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TAU-FUNCTIONS ON SPACES OF ABELIAN
DIFFERENTIALS AND HIGHER GENUS
GENERALIZATIONS OF RAY-SINGER FORMULA

Let w be an Abelian differential on a compact Riemann surface
of genus g > 1. Then |w|? defines a flat metric with conical singu-
larities and trivial holonomy on the Riemann surface. We obtain
an explicit holomorphic factorization formula for the {-regularized
determinant of the Laplacian in the metric |w|?, generalizing the
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Ray-Singer result in g = 1.
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1. Introduction

The goal of this paper is to give a natural generalization of the Ray-
Singer formula for analytic torsion of flat elliptic curves [33] to the case
of higher genus.

Let A and B be two complex numbers such that & (B/A) > 0. Taking
the quotient of the complex plane C by the lattice generated by A and
B, we obtain an elliptic curve (a Riemann surface of genus one) L.
Moreover, the holomorphic one-differential dz on C gives rise to an
Abelian differential w on L, so we get a pair (Riemann surface of genus
one, Abelian differential on this surface) and the numbers A, B provide
the natural local coordinates on the space of such pairs. In what follows
we refer to the numbers A, B as moduli.

The modulus square |w|? of the Abelian differential w generates a
smooth flat metric on £. Define the determinant of the Laplacian Alvwl?
corresponding to this metric via the standard (-function regularization:
(1.1) detAlv?® = exp{—C 12 (0)},
where ( ,|,2 (s) is the operator zeta-function. Now a slight reformulation
of the Ray-Singer theorem [33] claims that there holds the equality:

detAlw?
S(B/A)Area(L, |w|?)

where Area(L, |w|?) = S(AB), C is a moduli-independent constant (ac-
tually, C' = 4) and 7 is the Dedekind eta-function

n(o) = exp <%> [T (t = exp(2rine)) .

neN

(1.2) = Cln(B/A)[*,

(Strictly speaking, in [33] detA is computed for the Laplacian acting in
a line bundle with nontrivial unitary automorphy factors; nevertheless
the formula (1.2) is also typically attributed to Ray and Singer. On the
other hand, this formula is an almost immediate consequence of the first
Kronecker limit formula, see [24] for detailed discussion.)

The main result of this paper is a generalization of the formula (1.2)
to the case of Riemann surfaces of genus g > 1. To explain our strategy
we first reformulate the Ray-Singer Theorem.

For any compact Riemann surface £ we introduce the prime form
E(P,Q) and the canonical meromorphic bidifferential

(1.3) w(P,Q) = dpdglog E(P,Q)

(see [9] or Sect.2.3 below). The bidifferential w(P, @) has the following
local behavior as P — Q:
(1.4)

w(P,Q) = ( !

(z(P) — 2(Q))

5 + %SB(HJ(P)) + 0(1)) dz(P)dz(Q),
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where x(P) is a local parameter. The term Sp(z(P)) is a projective con-
nection which is called the Bergman projective connection. Let w be an
Abelian differential on £ and, as before, let 2(P) be some local parame-

ter on L. Denote by S, (z(P)) the Schwarzian derivative {fp w, a:(P)}

Then the difference of two projective connections Sg—S,, is a (meromor-
phic) quadratic differential on £ [37]. Therefore, the ratio (Sp— Sy)/w
is a (meromorphic) one-differential. In the elliptic case, i.e. when the
Riemann surface £ and the Abelian differential w are obtained from the
lattice {mA + nB}, this one-differential is holomorphic and admits the
following explicit expression in the local parameter z (see [8]):

Sp — Sw dlogn(o) 1

(1.5) 28O0 94

d
w do Az%%

where o0 = B/A.

Let {a,b} be a canonical basis of cycles on the elliptic curve £, such
that the numbers A and B are the corresponding a- and b-periods of
the Abelian differential w. Defining

(1.6) (A, B) := 1 (B/A),
we see from (1.5) that the function 7 is subject to the system of equations
(1.7) dlogr 1 }{SB—SUJ 8log7'__ 1 }{SB—SUJ

' 0A  12mi J, w oB  12mi ), w

Now the Ray-Singer formula implies that the real-valued expression

detAlvwl?
S(B/A)Area(L, |w|?)

(1.8) Q(A,B) =

satisfies the same system:

dlog@Q 1 fSB_Sw 8logQ__ 1 j{SB—Sw
0A 12mi J, w oB  12mi ), w

Clearly, if 7(A, B) and Q(A, B) are (respectively) a holomorphic and a

real-valued solutions of system (1.7), then Q(4, B) = C|7(A, B)|? with

some constant factor C'. Thus, the Ray-Singer result can be reformu-
lated as follows:

(1.9)

Theorem 1. 1) The system (1.7) is compatible and has a holo-
morphic solution 7. This solution can be found explicitly and is
given by (1.6).

2) The variational formulas (1.9) for the determinant of the Lapla-
cian Al*l* hold.

3) The expression (1.8) can be represented as the modulus square of a
holomorphic function of moduli A, B; this function coincides with
the function T up to a moduli-independent factor.
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In what follows we call the function 7 (a holomorphic solution to
system (1.7)) the Bergman tau-function, due to its close link with the
Bergman projective connection.

Generalizing the statement 1 of Theorem 1 to higher genus, we define
and explicitly compute the Bergman tau-function on different strata of
the spaces ‘H, of Abelian differentials over Riemann surfaces i.e. the
spaces of pairs (£, w), where £ is a compact Riemann surface of genus
g > 1 and w is a holomorphic Abelian differential (i.e. a holomorphic
1-form) on L. In global terms, the “tau-function” is not a function, but
a section of a line bundle over the covering of a stratum of H,.

An analog of the Bergman tau-function on spaces of holomorphic
differentials was previously defined on Hurwitz spaces (see [14, 15]),
i.e. on the spaces of pairs (L, f), where f is a meromorphic function on
a compact Riemann surface £ with fixed multiplicities of poles and zeros
of the differential df. In this case it coincides with the isomonodromic
Jimbo-Miwa tau-function for a class of Riemann-Hilbert problems [20,
6], this explains why we use the term “tau-function” also in the context
of spaces H,.

Generalizing statement 2 of Theorem 1, we introduce the Laplacian
Alwl? corresponding to the flat singular metric |w|?. The Laplacian
is acting in the trivial line bundle over £. Among other flat metrics
with conical singularities metrics of this form are distinguished by the
property that they have trivial holonomy along any closed loop on the
Riemann surface.

Since Abelian differentials on Riemann surfaces of genus ¢ > 1 do
have zeros, the metric |w|? has conical singularities and the Laplacian
is not essentially self-adjoint. Thus, one has to choose a proper self-
adjoint extension: here we deal with the Friedrichs extension. It turns
out that it is still possible to define the determinant of this Laplacian via
the regularization (1.1). We derive formulas for variations of det Alwl?
with respect to natural coordinates on the space of Abelian differentials.
These formulas are direct analogs of system (1.9).

Generalizing statement 3 of Theorem 1, we get an explicit formula
for the determinant of the Laplacian Alwl?,

(1.10) det Al = C Area(L, |w|?) {detSBY |72,

where B is the matrix of b-periods of a Riemann surface of genus g, and
the Bergman tau-function 7 is expressed through theta-functions and
prime forms. This formula can be considered as a natural generalization
of the Ray-Singer formula to the higher genus case.

Remark 1. The determinants of Laplacians in flat conical metrics
first appeared in works of string theorists (see, e.g., [12]). An attempt to
compute such determinants was made in [34]. The idea was to make use
of Polyakov’s formula [31] for the ratio of determinants of the Laplacians
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corresponding to two smooth conformally equivalent metrics. If one of
the metrics in Polyakov’s formula has conical singularity, this formula
does not make sense, so one has to choose some kind of regularization
of the arising divergent integral. This leads to an alternative defini-
tion of the determinant of Laplacian in conical metrics: one may simply
take some smooth metric as a reference one and define the determinant
of Laplacian in a conical metric through properly regularized Polyakov
formula for the pair (the conical metric, the reference metric). Such a
way was chosen in [34] (see also [5]) for metrics given by the modulus
square of an Abelian differential (which is exactly our case) and metrics
given by the modulus square of a meromorphic 1-differential (in this
case Laplacians have continuous spectrum and the spectral theory def-
inition of their determinants, if possible, must use methods other than
the Ray-Singer regularization). In [34] the smooth reference metric is
chosen to be the Arakelov metric. Since the determinant of Laplacian
in Arakelov metric is known (it was found in [7] and [2], see also [9]),
such an approach leads to a heuristic formula for det A in a flat conical
metric. This result heavily depends on the choice of the regularization
procedure. The naive choice of the regularization leads to dependence
of det A in the conical metric on the smooth reference metric which
is obviously unsatisfactory. More sophisticated (and used in [34] and
[5]) procedure of regularization eliminates the dependence on the refer-
ence metric but provides an expression which behaves as a tensor with
respect to local coordinates at the zeros of the differential w and, there-
fore, also can not be considered as completely satisfactory. In any case
it is unclear whether this heuristic formula for det A for conical metrics
has something to do with the determinant of Laplacian defined via the
spectrum of the operator A in conical metrics.

The paper is organized as follows. In Section 2 we derive variational
formulas of Rauch type on the spaces of Abelian differentials for ba-
sic holomorphic differentials, matrix of b-periods, prime form and other
relevant objects. In Section 3 we introduce and compute the Bergman
tau-function on the space of Abelian differentials over Riemann surfaces.
In Section 4 we give a survey of the spectral theory of the Laplacian
on surfaces with flat conical metrics (polyhedral surfaces) and derive
variational formulas for the determinants of Laplacians in such metrics.
The comparison of variational formulas for the tau-functions with varia-
tional formulas for the determinant of Laplacian, together with explicit
computation of the tau-functions, leads to the explicit formulas for the
determinants. We use our explicit formulas to derive the formulas of
Polyakov type, which show how the determinant of Laplacian depends
on the choice of a conformal conical metric with trivial holonomy on a
fixed Riemann surface.
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2. Variational formulas on spaces of Abelian differentials over
Riemann surfaces

2.1. Coordinates on the spaces of Abelian differentials. The
space H, of holomorphic Abelian differentials over Riemann surfaces
of genus ¢ is the moduli space of pairs (£, w), where £ is a compact
Riemann surface of genus g > 1, and w is a holomorphic 1-differential
on L. This space is stratified according to the multiplicities of zeros of
w.

The corresponding strata may have several connected components.
The classification of these connected components is given in [18]. In
particular, the stratum of the space H, having the highest dimension
(on this stratum all the zeros of w are simple) is connected.

Denote by Hg(k1,. .., k) the stratum of Hg, consisting of differen-
tials w which have M zeros on £ of multiplicities (ki,...,kyr). Denote
the zeros of w by Py,..., Pyr; then the divisor of differential w is given
by (w) = Z%:l kP, Let us choose a canonical basis (aq, b, ) in the
homology group Hi(L,Z). Cutting the Riemann surface £ along these
cycles we get the fundamental polygon L (the fundamental polygon is
not simply-connected unless all basic cycles pass through one point).
Inside of £ we choose M — 1 paths l,,, which connect the zero P; with
other zeros Py, of w, m = 2,..., M. The set of paths aq,ba,l; gives
a basis in the relative homology group H;(L;(w),Z). Then the local
coordinates on Hy(ky,...,knr) can be chosen as follows [19]:

(2.1) Aa::}l{w, Ba::}l{w, zm::/w,
[e%eY ba l’m

a=1,...,g; m=2,...,M. The area of the surface £ in the metric
|w|? can be expressed in terms of these coordinates as follows:

g
Vol(£) = -3 ) AaBa .
a=1

If all zeros of w are simple, we have M = 2g—2; therefore, the dimension
of the highest stratum H,(1,...,1) equals 4g — 3.

The Abelian integral z(P) = |, Ifl w provides a local coordinate in a
neighborhood of any point P € L except the zeros Pi,...,Py. In a
neighborhood of P, the local coordinate can be chosen to be (z(P) —
2y )/ bm+1) - The latter local coordinate is often called the distinguished
local parameter.
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The following construction helps to visualize these coordinates in the
case of the highest stratum Hgy(1,...,1).

A

Figure 1. Representation of a generic point of the stra-
tum H3(1,1,1,1) by gluing three tori along cuts connect-
ing zeros of w.

Consider g parallelograms 1Iy,...,II; in the complex plane with co-
ordinate z having the sides (A, B1), ..., (Ag, By). Provide these par-
allelograms with a system of cuts

[0,22], [23,24), .., [229—3,229—2]

(each cut should be repeated on two different parallelograms). Identi-
fying the opposite sides of the parallelograms and glueing the obtained
g tori along the cuts we get a compact Riemann surface £ of genus g.
(See figure 1 for the case g = 3). Moreover, the differential dz on the
complex plane gives rise to a holomorphic differential w on £ which has
2g — 2 zeros at the ends of the cuts. Thus, we get a point (£, w) from
Hy(1,...,1). It can be shown that any generic point of H,4(1,...,1) can
be obtained via this construction; more sophisticated glueing is required
to represent points of other strata, or non generic points of the stratum
Hy(1,...,1).
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The assertion about genericity follows from the theorem of Masur
and Veech ([21], [38], see also [19]) stating the ergodicity of the natu-
ral SL(2,R)-action on connected components of strata of the space of
(normalized) Abelian differentials. Namely, denote by H;(l, ..., 1) the
set of pairs (£, w) from Hgy(1,...,1) such that [,|w/* = 1. Let a pair
(£,w) from Hy(1,...,1) be obtained via the above construction. Then
under the action of A € SL(2,R) it goes to the pair (£1,w;) which
is obtained by gluing the parallelograms A(II;),..., A(Il;) along the
cuts [0, Azp], ..., [Azgg_3, Azgg o], where the group SL(2,R) acts on
z-plane as follows

A = <CCL Z) t 2z (aRz + b]z2) +i(cRz + dSz) .
Thus, the set of pairs (£, w) from H;(l, ..., 1) which can be glued from
tori is invariant with respect to ergodic SL(2,R)-action. Moreover, by
varying of local coordinates in a small open neighbourhood of a given
pair (£,w) which is glued from tori, we get a small domain of positive
measure containing pairs (£, w) which can be glued from tori. Acting
on this small domain by the SL(2,R) group, we get a set of full measure
in the stratum H{(1,...,1).

To shorten the notations it is convenient to consider the coordinates
{Au, Ba, zm} altogether. Namely, in the sequel we shall denote them
by (x, k=1,...,29g+ M — 1, where

(2'2) Ca = Aq <g+a =B, , a=1,...,9, <2g+m = Zm+1
where m=1,..., M — 1.

Let us also introduce corresponding cycles s, k =1,...,29g+ M — 1,
as follows:
(2.3) S0 ==ba, Sgra=0aa, a=1,...,9;
the cycle sggqm, m =1,..., M —1 is defined to be the small circle with

positive orientation around the point Pp,1.

Now we are going to prove variational formulas (analogs of classi-
cal Rauch’s formulas), which describe dependence of basic holomorphic
objects on Riemann surfaces (the normalized holomorphic differentials,
the matrix of b-periods, the canonical meromorphic bidifferential, the
Bergman projective connection, the prime form, etc.) on coordinates
(2.1) on the spaces Hy(ki,...,kn). We start from description of the
objects we shall need in the sequel.

2.2. Basic holomorphic objects on Riemann surfaces. Denote by
Ve (P) the basis of holomorphic 1-forms on £ normalized by faa vg = da-
For a basepoint Py we define the Abel map A,(P) = || Iﬁ; Vo from the
Riemann surface £ to its Jacobian.

The matrix of b-periods of the surface £ is given by B,g := §ba vg.
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Recall also the definition and properties of the prime form E, canon-
ical meromorphic bidifferential w and Bergman projective connection
Sp.

The prime form E(P, Q) (see [8, 9]) is an antisymmetric —1/2-diffe-
rential with respect to both P and Q. Let O[x]|(z) be the genus g theta-
function corresponding to the matrix of b-periods B with some odd
half-integer characteristic []. Introduce the holomorphic differential
q(P) = Y29 _, O[], (0)va(P). All zeros of this differential are double
and one can define the prime form on £ by

Ol](A(P) — AQ))

VaP)/a(@)

this expression is independent of the choice of the odd characteristic [«].
The prime form has the following properties (see [9], p.4):

(2.4) E(P,Q) =

e Under tracing of ) along the cycle a, the prime form remains
invariant; under the tracing along b, it gains the factor

Q

(2.5) exp(—7miBaa — Qm'/ Vo) -
P

e On the diagonal ) — P the prime form has first order zero (and
no other zeros or poles) with the following asymptotics:

(26)  B(P),2(@)VEP)IH@) = (+(Q) -~ #(P)
« (1 5Sa(alP)(a(@) ~ o(P))? +0(Q) ~a(P)).

where the subleading term Sp is called the Bergman projective
connection and z(P) is an arbitrary local parameter.

We recall that an arbitrary projective connection S transforms under
a change of the local coordinate y — z as follows:

2
(27) S() = S() (j—j) T {9}

where )
:1:/// 3 :1://
== \w
is the Schwarzian derivative. It is easy to verify that the term Sp in
(2.6) indeed transforms as (2.7) under a change of the local coordinate.

Difference of two projective connections is a quadratic differential on L.
The canonical meromorphic bidifferential w(P, Q) is defined by (1.3):

w(P,Q) = 0pdqlog E(P,Q).
It is symmetric: w(P,Q) = w(Q, P) and has all vanishing a-periods
with respect to both P and @; the only singularity of w(P, Q) is the

second order pole on the diagonal P = () with biresidue 1. The sub-
leading term in expansion of w(P, Q) around diagonal is equal to Sp/6
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(1.4). The b-periods of w(P, )) with respect to any of its arguments are
given by the basic holomorphic differentials: fba w(P, -) = 2miv, (P).

The prime form can be expressed as follows in terms of the bidiffer-
ential w(P, Q) ([9], p-3):

(2.8) E*(P,Q)dx(P)dy(Q) =

lm  (2(Po) — 2(P))(5(Q) — y(Qo)) exp (— / Q / e ->) |

Po—P,Qo—Q

where z and y are any local parameters near Py and (Qg, respectively.

Remark 2. Let us comment on the formula (1.3) for w(P, Q). Since
E(P,Q) is a —1/2 differential with respect to P and @, this formula
should be understood as

w(P,Q) = 9pdo{log E(P,Q)\/dz(P)/dy(Q)} ,

where x and y are arbitrary local parameters. Due to the presence of
the operator dpdg, this expression is independent of the choice of these
local parameters; therefore it can be written in a shorter form (1.3), see
(8, 27].

In the same way we shall understand the formula for the normalized
(all a-periods vanish) differential of the third kind with poles at points
P and @ and residues 1 and —1, respectively (see [27], vol.2, p.212),
which is extensively used below:

E(R,P)

(2.9) WRQ(R) = OR log m .

This expression should be rigorously understood as
E(R, P)y/dx(P)
E(R,Q)\dy(@Q)

where x and y are arbitrary local coordinates; independence of (2.10)
of the choice of these local coordinates justifies writing it in the short
form (2.9).

(2.10) WRQ(R) = E?R log

Denote by Sy, (z(P)) the projective connection given by the Schwarz-
ian derivative {fp w, az(P)}, where x is a local parameter on L.
The next object we shall need is the vector of Riemann constants:

1 1 g ©
(2.11) K5:§+§Bm— > f @ﬁ/va,
ag P

p=1,0#a

where the interior integral is taken along a path which does not intersect

oL.
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Consider also the following multi-valued differential of two variables

s(P.Q) (P.Q€L)
(2.12) s(P,Q) = exp{ Z?é vo(R) log g gg}

where E(R, P) is the prime form (see [9]). The right-hand side of (2.12)
is a non-vanishing holomorphic g/2-differential on L with respect to P
and a non-vanishing holomorphic (—g/2)-differential with respect to Q.
Being lifted to the universal covering of £ it has along the cycle b, the
automorphy factor exp[(g — 1)7iBaq + 27iK~] with respect to P and
the automorphy factor exp[(1 — ¢)miBaq — 2miKSY] with respect to Q.

In what follows the pivotal role is played by the following holomorphic
multivalued g(1 — ¢)/2-differential on L:

1 J DIO(KP)
2.1 P) = 7 Vay -+ Vay (P)
R18) €)= S o)) N ';;g:l@zal...@zagvl va ()
where
(2.14) W(P) = deti<a s<q va‘“‘”(P)H

is the Wronskian determinant of holomorphic differentials at the point
P.

It is easy to see that this differential has trivial automorphy fac-
tors along a-cycles; its automorphy factors along cycles b, are given by
exp{—7i(g — 1)°Baqa — 27i(g — 1)KL},

The differential C is an essential ingredient of the Mumford measure
on the moduli space of Riemann surfaces of given genus [9]. For g >
1 the multiplicative differential s (2.12) is expressed in terms of C as
follows [9]:

1/(1-g)
(2.15) s(P,Q) = (%) .

According to Corollary 1.4 from [9], C(P) does not have any zeros (this
fact can be easily deduced from Riemann’s vanishing theorem for theta-
function). Moreover, this object admits the following alternative repre-
sentation:

(2.16) C(P) =
O(X 91 Ap(Ra) + Ag(Ryg) + KEP) [l s E(Ra, Rg) T1—y 8(Ra, P)
_1 B(Q, Ry) det [[va(Rg)[I 5_,5(Q. P) ’

where Q, Ry, ..., Ry € L are arbitrary points of £ and Ap is the Abel
map with the base point P.
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For arbitrary points P, Q,Qy € £ we introduce the following multi-
valued 1-differential

(2.17) 0 (Q) = s*(Q, Q) E(Q, P)*~*(w(Q0))* (w(P))*~

(the Qo-dependence of the right-hand side of (2.17) plays no important
role and is not indicated).

The differential Q7 (Q) has automorphy factors 1 and exp(4miK?L)
along the basic cycles a, and b, respectively. The only zero of the
1-form QF on L is P; its multiplicity equals 2g — 2.

P

Definition 1. The projective connection S Fay

Schwarzian derivative

(2.18) State(@) = { [ ’ 0".0(Q)

where z(Q) is a local coordinate on L, is called the Fay projective con-
nection (more precisely, we have here a family of projective connections
parameterized by the point P € L).

on L given by the

Another projective connection we shall use below is associated to the
differential w; it is given by the Schwarzian derivative:

(2.19) Suw(@) ={ [ Q wo@)f

where z(Q) is a local coordinate.
The difference of projective connections Sl{fay — Sy is a quadratic
differential.

Lemma 1. For any Q € L, Q # P, , m = 1,..., M the following
equality holds:

(2.20) %(S;fay — 5.)(Q) = 200 (@% log[s(Q, Qo) E(Q, P)9—1]>
-y (Getogis@.QuE@ Py )

Proof. We first notice that if one chooses the local parameter z(Q)
to coincide with 2z(Q), then the projective connection S, vanishes:
Sw(z(Q)) = 0. Therefore, to find the left-hand side of (2.20) it is suffi-
cient to compute Fay’s projective connection S I{fay in the local parameter
2(Q). From the definition (2.18) of Fay’s projective connection and the
definition (2.17) of multi-valued differential Q' (Q) we get (2.20) taking
into account that d/dz(Q) = w=(Q)dg. q.e.d.

Remark 3. In what follows we shall often treat ”tensor” objects like
E(P,Q), s(P,Q), etc as scalar functions of one of the arguments (or
both). This makes sense after fixing the local system of coordinates,
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which is usually taken to be 2(Q) = [ “w. Very often one of the ar-
guments (or sometimes both) of the prime form coincide with a point
P, of the divisor (w), in this case we calculate the prime form in the
corresponding distinguished local parameter:

E(P, Pp) := E(P,Q)(dzn(Q))"*|q=p, -

In the sequel we shall need the following theorem expressing the differ-
entials s(P, Q) and QF(Q) in terms of prime forms. Since on Jacobian of
the Riemann surface £ the vectors Ap((w)) and —2K7* coincide, there
exist two vectors with integer coefficients r and q such that

(2.21) Ap((w)) + 2K + Br+q=0,
where (w) := Z%:l km Pp, is the divisor of the differential w.
Theorem 2. The following expressions for s(P,Q) and QF(Q) hold:

2.0 = Y2V T7 {EQ P V™ arite ar(@)
(2:22) PQ =g 1L i)

and

(2.23) QP(Q) = B*7%(Q, P)w(Q){w(Qo)w(P)}*~!

« H { Q07 )} " e27ri<r7AQ(Qo)>_

Proof. We start from the following lemma:

Lemma 2. The expression
M
(224)  Fi= [w(P) e TR { [T1BP P }C<P>
m=1

is independent of P.

Proof. The tensor weight of F with respect to P is the sum of (g —
1)/2 (from w(P)), (1 — g)/2) S"M_, k,, (from the product of the prime
forms) and g(1 — g)/2 (from C(P)), which equals 0 since Z%:l kp =
2g — 2. The zeros of w(P) at {P,,} are canceled against poles arising
from the product of prime forms.

Therefore, to prove that F is constant with respect to P it remains
to show that this expression does not have any monodromies along ba-
sic cycles. Because of uncertainty of the sign choice if (¢ — 1)/2 is
half-integer it is convenient to consider F2. The only ingredient of
(2.24) which changes under analytical continuation along the cycle a,
is the vector of Riemann constants; the expression (r, K P ) transforms
to (r, K) 4 (¢ — 1)r,, which, since r, is an integer, gives trivial mon-
odromy of F2 along a.
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Being analytically continued along the cycle b,, the prime form
E(P, P,,) is multiplied with exp{—7iB,, — 2mi(A(P) — A(FPn))}, and
C(P) is multiplied with exp{—mi(g — 1)?Baqo — 27mi(g — 1) KL'}. Finally,
the expression (r, K’} transforms to (r, K*) + (g — 1)(Br),.

Collecting all these terms, we see that F? gets multiplied with

eXp{ —2mi(g — 1)[Aa((w)) +2KP 4 (Br)a]}

which, due to (2.21), equals exp{—27i(g — 1)go} = 1.
Therefore, F? is a holomorphic function on £ with respect to P.
Hence, it is a constant, as well as F itself. g.e.d.

Now the expression (2.22) follows from the link (2.15) between s(P, Q)
and C(P) and the standard relation between vectors of Riemann con-
stants computed at different points: K¢ — K¥ = (g — 1)Ap(Q). The
formula (2.23) follows from (2.22) and the definition (2.17) of QF(Q).

q.e.d.

2.3. Variational formulas. Variation of the coordinates {(x} = {Aa,
B,,zm} generically changes the conformal structure of the Riemann
surface £. Here we derive an analog of the Ahlfors-Rauch formula for
the variation of the matrix of b-periods of £ under variation of the co-
ordinates {(;}. Besides that, we find formulas for the variation of the
objects depending not only on the moduli of £, but also on a point on
L (as well as the choice of a local coordinate near this point), namely,
the basic holomorphic differentials v, (P), the canonical bidifferential
w(P,Q), the prime form E(P,Q), the differential C'(P) and other ob-
jects described in the previous section.

We define the derivative of the basic holomorphic differentials with
respect to ( as follows:

0

0v,(P) o 0 Vo (P)
8Ck z(P) o w(P) 8Ck z(P)=const { w(P) }

where, as before, z(P) = flfl w; Vo (P)/w(P) is a meromorphic function
on L with poles at {P,,}. Outside of the points P, this function can be
viewed as a function of z(P) and (j; the derivative of this function with
respect to (i in the right-hand side of (2.25) is computed assuming that
z(P) is independent of (.

To introduce this definition in a more formal manner (We thank the
referee for mentioning this point.) consider the local universal family p :
X — Hy(ki,..., k). Then the set (z := fg w,C1y. .., Cogrhi—1) Gives a
system of local coordinates on X'\ (w). A vicinity of a point {(£,w), P}
in the level set H,p) := {z € X, z(z) = 2(P)} is biholomorphically
mapped onto a vicinity of the point (£, w) of Hy(k1,...,kn) via the
projection p : X — Hy(k1,..., k). Then ((p|HZ(P))_1)* {va/w} ‘HZ(P)

(2.25)
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is a locally holomorphic function on Hg4(k1,. .., k) and we denote

f%c 2(P)=const {Zj((lf))} - % [((p’Hz<P))_l)* {%} HZ(P):| .

The differentiation with respect to {(x} of other objects below (the
bidifferential W, the prime form etc.) will be understood in the same
sense.

This differentiation looks very natural if £ can be visualized as a
union of glued tori as in Figure 1. In this picture a function f(P)
(depending also on moduli) on £ is considered locally as a function of z
and is differentiated with respect to A, B, and z,, assuming that the
projection z(P) of the point P on the z-plane remains constant.

0

The derivatives
2 ()
G 2Py | w(P)

are meromorphic in the fundamental polygon Z, since the map P —

z(P) is globally defined in 2; these derivatives are not necessarily mero-
morphic functions globally defined on £ since z(P) is not single-valued
on L. Notice also that the map P +— 2z(P) is locally univalent in
‘C\{Plvapm}

The derivatives Jv, (P)/0¢ defined by (2.25) are therefore meromor-
phic differentials of (1,0) type defined within EA; they do not necessarily
correspond to single-valued meromorphic differentials on £ itself.

Similarly, the derivatives of w(P, Q) with respect to the moduli are
defined as follows:

ow(P,Q) 3 o w(P,Q)
(2.26) O 1x(P)2(@) Pt )8Ck 2(P)2(Q) {w(P)w(Q) }
Derivatives of other tensor objects depending not only on moduli, but
also on points of £, are defined in the obvious analogy to (2.25) and
(2.26).

Remark 4. Our definition (2.25) of the variation of v, (P) with re-
spect to the coordinates on the space H(ki,...,kpyr) is different from
the variational scheme used by Fay ([9], Chapter 3). In Fay’s scheme
the variation of v, (P) in the direction defined by an arbitrary Beltrami
differential is computed assuming that the pre-image under the Fuch-
sian uniformization map of the point P on the upper half-plane (for
g > 2) is independent of the moduli. In this scheme the differential of
the type (0,1) is present in the variational formula for v,, w(P, Q) and
other objects ([9], formula (3.21)). This (0,1) contribution is absent in
our deformation framework by definition (2.25), (2.26). This difference
makes it difficult to directly apply the variational formulas for all in-
teresting holomorphic objects which were derived in [9] in our present
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context. However, many technical tools of [9] can be used in the present
context, too.

Actually, the deformation scheme we develop here is close to the
Rauch deformation of a branched covering via variation of a branch
point [32]. In particular, in the Rauch formulas for the basic holomor-
phic differentials it is assumed that the projection of the argument of
the differential on the base of the covering is independent of the branch
points.

Remark 5. In what follows we often deal with derivatives of various
integrals over a contour I' on the surface £ with respect to moduli. In
this case calculations simplify under the assumption that the image of
the contour I' under the map P — z(P) = [ g w does not vary under
the variation of moduli. If the contour of integration coincides with one
of the cycles, say a1, then one can assume that the image of this contour
does not vary under variation of moduli

{AQ,...,Ag,Bl,...,Bg,ZQ,...,Zm}

(and, of course, not Aj: in this case such an assumption is no longer
possible; in the sequel we shall consider expressions of the type 04, fal
in more detail).

Theorem 3. The following variational formulas hold:

(2.28) 5215 _ 7{ ’UO;:B;
(2:29) %ZQ) 2P)AQ) 2%” . e i)(vz;,)(Q’R) ’
@) o] B QP Q)

where k =1,...,2g+ M —1; we assume that the local coordinate z(P) =
fg w and z(Q) = fg w are kept constant under differentiation.
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Proof. Let us prove first the variational formula (2.27) for the nor-
malized holomorphic differential. As explained in Section 2.1, we use
the Abelian integral z(P) = [ Ifl w as a local coordinate in a neigh-
borhood of any point of £ not coinciding with the zeros, P,,, of the
differential w. In a neighborhood of P,, the local coordinate is taken
to be x,,(P) = (2(P) — zp)Y/*m+D) | where k,, is the multiplicity of
P,,. Consider now the derivative of v, (P) with respect to z, (m > 2)
assuming that the coordinate z(P) is independent of z,,. The proof of
the corresponding variational formula is completely parallel to the proof
of the standard Rauch formula on the Hurwitz spaces (see for example
Section 2.3 of [14]).

The differential 0.,,|.(p)va(P) is holomorphic outside of P, and has
all vanishing a-periods (since the a-periods of v, are constant). Let us
consider the local behavior of 0., |.(p)va(P) near P,. We choose the

local parameter near Py, to be &, = (2(P) — zp,)"/*n*1) . We have
(232) va(@m) = (Co+ Cram + -+ + Ci, iyt + Olo 1)) drn

Differentiating this expansion with respect to z,, for fixed z(P), we get:

d 1 1
z<P>{U°‘(P)} B {CO <1 ke + 1> xlfnm+1+

2

9 1 ko, 1
1— 1= — 1) s dx,, -
Cl( km+1>:g£3;n+ +C’“’”1< km+1>x;§1+0( )} *

Consider the set of standard meromorphic differentials of second kind
with vanishing a-periods: W;:’Ll(P) with the only singularity at the
point P, of the form z,,(P)~*"!dz,,(P). Since the differential (2.33)
also has all vanishing a-periods, it can be expressed in terms of these
standard differentials as follows:

(2.33)

0 B 1 K41
oy (1- 2 WEm(P) + -+ +C LI B (P)
! km+1) Fm =1 km +1) P

Now, the differentials W (P) can be expressed in terms of w(P, Q) as
follows:

1 42

(2.35) Wi, (P) = 1y ez Q_, -
Using (2.35) we can rewrite (2.34) in the following compact form:
0ve (P)
Ozm 12(P)

(b + 1>tkm —1)! <dx,j<cz>>km_l {W} ‘Q:pm ’
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or, equivalently (taking into account that w = (k,, + 1)zFmdz,,),

da(P)| _ ‘ va(@)W(P, Q)
= res —_—
8Zm z(P) Q=Ppn ’UJ(Q)
which leads to (2.27) for k=2¢9+1,...,29 + M — 1.

Let us now prove formulas (2.27) for £k = 1,...2g. For example,
consider the derivative of v, with respect to Bg.

Denote by U the universal covering of £; let us choose the fundamen-
tal cell (the “fundamental polygon” of £) £ such that all the contours
Iy, from the definition (2.1) of coordinates z, lie inside of L. The map
z(P) is a holomorphic function on £ with critical points at {P,,}. Con-

(2.36)

)

sider an arbitrary point in L which does not coincide with any zero of w;
consider a neighborhood D C L of this point where z(P) is univalent;
denote by D the image of D under mapping z(P): D = z[D].

Denote by Tp, the deck transformation on U which corresponds to
the side bg of the fundamental polygon. Consider the domain T}, [D]
lying in the fundamental cell T}, [/3] as well as its image in the z-plane
Dbﬁ = {2+ Bg| 2 € D}. We can always take sufficiently small domain
D such that Dbﬁ N D = (. The holomorphic differential v, can be
lifted from L to a holomorphic differential on U invariant with respect
to the deck transformations. Let us consider the meromorphic function
f = ws/w on L. Since v, is invariant under the deck transformations,
we have

(2.37) f(z+ Bg) = f(2), z€D.

Differentiating this equality with respect to Bg assuming z to be con-
stant and taking into account that (9f/0z)(z + Bg) = (0f/0z)(2) as a
corollary of (2.37), we get:

of _of ,_9f 5
(2.38) 98, (24 Bg) = 9B, (2) P (2), zeD.
Let us denote
o Ov,(P)
(2.39) O(P) = 9By |-’ PeU.

Since the coordinate z(P) is single-valued on the universal covering U,

the differential ¢ is also single-valued and holomorphic on U. Now we

can rewrite (2.38) in a coordinate-independent form:

Vo (P)
w

(2.40) Ty, [®(P)] = ®(P) — a{ } ., PeD.

In complete analogy to (2.40) we can show that

(2.41) T, [®(P) = ®(P), ~y#8, PeD
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and

(2.42) T, [®(P)]=®/P), ~=1,..,9, PeD.

Since the formulas (2.40), (2.41), (2.42) are valid in a neighborhood of
any point of L except {P,,}, and the differential ® is holomorphic in
E, we conclude that these formulas are valid for any P € L. Therefore,
the differential ® can be viewed as a differential on £ itself, which is
holomorphic everywhere except the cycle ag, where it has the additive
jump given by —9{v,(P)/w}. Moreover, it has all vanishing a-periods
(the condition of vanishing of all the a-periods of ® is well-defined, since
all periods of the “jump differential” —0{v,(P)/w} vanish).

To write down an explicit formula for ® we recall that on the complex
plane the contour integral (1/27i) § f(2)(z — y)~2dx taken in positive
direction defines the functions f! and f” which are holomorphic in the
interior and the exterior of C, respectively, and on C' the boundary
values of f" and f! (indices I(eft) and r(right) refer to the side of the
oriented contour C', where the boundary value is computed) are related
by the Plemelj formula f7(y) — f'(y) = —fy(y).

This observation allows to write immediately the formula for the dif-
ferential ® with discontinuity —0{v.(P)/w} on the cycle ag and all
vanishing a-periods:

(2.43) B(P) = 5

1 UQ(Q)W(P7 Q) .
1

the required discontinuity on the cycle ag is implied by the singularity
structure of w(P, Q) and the Plemelj formula; vanishing of all a-periods
of & follows from the vanishing of all a-periods of the bidifferential
w(P, Q). Formula (2.43) implies (2.27) for k=M +g¢,..., M +2g — 1.

The formula for differentiation with respect to Az has the different
sign due to the interchange of “left” and “right” in that case (due to the
asymmetry between the cycles ag and bg imposed by their intersection
index ag o blg = _b,@ cag = 1)

Integrating (2.27) over b-cycles and changing the order of integration,
one gets (2.28). Formula (2.29) can be proved in the same manner as
(2.27). Formula (2.31) follows from the variational formulas for the bi-
differential w(P, Q) (2.29) in the limit P — @ if we write down these
formulas with respect to the local coordinate z(P) (in this local coordi-
nate the projective connection S, vanishes) and take into account the
definition (1.4) of the Bergman projective connection.

The variational formula for the prime form (2.30) follows from the
variational formula for w(P, Q) (2.29) and the formula (2.9) defining
w(P,Q) in terms of the prime form. Namely, applying the second de-
rivative dpdg to (2.30) and taking into account that the functions de-
pending on P or () only are annihilated by dpdg, we arrive at (2.29).
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Since (2.29) is valid, we see that (2.30) holds up to addition of a func-
tion of the form f(P) + ¢g(@), where f(P) and g(Q) are two functions
holomorphic in £. Since both left- and right-hand sides of (2.30) vanish
at P = @, we have ¢g(Q) = —f(Q) and the additional term is of the
form f(P)— f(Q). Furthermore, one can verify that the function f(P)
is single-valued on £. Namely, the left- and right-hand sides of (2.30)
have trivial monodromy along any a-cycle. Under analytical continua-
tion of variable P along a cycle b, the left-hand side of (2.30) gains due
to (2.5) an additive term O, { =B —2mi(Ua (P) —Ua(Q))}. By mak-
ing use of variational formulas (2.27), (2.28) it is easy to verify that this
term coincides with the additive term arising (due to transformation
law (2.5)) in the right-hand side of (2.30) under analytical continuation
along b, with respect to variable P.

Therefore, the function f(P) is a holomorphic single-valued function
of P; thus f(P) = const and f(P) — f(Q) = 0; therefore, the formula
(2.30) holds without any additional constants. q.e.d.

In the sequel we shall also need to differentiate the prime form
E(P, P,,) with respect to coordinate z,, (this case is not covered by the
variational formula (2.30) since z(F,,) := 2p, can not be kept constant
under differentiation). Surprisingly enough, such formula still looks the
same as (2.30):

Corollary 1. The following variational formula holds for any m =

(2.44) dlog{E(P, Py)w'/?(P)}
Ozm A(P)
S 1 E(P.R) ]’
i Sy w(B) [aR o m}
- 1 E(P.R) ]°
= —§res‘R:Pm {w(R) [31%10?; m} } )
where
= 1/2
B(P,P) 1= B(P.Q)(drn(@)]
as before, T (Q) = (2(Q) — zp) Y/ Fm+1) = <f1?m w)l/(km-i-l)‘

Proof. In what follows we shall use the simplified notation r := k,,, +1
and C' = syg1m—1. Let @ be a point in a vicinity of P, whose z-
coordinate is kept fixed, for z,, coordinate of this point we shall use
the simplified notation z,, := z,,(Q). One has z(Q) — z,, = =, and

(0/02m)Tm = —1/(rarh).
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Calculating E(P,Q) in the local parameter z(Q) and in the local
parameter x,,, one gets

B(P,Qu(@)" = (B(P.QVizm) || 7-(@)

~ (B(P,Q)Vdwn) \/rat!

and

(2:45) 5~ g(B(P, Qu(@"?) = 5 log (E(P.Q)\/d ) -

m

r—1
2ral

Applying to the left hand side of the last equality the variational for-
mula (2.30) for log E(P,Q) (an additional factor w(P)Y/? in the
left-hand side of (2.30) is inessential, since it is assumed to be
Zm-independent) one has

(2.46)
, 2 0 r—
it ot o i ) ey o (B OVER) <5

Notice that the point () in the left hand side of (2.46) lies outside the
contour C'. Let C be another contour encircling P, such that the point
@ and contour C' lie inside of C'. Using the Cauchy theorem one gets

o f oo BEB] - iy e 28T

, 1 E(P,R)]?
_2mRes‘R:Q {m [aRlog E(Q,R)} } .
Since the prime form F(Q, R) behaves as [2(Q) — 2(R) + O((2(Q) —
HN]//dz(Q) dz(R) as R — @, the residue in (2.47) is given by

2 510 /2
20y s E(P.Qu (@)

Writing down this expression in the local parameter x,, we rewrite the
right-hand side of (2.47) as follows:

(2.48) 740 ﬁ [8’% log :EE((S }}?)r

+— Ami T o <log{E (P,Q)\/dzm} + -

T.Z'm

log azm> .

Since the prime form is holomorphic at @) = Pm, we have

Or {log E(Q,R)\/dl‘m} = Orlog E(Py,, R) + O(xy,) ,
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and, therefore,

(2.49)
1 E(P,R)]* 1 E(P,R) 1?
f ot o g m) = e ) O

(the last integral in (2.49) does not change if we integrate over C' instead
of C'). Now introducing the expansion
(2.50)

log (E(P, Q)\/dmm\/w(P)) = o+ €1 + - + er(@) + Ozl ),

where the coefficients e; depend on P, one rewrites (2.48) as

IR G E(P,R)]2
47 S w(R) E(Q,R)

=i b [aR og Eb;gn% - o

1+ 2e0Ty + - +repal
o 1 24m — r*m +O(.Z'm)
TTm

On the other hand by virtue of (2.50) the right hand side of (2.46)
can be rewritten as

(2.51) [8R log

0 r—1
2.52 —log | E(P. m) —
(2.52) 5o los (E(P.Q)V/dr,,) S
Oeg 1 2z, rar-l r—1
T O0zm “ ra ezrw’"m_l o ermc’"m_l +Olem) - 2rar
Now from (2.46), (2.51) and (2.52) it follows that
1 1 E(P 2 P
_—~j{ 8R10g ( 7R) _ 860( )
4ri Jo w(R) E(P,,R) 0zm,
which is equivalent to the statement of the corollary. q.e.d.

In the sequel we shall use the following Corollary of formulas (2.30)
and (2.44):

Corollary 2. The following variational formulas hold:

dlog{E(P,P,)} 1 1 E(R,P)1?
(2:33) aC, 2Py Ami Jq{k w(R) [&Q 8 B(R; Pn)}

dlog{E(P, P)} 1 1 E(P,R)]”
(2:54) oG dmi ), w(® [aRlog E(Pn,m] ’

foranyk=1,...,2g4+M —1,l,n=1,...,M, l # n; here E(P,P,) is
defined in Corollary 1;

E(P, P,) := E(P,Q)(dx(Q) dzy(P))"/ 2( 0P, PP’
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2n(Q) = (2(Q) — z) M/t 1),

Proof. Notice that in (2.30) one can take P = P, and ) = P,, with
l#nfork=1,....,.2gand P = P, P = P, with [l # n and [,n #
k—2g+1for k=2g9+1,...,29 + M — 1. Namely, consider points P
and @ in vicinities of P, and P, and apply to them (2.30). One has

E(P,Q)vw(P)vw(Q)

= E(P, Q)\/d:ﬂz(P)\/d"”n(Q)\/j;l((];)) \/d‘iif(%))

and

0 0
3. 108 B(P,Q) = 5 1og { B(P,@)/dn(P) (@)}

Sending P — P, and Q — P, one gets the equality

2
9 g B(PLPy) = —— %;[amogw] ,
Sk

G ~ari f,, w(R) E(P,,R)
The remaining equations stated in the corollary can be proved in the
same manner. q.e.d.

Dependence of the vector of Riemann constants on coordinates A, B
and z,, is given by the following theorem:

Theorem 4. The following variational formula on the space of holo-
morphic differentials H(k1, ..., ky) holds:

OKP 1 va(R) s(R,Qo)E(R, P)I~1
= — aR lOg
I 2Py 2mi [, w(R) Vo (R)

where k =1,...,29g+ M — 1; the local parameter z(P) is kept fived un-
der differentiation; the value of the prime form E(R, P) and the tensor
s(R, Qo) with respect to arguments R and Qo respectively are calculated
in the local parameter z.

(2.55)

Proof. The formula (2.55) is similar to Fay’s formulas for variations of
KT with respect to variation of the conformal structure on £ defined by
an arbitrary Beltrami differential ([9], pp. 57-59). Unfortunately, Fay’s
formulas do not directly imply (2.55) due to essentially different fixing
of the argument P under differentiation which we use here. Nevertheless
the general framework of [9] is still applicable and we adopt it in the
following proof. The same comment applies also to the next theorem 5
(the formula (2.60)) for variation of C(P).

From (2.11), (2.27) and (2.28) one has

OKP 1 [ 2 vg(RP) 7
o BEEy g
W 2w 5o, W) Jp
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i, fothe B(Q”mi%é’fm’@)}/f%

B#a 751

R j{ / }{ Q)Or0glog E(R, Q)
27TZ rea U x S (Q) ’
B#a ,ﬁ 1, €ag Q€sy,

where RP = agnN bg.
Notice that

e f b, T )

o (LD ) S [

due to asymptotic expansion (1.4) of the canonical meromorphic bidif-
ferential.

Remark 6. Let us comment here on the appearance of the second
terms in the right hand sides of the two formulas above which at the
first sight look strange. To differentiate an integral, say faﬁ Gdz, over

the cycle ag with respect to the variable Ag one cuts the surface along
the basic cycles and integrates along the contour ag which now is a part

of the boundary of the fundamental polygon L. Choose a finite cover of
the contour ag by the open intervals I}, such that the map P — z(P) is
univalent inside each interval and let {Xy} be the corresponding parti-
tion of unity. Then faﬁ Gw = E | I X;j(2)G(z)dz and the last integral
in the sum is an integral with Varlable upper hmlt. when the coordinate
Apg gets an increment this upper limit gets the same increment. Thus,
after differentiation of the integral faﬁ G an extra term appears: the

value of the integrand at the end point of the contour ag (that is the
point R%). It should be noted that the third term in (2.56) implicitly
depends on the point R®: the iterated integral faﬁ fbﬁ entering this term
is singular at the point of intersection of ag and bg and its value changes
when we move the contours inside their homology classes changing the
point of their intersection. On the other hand the sum of the second
and the third terms in the right hand side of (2.56) does not depend on
RP and the concrete choice of the contours ag, bg within their homology
classes.

To explain the appearance of the second term in the right hand side of
(2.57) we observe that the integrand of the iterated integral faﬁ fbﬁ in the

left hand side of (2.57) has the second order singularity at the point RS.
Localizing the problem, i.e. making the contours of integration locally
coincide with the subintervals of real and imaginary axis containing the
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origin and writing the integrand as

i% </PRﬁ Uam 4O (x_lzy>> dxdy

in a vicinity of R®, one sees that after changing of the order of integra-
tion the right hand side of (2.57) gets the extra term

AT R K e

gﬁﬁ)) / fo

where we used the fact that the expression in the braces equals —27.
The analytic background of this fact is that the logarithmic expres-
sion arising in the first iterated integral is computed assuming that the
branch cut of the logarithm goes from 0 to +ico along the imaginary
axis; in the second integral the branch cut of the logarithm is chosen
along the real axis from 0 to 4+o0o. Equivalently, one calculates the
first iterated integral as —2 [ ady/(y* + a*) = —n, while the second

iterated integral gives 2 [* adz/(2? + a®) = 7.

Thus, after changing the order of integration and integration by parts
the right-hand side of (2.56) reduces to

1 1
o f i %: 74 [anogE Q. 2)05(Q)va(x)

—5(2)va(Q)dg log %} } '

As it is explained in ([9], p. 58) the quadratic differential in the braces
coincides with

S(Q7 QO)E(Q7 P)g_l
va(Q)
which gives (2.55). q.e.d.

—04(Q)9q log

Corollary 3. The wvariational formula (2.55) can be equivalently
rewritten as follows:

oOKP 1 va(R) s(R,Qo)E(R, P)I~!
2.58 Orl ’ ’
(2.58) OC, lz(P) " omi s, W(R) 1208 w(R)
or
OKP
2.59 a
(2:59) Ok 12(P)
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M k
1 1 E(R,P) \"™ (r, v(R))
= - UQ(R) ———0g log <7> — 2 —"
dri J, {w(R) ngl E(R, P,,) w(R)
where the integer vectorr is defined by (2.21); v(R) = (v1(R), ..., v4(R))
is the vector of normalized basic holomorphic differentials.

Proof. The difference between (2.55) and (2.58) is, up to a constant
factor, given by the integral

va(R) va(R) va(R)
8}{ log = % 8R .
ik w(R) w(R) Jy, T w(R)
Since vo(R)/w(R) is a single-valued meromorphic function on £, this
integral vanishes.

The expression (2.59) follows from the representation (2.22) of the
differential s(P, Q) in terms of prime forms. g.e.d.

The main result of this section is the following theorem, which gives
the variational formulas for the differential C(P).

Theorem 5. The following variational formula holds:

0 g(g—1) 1 1
2. —1 P - _ - _gF
( 60) 8Ck og{Cw 2 ( )} (P) ]7i . w (SB SFay)
where k =1,...,29+ M —1; the local parameter z(P) is kept fized under
differentiation.

We notice that the product of C by a power of w in the left—handAside
of (2.60) is a scalar function (i.e. it has zero tensor weight) on L, as
well as the right-hand side.

Proof. We start from the following lemmas.

Lemma 3. Let the coordinates z(P) and z(Q) be kept fixred and all
the tensor objects with arguments P, Q and Qo be calculated in the local
parameter z. Then

dlogs(P,Q) 1

(2.61) — = Im

1 E(R,P) g— g—
< onion BT ontos (R QulE(R. P E(R. Q).

where the values of s and the prime form are calculated in the local
parameter z.

Proof. Assume for simplicity that none of the cycles a,, a =1,...,g
has a nonzero intersection index with s, (the case with intersections
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presents no serious difficulty, one should observe that the arising ad-
ditional terms disappear after the change of order of integration — cf.
(2.56) and (2.57)). Using (2.12), (2.30) and (2.27), we get

dlogs(P,Q)
Ik,

8 Orlog E(R, xz)vg(R)lo
27TZ f;Eaﬁ f;“zésk o8 ( ) 6( ) gE(:E?Q)

f=1

2
— (d;ﬂog%) }:Z Y1+ 2.

To simplify the first sum in (2.62) we change the order of integration,
integrate by parts, rewrite the interior integral as an integral over the
boundary of the fundamental domain and (at the final step) apply the
Cauchy theorem:

(2.62)

(2.63)

5y = Z v3(R)r log E(R, )0, log =
5:1

211 RESk T€ag E(ﬂj‘, Q)

B 1 1 o 128, 1o E(z,P)
(@) (@) ?i w(R) f;ea,z(af” s BB, 2))"0: log Z 5

-1 fk ﬁ [(Orlog E(P, R))? — (9rlog E(Q, R))?]

4
i, ) v i e

— _4Lm' ﬁ [(Orlog E(P,R))* — (Orlog E(Q, R))?] .

The second equality in the sequence of equalities above follows from
(2.5), the single-valuedness of the one-form

E(x,P)
E(z,Q)

E(x, P
jQ{ 0, log (z, P) =0,
ap

x — 0, log

on L and the relation
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which holds due to single-valuedness of the prime form along the a-
cycles. The last equality holds since

£ (i) = f {502 -

The second sum, Y, in (2.62) transforms as follows:

(2.64)

1
=
ﬁ:l

RESk

E(Q,R)
E(P,R)

vg(z) {283 log E(z, R)0OR log

TEQs

10 log(E(P, R)E(Q, R))x log =0 ’R)}

E(Q,R)
1 1 1 P E(z,R)
= i Reskm[‘i ZW vl log 0

reag

, E(P,R)
+10r108(E(P, R)E(Q, R))dplog T R)]

1 1 E(P,R) g ;

- = jq{k - [831 o 1) or (S (RQUEV(P.R)E(Q. )} |

The statement of the lemma follows from (2.62), (2.63) and (2.64).
q.e.d.

The variation of the determinant det ||v,(Rg)|| which stands in the
denominator of the expression (2.16) is given by the following lemma.

Lemma 4. Assume that the z-coordinates of the points Ry, ..., Ry, P
are moduli-independent. Then

: 9 log det ||va(R3)||
2. 1
( 65) Rl,...l,%l—J) 0@

1 < 1
Z‘%Q;Jék () Do 108 O = Ap(R))ua(R)o3(R).

Proof. Denoting the matrix ||v,(Rg)|| by V and using (2.27), one has

OlogdetV ] 1 vo(R)W(Rg, R)
A Y R |

1 1
=—¢ —— > (V' Hsw(Rs, R)va(R).
i i 7 (B, R (F)
Due to equation (35) from [8] this expression can be rewritten as

y UOcRU R
Qm% Z zzﬁlog@<a§::1./4p(Ra)—_AP(R)+KP> %’
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and one gets (2.65) sending Ry, ..., Ry to P, when all Ap(R,) — 0.
q.e.d.

Similarly to [9], we are to vary the logarithm of the right hand
side of expression (2.16) and pass to the limit Ry,...,R;, — P, and
then Q — P,. In what follows all the tensor objects with arguments
P,Q,Qo, R1,..., Ry are calculated in the local parameter z. Using
(2.28) we can represent the variation of the theta-functional term from
the numerator of (2.16) as follows

g—1
(2.66) 0O, log © (Z Ap(Ry) + Ag(Ry) + KT | B)
y=1
g >0 1 Ry
:Z 8@/ ’Ua—l-angg 0log ©
ot Q+(g-1)P 0zq
7. 9log© 7{ va(R)vs(R)
et 0Bus J;, w(R)
We have
(2.67)
9 /Zz‘le L jq{ ! /Zg‘lRwaal E(z, Ryva(R)
X Vo = = — = 'z 108 Z, Vo
“ Jora-vr 2mi S, w(R) Jorg-np
1 1
=5 s m {Orlog E(P, R)v,(R) — Orlog E(Q, R)va(R)} + o(1)

as Ry,...,Ry — P.

Now from (2.66), (2.67), (2.11), the heat equation for the theta-
function and the obvious relation

Orlog® (K¥ — Ap(R)) = =) (log ©).,va(R)

a=1

it follows that

g—1
(2.68) lim O log© (Z Ap(Ry) + Ag(Ry) + KT B)

R1,...,R4—P
1y llg— ,\/:1

- 2% 74 ﬁ{% log O(K" — A(R))dr log[s(R. Qo) E* (R, P)]

(w(R)Or)(w™ ' (R)OR)O(K" — A(R))
10(K” — Ap(R))

g
+ 3 0., o OK” — An(Q)0n 108 B(@. Ryua(R) | + of1)

a=1

_l’_
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as Q — R.
The variation of remaining terms in the right hand side of (2.16) is
much easier. One has

(2.69) Rl,..l.}%iqpaéhk OZ:QIOgE(Ra’RB) =0,
2. I 1 P) =
(2.71)
g 2
. g 1 E(Q,R)
lim 8, > logB(Q,R,)=—-L ¢ — (051
Ry Ry P Ck; g B(Q By) = =35 f{k w(R) < B8 B(P,R)

due to (2.30) and Lemma 3.

Now using (2.16), summing up (2.61), (2.68 - 2.71) and (2.65), cleverly
rearranging the terms (as Fay does on p. 59 of [9]) and sending @ — R,
we get

1
(2.72) 0g, g C(P) = —

- 7{ ﬁ{%w(ma}z)([w(mrl%) log O(K" — Ap(R))

—%aR log O(KF — Ap(R))dp log[s(R, Qo) E*(R, P)|

— 2 (w(R)OR)([w(R)] ™ 9) log E(R, P)

1 2q —
+50r10g (R, Qo)r log E(R, P) + J

L (Onlog E(R, P))?

aR IOg E R Q ( Z 8za log @ - AP(Q))UO& (R)

(w(R)Ir)([w(R)] ' 9r)log B(R, Q)

)

Jim, drlog E(R,Q) <Zc‘92a log O(KT — Ap(Q))va(R)

+0plogls(R, Qo) B (R, P)]) -3

Z 02..,1og O(K” — Ap(R))va(R)vs(R)

a,f=1
Due to (2.6), one has

+0grlog[s(R, Qo) E?(R, P)])
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1
— tm —— (anlo
Q) —=(R >Z(Q)—Z(R)< s

Z 92,.,1og O(K” — Ap(R))va(R)vs(R)(2(Q) — 2(R))
a,8=1

+O((:(@) = AR ) = S 02 log O(K — Ap(R))ua(R)us(R).
7/6 1
Here we made use of the fact that the function
s(R,Qo)EI(R, P)

2.73 R
27 O — Ap(R)
for fixed P is holomorphic (since the zero of multiplicity g at R = P is
canceled by the zero of the same multiplicity of EY9(R, P) while s(R, Qo)
is non-singular in £) and single-valued on £ (using (2.5) and automorphy
factors of s given after formula (2.12), one sees that all the automorphy
factors of this function along the basic cycles are trivial) and, therefore,
a constant. Using (2.6), we see that

o w(R)OR([w(R) O B(R,Q)
QR E(R,Q)
Thus, the last two lines of (2.72) simplify to —(1/8w(R))(Sp — Sw)(R).

Using the R-independence of expression (2.73) once again, we may
rewrite the remaining part of (2.72) as

(R log {s(R, Qo) E(R, P~}

s(R, Qo) EY(R, P)
O(KF — A(R))

[SB — Sul(R).

( )

—{nloa(s(R, Q0 E(R, PY )},

which coincides with (1/8w)(Spqey —Sw) due to relation (2.20). Formula
(2.60) is proved. q.e.d.

2.4. Relation to Teichmiiller deformation. Here we point out a
close link of our deformation framework on the moduli spaces of holo-
morphic differentials with Teichmiiller deformation. The existence and
uniqueness theorems of Teichmiiller state that any two points in Te-
ichmiiller space of Riemann surfaces of given genus are related by so-
called Teichmiiller deformation (see for example [1]) defined by a holo-
morphic quadratic differential W and a real positive number k. For our
present purposes we assume that W = w?, where w is a holomorphic
differential on £ (for an arbitrary W its “square root” w is a holomor-
phic 1-form on two-sheeted “canonical covering” of £). The form w
defines local coordinate z(P) = [, g) w in a neighborhood of any point
Py € L. Introduce real coordinates (z,y): z = z+1iy. Then Teichmiiller
deformation corresponds to stretching in horizontal direction with some
constant coefficient: * — ((1+k)/(1 — k)) x, y — y; such stretching is
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defined globally on £. The finite Beltrami differential corresponding to
such finite variation of conformal structure is given by kw/w ([1], p.32).
Infinitesimally, when & — 0, the stretching is given by = — (1 + 2k)x
and the Beltrami differential defining the infinitesimal deformation d/dk
at k=01is

o
92.74 o= —.
(2.74) o =

Under an infinitesimal deformation of the complex structure by an ar-
bitrary Beltrami differential p the variation of the matrix of b-periods
is given by the Ahlfors-Rauch formula ([28], p. 263):

d
. B,z = — B.s = o w .
(2.75) 5,Bas = | Bug /ﬁ Vo A (f03)

Therefore, according to (2.75), the variation of the matrix of b-periods
under the infinitesimal Teichmiiller deformation is given by

aBa (6% (0% —
(2.76) p /ﬂ/\vg——/vvﬁ/\w.
k=0 r

w

Applying Stokes theorem to the fundamental polygon L with deleted
neighborhoods of zeros of the differential w, we further rewrite (2.76)
as an integral over boundary:

M Ve U P
= j{ —27i Z res|p, ¢ — ﬁ(P)/ w
k=0 ar 1 w Py

where P is an arbitrary basepoint. Since both 1-forms v,vg/w and
w are closed outside of zeros of w, in analogy to the standard proof
of Riemann bilinear relations (see, e.g., [28], p. 257), choosing Py to
coincide with P;, we rewrite (2.77) using the coordinates (2.1) as follows:

(2.78) 0B,s _Zg: B }{ Uavﬁ—[l j{ Va3
' ok k:O_ﬁ/: 7 o, W T w

1 Y

OB

(2.77) o

M
+ 2mi E Zmres|p,,

m=2

On the other hand, we have [, 222
same computation, implies,

(2.79)

= Z { j{ oY - A, 2ol } + 2mi Z Zmres|p,, Uavﬁ
w

v=1 by m=2

a'Uﬁ

A w = 0, which, repeating the
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Adding up (2.78) and (2.79), we get:

e s f )

1 Y

aBaﬁ

(2.80)

m=2
Let us now verify that our variational formulas (2.28) for the matrix
of b-periods lead to the same result. Under Teichmiiller deformation
SAa, SB, and Sz, remain unchanged, and corresponding real parts
infinitesimally multiply with 1 4+ 2k. Therefore,

OB
0k k=0
_ zz (RA,) aBaﬁ +2Z RB,) OBW +2 Z (Rzm) aBaﬁ

O(Rzm)

in complete agreement with (2 80) if we take into account that B,g is

independent of A,, B, and z,, (i.e. for example 8?]3 5= E?Taf etc.)

and substitute here our variational formulas (2.28).

3. Bergman tau-function

Definition 2. The Bergman tau-function 7(L£,w) on the stratum
Hy(k1, ..., kar) of the space of Abelian differentials is locally defined by
the following system of equations:

(3.1) dlogr(L,w) 1 }1{ Sp — Sw
' G 127 w
where k =1,...,29+ M — 1; Sp is the Bergman projective connection;

i P w, ZE}; the difference between two projective connections

Sp and S, is a meromorphic quadratic differential with poles at the
zeros of w.

To justify this definition one needs to prove that the system of equa-
tions (3.1) is compatible. On one hand, this follows from the fact that in
the sequel we find an explicit expression for 7(£,w). On the other hand,
the computation of 7(£,w) is rather lengthy and technical, while the
straightforward verification of compatibility of equations (3.1) is simple,
and we present it here.

Denote the right-hand sides of equations (3.1) by H%. In analogy to
the construction of the Bergman tau-function on Hurwitz spaces [14]
we call these quantities Hamiltonians. Here it will be necessary to dis-
tinguish three groups of the coordinates on H(kq,...,kps), so we shall
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also use the self-explanatory notation H4«, HBa and H*" for these
Hamiltonians.
We have to show that
OH"e _OH"» QH® _OH"
= = etc.
0Bg ~ 0Ay ' 0A.  Ozm '
Most of these equations immediately follow from Theorem 3 and the
symmetry of the bidifferential w(P, Q).
For example, to prove that

Aa Ag
(3.2) 3£4ﬁ _ a{,ia
for a # B we write down the left-hand side as
ay L f
9Ap A2 Joo Jag w(P)w(Q)

which is obviously symmetric with respect to interchange of A, and Ag
since the cycles a, and ag always can be chosen non-intersecting. Sim-
ilarly, one can prove all other symmetry relations where the integration
contours don’t intersect (interpreting the residue at P, in terms of the
integral over a small contour encircling P,,,).

The only equations which require interchange of the order of integra-
tion over intersecting cycles are

OHA>  9HD
OB, 0A,

To prove (3.4) we denote the intersection point of a, and b, by Qu;
then we have:

Aa _
(3.5) OH _ 1 ’ 0 ]é S — Sy
0B, 1271 OBq | Jp, w

12m w2 ~(Qa) - 472 72?{

The additional term in (3.5) arises from dependence of the cycle by in
the z-plane on B,, since the difference between the initial and endpoints
of the cycle b, in z-plane is exactly B,. This additional term has to be
taken into account in the process of differentiation (cf. the arguments
given in Remark 6).

In the same way we find that

E?HB& . 1 SB_ w
(36) 0Aq —  12mi DA, {7{ }

- 12m Tw? Qa_4w2747§)a 2)};()

(3.4)
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(note the change of the sign in front of the term w=2(Sp — Sy )(Qq) in
(3.6) comparing with (3.5)). Interchanging the order of integration in,
say, (3.5) we come to (3.6) after an elementary analysis of the behavior
of the integrals in a neighborhood of the singular point Q),. Near the
diagonal P = @) one has

w?(2(P),2(Q)) =

Sp(z(P)) 1 1
3 G @)y ¢ (z(P) - z(@))

and only the second term gives a nontrivial input into the difference

(411 1) s
cf. Remark 6.

This completes the proof of existence of the Bergman tau-function
defined by (3.1).

1
(2(P) — 2(Q@))*

_|_

3.1. Global definition of the Bergman tau-function. The right-
hand side of formulas (3.1) depends not only on the choice of the canon-
ical basis of absolute homologies on the surface £, but also on mutual
positions of the basic cycles and the points of the divisor (w), i.e. it
depends on the choice of the basis of cycles (aq,bq,lm) in relative ho-
mologies Hi(L,{P1,...,Pu};Z).

However, it turns out that dependence on the choice of contours {l,,}
is in fact absent, and one possible global definition of the tau-function
could be as a horizontal section of some (flat) line bundle 7 over the cov-
ering ﬁg(k‘l, ..., k) of the space Hy(k1, ..., ka). Here ﬁg(k‘l, oo kar)
is the space of triples (£, w, {aq, ba}), where {aq, by} is a canonical basis
in the first homologies H;(L,Z).

In the trivial line bundle Hgy(k1, ..., kar) X C introduce the connection
2g+M—1
(3.7) dp=d— Y H%G,
k=1

where d is the external differentiation having both “holomorphic” and
“antiholomorphic” components. The Lemma 5 below shows that this
connection is well-defined on Hy(k1,...,ky) ie. expression (3.7) is
independent of the choice of contours [,, connecting the zeros P; and
P,.

Consider two bases of cycles (aq, ba, lim) and (al,, b, 1)) in relative ho-
mologies Hy(L,{P1,...,Pux};Z), such that in Hy(L,Z) we have a, = al,
and b, = b.,. Let L and £’ be the corresponding fundamental polygons
and let {¢x} = {Aa, Ba, 2m }, {(.} = {Aa, Ba, 2, } be the corresponding
systems of local coordinates on Hg(k1,...,kn). We recall that when
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defining the coordinate z,, (or z,,) we integrate the differential w over
a contour I, (or I/) connecting the zeros P; and P,, and lying inside
the fundamental polygon L (or C ). Let also H% and H ¢k be the cor-
responding Hamiltonians.

Lemma 5. The following equality holds

29+M—1 29+M—1
(3.8) S H%dG =Y HSdC.
k=1 k=1

Proof. We may deform one system of cuts (keeping it defining the
same canonical basis in Hy(L£,Z)) into another through a sequence of
elementary moves: each elementary move corresponds to passing of a
chosen zero Py, of w from one shore of some cut to another. It is sufficient
to show that (3.8) holds if the system of cuts {al,, b} can be obtained
from the system {aq, by} via one elementary move.

Let the zero Py pass from the right shore of the (oriented) cut a, to

its left shore. Due to the Cauchy theorem we have
(3.9) HP' = HB 4 g

and all other Hamiltonians do not change. The coordinate zj, transforms
to

(3.10) 2, = 2z — By

and all other coordinates do not change. Equation (3.8) immediately
follows from (3.9) and (3.10).

Let the zero Py, pass from the right shore of the (oriented) cut b, to
its left shore. Then

(3.11) HA = HA — H*

and all other Hamiltonians do not change. The coordinate zj, transforms
to

(3.12) 2, =2+ Ay

and all other coordinates do not change. Equation (3.8) again holds.
q.e.d.

The compatibility of equations (3.1) provides the flatness of the con-
nection (3.7). The flat connection dp determines a character of the
fundamental group of Hy(k1,...,kn) i-e. the representation

(3.13) P (ﬁg(krl, k) — C* L

Denote by U the universal covering of ﬁg(k‘l, ..., kpr); then the group
m (Hg(krl, ceey k‘M)) acts on the direct product U x C as follows:

g(u,z) = (gu, p(g)2) ,
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where u € U, z € C, g € ﬂl(ﬁg(kl,...,kM)). The factor space
U x C)/m (ﬁg(k’l, ..., kar)) has the structure of a holomorphic line

~

bundle over Hy(k1,...,kr); we denote this line bundle by 7. Now the
local definition 3.1 of the Bergman tau-function can be reformulated as
follows:

Definition 3. The flat holomorphic line bundle 7 equipped with
the flat connection dp is called the Bergman line bundle over the space

Hy(k1, ..., kar). The (unique up to a multiplicative constant) horizontal
holomorphic section of the bundle 7 is called the Bergman 7-function.

An easy computation using the explicit formula (3.24) for the tau-
function proved in the next section shows that if two canonical bases of
cycles on L are related by a symplectic transformation

614 (2)-(e5)(%)

then corresponding Bergman tau-functions are related as follows:

(L, w,{aq, Ba})
T(L,w,{au,ba})

where B is the matrix of b-periods of £; € is a root of unity: €4 = 1.

Thus all monodromy factors of the line bundle 72* are trivial and,
therefore, 724 is a holomorphic non-vanishing function on the space
Hy(k1,. .. k). R

The space Hy(ki, ..., k) is a quotient of Hy(ki, ..., ky) by the ac-
tion (3.14) of the symplectic group Sp(2g, Z). The function 724 differs at
two points of ﬁg(k‘l, ..., kar), related by the symplectic transformation
(3.14), by the factor det>*(CB+ D). The cocycle condition can be veri-
fied by a simple calculation; thus the monodromy factors det24(C’B+D)
define a line bundle (which we denote by 7*) over H,(k1, ..., k). The
24-th power of the Bergman tau function, 724, is a holomorphic section
of T#* (this section is non-vanishing as a corollary of explicit formulas
obtained below).

(3.15) =edet(CB + D)

3.2. Explicit formula for the Bergman tau-function. Here we are
going to give an explicit formula for the Bergman tau-function. As
the first step we rewrite the definition of the tau-function (3.1) can be
rewritten as follows:

dlog7(L,w) 1 7{ Sp — Sl{fay 1 jé Sl{fay — Sw
Sk Sk

(3.16)

)

Ok T 127 w 12mi w

where Sl{fay is Fay’s projective connection (2.18). The first term in
(3.16) can be integrated in terms of the differential C(P) (2.13) using
the variational formula (2.60).
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To formulate the theorem which allows to integrate the second term
in (3.16) we introduce two vectors r and q with integer coefficients such
that for a given choice of the fundamental cell £

(3.17) Ap((w)) +2K" +Br+q=0.

Theorem 6. For any point P € L not coinciding with any P, in-
troduce the following function G(P) on L:

(3.18) g(P) — eSwi(r,KP>+27ri(r,Br> [w(P)](Zg—2)2

M 49—4 M
x {H EFm (P, Pm)} I &P P
m=1 m,n=1m<n

Then the following variational formulas hold:

dlog G(P) _i% Skay = Su
G ) mif, w

Proof. To simplify our computation we introduce the 1-forms fg for

(3.19)

any @ € L (these forms are meromorphic on EA, but their combinations
arising below are all meromorphic one-forms on £ itself). If @) does not
coincide with any P,

fo(R) = drlog{E(R, Q)w'*(R)w'*(Q)} .
For Q = P, we define
fp,.(R) := Orlog{E(R, P,,)w'/?(R)} .

To compute the left-hand side of (3.19) we use variational formulas
(2.53), (2.54) (2.28) and (2.55) for the prime form, K and B. Using
(2.53) and (2.54) we get:

dlog G(P)
ICk;

1 1 M )
= —{(4g—4> Y kalfp = fr.)

z(P) 4 sp W '

P
9 Z kmbkn(fp, — me)z} + 8mi <r’ 88%> 2 <r’ g—2r> .

m<n
For 0B/0(;, we shall use the variational formula (2.28); for KL /0¢;,
we shall use the formula (2.59).
From (2.59) we have:
K", r)
A

1 (r, v(R)) M .
“ il e {(29 —2)fp — mg ke [, — 2milr, V(R)>} .
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Taking into account (2.28), we get

r, Br r, v 2
(3.20) %:}[%'

Let us observe now that the first term in the right-hand side of the
formula for dlog G(P)/d(}; can be rewritten as

1 1 M ’
5 Skm{(Qg—Q)fp—mEZ:lk‘mfpm} .

Now (2.59) can be rewritten as follows:

(3.21) |
dlog G(P) 1 1 M
G e 2mi J,, w(R) {(29 —-2)fp _n;kmfpm}
<I‘, V(R)> M . <I‘, V(R)>2
+2/{k W {(29 —2)fr _gkmfpm} —27T’Lik W
1 1 M ‘ 2
~ 2, w(R) {(29 —2fp - n;kmfpm — 2mi(r, v(R)>} ,

Consider now the right-hand side of (3.19). Using formula (2.22) for
the differential s we have:

ﬁc‘m log {s*(R, Qo) E**(R, P)}
o Mo B(R,P) P (r, v)
_maRlogH {M} 2w w o

m=1
Substituting this expression into representation (2.20) of the 1-form
(Sl{fay — Sw)/w, we get

1 Sﬁay - Sw

(3.22) — ”

_17{1 81ﬁE(R,P)k’”2,< >2
= omi ), w(R) |8 E(R, P,y TG ¥
M k
1 1 E(R, P) 1™ (r, v(R))
— ¢ 0 Or 1 | = 2mi—— .
o 74 & {w(R) & Oggl [E(R, Pm)] T w(R)

The first integral in the right-hand side of (3.22) coincides with the right-
hand side of (3.21). The second integral in the right-hand side of (3.22)

vanishes, since it is an integral of the derivative of the meromorphic
function in the braces over a closed contour. q.e.d.
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Now from variational formula for differential C (2.60) and Theorem
6 we get the formula for Bergman tau-function:

(3.23) (L, w) = (G(P)) /12 (C(P){w(p)}g(g—l)/2)2/3 .

We notice that the expression if the right-hand side of (3.23) is in fact
independent of the choice of the point P. Taking into account expression
for G(P) (3.18), we come to the following theorem:

Theorem 7. The Bergman tau-function on the space Hy(ki, ..., k)
1s given by the following formula:

(3.24) T(L,w) = FRe T OB [ {E(Bn, Py)Yke/0

m,n, m<n

where F is defined by the expression (2.24):

M
(325)  F=[w(P))'7 T { [1 e P } c(p)

m=1

(this expression is in fact independent of P); the integer vector r is
defined by the equality

(3.26) A((w)) +2K” +Br+q=0;

q is another integer vector, (w) is the divisor of the differential w, the
initial point of the Abel map A coincides with P and all the paths are
chosen inside the same fundamental polygon L.

The expression (3.24), (3.25) for the Bergman tau-function can be
slightly simplified for the case of the highest stratum Hy(1,...,1).

Lemma 6. Let all the zeros of the Abelian differential w be simple.
Then the fundamental cell L can always be chosen such that A((w)) +
2K" = 0.

Proof. For an arbitrary choice of the fundamental cell we can claim
that the vector A((w)) + 2K coincides with 0 on the Jacobian of the
surface L, i.e. there exist two integer vectors r and q such that A((w))+
2K* +Br+q = 0. Fix some zero P, of w; according to our assumption
this zero is simple. By a smooth deformation of a cycle a, within a
given homological class we can stretch this cycle in such a way that
it gets crossed by the point Pj; two possible directions of the crossing
correspond to the jump of component r, of the vector r to +1 or —1.
Similarly, if we deform a cycle b, in such a way that it is crossed by the
point P, the component g, of the vector q also jumps by +1. Repeating
such procedure, we come to fundamental domain where r = q = 0.

q.e.d.
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From the proof it is clear that even a stronger statement is true: the
choice of the fundamental domain such that A((w))+2K% = 0 is always
possible if the differential w has at least one simple zero.

Corollary 4. Consider the highest stratum Hg(1,...,1). Let us

choose the fundamental cell L such that A((w)) + 2KF = 0. Then
the Bergman tau-function on Hgy(1,...,1) can be written as follows:

2g—2
(3.27) T(ﬁ,w) - f2/3 i_I [E(Pm,Pl)]l/ﬁ

m,l=1 m<l
where the expression

29—2 1y
(3.28) F = [w(P)) "> c(P) [] [E(P.Pn) ="

m=1
does not depend on P; all prime forms are evaluated at the points Py,

1/2
in the distinguished local parameters x,(P) = < I} Ifm w) .

The following corollary describes the dependence of the Bergman tau-
function on the choice of the holomorphic differential assuming that the
Riemann surface remains the same. For simplicity we assume that all
zeros of both holomorphic differentials are simple, and the divisor of ze-
ros of the first differential does not have common points with the divisor
of zeros of the second differential. This corollary will be used below in
deriving formulas of Polyakov type, which describe the dependence of
the determinant of Laplacian on the choice of flat conical metric on a
fixed Riemann surface.

Corollary 5. Let w and w be two holomorphic 1-forms with simple
zeros on the same Riemann surface L; assume that all of these zeros
are different. Introduce their divisors (w) := 253;12 P, and (w) :=
Zif:_lz Py,. Then

r(Low) res|p, {w’/@} "
(3.29) (L, ) o Hl { reS’Pm {2[)2/10} .

Proof. The distinguished local parameter in a neighborhood of P,
1/2 .
is zp,(P) = [ I} PPm w] ; in a neighborhood of P, the distinguished

1/2
local parameter is Z,,(P) := [ i) ;:m w] . Then the formula (3.29) can
be alternatively rewritten as follows:

2g9—2 29—2

7(L,w) [T @2 (Pn) = 7(£,@) [T w'/™(Pa)

m=1 m=1
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where we use the standard convention for evaluation of the differentials
w and W at their zeros:

- w(P) - w(P)
3.30 P = , P = — _ .
(8:30)  @(Pn) = oy |, o W)= e s,

Let us assume that the fundamental cell £ is chosen in such a way that
the Abel maps of divisors (w) and (@) equal 2K this choice is always
possible (see Lemma 6) in our present case, when all points of these
divisors have multiplicity 1. Then we get, according to the formulas
(3.27) (all products below are taken from 1 to 2g — 2):

T2(L,w0) [T, ©(P)
T(L,0) [, (P

o B(Pn) 11 (P B) [w(P)TL, E(P, B
e e, 7 {w<P> HmE<P,Pm>}

Since this expression is independent of P, we can split the power 4g — 4
of the expression in the braces into product over arbitrary 4g —4 points,
in particular, into product over Pi,...,Pyy_o and Pi,..., Pyg_3. Then
most of the terms in (3.31) cancel each other. The only terms left are
due to the fact that the prime forms vanish at coinciding arguments;
this compensates vanishing of w and w at their zeros. As a result we
can rewrite (3.31) as follows:

(3.32)

¢ w(P) - E(P,ﬁm><dazm<P>>3/2}
PP E(P, Py)(duy(P)} PP, (P) |

(3.31)

m<n

which equals 1, since, say, in a neighborhood of P, we have w(P) =
22y, (P)dxy, (P) and E(P, Py,) = v (P)/\/dzm(P). q.e.d.

Remark 7. In the early version of this paper Theorem 6 (which is
the key point of the proof of the explicit expression for the tau-function)
was proved in an indirect way, parallel to the proof of the formula for
Bergman tau-function on Hurwitz spaces [15]. Namely, it was shown
that the modulus square |G(P)|? of the function G from (3.18) up to
a moduli independent constant coincides with the properly regularized

Dirichlet integral
D=_" / / dp A Op ,
2 L

where ¢ = log !QP/w‘2 and the one-form QF is defined in (2.17). This
explains how one can guess expression (3.18): this guess is based on
the general idea (originated in works on string theory more than 20
years ago) that Dirichlet and Liouville integrals arise in integration of
projective connections. After that via a rather complicated calculation
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it was shown that the Dirichlet integral D satisfies the same system of
equations (3.19) as the function G.

4. Determinants of Laplacians in the metrics |w|?

4.1. Laplacians on polyhedral surfaces. Basic facts. Any holo-
morphic Abelian differential w defines a natural flat metric on the Rie-
mann surface £ given by |w|?. This metric has conical singularities at
the zeroes of w. The cone angle of the metric |w|? equals 2(k + 1)7 at
the zero of w of multiplicity k. The surface £ provided with metric |w|?
is a special case of a compact polyhedral surface, i.e. a two dimensional
compact Riemannian manifold provided with flat metric with conical
singularities (any such surface can be glued from Euclidean triangles,
see [36]). The characteristic feature which distinguishes the metrics |w|?
among all polyhedral metrics is that they have trivial holonomy along
any closed loop on L.

Here we give a short self-contained survey of some basic facts from
the spectral theory of Laplacian on compact polyhedral surfaces. We
start with recalling the (slightly modified) Carslaw construction (1909)
of the heat kernel on a cone. Then we describe all self-adjoint exten-
sions of conical Laplacian (these results are complementary to Kon-
dratjev’s study [17] of elliptic equations on conical manifolds and are
well-known, being in the folklore since sixties; their generalization to
the case of Laplacians acting on p-forms can be found in [26]). Finally,
we establish the precise heat asymptotics for the Friedrichs extension
of the Laplacian on a compact polyhedral surface. More general results
on the heat asymptotics for Laplacians acting on p-forms on piecewise
flat pseudomanifolds can be found in [4].

4.1.1. The heat kernel on infinite cone. We start from the standard
heat kernel

1
(41)  Hop(x,y;t) = — exp
T

(x—y)-(x—y)
"

} x,y € R?

in R? which we consider as the cone with conical angle 27 at the origin.
Introducing the polar coordinates (r,0) and (p, 1) in the x and y-planes
respectively, one can rewrite (4.1) as the contour integral

(4.2) Har(x,y;t)

1 r? + p? / rpcos(a — 0) toz—¢d
= _———expq— expy —————— pcot —— da
1672t 7 i [ Jo,, " 21 2

where Cy , denotes the union of a small positively oriented circle cen-

tered at o = v and the two vertical lines, Iy = ( — 7 — ic0, 0 — 7 + i00)

and ly = (0474100, 0+ 1 —i0c0), having mutually opposite orientations.
To prove (4.2) one has to notice that
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1) Rcos(a — 0) < 0 in vicinities of the lines Iy and ls and, therefore,
the integrals over these lines converge.

2) The integrals over the lines cancel due to 2m-periodicity of the
integrand and the remaining integral over the circle coincides with (4.1)
due to the Cauchy Theorem.

Observe that one can deform the contour Cjy ,, into the union, Ay, of
two contours lying in the open domains {6 — 7 < Ra < 6 + 7, Sa > 0}
and {6 — 7 < Ra < 0+ 7, Sa < 0} respectively. The first contour goes
from 6 + 7 4 ioco to 8 — w + P00, the second one goes from 6 — 7w — ico to
f+m—ioco. This leads to the following alternative integral representation
for the heat kernel Hoy:

(4.3) Har(x,y;3t)

1 r? + p? / rpcos(a — 0) ta—wd
T BT O 2t R

The latter representation admits natural generalization to the case of
the cone Cjg with conical angle 3, 0 < 3 < +o0:

Cﬁ = {(Tv 9) NS [0700)7 b€ R/ﬂZ}/(O,@l) ~ (0792)

equipped with the metric (dr)? + r2(df)?; notice here that in case 0 <
B < 27 the cone U is isometric to the surface

_ <%_1>(2+ 2)
z3 = 32 21+ 235).

Namely, introducing the polar coordinates on Cj3, we see that the
following expression represents the heat kernel on Clg:

(4.4) Hpg(r,0,p,;t)

1 r? + p? rpcos(a — 0) a—1
= SWﬁiteXP{_ m }/Aeexp{T}cotha.

Clearly, expression (4.4) is symmetric with respect to (r,6) and (p, )
and is [-periodic with respect to the angle variables 6, 1. Moreover, it
satisfies the heat equation on Cg. Therefore, to verify that Hg is in fact
the heat kernel on Cjy it remains to show that Hg(-,y,t) — 0(- — v)
as t — 0+. To this end deform the contour A, into the union of
the lines I; and Iy and (possibly several) small circles centered at the
poles of cot(m(a —1)/3) in the strip § — 7 < Ra < 6 + 7w of a-plane.
The integrals over all the components of this union except the circle
centered at a = 1) vanish in the limit as ¢ — 04, whereas the integral
over the latter circle coincides with Hs,, and, therefore, tends to the
delta-function as t — 0-+.
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4.1.2. The heat asymptotics near the vertex.

Proposition 1. Let R > 0 and C3(R) = {x € Cy : dist(x,0) < R},
where O is the conical point. Let also dx denote the area element on
Cs. Then for some € > 0

(4.5)

dx = - Lz _ B e/t
/Cﬁ(R) Hga(x,x;t)dx = 47TtArea(C'ﬁ(R)) 133 <ﬁ 27T> + O(e™ ")
as t — O0+.

Proof. (cf. [10], p. 1433). Make in (4.4) the change of variable
v = a—1 and deform the contour Ay_ into the contour I';_ WY F;_ e
{|7] = 6}, where the oriented curve I'y;_, goes from § — 1) — 7 — ico to
0 — 1 — w4100 and intersects the real axis at v = —9, the oriented curve
F;_w goes from 0 — ¢ + m + ico to 0 — Y + m — ico and intersects the
real axis at v = 9§, the circle {|y| = ¢} is positively oriented and ¢ is a
small positive number. Calculating the integral over the circle |y| = ¢
via the Cauchy Theorem, we get

(4.6) Hp(x,y;t) — Hor(x,y;t) = p {— & }

8Bt 4t
></ exp{rpCOS(fY—Hp _6)}00‘5 <ﬂ> dry
T, ,Urd, 2 B
and
(4.7) / (Hg(x,x; t) — L) dx
Cs(R) At

1 R 2 12 2
_ L dw/ exp{_w}m (ﬂ) .
8mit Jo ryurg t B

The integration over r can be done explicitly and the right hand side of
(4.7) reduces to

1 comy/) i
(48) 1673 /1:‘0Ur‘8L sin?(v/2) dy+0(e™)

(one can assume that R sin?(y/2) is positive and separated from zero
when v € Ty UT{). The contour of integration in (4.8) can be changed
for a negatively oriented circle centered at v = 0. Since

o | s ()

we arrive at (4.5).
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Remark 8. The Laplacian A corresponding to the flat conical metric
(dr)?+1r2(df)?,0 < 0 < 8 on Cg with domain C§°(C\ O) has infinitely
many self-adjoint extensions. Analyzing the asymptotics of (4.4) near
the vertex O, one can show that for any y € Cg and ¢ > 0 the function
Hga(-,y;t) belongs to the domain of the Friedrichs extension Ap of A
and does not belong to the domain of any other extension. Moreover,
using Hankel transform, it is possible to get an explicit spectral repre-
sentation of Ap (this operator has absolutely continuous spectrum of
infinite multiplicity) and to show that the Schwartz kernel of the op-
erator e'®F coincides with Hg(-,-;t) (see, e.g. [35], formula (8.8.30),
together with [3], p.370).

4.1.3. Heat asymptotics for compact polyhedral surfaces. Self-
adjoint extensions of conical Laplacian. Let £ be a compact polyhe-
dral surface with vertices (conical points) Py,..., Py. The Laplacian
A corresponding to the natural flat conical metric on £ with domain
C(L\{P1,...,Pn}) (we remind the reader that the Riemannian man-
ifold £ is smooth everywhere except the vertices) is not essentially self-
adjoint and one has to choose one of its self-adjoint extensions. We are
to discuss now the choice of the self-adjoint extension.

This choice is defined by the prescription of some particular asymp-
totical behavior near the conical points to functions from the domain
of the Laplacian; for simplicity consider a surface with only one conical
point P of the conical angle 3. Assume that £ is smooth everywhere
except the point P and that some vicinity of P is isometric to a vicinity
of the vertex O of the standard cone Cjs (of course, now the metric on
L can no more be flat everywhere in £\ P unless the genus g of L is
greater than one and 3 = 27(2g — 1)).

For k € Ny introduce the functions VF on Cs by

Vik(r, 0) = ri%k exp {1'27;{:9} k>0,

V=1, VP=logr.
Clearly, these functions are formal solutions to the homogeneous prob-
lem Au = 0 on Cg. Notice that the functions VE grow near the vertex

but are still square integrable in its vicinity if k£ < /2.
Let Dpin denote the graph closure of C§°(L \ P), i.e.

U € Dpin < Juy, € Co°(L\ P), W e Ly(L) :
Upm — U and Au, — W in Lo(L).
Define the space HZ(Cj) as the closure of C§°(Cj \ O) with respect

to the norm

lus HAC)|P = 3 / P20-2+T )| DT 4y () 2
C
‘ B

<2
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where @ stands for the multi-index.
Then for any § € R such that § — 1 # 2nk/3,k € Z one has the a
priori estimate

(4.9) [lu; HF (Ca)l| < cllAu; H3 (Cp)l|

for any u € C§°(Cg \ O) and some constant ¢ being independent of
u (see, e.g., [29], Chapter 2, Proposition 2.5; here ||u; H(Cp)||? =
o, laPlr o)

It follows from Sobolev’s imbedding theorem (see, e.g., [22] or [23],
eq. (2.30)) that for any function u from HZ(Cjp) one has the point-wise
estimate

(4.10) " Hu(r, 0)] < eflu; HF (Cp)| -

Applying estimates (4.9) and (4.10), we see that functions u from
Dpmin must obey the asymptotics u(r,0) = O(r'=%) as r — 0 with any
0 >0.

Now the description of the set of all self-adjoint extensions of A looks
as follows. Let x be a smooth function on £ which is equal to 1 near the
vertex P and such that in a vicinity of the support of x the Riemann
surface £ is isometric to Cg. Denote by 9 the linear subspace of La(L)
spanned by the functions XVJ; with 0 < k < 3/27. The dimension of
I is even; we denote it by 2d. To get a self-adjoint extension of A one
chooses a subspace 91 of 9 of dimension d such that

i ov ou
(A’U,,’U)L2(£) — (U, AU)LQ([,) = 51_1>%1+ - <UE — UE) = O

for any u,v € M. To any such subspace 9t there corresponds a self-
adjoint extension Agy of A with domain 9T+ Dpin.

The extension corresponding to the subspace 91 spanned by the func-
tions XVf , 0 <k < /27 coincides with the Friedrichs extension of A.
The functions from the domain of the Friedrichs extension are bounded
near the vertex.

From now on we denote by A the Friedrichs extension of the Laplacian
on the polyhedral surface £; other extensions will not be considered here.

Heat asymptotics. The following theorem is the main result of this
section. Its first two statements open a way to define the determinant of
the Laplacian in an arbitrary polyhedral metric on a compact Riemann
surface.

Theorem 8. Let L be a compact polyhedral surface with vertices
Py, ..., Py of conical angles (1,...,0n. Let A be the Friedrichs exten-
sion of the Laplacian defined on functions from C§°(L\ {P1,...,Pn}).
Then

1) The spectrum of the operator A is discrete, all the eigenvalues of
A have finite multiplicity.
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2) Let H(x,y;t) be the heat kernel for A. Then for some € > 0

(4.11)

Area(ﬁ) 1L (2 Bk —e/t
/Hxxt Tt +EZ{___ + O(e™ "),

ast — 0+.
3) The counting function, N(X), of the spectrum of A obeys the
asymptotics N(X) = O(N\) as X — +o0.

Proof. 1) The proof of the first statement is a standard exercise (cf.
[11]). We indicate only the main idea. Introduce the closure, H' (L), of
the C°(L\{P1, ..., Pn}) with respect to the norm ||u; La||+||Vu; La||.
It is sufficient to prove that any bounded set S in H' (L) is precompact in
Lo-topology (this will imply the compactness of the self-adjoint operator
(I — A)~1). Moreover, one can assume that the supports of functions
from S belong to a small ball B centered at a conical point P. Now
to prove the precompactness of S it is sufficient to make use of the
expansion with respect to eigenfunctions of the Dirichlet problem in B
and the diagonal process.

2) Let L = Ué-v:OKj, where K, j = 1,..., N is a neighborhood of the
conical point P; which is isometric to Cg,(R) with some R > 0, and
Ko= L\ uj.Vle f

Consider also extended neighborhoods K;-l D Kj such that K;-l is
isometric to Cg, (R + €1) with some e; >0 and j =1,..., N.

Fixing t > 0 and x,y € K; with j > 0, one has (cf. [4], p. 578-579)

@y [ /K (68— 030 — 6{8, + 030 da

/ /aKq(%‘ ) e

- /K61 ((;5(27 t)w(zv t) - (b(zv 0)1/}(27 O)) dz
J
with ¢(z,t) = H(z,y;t) — Hp,(z,y;t) and ¢(z,t) = Hp,(z,x;t—s) (here
it is important that we are working with the heat kernel of the Friedrichs
extension of the Laplacian, for other extensions the heat kernel has
growing terms in the asymptotics near the vertex and the right hand
side of (4.12) gets extra terms). Therefore,

O0Hg, (x,2;t — )
Hg,(x,y;t) = H(x,y;t / ds /aKe1 < (v,2;5) ()

OH(z,y;s)
on(z)

—Hp (z,%;t — 5) ) di(z) = O(e~ /)
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with some €3 > 0 as t — 0+ uniformly with respect to x,y € K;. This
implies the asymptotics

(4.13) H(x,x;t)dx = Hpg.(x,x;t)dx + O(e™2/?),
Kj Kj

as t — 0T. Since the metric on £ is flat in a vicinity of Ky, one has the
asymptotics

Area(K
H(x,x;t)dx = Area(Ko)
Ko 4t
with some €3 > 0 (cf. [25]). Now (4.11) follows from (4.5).
3) The third statement of the theorem follows from the second one
due to the standard Tauberian arguments [35]. q.e.d.

+O0(e™8/h)

4.2. Determinant of Laplacian. According to Theorem 8 one can
define the determinant, det A, of the Laplacian on a compact polyhedral
surface via the standard Ray-Singer regularization. Namely, introduce
the operator (-function

(114) )=

A>0 k

where the summation goes over all strictly positive eigenvalues A of
the operator —A (counting multiplicities). Due to the third statement
of Theorem 8, the function (a is holomorphic in the half-plane {}s >
1}. Moreover, using the equivalent representation of the zeta-function
(4.14),

L[ A 1
(4.15) Ca(s) = —/ Tre!® — 1}t tdt
o o | }
and asymptotics (4.11), one gets the equality
(4.16)

N
1 Area (L) 1 2r By 1
= — S 2 G (e
) =175 {471'(3 " [12 kzzl {ﬁk or el
where e(s) is an entire function. Thus, (A is regular at s = 0 and one
can define the (-regularized determinant of the Laplacian (cf. [33]) by

(4.17) detA := exp{—Cr(0)}.

Moreover, (4.16) and the relation S o by = 29 — 2; by = fB/2m — 1
yield
(4.18)

N N
1 21 B x(£) 1 27 B
= A G Y (F S A I
6 (0) 12,;{& 27?} ( 6 +12k§ 5 " on
where x(£) = 2 — 2g is the Euler characteristics of L.
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It should be noted that the term x(£)/6 — 1 at the right hand side of
(4.18) coincides with the value at zero of the operator (-function of the
Laplacian corresponding to an arbitrary smooth metric on L (see, e.g.,
[30], p. 155).

Let g and kg, x > 0 be two homothetic flat metrics with the same
conical points with conical angles (1,...,0y. Then (4.14), (4.17) and
(4.18) imply the following rescaling property of the conical Laplacian:
(4.19)

N
detA"® x(L) 1 2r B
1 =q—|==-1)-= — + ——2) plogk.
%8 Jet A8 { < 6 12; 3 " on O8f
4.3. Variation of the resolvent kernel. For a pair (£,w) from the
space Hg(k1, ..., ky) introduce the Laplacian A := Alvl” in flat conical

metric |w|? on £ (recall that we always deal with the Friedrichs exten-
sions). The corresponding resolvent kernel G(P,Q; \), A € C\ sp (A)

e satisfies (Ap —A\)G(P,Q; ) = (Ag — N)G(P,Q; \) = 0 outside the
diagonal {P = @},
e is bounded near the conical pointsi.e. for any P € L\{Py,..., Py}
G(P,Q;A) =0(1)
as @Q - Py, k=1,...,M,
e has the asymptotics

G(P,Q; \) = - log|a(P) — (Q)| + O(1)

as P — @Q, where z() is an arbitrary (holomorphic) local param-
eter near P.

The following proposition is an analog of the classical Hadamard formula
for the variation of the Green function of the Dirichlet problem in a plane
domain.

Proposition 2. There are the following variational formulas for the
resolvent kernel G(P,Q; \):

OG(P,Q; ) 7{
4.20 —_— =2ip w(P,Q;N),
(4.20) 0A, z(P), 2(Q) ba (F@52)
OG(P,Q; ) _ 7{ '
(4.21) T 0B, e ARG,
where
(4.22) w(P,Q;\) = G(P, 2,2, \)G,.2(Q, z,Z; \)dz
+ G.(P, 2,2, \)G,(Q, z,Z; \)dz
is a closed 1-form and o =1,...,g;

O2m z(P), 2(Q)
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= —2i lim G.(z,2,P; NG, (2, 2,Q; N)dz
€=0 )| z—2m|=¢
where m = 2,..., M and the circle of integration is positively oriented.

It is assumed that the coordinates z(P) and z(Q) are kept constant under
variation of the moduli Ay, By, Zm.

Remark 9. One can unite the formulas (4.20-4.23) in a single for-
mula:
OG(P,Q; )
O 2(P),2(Q)

_ oy G(R, P;\)OrOgG (R, Q; \) + OrG(R, P; \)ORG(R, Q; \)
- {7{ w(R) } ’

(4.24)

where k=1,...,2g+ M — 1.

Proof of Proposition 2. We start with the following integral represen-
tation of a solution u to the homogeneous equation Au — Au = 0 inside
the fundamental polygon L:

(4.25)

u(€,€) = =2 | G(2,7,& & Nus(z,2)dZ + Ga(2, 2,6, & Nul(z, 2)dz .
oL

We remind the reader that to get (4.25) one has to rewrite the left hand
side of the equality

/ / (Ao — NG(P.Q: Nu(Q)d=(Q) A d=(Q)
L\Be(P)

- // G(P,Q; \)(Ag — Nu(Q)d=(Q) A d=(Q) = 0
L\B(P)

as an integral over the boundary LU (B, (P)) via the Stokes theorem
(here B((P) is the disk of radius € centered at P) and then send € to 0.

Let us first prove (4.21). Cutting the surface £ along the basic
cycles, we notice that the function dp,G(P, - ;\) is a solution to
the homogeneous equation Au — Au = 0 inside the fundamental poly-
gon (the singularity of G(P,Q;\) at @ = P disappears after differ-
entiation) and that the functions dp,G(P, - ;\) and 0p,Gz(P, - ;\)
have the jumps G,(P, - ;) and G.z(P, - ;) on the cycle aq, re-
spectively. (This follows from differentiation of the periodicity relation
G(2 4+ Ba; 2+ Ba; N {Aa, Ba, zm}) = G(2,2;\; {Aa, Ba, 2m}) with re-
spect to B, and z; cf. the proof of Theorem 3, eq. (2.37).)

Applying the formula (4.25) with v = dp, G(P, - ;\), we get the
variational formula (4.21). Formula (4.20) can be proved in the same
manner.
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The closedness of the form (2), dw(P,Q; \) = 0, immediately follows
from the equation for the resolvent kernel

G.z(2,2, P; \) = %G(z,i, P;\).

Let us prove (4.23). From now on we assume for simplicity that
km = 1, where k,,, is the multiplicity of the zero P, of the holomorphic
differential w (the case k,, > 1 differs only by a few details).

Applying Green formula (4.25) to the domain £ \ {|z — 2| < €} and
u = 0G/0zp, one gets
(4.26)

0., G(P,Q;\) = 2i lim 0., {Gz(2,2,Q; \)}G(z,z, P; \)dz

€=0 S22 |=¢

+8Zm{G(Z7 Za Q; /\)}GZ(Z7 27 P; )‘)dz ’

where the circle of integration is positively oriented. Observe that the
function x,, — G(Zp, Tm, P; \) (defined in a small neighborhood of the
point x,, = 0) is a bounded solution to the elliptic equation

PG (T, T, Py N)
0L OTm,

— Mzm*G(@m, Zm, P;A) = 0

with real analytic coefficients and, therefore, is real analytic near z,, =
0.
Recall that z,,, = \/z — zp,. Differentiating the expansion

(4.27) G (@, T, P; \)

= aog(P,\) + a1(P, N)xy, + aa(P,N) T, + a3(P, N) Ty Ty, + - . .
with respect to z,,, z and z, one gets the asymptotics

(4.28) 8, G(z,7,Q;\) = —% +o(1),

_ {0:0HQN)  as(@.N)

2Zm 4T T,

(4.29) 02, G=(2,2,Q; N)

+0(1),

(4.30) G.(z,2,P;\) = “12(5 T 0(1).

Substituting (4.28), (4.29) and (4.30) into (4.26), we get the relation
0., G(P,Q,\) =2may (P, N)ai(Q,\) .

Zm

On the other hand, calculation of the right hand side of formula (4.23)
via (4.30) leads to the same result. q.e.d.
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4.4. Variation of the determinant of the Laplacian. Introduce
the notation

det Alwl?
(4.31) QUL [wl?) = {Area(ﬁ Jwl? )det%B}

where Area(L,|w|?) the area of the Riemann surface £ in the metric
|w|? (Q depends on the choice of canonical basis of cycles on £ via the
factor det3B ).

The rest of this section is devoted to the proof of the following theo-
rem.

Theorem 9. The following variational formulas hold

dlog Q(L,|w2) 1 %sB—sw

(4:32) OCk 127 w

where k = 1,...,2g + M — 1; Sp is the Bergman projective connec-
tion, Sy, is the projective connection given by the Schwarzian derivative

{ f w, z(P } Sp — Sy is the meromorphic quadratic differential with

poles of the second order at the zeroes P, of w.

Proof. The following proof is based on the ideas of J. Fay applied in
the context of flat metrics with conical singularities (cf. the proof of
Theorem 3.7 in [9]). In this case the calculations get shorter and more
elementary (in particular, the Ahlfors-Teichmiiller theory is not used
here).

Due to Theorem 8 one has

(4.33) Tret® = %0 Yo+ OY)

as t — 0+, where N is an arbitrary positive real number, ¢y = §/4,
and

9
S := Area(L, |w|?) —2i Z aBa)

is the area of the surface £. The coefficient ¢; is independent of all mod-
uli (we notice also that the coefficient ¢y is independent of the moduli
2500y R M)

Following [9], consider the expression

1 e —Atys—1
J()\,S)—T(S)/O e t h(t)dt,

where
—t

h(t) = Tre!® — (1 - e_t2> — eT[(l +t)eo + ter) .
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Notice that h(t) = O(t™V) as t — +o0o with any N > 0 and (4.33)
implies that h(t) = O(t) as t — 0+. Thus,

L ons)] ——/+°O Myt =0 (=
PR N BRAVY

as A — +o00. From the calculations on p.42 of [9] it follows that
d gl

A 8) = — s A)|s=0 + =

J( o) dSCA(S’ )’ 0+2

“+oo
—// e Mt d\ +co(1+ A — Alog(A+1)) +c1 log(1+A) +O(s)

as s — 0, where « is the Euler constant and

b= Y ﬁ

An€sp A\{0}

This implies the relation

ted / Y
— —J()\,S)|s:0d)\:J(0,0):CA(0)+—+CQ
o dX 2

and, therefore, one has

ol +o00 +o0o 2
(4.34)  —(h(0) = = 4+ ¢ — / d)\/ e M [Tr et — <1 —e! >
2 0 0

e—t

—T((l + t)Co + tCl):| dt.

Consider now the variation of (4.34) with respect to A,. We shall
need the following Lemma.

Lemma 7. Let F be a C'-function on L which is locally a differen-
tiable function of moduli {An, Ba, zm}. The following relation holds
(4.35)

o, [// ] J[ortrypiase)+ baF(z 2)dz,

where dS(P) := (i/2)w A w is the area element defined by the metric
|w|?. The formula for differentiation with respect to B, looks similar;
the only change is the sign in front of the contour integral over aq in
the second term of the right-hand side.

Proof. The function P — z = [ g w is univalent in a small vicinity
U(Q) of any point @ of L except the zeroes, Py, ..., Py, of the differ-
ential w. Take a cover of £ by small disks centered at the points P,
and the vicinities U(Q), Q € £,Q # Pp,. Let {U;} be a finite subcover
and let {x;} be the corresponding (smooth) partition of unity. Cutting
L along the basic cycles and giving to, say, Ai-coordinate a complex
increment d A, one gets
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(4.36) B / / x;FdS

{2fij Z2)0F(z,z)dz Ndz, if (w)Nsuppy; =0

5 ff X ( (Toms Ton ) O F (T, T ) 4| T |2 A A ATy, if supp X; > Pm
for those j for which the support of x; has no intersection with the
cycle b;.

Let supp x; Nby # 0 and let [0,1] > ¢ — ~(t) be the parameterization
of the part of contour z(b;) C C inside the support of the function
z +— X;j(2,Z). After variation of the coordinate A; this contour shifts to
t— (t) + 0A;. Setting

85141—;-5141; x:%z:%’y()—i—séA 25A1
1

with 0 < s < 1, for z = = + iy in a vicinity of the contour z(b;) and
using the relation

(z,y) R,
(s, t) ) 2

one finds that

(4.37) 5 / / \;FdS = % / / o2 2)0F (2, 2)dz A dz
+[as [ argerao (3550 - 50 o

1(\ / l / TA.
+ (3370 + 5870 7.

where the second term coincides with

<3/ Xﬁ%) 5A; .
2 /s,

y=Rz=Ry((t)+

AV 0 =T
2i

(> 0') )

Summing up (4.36),(4.37) over all j one gets the lemma. q.e.d.
Using the formulas 0, c1 = 0, Oa,co = —Bgs/8mi and Lemma 7, we

get

(4.38)

R
ﬁz;s (1 - e_tz) >dS(P)
—t

+% jéba [H(z,z,t) = é (1-e") -0 +t)} dz }
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(for brevity from now on we suppress the antiholomorphic part z of the
argument (z, z)).
Using the standard relation

G(Pan)‘) = - /0+OO 6_)\tH(P,Q,t)dt

between the resolvent and the heat kernels, we rewrite the right hand
side of (4.38) as

(4.39) —? + /0 o { / /E (04 G}H(P, P; \)dS(P)

iy’

04,8 7 ~ ) _
3 I(\) — 5 . G(z,z7/\)dz},

where the derivative 94, G(P, Q; ) is nonsingular at the diagonal P = @
due to (4.20);

1 o0
1) =5 - N/ /A/2 et dt

as in ([9], (2.34)) and G(z, z; A) is Fay’s modified resolvent
(4.40)

R +o00 1 —t

G(z,z;\) = /0 e M {H(z,z,t) -3 <1 - e_t2> - %(1 + t)} dt
(see [9]: the last formula on page 42, formulas (2.34),(2.35) on page 38
and the first two lines on page 39; to get (4.40) one has to make use of
the fact that the metric |w|? is Euclidean in a vicinity of the cycle b,
and, therefore, the coefficients Hy and H; in Fay’s formulas are 1 and 0,
respectively). For future reference notice that according to (][9], p.38)
one has the relation

~ 1
(4.41) G(z,2';0) = G(z,2;)\) + EI()\)
VA+T 1
2 2+ 1)

where the right hand side of (4.41) is nonsingular at the diagonal z = 2.
Now (4.20) implies

/ /E {9, GY(P. P NAS(P) = 7{ iz / [ 76(e. PGPS (P)

_L [log |z — 2| + v+ log
27

+2i// dS(P) ¢ G.(z,P; N)G.(z, P; N)dz .
L ba

The interior contour integral in the last term has J-type singularity as
P approaches the contour b, and using Stokes formula and the (loga-
rithmic) asymptotics of the resolvent kernel at the diagonal, it is easy
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to show that

(4.42) /EdS(P)jé G.(z,P;\)G,(z, P; \)dz

= dz—l—jé dzpv/ G.(z,P;\)G,(z, P; \)dS(P) .
1671' be

Indeed, choosmg the same partition of unity as in Lemma 7, one
rewrites the left hand side of (4.42) as
(4.43)

%Zkzzl://ﬁ k(2,2 <?€a x1(z, 2) (Gz(z,z';)\))zdz> dz' NdZ'.

For a pair (k,l) such that the (suppxx) Nbs # 0 and (supp xx) N
(supp x;) # 0 the corresponding term in (4.43) is

)5 [ (f e (e

+H(z, 2,7, Z')) dz) dz' ndZ',

where function H has only the first order singularity at the diagonal.
The iterated integral with yrx;H as integrand admits the change of
order of integration, whereas the remaining part of the right hand side
of (4.44) can be rewritten as

Xi(z,2) dz 5
(4.45) 327T2//szz )0 }I{Q po— ST d ANdz

- Xl(zvz)dz /
327T2/85Xk(z Z)ji z— 2z dz

¢ xi(z, z) dz 5
~ 392 Lxk(2, 2 jé p—— dz' Ndz
Due to Plemelj theorem the first integral in (4.45) is equal to
1
- dz .
167 J;, XkX10%Z

Changing the order of integration in (4.43) for the remaining pairs (k,1)
(since for these pairs the integrand in (4.43) is nonsingular, one can
apply Fubini’s theorem) and summing over all k£ and [ we arrive at (4.42)
(the second term in (4.45) after summation cancels out: )", 0. xi =
0.1 =0).

Now from the resolvent identity

G(P,Q;N) — G(P, Qs p)

(4.46) e

:/ G(P,R; \) G(Q, R; 1) dS(R)
L
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it follows that the derivative 0,G (P, @; A) is nonsingular at the diagonal
P =@ and

(4.47) / / Gz, PiN) Gz, Py A) dS(P) = {04G} (2, 21 A) |
Moreover, according to Lemma 3.3 from [9] one has

//G 2, P;A) G, (z, P; \) dS(P)

1 7 —z

_ pv// (2, PG (2, P;NAS(P) + O(2 — 2) |

167 2
as z — 2/ and the resolvent identity (4.46) implies the relation

(4.48) p.V./ G:(z,P; NG, (z, P;\) dS(P)

2=z

0 , 1 1 N Z -z
= Iy 22225 — — T

o)) {G (2,25 2) 47 (2 — 2)? * 16772’—2}
Thus, (4.39) can be rewritten as
(4. 49)

_Ba i / h C“?f,a dz [A{aAGMz 53 - = +G(e,z0) - g W]

8mi

teo 1 1 AN Z—z
2 d Gy A —
+Z/ j{ Z@)\{ (2),22) = ar (2 z)2+167rz/—z
Using (4.41), rewrite the expression in the square brackets as
0 ~ 1 A 1
— (NG — ————=ZAI(N) ] .
O < 4t A+1 S ( )>
To finish our calculation we need several lemmas.
The first one is an analog of Corollary 2.8 from [9].

Z'=z

Lemma 8. In a vicinity of the cycle b, the following relation holds

1 NNz —zZ
(2 —2)2 42—z
where a(z,2") is O(|2' — z|) as 2/ — z and X belongs to any closed
subinterval of (0,+00).

(4.50) 4G (2, 2 0) = +a(Z, 2),

To prove the lemma we notice that the metric |w|? is flat in a vicinity
of a point P € b, and the geodesic local coordinates in this vicinity
are given by the local parameter z. Therefore, as it is explained on pp.
38-39 of [9] the asymptotical behavior of 47G ./, (', z; \) coincides with
that of the second derivative with respect to 2z’ and z of the function

1
(4.51) F(,7,2,2) =log |2 — z|* + Z)\lz — 2 Plog| — 2)?

(one has to put Hy = 1 and H; = 0 in Fay’s calculations on p.38 of [9]).
This immediately leads to (4.50).
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The next two lemmas are classical (see [9], p.25 and example 2.4 and
the formula (2.18) on p.30).

Lemma 9. There is the following Laurent expansion mear the pole
A =0 of the resolvent G(P,Q; \):

(4.52) G(P,Q;\) = +G(P,Q)+ O\,

1
~ Mrea (L)
as X — 0, where G(P,Q) is the Green function, P,Q € L.
Lemma 10. The following relation holds

(4.53) ArGee (¢, €)

1 1 J
= m + ESB(O - 7706%;1(%]3);51%:(0”6(0 +0(¢" =),
as ¢' — (, where G(-,-) is the Green function from (4.52), Sp is the
Bergman projective connection, {vy}2_, is the basis of normalized holo-
morphic differentials on L and B is the matriz of b-periods of L; ( is
an arbitrary holomorphic local parameter and the functions ¢ — v4(()
are defined via vy, = v4(C)dC.

It should be noted that the Green functions depends on the metric on
L whereas its second derivative (4.53) is independent of the (conformal)
metric.

The last lemma immediately follows from Rauch variational formula
(2.28) and the obvious relation 2id;, [log det SB] = Tr{(3B) 19, B}.

Lemma 11. The following relation holds

1 ¢ _ V3
(4.54) 04, logdet3B = o7 Z (%B)vﬁl}’{ ﬁwv .
776:1 @
Now using the asymptotics I(\) = O(A™3) as A — +oo and the

Lemmas 8-11, one can perform the integration with respect to A in
(4.39). This leads to the relation

1 Sp — Sw
0.l ~CA 0] = Ty 255 4 0, flogdet B + O, logS]

The latter relation is equivalent to (4.32) for k = 1,...,g. The proof
of (4.32) in the case k = g+ 1,...,2g is similar.

Consider now the variation of (4.34) with respect to z,,. Using the
equality 0,, co = 0,, c1 =0 and (4.23), we get

(4.55) 0z, [—Ca(0)]

—+00
— 2l [y / / dS(P) 7§ Gz, P NG (2, Py \) d
c~vJo L |z2—2m|=€
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After passing to the local parameter x,, = \/z — z,, the latter expres-
sion can be rewritten as

(4.56)
dxm oo
~2ilim o / i / / o (s Pi NG (s P \)AS(P)
TV |zm|=ve m

Lemma 3.3 from [9] implies the relation

45T) [[ Gl PG (i PNVIS(P) = = P2
L

xh, — Tm

—Tm

4 / / G (s P N) G, (s P N) dS(P) + O(|y, — )
L

as ), — Zp,. Using this relation rewrite the right hand side of (4.56)
as
d teo
(4.58) —2i lim Sm A
e—0 Ixmlz\/g 21'771 0

x { J[ et PG (o, PGS (P)
L

1 9Tl — Ty,
_x -
+47T| ml x, — Tm

mex;n

As before, using the resolvent identity, we rewrite the expression inside
the braces as a derivative with respect to A and see that the right hand
side of (4.55) equals

(4.59) 2l o [ 02 LG o @ omi )
. —47 111 - v ) . o
=0 ‘xm‘z\/g 2xm 0 8)\ Loy Tm \my m
= 1 A 2j;n —ITm
in (:Eén B $m)2 i A ’xm’ x;n — T ) 2, =zm

To further transform (4.59) we need the following two lemmas:

Lemma 12. The following relation holds

(4.60) AnGlat o (T, Tms A)
1 1 0T — T
T @, —zm)? 422, — Az m = 4+ O(|zy, — Zml)

as T, — Ty, and X belongs to any closed subinterval of (0,400).

To prove the lemma we notice that the geodesic local coordinates for
the flat metric |w|? in a vicinity of the point P, are given by the local
parameter z = z,, +z2,. Therefore, as it is explained on pp. 38-39 of [9]
the asymptotical behavior of 4G, ... (2}, Tm; \) coincides with that
of the second derivative with respect to 2/, and x,, of the function

1
(4.61)  F(z! ,Z, tpm, Tm) =log|z — 2> + Z)\\z' — 2% log|? — 2|2,
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where 2/ = 2z, + (2,).
Using the Taylor expansion of (z, — :Em)zFx;n o (T
to the terms of the second order, we arrive at (4.60).
Further, one has the following analog of Lemma 11, which is an imme-
diate consequence of variational formulas (2.28) for k = 2g+1,...,29+
M —1:

- -
mr Lms Tm, fnm) up

Lemma 13. The following relation holds

0 1 < 1 Va U3
(4.62) T logdetSB = . ) (3B)} Jéﬁm ,

#m a,B=1
where m=2,...,g.
These lemmas together with (4.59) and formulas (4.52) and (4.53)

written in the local parameter x,, imply the relation

0 ! j{ S5~ Su + ? [log det IB],
$2gm—1 w 0zm

!/
= (0)] = —
8zm[ 0] =5
where sog1,,—1 is a small positively oriented circle around P,,. The
latter relation is equivalent to (4.32) for k =2g+m—1, m=2,..., M.
q.e.d.

4.5. Explicit formulas for det Al The following theorem, which
is the main result of the present paper, can be considered as a natural
generalization of Ray-Singer formula (1.2) to the higher genus case.

Theorem 10. Let a pair (L, w) be a point of the space Hy(k1, ... k).
Then the determinant of the Laplacian Alvwl? acting in the trivial line

bundle over the Riemann surface L is given by the following expression
(4.63) det AV’ = ¢ Area(L, |w]?) detSB |7(L,w)[?,

where Area(L,|w|?) := [, |w|* is the area of L; B is the matriz of b-
periods; constant C' is independent of a point of connected component
of Hg(ki,...,kn). Here 7(L,w) is the Bergman tau-function on the
space Hy(k1, ..., k) given by (3.24).

Proof. The proof immediately follows from the definition of the
Bergman tau-function and Theorems 7 and 9. q.e.d.

Remark 10. It can be easily verified that expression (4.63) is consis-
tent with rescaling property (4.19). (We thank the anonymous referee
for this remark.)

Remark 11. For an arbitrary hermitian metric g on £ the expression
_ Area(L,g) detSB

(4.64) Q= oAE =[11@ (1 A Avg)ll2,
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with {va}a=1,...,¢ being the basis of holomorphic 1-forms on £ normal-
ized by faa v3 = 0q3, defines a Quillen metric on the determinant line
MOg) = detH(L,07) ® (det H (L, 07)) "
= detH"(L,0r) ® detH(L, Q) .

The formula (1.10) shows that if g is chosen to be flat singular met-
ric with trivial holonomy given by |w|?, then corresponding function
Q(L, |w|?) defined by (4.31), (4.64) is the modulus square of a holo-
morphic function of moduli (i.e. coordinates on the space of holo-
morphic differentials). This property distinguishes singular flat met-
rics with trivial holonomy among other metrics of a given conformal
class. For example, for the Poincaré metric g the Belavin-Knizhnik the-
orem implies that the second holomorphic-antiholomorphic derivatives
of log||1 ® (vi A -+ Awg)|lg with respect to (Teichmiiller) moduli are
nontrivial (see [9]) and give the Weil-Petersson metric on the moduli
space ([39] and references therein).

From (4.63) we can deduce the following corollary which is an analog
of classical Polyakov formula for variation of the determinant of Lapla-
cian under variation of the smooth metric within a given conformal
class. For simplicity we consider only the generic case of differentials
with simple zeros.

Corollary 6. Let w and w be two holomorphic differentials with sim-
ple zeros on the same Riemann surface L. Assume for convenience that
the divisors of zeros of the differentials w and w do not have common
points. Then the following formula holds:

2g9—2

det Alvl* _ Area(L, [w]?) H
det Al®P”  Area(L, |@|?)

res|pm{w2/1l)} 1/12

res|p {w?/w}

(4.65)

Y

k=1
where {P,} are zeros of w; Py are zeros of .

Proof. The formula (4.65) follows from the expression (4.63) for the
determinant of Laplacian in the metric |w|? and the link (3.29) between
Bergman tau-functions computed at the points (£, w) and (£, w) of the

space Hy(1,...,1). q.e.d.
The infinitesimal version of the formula (4.65) looks as follows:

Corollary 7. Let w be a holomorphic differential on £ with M =
2g—2 simple zeros Py, ..., Py, let x,, be the corresponding distinguished
local parameter near P, and let ¢ be an arbitrary holomorphic differ-
ential on L. Define the function x,, — () via ¢ = p(xy,)de, and
set ¢'(Pp) = ¢ (¥m)|z,,=0- Then

d det Alwteel? 1
4. — 1 = — "(Py) .
(4.66) dele—o ° Area(L, |w +€p|?) 16 Z # (Pm)
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Proof. (We thank the referee who pointed out to us the existence of
this short proof.) The formula (4.66) can be easily deduced from (4.65)
under assumption that the zeros of the differential w are different from
the zeros of the differential . Namely, one can represent the residues in
(4.65) via the contour integrals. Computing expansion of these contour
integrals in € via the residue theorem, we get

w? e 3, ,
Pm{w_i_egp} _EQO (Pm) <1_§(P (Pm)€+0(€ )> s

w + ep)? €
res| {(T)} =¥ ().

Substituting these expansions in (4.65) and differentiating with respect
to € at e = 0 we get (4.66).

To prove that the formula (4.66) remains valid without the assump-
tion that all zeros of the differential ¢ are different from the zeros of w
one should use the variational formulas (4.32) and the chain rule, tak-
ing into account that dA, /de = faa ¢; dBgy /de = fba ©; dzp, /de = flm ©.
The calculation itself is very similar to the standard derivation of the
Riemann bilinear identities. q.e.d.

res

It should be noted that some other generalizations of the Ray-Singer
theorem are already known. There exists an explicit formula for the
determinant of Laplacian in the Arakelov metric (see, e.g., [9], formulas
(1.29), (4.58) and (5.23); see also references in [9]). For Arakelov metric
g the property of holomorphic factorization also fails. Another higher
genus analog of the Ray-Singer formula was obtained by Zograf, Takhta-
jan and McIntyre (see [24, 39] and references therein) for detA in the
Poincaré metric in the context of Schottky spaces; in the context of Hur-
witz spaces an analog of the Ray-Singer formula for the determinant of
the Laplacian in the Poincaré metric was found in [16].

It should be also noted that the results of the present work can be
extended to the case of arbitrary compact polyhedral surfaces (see [13]).
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