ Dom(δmin), so dminβ, δminβ are both
well-defined. Furthermore, dminβ + δminβ belongs to H1 = H1

min, which
implies that both dminβ and δminβ belong to H1

min and so P ∗dminβ =
δmindminβ, P ∗δminβ = dminδminβ are both L2. Hence

α = dmin(δminβ) + δmin(dminβ)

where δminβ, dminβ are both in H1
min, which proves the claim.

Next, we claim that ker dmax = Ran(dmin). The inclusion Ran(dmin)⊂
ker dmax is clear from the definitions. Let α = dmin(δminβ)+δmin(dminβ)
be such that dmaxα = 0. Since dmin(δminβ) is already in ker dmax,
we deduce that dmaxδmindminβ = 0. Also Ran(δmin) ⊂ ker δmax, so
δmaxδmindminβ = 0. Thus, δmindminβ belongs to Dom(dmax)∩Dom(δmax)
⊂ Dom(P ∗) = H1

min and P ∗(δmindminβ) = 0. The kernel of P ∗ = P

vanishes since P ∗P is invertible (by the first hypothesis), therefore
δmindminβ = 0 and so α = dmin(δminβ) is contained in the range of
dmin.

The primitive δminβ is L2 by construction. Moreover, it belongs to
Dom(dmin) and to ker δmax. Thus it belongs to Dom(dmax)∩Dom(δmax)⊂
Dom(P ∗) = H1

min and P ∗(δminβ) = α. If α is smooth then by elliptic
regularity, δminβ is also smooth. q.e.d.

We actually proved in particular that the L2 cohomology ofM twisted
by E vanishes.

5.2. Application to cone-manifolds. Consider now the bundle E ≃
TM ⊕ TM ≃ TCM of infinitesimal Killing vector fields on the conical
hyperbolic 3-manifold M . Let i : E → E be the complex structure,
i(u, v) := (−v, u). Define an endomorphism-valued 1-form T : TM ⊗
E → E by

TV φ := V × iφ

where × denotes the vector product in TM , acting on each component
of φ. The flat connexion D on E is given by the explicit formula

DV (u, v) = (∇V u+ V × v,∇V v − V × u)

where ∇ is the Levi-Cività connexion on TM . We write this as Dφ =
(∇ + T )φ. We extend T and ∇ to Λ∗(M,E) as the identity, resp. the
de Rham differential on the form factor. We endow E with the direct
sum Riemannian metric, and Λ∗M with its usual metric.

Proposition 5.3 (Matsushima & Murakami [22]). The Laplacian of
the twisted de Rham differential dD satisfies Eq. (7) on Λk

c (M,E) for
k = 0, . . . , 3.
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Proof. By definition,

∆ = (∇∗∇ + ∇∇∗) + (T ∗T + TT ∗) + T∇∗ + ∇∗T + T ∗∇ + ∇T ∗.

It was observed by Matsushima & Murakami that T∇∗ +∇∗T +T ∗∇+
∇T ∗ = 0. Indeed, let (xj)1≤j≤3 be geodesic normal coordinates at a
point x ∈ M , (ej) the coordinate vector fields and (ej) the dual basis.
Let Φ = α⊗ φ ∈ Λ∗(M,E). We have:

∇Φ =dα⊗ φ+
∑

ej ∧ α⊗∇ej
φ TΦ =

∑

ej ∧ α⊗ ej × iφ

∇∗Φ =δα ⊗ φ−
∑

ekyα ⊗∇ek
φ T ∗Φ =

∑

ekyα⊗ ek × iφ

where the contraction uses the metric on forms. Since × and i commute
with ∇, we get at x,

(∇T ∗ + T ∗∇)Φ =
∑

Lej
α⊗ ej × iφ+ α⊗ ej × i∇ej

φ

= − (T∇∗ + ∇∗T )Φ.

The Laplacian ∇∗∇+∇∇∗ is non-negative. We claim that T ∗T+TT ∗ ≥
1 pointwise. We work at x ∈M where the basis ej is orthonormal.

Let us first examine the action of T ∗T on 0-forms. It is immediate
that

T ∗Tφ =

3
∑

k=1

ek × i(ek × iφ) = 2φ.

We focus now on 1-forms. Notice that T ∗T and TT ∗ act diagonally
on E with respect to the splitting E = TM ⊕ TM , so it is enough to
prove the claim on a real section

Φ =
∑

akie
k ⊗ ei.

Set Φil = ei ⊗ el. Then

(T ∗T + TT ∗)Φil

= −
∑

j,k

eky(ej ∧ ei) ⊗ ek × (ej × el) + ej ∧ (ekyei) ⊗ ej × (ek × el)

=:
∑′

Φil +
∑′′

Φil

where the two sums group the terms with j = k, resp. j 6= k. Since
ej ∧ ejy + ejye

j∧ = 1, i2 = −1 and
∑

ej × (ej × φ) = −2φ, we find that
∑′ Φil = 2Φil.

For j 6= k notice that ej ∧ eky + ekyej∧ = 0. Therefore
∑′′

Φil =
∑

j 6=i

ej ⊗ (ei × (ej × el) − ej × (ei × el))

=

{

∑

j 6=i Φjj if i = l;

−Φli if i 6= l.
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In conclusion, for Φ =
∑

akiΦki we obtain

〈(T ∗T + TT ∗)Φ,Φ〉 = |Φ|2 +

(

∑

i

aii

)2

+
∑

i6=k

(aik − aki)
2 ≥ |Φ|2.

Note that the equality is obtained precisely for traceless, symmetric Φ.
For k = 2, 3 we remark that the Hodge ∗ operator commutes with the

Laplacian, and acts isometrically from ΛkM ⊗E to Λ3−kM ⊗E. Thus
the result follows from what we proved above for k = 1, 0. q.e.d.

5.3. Cone angles and essential self-adjointness. The aim of this
subsection is to prove that when the cone angles of our hyperbolic cone
manifold are smaller than π, the third hypothesis of Proposition 5.2 is
satisfied. The proof is based on the analysis from [33].

Theorem 5.4. Let M be a hyperbolic manifold with particles. As-
sume that all cone angles belong to the interval [0, π]. Then the twisted
Hodge-de Rham operator P = dD + δD acting in L2(M,Λ∗M ⊗ E) is
essentially self-adjoint.

Proof. We must show that if u ∈ L2 and Pu ∈ L2 then u ∈ H1
min.

We first localize u near the singular locus. Let ψ1 : M → [0, 1] be
a smooth function which equals 1 near the singular graph, and which
vanishes outside the ǫ-neighborhood of the singular set (ǫ is chosen suf-
ficiently small so that this is a tubular neighborhood). We also need
|dψ1| to be uniformly bounded; actually we can choose ψ1 such that
|dψ| → 0 at infinity, by asking that ψ1 only depends on the distance
function r to the singular set. Then ψ1u is clearly in L2; moreover,

(8) P (ψ1u) = ψ1Pu+ c(dψ1)u

is also in L2, where c denotes Clifford multiplication, i.e.,

c(α)u = α ∧ u− αyu.

Set ψ2 := 1 − ψ1.

Lemma 5.5. The form ψ2u belongs to H1
min.

Proof. We rely on the results of Weiss [33]. We follow partly the
proof of the fact that on a complete manifold, all “geometric” dif-
ferential operators are self-adjoint. For n → ∞ let fn be a smooth
function on M , equal to 1 on the n-neighborhood of the convex core,
supported on the 2n-neighborhood of the convex core, and such that
|dfn| ≤ 2/n. We can choose such a function to depend only on the
variable t which parametrizes the families of equidistant surfaces on the
ends from Lemma 3.6. Clearly fnψ2u converges in L2 to ψ2u as n→ ∞.
By (8),

P (fnψ2u) = fnP (ψ2u) + c(dfn)ψ2u.
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By Lebesgue dominated convergence, the first term converges in L2 to
P (ψ2u) while the second converges to 0; thus ψ2u can be approximated
by compactly-supported forms in H1 sense, as claimed. q.e.d.

It is left to prove that ψ1u belongs to H1
min. Without loss of generality

we can therefore assume that u lives in a tubular neighborhood Uǫ of
the singular graph.

Again by a partition of unity using the cut-off function f1, it is enough
to prove the statement separately for u supported at finite distance from
the singular line in a model conical set Vα, and for u supported near the
convex core.

In the first case, we use the Poincaré ball model of H3. Let gn be a
sequence of cut-off functions on the unit interval (i.e., gn : [0, 1) → [0, 1]
is smooth, equals 1 near R = 0 and has compact support). Denote by
R the radial function on the disk. Then gn(R) is rotation-invariant, so
it descends to a function on Vα. We can choose gn to converge to 1 on
each compact set; moreover, since the metric dR2/(1 −R2)2 on (−1, 1)
is complete, we can impose that

(9) |dgn(R)| ≤ 1/n.

From (8) we see that gnu and P (gnu) are both in L2, in other words
gnu belongs to H1, the maximal domain of P . Now gnu has support
inside a ball (depending on gn).

From the results of [33, Sections 4 and 5], we claim that gnu must
be in the minimal domain of P , provided that α is smaller than π.
Indeed, Weiss shows in [33, Proposition 5.10] that the bundle E with its
connection is cone-admissible; this is a technical condition which implies
[33, Corollary 4.34] that on a compact hyperbolic cone-3-manifold the
operator P is essentially self-adjoint. Finally, the proof of this last
Corollary is local in nature, and amounts to proving, after the use of a
partition of unity, exactly the above claim.

As in the proof of Lemma 5.5, we have obtained a sequence (gnu) in
H1

min which converges to u in L2 and which is Cauchy in the H1 norm
by (9); thus u is itself in H1

min.
We use the same argument for the remaining case, namely where

u ∈ H1 is supported near the convex core. By the local result [33,
Corollary 4.34], again u must belong to H1

min, provided the angles are
all bounded above by π. q.e.d.

6. Proofs of the main results

6.1. Proof of Theorem 1.4. Let ġ be a infinitesimal deformation of
a hyperbolic metric g with particles among metrics of the same type,
which fixes both the cone angles and the conformal structure at infin-
ity. Let ω be the closed E-valued deformation 1-form associated to ġ
by Lemma 3.2. We thus know that ω is square-integrable. The first
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hypothesis of Proposition 5.2 holds by Proposition 5.3. The second hy-
pothesis is fulfilled by Theorem 5.4 if all cone angles are at most π.
Thus, by Proposition 5.2, ω is exact as a smooth form. By the results
of Section 2, the infinitesimal deformation ġ is trivial.

6.2. Cohomological arguments. A curious phenomenon is that some-
times, uniqueness implies existence. Something similar happens here as
we explain below. The arguments used here are somewhat similar to
those in [14].

Let V ⊂Mr be a compact manifold with boundary which is a defor-
mation retract of Mr. V can be obtain e.g., by smoothing the boundary
of the complement, inside the convex core, of the ǫ-neighborhood of the
singular locus. Let U denote the closure inside Mr of the complement of
V , in particular U is an incomplete manifold with boundary. Note that
the natural inclusion map on the level of forms induces isomorphisms

Hk
c (Mr) ∼= Hk(Mr, U).

Note that all cohomology groups in this section are twisted by the flat
bundleE, unless otherwise specified; we suppressedE from the notation.
Consider the long exact cohomology sequence of the pair (Mr, U) twisted
by E:

H1(Mr, U) → H1(Mr) → H1(U)
δ
→ H2(Mr, U) → H2(Mr).

Remark 6.1. The class of a closed 1-form ω on U is contained in the
image of H1(Mr) if and only if ω can be extended to a closed 1-form
on Mr. This happens because the restriction map C∞(Mr) → C∞(U) is
surjective.

We claim that the first and last maps are zero. Indeed, a compactly-
supported form is in particular L2, hence it has a smooth L2 primitive
by Proposition 5.2. Thus its cohomology class on Mr is zero. The long
exact sequence therefore simplifies to

(10) 0 → H1(Mr)
i∗
→ H1(U)

δ
→ H2(Mr, U) → 0

where i∗ is the restriction map. The bundle with connection (E,D)
does not preserve the natural hermitian metric on E = TCM . The dual
of (E,D) is isomorphic to (E,D) where D is the complex conjugate
of D from Eq. (1). This is isomorphic to (E,D) (as real bundles) via
complex conjugation. Thus (E,D) is isomorphic to its dual. Hence
Poincaré duality gives

Hk(Mr) ∼= H3−k(Mr, U)∗.

For k = 1, it follows from (10) that the (real) dimensions satisfy

(11) dimH1(Mr) = dimH2(Mr, U) =
dimH1(U)

2
.

Let us introduce the following notation for the trivalent graph Ms:
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• a is the number of complete geodesics (i.e., lines without vertices);
• b is the number of half-lines;
• c is the number of closed geodesics (loops);
• v is the number of vertices;
• l is the number of segments;
• g1, · · · , gN are the genera of the connected components of ∂M ;
• ni is the number of singular points on the i-th component of ∂M .

Lemma 6.2. The dimension of H1(U,E) equals

12

N
∑

i=1

(gi − 1) + 12a+ 8b+ 4l + 2k,

where k is the number of independent Killing fields on U .

Proof. Let S be the boundary of a tubular neighborhood of the sin-
gular graph Ms, viewed inside the manifold with boundary N from the
paragraph following Definition 1.2. The surface with boundary S has c
connected components homeomorphic to a torus, and 2a+ b boundary
components. The closed surface Σ := ∂U = ∂V is obtained from ∂M
by removing small disks around the singular points and gluing the re-
mainder with S along their common boundary circles. We use the fact
that Σ is a deformation retract of U , so they have the same (twisted
and un-twisted) Betti numbers. From the Mayer-Vietoris sequence, the
(untwisted) Euler characteristic of Σ is:

χ(Σ) =

N
∑

i=1

χ(Σi) + χ(S) =

N
∑

i=1

(2 − 2gi − ni) − v

(it is easy to see, again from the Mayer-Vietoris sequence, that χ(S) =
−v). Note also the combinatorial identities

∑

ni = 2a+ b, 3v = 2l + b.

By Lemma 2.1, the (twisted) Betti number h0(U) equals k, the num-
ber of Killing vector fields on U . By Poincaré duality, since (E,D) is
isomorphic to (E,D), we also have h2(Σ) = h0(Σ), therefore h0(U) =
h2(U) = k. The claim follows from the formula

(12) χ(Σ, E) = dim(E)χ(Σ)

(where χ(Σ, E) is the twisted Euler characteristic) and from the fact
that dimE = 6.

Eq. (12) (which is well-known) is proved as follows: the complex
bundle E → Σ is flat, so its Chern character vanishes, hence E repre-
sents a torsion class in K-theory. This means that aE ⊕ C

b is trivial
for some a > 0, b ≥ 0. Endow C

b with the trivial connection, and aE
with the direct sum connection. By definition, χ(Σ, aE) = aχ(Σ, E)
while χ(Σ,Cb) = 2bχ(Σ). Now deform the connection on aE ⊕ C

b to
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the trivial connection. The Euler characteristic is constant (the index
of an elliptic complex is always homotopy-invariant). At the end of the
deformation we get χ(aE⊕C

b) = (adim(E)+ 2b)χ(Σ) from which (12)
follows. q.e.d.

6.3. The local structure of the variety of representations. To
prove Theorem 1.5 we need to go from an understanding of infinites-
imal deformations, in terms of H1(Mr, E), to a statement on small
deformations. This is based on the inverse function theorem, applied
to a natural function sending a hyperbolic metric with cone singulari-
ties – or more generally a representation of the fundamental group of
Mr in PSL(2,C) – to the induced conformal structure at infinity and
cone angles. In this respect it is necessary to prove that the variety of
representations of π1(Mr) is a smooth manifold in the neighborhood of
the holonomy representation of a convex co-compact hyperbolic metric
with particles.

We outline here an argument from [14, 7], also related to earlier work
of Thurston [30, 9] which can easily be extended to our context. This
argument also provides the dimension of the variety of representations,
obtained above in a different way in Lemma 6.2.

Keeping close to the notations in [14] we call R(Mr) the variety of
representations of the fundamental group of Mr into PSL(2,C). There
is a scheme associated to R(Mr) by the choice of a presentation (see
[32, 20]), we denote it by R(Mr).

We first recall Theorem 5.2 of [7], which was extending a similar
statement in [14], itself related to a fundamental result of Thurston
[30, 9].

Theorem 6.3. Let M be a compact, connected 3-manifold with non-
empty boundary consisting of t tori and higher genus surfaces. Let
ρ ∈ R(M) be an irreducible representation such that, if T is a torus
component of ∂M , the image of ρ(π1(T )) is neither trivial nor Z2 ⊕Z2.
If the natural map

i : H1(M,∂M ;E) 7→ H1(M ;E)

is zero, then, in the neighborhood of ρ, R(M) is a smooth manifold of
complex dimension t− 3χ(M) + 3.

We will also need a close analog of Proposition 5.3 of Bromberg’s
paper [7], which is proved in the same way.

Proposition 6.4. Let M be a convex co-compact hyperbolic 3-mani-
fold and let ρ be its holonomy representation.

1) The restriction of ρ to each end is irreducible.
2) ρ is irreducible.
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3) Let T be a tubular neighborhood of a closed curve which is a con-
nected component of the singular locus Ms. Then ρ(π1(T )) is in-
finite and non-parabolic.

Sketch of the proof. The first two points were already noted in subsec-
tion 2.5. The last point follows from the fact that the holonomy of
any closed curve in T which is not a multiple of a meridian has to be
loxodromic. q.e.d.

We can now check that Theorem 6.3 can be applied in our con-
text. The tori boundary components of N correspond to the closed
curves in the singular locus of M , so that the condition that ρ(π1(T )) 6∈
{1,Z2 ⊕ Z2} follows from point (3) of the previous proposition. More-
over, Theorem 1.4 immediately implies that the map i appearing in the
statement of Theorem 6.3 is zero: if ω ∈ H1(N, ∂N ;E) then ω does not
changer either the conformal structure at infinity or the angles at the
cone singularities, so that ω = 0. So we can conclude that, if M is a con-
vex co-compact hyperbolic manifold with particles, then R(π1(Mr)) is
a smooth manifold in the neighborhood of the holonomy representation
ρ of Mr.

Note that the dimension of R(π1(Mr)) from Theorem 6.3 is not the
same as the dimension of the space of deformations of M among hyper-
bolic cone-manifolds (plus the dimension of PSL(2,C), because some
representations close to ρ in R(Mr) do not come from hyperbolic met-
rics with cone singularities – this happens precisely when the holonomy
of the meridian of the tubular neighborhood of a cone singularity is not
elliptic but has a translation component (this condition appears in the
definition of Rcone(Mr) just before Theorem 1.5).

6.4. Proof of Theorem 1.5. We now have the tools necessary to prove
Theorem 1.5. First note the following

Lemma 6.5. There do not exist non-zero Killing vector fields on the
connected components of U others than those corresponding to the closed
geodesic loops, therefore the number k in Lemma 6.2 is 2c.

Proof. Let κ be such a Killing field on a connected component of U
which contains a geodesic line or half-line from Ms. Then κ would have
an extension as a holomorphic vector field vκ on the boundary at infinity
of M . Moreover, since the angles at the singular arcs are less than π,
any Killing field has to behave, near each singular arc, as a Killing field
in Vα with axis ∆0 — indeed the only Killing fields on Vα, 0 < α < π,
are induced by Killing fields on H3 with axis ∆0. It follows that vκ

has zeros at the singular points of ∂∞M , i.e., at the endpoints of the
singular arcs.

Consider a connected component ∂∞,0M of ∂∞M , and the corre-
sponding connected component ∂0CC(M) of the boundary of the con-
vex core of M . ∂0CC(M) is ruled and convex, therefore hyperbolic,
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outside its intersections with the singular locus of M , where it has sin-
gular points of singular curvature less than 2π. It follows from the
Gauss-Bonnet theorem that if ∂0CC(M) is a torus, it intersects at least
one singular arc, while if it is a sphere, it intersects at least 3 singular
arcs.

The vector field vκ considered above is holomorphic, and it has at
least 3 zeros on ∂∞,0M if ∂∞,0M is a sphere, and at least one if ∂∞,0M
is a torus. Therefore it vanishes. So vκ vanishes on ∂∞M , and it follows
that κ is zero.

For a component which contains a trivalent vertex, it is geometrically
obvious that there are no local isometries near that vertex. q.e.d.

Let D be the space of data appearing in Theorem 1.5, with in ad-
dition, for each singular arc (either a segment, a circle, a half-line or
a line), a number corresponding to the translation component of the
holonomy along that singularity. Thus:

D =
(

ΠN
i=1Tgi,ni

)

× (R+)a+b+c+l × R
a+b+c+l ,

where, for each i ∈ {1, · · · , N}, ni is the number of endpoints of the
singular arcs on ∂iM , the factor (R+)a+b+c+l corresponds to the angles
around the singular arcs, and the term R

a+b+c+l corresponds to the
translation component along the singular arcs of the corresponding ho-
lonomy. The factors Tgi,ni

contain the conformal structure at infinity on
∂iM , with marked points corresponding to the endpoints of the singular
arcs.

Remark 6.6. dim(D) = 6
∑N

i=1(gi − 1) + 6a+ 4b+ 2c+ 2l.

Proof. For each i ∈ {1, · · · , N}, dim(Tgi,ni
) = 6gi − 6 + 2ni, so the

formula follows from the fact that
∑N

i=1 ni = 2a+b because each singular
line has two endpoints, each singular half-line has one endpoint on ∂M ,
while the edges and the circles have no such endpoint. q.e.d.

From this remark, from Lemma 6.2, Lemma 6.5 and Eq. (11), we
deduce the following

Corollary 6.7. The dimensions of H1(Mr, E) and of D are equal.

Let g be a convex co-compact hyperbolic singular metric on M , as in
Theorem 1.5, and let c(g) be the induced element of D. By definition
the last term in c(g), in R

a, is equal to 0, since g is a cone-manifold (so
that the translation component of the holonomy is 0 for each singular
arc). Each element of H1(Mr) induces an infinitesimal variation of the
holonomy of (Mr, g), and therefore an element of the tangent space
Tc(g)D of D at c(g), and this defines a linear map:

γ : H1(U,E) → Tc(g)D .
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Since H1(Mr, E) and D have the same dimension, and γ◦i∗ : H1(Mr,
E) → TD is injective by Theorem 1.4, it follows that it is surjective.
But H1(Mr, E) is the tangent space of R(Mr)/PSL(2,C) at the ho-
lonomy representation of the hyperbolic metric with cone singularities
considered, and γ is the differential of the (smooth) map sending a holo-
nomy representation of a hyperbolic metric with cone singularities to its
cone angles and conformal structure at infinity. It is therefore possible
to apply the inverse function theorem, which yields Theorem 1.5.

Appendix A. Convex subsets in hyperbolic manifolds with

particles

Definitions, outline. This appendix contains some basic information
on the geometry of convex subsets in hyperbolic manifolds with parti-
cles. The term “convex” should be understood here as in Definition 1.1:
a non-empty subset K is convex if any geodesic segment with endpoints
in K is entirely contained in K.

It follows directly from this definition that the intersection of two
convex subsets is either empty or convex. Our main goal here is to
show that, under weak topological assumptions on M , the intersection
of two non-empty convex subsets cannot be empty. It will follow that
it is possible to define the convex core of a hyperbolic manifold with
particles, and we will then point out some of its elementary properties.

As in the body of the paper we consider here a hyperbolic manifold
with particles M , and denote by Mr and by Ms its regular and singular
set, respectively. By definition Ms is a finite graph, and the angle at
each of its edges is less than π.

Links of points in M . It is useful to consider the set of unit vectors
based at a point of M . For regular points of M this is just the unit tan-
gent bundle, however for singular points this notion is more interesting.

Definition A.1. Let x ∈ M , we call Lx(M) (or simply Lx) the set
of unit vectors at x. Lx(M) is the link of M at x.

Note that a unit vector can be defined (in a general setting) as the
speed at x of a geodesic ray starting at x with velocity 1; two unit
vectors are identical if the corresponding geodesic rays are equal in an
interval containing 0. There is a natural distance on Lx, defined by
the angle between two unit vectors. It follows from the definition of a
cone-manifold that Lx, with this distance, is a spherical surface with
cone singularities. The cone points correspond to the singular segments
containing x, and the angle at those cone points in Lx is equal to the
angle at the corresponding singular arc in M .

There is a particular kind of spherical cone-manifolds which plays an
important role here. Let θ ∈ (0, π), consider the universal cover of the
complement of the two “poles” in the unit sphere, and then the metric
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completion of its quotient by the rotation of angle θ fixing the two poles.
This quotient is denoted here by S2

θ , it is a spherical surface with two
cone singularities where the angle is equal to θ.

Proposition A.2. Let x ∈M , then:

• if x ∈Mr then Lx is isometric to the unit sphere S2,
• if x ∈ Ms is contained in the interior of a singular edge e, then
Lx is isometric to S2

θ , where θ is the angle at e,
• if x ∈ Ms is a vertex, then Lx is isometric to the metric space

obtained by gluing along their common boundary two copies of a
spherical triangle with acute angles.

Proof. If x ∈ Mr the statement is quite obvious. In the second case
the result can be obtained from the definition of the hyperbolic metric
in the neighborhood of a point in the interior of a singular segment.

In the third case the link of x is by definition a spherical metric with
cone singularities. Moreover, the angle at each cone point is less than
π, so that the corresponding singular curvature is larger than π. So it
follows from the Gauss-Bonnet theorem that there are at most 3 cone
points. But it follows from a theorem of Alexandrov (see [3, 21]) that
such a metric is the double cover of a spherical triangle – this can also be
proved directly, without reference to Alexandrov’s much more general
theorem. Finally, since the angle at each cone point is less than π, the
spherical triangle has acute angles. q.e.d.

Note that in the third case the angles at the three singular segments
arriving at x are twice the angles of a spherical triangle (with acute
angles). These angles are equal to the edge lengths of the dual spherical
triangle (for the polar duality in the sphere) so they satisfy the triangle
inequality. It follows that the angles at the three singular arcs containing
x also satisfy the triangle inequality, and the same line of reasoning
shows that any triple of angles in (0, π) satisfying the triangle inequality
can be realized in this manner.

The link of a convex subset at a point. Now let K be a convex
subset of M .

Definition A.3. Let x ∈ K, we call Lx(K) the set of unit vectors
v ∈ Lx(M) such that the geodesic ray starting from x in the direction
of v is contained (on some interval containing 0) in K. Lx(K) is the
link of K at x.

Clearly Lx(K) = ∅ when x is not contained in K, while Lx(K) = Lx

when x is contained in the interior of K. The most interesting case is
when x ∈ ∂K, then Lx(K) is a subset of Lx(M). This subset is almost
always geodesically convex in the following sense.
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Lemma A.4. Let x ∈ ∂K, and let γ be a geodesic segment in Lx(M)
of length less than π, with endpoints in Lx(K). Then γ is contained in
Lx(K).

Proof. Note that no cone point of Lx(M) is contained in γ, except
perhaps at its endpoints. Let ǫ > 0 be small enough, and let Ωǫ be
the union of the geodesic segments of length ǫ starting from x in the
directions of γ. Then Ωǫ is a plane sector of angle less than π at x.

Let s ∈ (0, ǫ), consider the geodesic segment cs in Ωǫ with endpoints
the points at distance s from x in Ωǫ in the segments starting from x
in the direction of the endpoints of γ. By definition of a convex subset,
cs is contained in K. This shows that a neighborhood of x in Ωǫ is
contained in K, and therefore that γ is contained in Lx(K). q.e.d.

Corollary A.5. If Lx(K) has dimension 2, then it has locally convex
boundary in Lx(M).

Corollary A.6. Let K ⊂M be a convex subset, which is not reduced
to one point. Then ∂K contains no vertex of M .

Proof. Suppose that v is a vertex of M , then Lv(M) is obtained by
“doubling” a spherical triangle with acute angles, we call c1, c2 and c3
its cone singularities. Suppose now that v ∈ ∂K, and that K is not
reduced to one point, so that Lv(K) 6= ∅. Since Lv(K) is the double
of a spherical triangle with acute angles, its diameter is less than π, it
then follows from Lemma A.4 that Lv(K) is connected.

Note that Lv(K) cannot be reduced to only one point which is a cone
singularity of Lv(M). Indeed, suppose for instance that Lv(K) = {c1},
let γ be a simple loop based at c1 with c2 on one side and c3 on the
other. Since the cone angles are less than π, γ can be deformed (in the
complement of the singular points) to a geodesic loop based at c1. A
standard argument in the geometry of spherical surfaces shows that this
geodesic loop has length less than π (this uses the fact that the cone
angles are less than π). So γ ⊂ Lv(K) by Lemma A.4, and therefore
Lv(K) contains points of Lv(M) other than c1.

Let x be a point of Lv(K) which is not a cone singularity of Lv(M).
Let γ1, γ2 and γ3 be simple loops based at x, and going around c1, c2 and
c3, respectively. Since the angles at the ci are less than π, the curves
γi can be deformed (in the complement of the singular points) to mini-
mizing geodesic loops (based at x), and those curves, being minimizing,
are disjoint.

As already used above, the lengths of the γi are less than π, so Lemma
A.4 shows that the γi are contained in Lv(K). A simple convexity
argument then shows that Lv(K) contains a neighborhood of x, so that
Lv(K) is non-degenerate (it has dimension 2).

The complement of γ1 ∪ γ2 ∪ γ3 is composed of four topological disks,
three containing one of the cone singularities of Lv(M), and the last
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one not containing any. Since Lv(K) has locally convex boundary, the
Gauss-Bonnet formula shows that it has positive Euler characteristic,
so Lv(K) has to contain at least 3 of the 4 disks in the complement of
γ1 ∪ γ2 ∪ γ3 because it has genus 0. But then Lv(K) contains at least
two cone singularities, and the sum of their singular curvatures is more
than 2π, so that the Euler characteristic of Lv(K) has to be at least 2
by the Gauss-Bonnet formula. So Lv(K) = Lv(M), and this contradicts
the fact that v ∈ ∂K. q.e.d.

The same kind of arguments can be used to understand the link of
K at a boundary point which is contained in a singular segment, but is
not a vertex of the singular set of M .

Corollary A.7. Let v ∈ ∂K be contained in a singular arc of M
with angle θ, then Lv(K) is a subset of Lv = S2

θ . If Lv(K) contains a
point which is not one of the cone singularities of S2

θ , then

• either Lv(K) is non-degenerate (i.e., it has dimension 2) and it
contains exactly one of the cone singularities of S2

θ ,
• or Lv(K) is a closed geodesic, and it contains no cone singularity.

Proof. Let x ∈ Lv(K) be a point which is not one of the cone points of
Lv(M). Let γ be a simple loop based at x, not homotopically trivial in
the complement of the cone points of Lv(M). Then γ can be deformed
to a geodesic loop, of length less than π (because the cone angles of
Lv(M) are less than π) so it is contained in Lv(K).

This geodesic loop can be a closed geodesic, in this case it can be equal
to Lv(K). This corresponds to the second case in the statement of the
corollary. We now suppose that we are not in this case. Then Lv(K)
contains a neighborhood of x, so it is non-degenerate. Since Lv(K)
has locally geodesic boundary, it has positive Euler characteristic by
the Gauss-Bonnet Theorem, so Lv(K) must contain one of the disks
bounded by γ, so one of the cone singularities of Lv(M).

But Lv(K) cannot contain both cone singularities of Lv(M), other-
wise its Euler characteristic would be at least 2, again by the Gauss-
Bonnet Theorem because the sum of the singular curvatures of the cone
singularities is larger than 2π. Thus Lv(K) would be equal to Lv(M),
this is impossible since v ∈ ∂K. q.e.d.

The normal unit bundle. Here we consider a convex subset K in M
(the definitions given here make sense for other subsets).

Definition A.8. Let x ∈ ∂K, the unit normal subset of K at x,
called N1

xK, is the set of points v ∈ Lx(M) which are at distance at
least π/2 from Lx(K).

For instance:

• If x ∈ Mr, then Lx(K) is a subset of Lx with locally convex
boundary, and N1

x(K) is the dual of Lx(K).
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• In particular, if ∂K is smooth at x, then N1
xK has only one point,

which is the unit normal of ∂K at x.
• If K = {x}, then Lx(K) = ∅ and N1

xK = Lx.
• If x ∈ K ⊂ Ms and K contains a segment of Ms around x, then
Lx(K) is made of the two singular points of Lx, and N1

xK is
the “equator” of Lx (the set of points at distance π/2 from both
singular points).

Remark A.9. Let y ∈M \K, and let x be a point in ∂K such that
d(x, y) = d(K, y). Let c be a minimizing geodesic segment between x
and y. Then the unit vector at x in the direction of c is contained in
N1

x(K).

Proof. Clearly, otherwise it would be possible to find another point
of K, close to x, closer to y than x. q.e.d.

We call N1(K) the disjoint union of the sets N1
x(K) over the points

x ∈ ∂K.

The normal exponential map. Let x ∈M , let v ∈ Lx and let t ∈ R+,
we denote by expx(tv) the point of M which is at distance t from x on
the geodesic ray starting from x with speed v. Note that, given x and
v, expx(tv) is well-defined for t small enough (if v is a regular point of
Lx, until the geodesic ray starting from x in the direction of v arrives at
the singular set of M , and, if v is a cone point of Lx, until that geodesic
arrives at a vertex of M).

Note that it is not clear at this point that exp is defined at all points
of N1(K)×R+ since some geodesic rays could run into the singular set of
M . We will see below that this can not happen. In the meantime we call
R the length of the smallest geodesic segment where this phenomenon
happens; thus it will be shown below that R = ∞.

Lemma A.10. The map: exp : N1K × (0, R) → M is a homeo-
morphism from N1K × (0, R) to the set of points at distance less than
R from K in M \ K. It sends the complement of the points (x, v, t)
where x ∈ ∂K and v is a singular point of Lx to the complement of the
singular locus in M \K.

Proof. By construction the restriction of exp to N1(K) × (0, r) is a
homeomorphism onto its image for r small enough. Moreover Remark
A.9 shows that its image is exactly the set of points at distance less than
r from K. The shape operators of the surfaces exp(N1(K) × {s}), for
s ∈ (0, r), satisfy a Riccati equation, and an argument which is classical
in hyperbolic geometry shows that these surfaces are locally convex. It
also follows from the definition that they are orthogonal to the singular
locus.

Suppose that exp is not injective on N1(K) × (0, R). Let rM be the
supremum of the r ∈ (0, R) such that the restriction of exp to N1(K)×
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(0, r) is injective. Since exp remains a local homeomorphism at r, there
are two points (x, v), (x′, v′) ∈ N1(K) such that limr→rM

expx(rv) =
limr→rM

expx′(rv′). But then the set:

expx([0, rM ]v) ∪ expx′([0, rM ]v′)

is a geodesic segment (otherwise an intersection would appear before
r = rM ) with endpoints in K but which is not contained in K, a con-
tradiction. q.e.d.

Now suppose that R < ∞, then there is a geodesic segment c of
length R starting from a point x ∈ ∂K, with direction given by a vector
v ∈ N1

x(K), and ending at a point y ∈ Ms. Moreover, either c is
contained in Mr (except for its endpoints) and y is in an arc e of Ms,
or c is contained in an arc of Ms, and y is a vertex of M . Let w be the
unit vector at y in the direction of c.

In the first case, w is a point of Ly at distance π/2 of both cone
points of Ly. Let γ be a geodesic ray starting from y in a direction w′

which is not one of the cone points of Ly. Then the distance between w
and w′ in Ly is less than π/2, so the derivative of the distance to K is
negative along γ. So for r ∈ (0, R) close enough to R, the set of points
at distance less than r from K contains the complement of the Ms in
a neighborhood of y, so it does not retract on K. This contradicts the
previous lemma.

In the second case, y is a vertex of Ms, and all points of Ly are at
distance less than π/2 from w (this follows from the description of Ly as
obtained by gluing two copies of a spherical triangle with acute angles).
So y is a local maximum of the distance to K, and this yields again
a contradiction with the previous lemma. So R = ∞. This argument
shows the following statement.

Lemma A.11. The map exp : N1(K)×(0,∞) →M \K is a homeo-
morphism. It sends the complement of the points (x, v, t) where x ∈ ∂K
and v is a singular point of Lx to the regular set of M \K.

A global description of convex subsets. It follows from the previous
lemma that no “accident” occurs in the map exp : N1(K)×(0, R) →M .
Therefore:

• all vertices of Ms are contained in K,
• for each point y ∈ Ms outside K, there is only one geodesic seg-

ment minimizing the distance from y to K, and it is contained in
an edge of Ms.

The map exp defines a homeomorphism from Σ × (0,∞), where Σ is
a (non connected) closed surface, to M \ K. Here Σ corresponds to
N1K so that it is only a C0 surface. Moreover Ms \K is the image of
S × (0,∞), where S is a finite subset of Σ.

The following is a rather direct consequence.
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Lemma A.12. Let K ⊂ M be a non-empty convex subset. Then K
contains

1) all vertices of the singular set Ms,
2) all closed geodesics in M .

Proof. The first point is a direct consequence of Lemma A.11. For the
second point we use a “trick” already used before, and define u : M → R

by

u(x) = sinh(d(x,K)) .

It is then known that u satisfies on M \K the inequality

Hess(u) ≥ ug ,

where g is the hyperbolic metric on M . The reason for this inequal-
ity is that, in H3, the sinh of the distance to a totally geodesic plane
satisfies the equality Hess(u) = ug, the inequality then follows from a
simple local argument using Lemma A.11 and the local convexity of the
boundary of K. Note that the inequality should be understood in a
distribution sense if the boundary of K is not smooth.

If γ is a closed geodesic in M , parametrized at velocity 1, then it
follows that (u ◦ γ)′′ ≥ u ◦ γ (in a distribution sense), which is clearly
impossible by the maximum principle unless u ◦ γ = 0. This shows the
second point in the lemma. q.e.d.

Convex subsets have non-empty intersection. We are now ready
to obtain the result announced at the beginning of this appendix.

Lemma A.13. Suppose that either Ms has a vertex or π1(M) 6= 0.
Let K,K ′ be two non-empty compact convex subsets of M , then K∩K ′ 6=
∅.

Proof. Suppose first that Ms has at least one vertex v, then Lemma
A.12 shows that both K and K ′ contain v, so v ∈ K ∩K ′.

Suppose now that π1(M) 6= 0, let γ be a closed curve in a non-
trivial element of π1(M). Let (γn)n∈N be a minimizing sequence in the
homotopy class of γ, that is, a sequence of curves homotopic to γ such
that the length of γn converges, as n→ ∞, to the infimum of the lengths
of curves homotopic to γ. It follows from Lemma A.11 – and from the
form of the ends of M – that the γn remain at bounded distance from
K. So, after extracting a subsequence, γn converges to a closed geodesic
γ∞. Lemma A.12 shows that γ∞ is contained in both K and K ′, and
the result follows. q.e.d.

It would be useful to weaken the hypothesis of this lemma by suppos-
ing only that π1(Mr) 6= 0. Such an extension might be true, but some
care is required. It is quite possible that, if π1(Mr) 6= 0 (and M con-
tains a non-empty compact convex subset) then Mr contains a closed
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geodesic. It is however not true that any non-trivial element of π1(Mr)
can be realized as a closed geodesic.

If M = Vα, for some α ∈ (0, π), then Lemma A.13 does not apply:
if for instance K and K ′ are each reduced to one point in the singular
locus, then K ∩K ′ could be empty. There are also of course hyperbolic
manifolds (with or without singularities) which do not contain any non-
empty compact convex subset.

A more interesting example is obtained from a hyperbolic metric h
with four cone singularities of angle less than π on the sphere S2. One
can then consider the warped product metric

dt2 + cosh2(t)h

on S2 × R, it is easily seen to be a complete hyperbolic metric with
four cone singularities along infinite lines. It contains S2 × {0} as a
compact convex subset. Theorem 1.5 shows that this example can be
deformed, by changing the conformal structure at infinity. However,
π1(S

2 × R) = 0, so that Lemma A.13 does not apply. It would be
desirable to have a more general statement including this example.

The boundary of the convex core. Lemma A.13 shows that it is pos-
sible to define the convex core CC(M) of M as the smallest non-empty
convex subset in M . By the considerations above, CC(M) contains all
the vertices of Ms, and M \ CC(M) is the disjoint union of “ends”,
each of which is homeomorphic to the product of a closed surface by an
interval.

Lemma A.14. The boundary of CC(M) is a surface orthogonal to
the singular locus.

Proof. Let x ∈Ms ∩ ∂CC(M). Then x is contained in a singular arc
e of Ms, let θ be the angle around e. By construction, Lx(CC(M)) is a
subset of Lx = S2

θ . We have seen in Corollary A.7 that

• either Lx(CC(M)) is a closed geodesic,
• or ∂Lx(CC(M)) ⊂ S2

θ is a locally convex curve and Lx contains
the “south pole” pS of S2

θ , i.e., the image in S2
θ of the “south pole”

in S2.

In the first case CC(M) is a totally geodesic surface in the neighborhood
of x, and a simple connectedness argument shows that it is everywhere
totally geodesic, and thus orthogonal to the singular locus. We therefore
consider the second case.

Consider the function φ defined on S2
θ as the distance to pS. φ(pS) =

0, while φ(pN ) = π, where pN is the “north pole” of S2
θ . Let y ∈

∂Lx(CC(M)) be the point where φ attains its minimum. Consider the
geodesic segment γ : (−l, l) → S2

θ , parametrized at speed 1, such that
(φ◦γ)′(0) = 0, where l is chosen to be maximum under the condition that
γ is embedded. Then lim−l γ = liml γ, so that the closure of γ((−l, l))
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is a closed curve, which is geodesic except at one point. Note that
γ((−l, l)) is simply the projection to S2

θ of a geodesic segment of length
2l in S2. The local convexity of ∂Lx shows that it remains “under”
γ((−l, l)). It follows that:

• If φ(y) > π/2, then the restriction of φ to γ((−l, l)) attains a strict
maximum at y, so the restriction of φ to ∂Ly is also maximal at
y, and takes strictly lower values at other points. This clearly
contradicts the definition of y, so this case can be eliminated.

• If φ(y) < π/2, then the fact that θ < π implies that the restriction
of φ to γ((−l, l)) is negative, so the restriction of φ to ∂Lx(CC(M))
is also negative. This contradicts the definition of CC(M) as the
smallest convex subset in M , because if would then be possible to
reduce CC(M) by “cutting out” the part above a plane orthogonal
to the singular locus but slightly “below” x, and still get a convex
subset of M .

• If φ(y) = π/2, then φ is identically π/2 on γ((−l, l)), so that the
restriction of φ to ∂Lx(CC(M)) is at most π/2. The definition of
y as the point where φ is minimum thus entails that φ is identically
π/2 on ∂Lx(CC(M)), and this means precisely that ∂CC(M) is
orthogonal to the singular locus at x.

This argument shows that ∂CC(M) is orthogonal to the singular locus
at x, as claimed. q.e.d.

This has interesting consequences, which can be summed up as fol-
lows.

Lemma A.15. The boundary of CC(M) is a “pleated surface”. Its
induced metric is hyperbolic, with cone singularities at the intersection
with the singular arcs in Ms, and the angle at each such cone point is
equal to the angle at the corresponding singular arc of Ms. The sur-
face ∂CC(M) is “bent” along a measured lamination whose support is
disjoint from the cone points.

Sketch of the proof. We do not give complete details of the proof, which
is similar to the corresponding situation with no “particle”, as in [30].
The fact that ∂CC(M) is a pleated surface away from Ms is a con-
sequence of the fact that it is the boundary of a convex subset of M
without extremal point, as in the non-singular case. Since ∂CC(M) is
orthogonal to the singular arcs, its induced metrics has, at those in-
tersections, cone points with angle equal to the angle at those singular
arcs in M . The same fact also entails that the support of the bending
lamination does not contain the singular points (and therefore, since the
angles at the cone points are less than π, the distance from the support
of the bending lamination to the cone points is bounded away from 0).

q.e.d.
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Université Paul Sabatier

31062 Toulouse cedex 9, France

E-mail address: jmschlenker@gmail.com


