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1. Introduction 

Let X be an algebraic curve over the field C of complex numbers, 
which is assumed to be smooth, connected and projective. For simplic­
ity, we assume that the genus of X is > 2. Let G be a simple simply 
connected group and M G(X) the coarse moduli scheme of semistable 
G-bundles on X. Any linear representation determines a line bundle 0 
on M and some nonnegative integer l (the Dynkin index of the repre­
sentation, cf [12], [13]). It is known that the choice of a (closed) point 
x G X(C) (and, a priori, of a formal coordinate near x) of X determines 
an isomorphism (see 5) between the projective space of conformal blocks 
PB l(X) (for G) of level l and the space PH°(M G(X), 0) of generalized 
theta functions (see [3], [7],[12], [13]). In fact, it is observed in [20] that 
there is a coordinate free description of B l(X). 

When the pointed curve (X, x) runs over the moduli stack -Mg,i of 
genus g pointed curve, these 2 projective spaces organize in 2 projective 
bundles P 0 and P B l. We first explain (see 5.7) how to identify these 2 
projective bundles (this is a global version of the identification above). 
The projective bundle P 0 has a canonical flat connection: the Hitchin 
connection [9] and P B l has a flat connection, which we call the WZW 
connection coming from the conformal field theory (see [21] or [18]). In 
the rest of the paper, we prove that this canonical identification 5.7 

K : P 0 -4 P B l 
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is flat (Theorem 9). 

1.1. Let me roughly explain how to prove the flatness. Let M be 
the smooth open subvariety of M G(X) parameterizing regularly stable 
bundles E (such that Aut G(E) = Z(G), the center of G). The cup-
product 

Hl{X,T X) <g> H°(X, ad(E) <g> LUX) -+ Hl{X, ad(E)) 

defines a morphism T ̂ X]M g —> S 2 T E ] M which globalizes in 

(*) T[X]M g ^H°(M,S2TM). 

Let s be a generalized theta function, and djs the length 1 complex 

d i s-. D i(e)D^se, 

which evaluates the differential operator D of order < i on s. The 
symbol exact sequence 

0 ->• d i s ->• d2s ->• S2 TM ->• 0 

defines a Bockstein operator ô : H°(S2TM) —>• H 1 ( d i s ) . Let w s be the 
composite morphism 

w s = H^X.T X) -)• H°(S2TM) -+ H 1 d s) . 

Let t be the image of a tangent vector on M G by w s. The main in­
gredient in the computation of Hitchin's connection is the computa­
tion of w s(t). If (Ua) is an affine cover of M , the class w s(t) can be 
represented by a pair (Da — Dß, —Das) where s is some second order 
differential operator defined on Ua. It is well known that G-bundles 
trivialized on punctured curve X* = Xnx are parameterized by an in­
finite dimensional homogeneous ind-scheme Q = G(Frac(O x))/G(O x) 
(see [13]). Let Q° be the open sublocus of Q parameterizing regularly 
stable G-bundles. The crucial point (cf. [6]) is that Q° —> M is a locally 
trivial torsor (for the etale topology). The idea of the paper is to use 
the cover Q° — H - M to compute some representative of w s{t), even 
though the author does not control all second order differential opera­
tors on Q°. Let t be a meromorphic tangent vector on D* projecting 
on t, 7.3. To avoid too much abstract nonsense on differential operators 
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on ind-schemes, we use an etale quasi-section (cf. 8) 

a S 

N —r M 

of Q° —> M to construct a second order differential operator 9(t) G 
H°(N,D2(r*@)) computing w s(t). In a certain sense, 9(t) is the "pull-
back" of the Sugawara tensor T(t) (see definition 8.12). The theorem 
follows easily, because the only nontrivial term in the formula defining 
the WZW connection is the Sugawara tensor (9.1). 

1.2. Under the hypothesis codim M G(MG*nM G) > 2, Hitchin con­
structs the connection not only for the bundle P 0 of theta functions 
coming from determinantal line bundles on M G, but also for the bun­
dle Pp*L where L is any line bundle on M ° , and p : M° —> M g is 
the universal family of coarse moduli spaces of regularly stable bun­
dles. The codimension assumption is used to identify H i(M G,F) with 
H i ( M G, F), i = 0,1 for any vector bundle F on M G. This identification 
shows that the formation of the direct image p*L commutes with the 
base change. The flatness result is written in this context. 

1.3. For completeness, we compute the Picard group of the uni­
versal moduli stack of G-bundles over M gi\- This allows us to compare 
a determinantal line bundle and the line bundle L (Section 5). 

N o t a t i o n . We work over the field C of complex numbers, and fix 
a simple Lie algebra g with a Borel subalgebra b. Let 6 be the longest 
root (relative to b), and sl(0) = (Xg,X_Q,HQ) a corresponding sl2-
triple. Finally (, ) will be the Cartan-Killing form normalized such that 
(6, 6) = 2. If p is half of the sum of the positive roots, the dual Coxeter 
number is hv = 1+ < p,0v >. Let G be the simply connected algebraic 
group of Lie algebra g. The symbol X (resp. x) will always define a 
smooth, connected and projective complex curve of genus g > 2 (resp. 
a point of X(C)). If X —> S is a family of genus g pointed curve, we'll 
denote by X the formal neighborhood of the marked section S —> X. 

Conformal blocks and t h e t a funct ions over M gy\ 

We want to identify over M g,i the projective bundle of conformal 
blocks P 0 and the projective bundle generalized theta function P B l as 



550 yves l a s z l o 

done in [3] in the absolute case. The precise statement is in 5.7. 

2. Residues 

We denote by K the field of fractions of O = O ̂  . The dualizing 

sheaf w of X is the biggest quotient of Qg , c which is separated for the 
x-adic topology. Let me denote by d : O —H- w the projection of the 
universal derivation O —> &x/c on zu. If z is a formal coordinate at x, 
the O = C[[z]]-module w is the free module C[[z]] .dz, and LO = K ©O ^ 
is C((z)).dz. Recall that there exists a residue map res : LO —> C which 
is given in coordinates by res (P n>JV a n z n dz) = a_i. 

2 .1. Let 7T : (X,x) —> S be a pointed curve over an affine C-scheme 
S = Spec(R), and zow (resp. iow) be the relative dualizing sheaf of 
X —> S (resp. X* —> S). Because formal coordinates along x exists 
Zariski locally in S1, the residue is defined as a (functorial) R-morphism 
res : w71" —> R. Let Ax be the algebra r(S,n*Ox\x) which is embedded 
in K = T(S, iï*Oxt) by the Taylor expansion. 

Lemma 2.2. Let f G Ax. Then, res(f) = 0. 

Proof. Because M 9 j i is a smooth C-stack, one can assume that S 
is a least reduced of finite type over C. The residue theorem says that 
res(f)(r) = 0 for all r G S'(C) which implies that res(f) = 0. q.e.d. 

3. Loop algebras 

We start with our pointed curve (X, x) and the simple algebra g. 
Let l be a positive integer. We would like to give an explicit coordinate 
free description of the vector spaces Bi(X) of conformal blocks of level 
l on (X,x), which coincide with the usual one, once a coordinate has 
been chosen and which globalizes when the pointed curve moves. 

3.1. The loop algebra Lg = Lg © C.c of g is the universal central 
extension of Lg = g ® K by C = C.c with bracket 

[X®f,Y®g] = [X,Y]®fg + (Xj Y)res(gdf). 

Let me denote by L+g the Lie subalgebra L+g © C.c of Lg, where 
L+g = g®O. 

Let A be a dominant weight of level l (ie (A, 9) < l), and M be the 
simple g-module with highest weight A and highest weight vector v\. 
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Let M l be the L+g-module structure on M where the action of L+g 
(resp. c) is induced by L+g —> g (resp. is the multiplication by l). We 
denote by V\l the Verma module of weight (A, l) 

Vx,l = U(Lg) ®U{L-g) M l 

and by v\l the highest weight vector 1 (g> v\. 

L e m m a 3.2 . Let z be a formal coordinate of X atx. Then the line 
C{XQ <g) z~l)l+l~^'®>v l ofV\l does not depend on the choice of z. 

Proof. Let u(z) (with u(0) = 0 and u'(0) ^ 0) be another coordi­
nate (set a = ^ ujöy)- Then 

XQ 0 u(z)~l = aXe 0 z~l mod CXe © L>0g, 

where L > 0 g is the kernel of g <g) O —> g. Thus, 

{Xe®u{z)-1)l+l-{-x^ 

= a l+1-^e\X9 (g. z-1)^1-^) mod U(Lg)(CXe © L>0g), 

(because l + 1 — (A, 6) is positive) and the lemma follows because Xg 
kills v\ and L>0g kills even the whole M. q.e.d. 

In the most interesting case for us, namely when A = 0 (i.e., M = C) , 
we denote V(^\l simply by V l. 

Definit ion 3 .3 . We denote by Z l the U(Lg)-submodule generated 
by C{XQ 0 z~l)l+l (z is any formal coordinate at x) and by H l the 
quotient V l/Z l. 

The usual theory of representation of affine algebras says that H l 
is the fundamental representation of level l of Lg (see [1]). In partic­
ular, the canonical embedding of g-modules C >—>• H l has image the 
annihilator of L+g. 

By the residue theorem, the embedding L X g = g 0 A X •—>• Lg lifts 
canonically to an embedding L X g "—^ Lg. 

Definit ion 3.4 ([21]). The (finite dimensional) vector space 

B l X) = Hom Lxg(H l C) = (H l/L X gH l 

is the space of vacua (or conformal blocks) of level l. 
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3.5 . Let ir : (X,x) —> S = Spec(R) be a family of genus g pointed 
curve. One has the relative version 

(Lng,Ltg,L X g,V l(ir)) 

of (Lg, L+g, L X g, V l) is exactly the same as before. Now, because formal 
coordinates along x exists Zariski locally in S, one defines as in definition 
3 the submodule Z l(ir) of V l(n) and correspondingly the L ̂  g-modules 

H l(ir)=V l(Tr)/Z l(ir). 

The Lie algebra L X g embeds canonically in Lg, 2.2. One defines the 
module (which is in fact a projective R-modules by [21]) of covacua by 
the equality 

B l*(ir) = H l(ir)/L X g.H l(ir), 

and the module of vacua by 

B l ( 7 r ) = H o m R(B l(7r),R). 

The construction n i—> B l*(7r) (resp. n i—> B l(7r)) is functorial in n; 
this defines two vector bundles B l* and B l on M l ) i which are dual to 
each other. If n is the fixed curve (X,x) —> Spec(C), the fiber B l(7r) is 
B l(X) [21]. 

4. Loop groups 

Let us first recall the construction of the Kac-Moody group LG (of 

Lie algebra Lg) in the absolute case, and of the corresponding generator 

L of the Picard group of Q = LG/L+G (see [13]). 

4 . 1 . The adjoint action of Lg on Lg can be integrated explicitly 
as follows. Let LG be the loop group of G (whose R-points are G(X*R) 
or simply G(R((z))) once a formal coordinate z at x has been chosen). 
Let 7 be a point of LG(R); the cotangent morphism of the morphism 

1--X*R ^G 

defines a morphism 

Let me denote by 7 _ 1 d 7 the corresponding element of g (g> w71". 
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R e m a r k 4 .2 . Suppose that G is embedded in some G L N and that 
a coordinate z has been chosen. Then, 7 is some invertible matrix -y(z) 
of rank N with coefficients in R((z)), and 7 _ 1 d 7 is the matrix product 
-f(z)-1y(z)dz G co77 = g <g>c R{{z))dz. 

Let a G Lg(R) and r G R. Then, 7 acts on a + r.c G Lg(R) by 

(4.1) Ad(7) . (a + r.c) = Ad(7) .a + (s + r e s (7 _ 1 d7 j a)) .c. 

4 . 3 . Let me recall the following integrability property (result 
which is due to Faltings, see [3, Lemma A.3]) of the basic integrable 
representation p : Lg —>• End(Hi ) : 

Propos i t i on 4.4 (Faltings). Let R be a C-algebra and 7 G LG(R). 
Then locally over Spec(R) ; there exists an automorphism u of Hi ® R, 
uniquely determined up to R*, satisfying 

upR{a)u~l = R(Ad(7).a) 

for any a G Lg(R). 

This proves that the representation Lg —> E n d ( H i ) / C . I d is the 
derivative of an algebraic (i.e., morphism of C-groups) representation 
p-.LG^PGL(Hi). 

4 .5 . Let 
1 ->• G m -> L~G ->• LG -> 1 

be the pull back of the extension 

1 ->• G m -+ GL(Hi) ->• P G L ( H i ) - • 1. 

The corresponding central extension of Lie algebras 

(4.2) 0 - • C ->• Lie(LG) ->• Lg - • 0 

is the pull-back pull-back of 

0 - • C ->• End(Hi ) ->• E n d ( H i ) / C . I d ->• 0 

by dp. 

L e m m a 4.6. The central extension (4-2) is the universal central 
extension 

O^C^Lg^Lg^O 

of 3.1. 
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Proof. As a vector space, Lg = Lg © C.c. Let $ be the morphism 
$ : Lg —> Lie(LG) defined by < c a, b.c) = [a, dp(a) + b.c] for a G L g and 
b G C. By construction, $ is a Lie algebra isomorphism, q.e.d. 

With the identification of the above lemma, the derivative of 

p : L d G ->• GL(Hi) 

is /9. 

4 .7 . Let L+G <—^ LG be the C-space whose R-points are G(X R). 
Notice that L+G is an (infinite dimensional) affine C-scheme. 

L e m m a 4.8 . There exists a unique splitting x '• L+G —> G m of 

1 - • G m -+ L d G -+ LG ->• 1 

over L+G. 

Proof. By construction, the line C.vi of H\ is stable by L+G and 
therefore defines the character x which is a splitting. Because every 
character of LG is trivial, this splitting is unique. q.e.d. 

4 .9 . If now we allow the pointed curve (X,x) to move, i.e., 
if we consider our family n of pointed curve over a finite type basis 
S = Spec(R) (which is possible because M l ) i is locally of finite type), 
one can construct the relative version L d G of LG by integration of the 
representation H^n) as in Lemma 4.4. First of all, by unicity of the 
representation p, the problem is local in S. One can therefore assume 
that a formal coordinate z G T{X R , O) identifies X with X R and Hi 
with Hi ®c R, reducing the problem to the absolute case. The details 
are left to the reader. 

5. T h e universal Verl inde's i somorphi sm 

Let us first recall in the absolute case how loop groups allow to 
uniformize the moduli stack M G of G-bundle over X and accordingly 
to describe generalized theta functions in terms of conformal blocks (see 
[13]). 

5 . 1 . Let Q = LG IL+G be the grassmannian parameterizing fami­
lies of pairs (E, p), where E is a G-bundle over X and p is a trivializa-
tion of E over X*. Let LxG >—>• LG be the ind-group parameterizing 
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automorphisms of the trivial G-bundle X* x G. Then, the forgetful 
morphism 

Q ->• M G 

(E,p) — • E 

is a L X G-torsor. The character \ '• L+G —> G m of Lemma 4 defines a 

LG-linearized line bundle L on Q = LG/L+G which is a generator of 

Pic(Q) (see [13]). 

The line bundle L is associated to x _ 1 (cf. Example 3.9 of [3]). 

Sections of L are functions f on LG such that 

f(gh) = X(h)f(g), g G LG(R), h G L G ( R ) . 

With this section, L is the positive generator of Q. 

5.2. Let us recall the argument of [19] proving that L X G is a 

subgroup of LG. The fibred product 

L X G = LG XLG L X G 

certainly acts on the finite dimensional vector space of level-1 conformal 
blocks 

B^X) = (Hi/L X gHi)*. 

The differential at the origin of the projective action 

L X G-> PGLBxiX)) 

is the natural morphism 

L X g ^ E n d ( B i ( X ) ) / C . I d 

and is therefore trivial. Because L X G is integral (see [13]), L X G acts 

by a character on B\(X) defining the embedding L X G <—>• LG. 

5.3 . In particular, L is L X G-linearized and defines a line bundle still 
denoted by L on M G = L X GnQ which generates Pic(M G)- Let M G 

be the open substack of M G parameterizing regularly stable bundles 
(bundles E such that Aut G(E) = Z(G), the center of G). Because Z(G) 

acts trivially on V\, the center Z(G) acts trivially on the restriction of 
L to Q°, and L is therefore L X G/Z(G)-linearized. Thus, L comes from 
a line bundle, still denoted by L, on the smooth and quasi-projective 
coarse moduli space M = M G of regularly stable bundles since Q° —>• M 

is an isotrivial L X G/Z(G)-torsor. 



556 yves l a s z l o 

5.4. The space of generalized theta functions of level l is by defini­
tion 

H°(M G,Jl) = H°(Q,L l)L X G. 

By a codimension argument, it is also HQ{M GiL l) which is in turn 
H°(M^L l) (see [3], [12], [13]). By [11], [14], the Lg-module H°(Q,L l) 
is the (algebraic) dual H l of H l, the isomorphism being unique up to 
nonzero scalar by Schur's lemma. Let us explicit by give the associated 
Verlinde isomorphism (see [3], [7], [12], [13]) 

K : PB l(X) -3- PH°(M G, L l) = PH°(M G, L l). 

Let u G B l(X) be a L X G-invariant form on H l. After an eventual etale 
base change, any smooth morphism S —> M G can be defined by a family 
of bundles. Therefore, let us consider S —> M G a smooth morphism 
where S is a C-scheme of finite type defined by a family of G-bundles 
E. Etale locally in S1, let us choose a formal cocycle 7 G LG(S) defining 
E. The multivalued function u E 

(5.1) si—>u(-y(s).v l) 

defines a divisor on the smooth scheme S; E is generic by assumption 
and therefore u E is generically nonzero. The gluing of these divisors 
defines K(u). 

5.5. If now the curve n : (X,x) —> S = Spec(R) is nonconstant, 
the family of ind-groups (L X s G)seS glues to give an ind-group L X G over 
S1, which is a subgroup of LnG. As in 5.2, the action of L X G on the 
vector bundle of level-1 vacua B i defines a character L X G —> G m)S and 
therefore an embedding (over S) 

L X G ^ L ̂  G 

\ / 
S 

Recall that the action of LÌ G on the trivial line bundle O S-v\ "—> H \{n) 
defines a character 

LTT G —> G m^S 

S 
V 

Of course, this construction is functorial in n, and all the above con­
structions are universal over M gi-
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5.6. The relative version of 5 goes as follows. Consider the relative 
grassmannian Qw = LwG/LtG over S and the line bundle L on Qw 

defined by x _ 1 . Because L X G embeds in LWG, the line bundle L is 
L X G-linearized and therefore defines a line bundle L on the universal 
moduli stack L X GnQ. The projection 

q-K • Qw ->• S 

is locally trivial for the Zariski topology; the choice of a formal coor­
dinate along x defines such a trivialization. Formula (5.1) defines a 
morphism 

iw : H liiï)* ->• qw,*L l. 

Because q is locally trivial, it follows that in is an isomorphism and 
therefore that cw <g) C(s) is so for every s G S(C), which is the above 
theorem of [11], [14]. As in 5, let me consider the L X G-torsor 

rK : Qw -> L X GnQK = M G,W. 

If pw denotes the projection M G^ —> S1, the sheaf pw,*L l of global 
sections of L is the invariant sheaf 

(q„,.L l)L*G = (H l(n)*)LxG. 

5.7. These constructions are functorial in ir. Let M G (resp- M G) 
be the universal coarse moduli space (resp. moduli stack) of regularly 
stable bundles. Let p : M G —> M gyi be the projection, X be the uni­
versal curve and H l the universal family of basic level l representations. 
As in the absolute case, the restriction of L to M_G defines a line bundle 
L on M G. By the above discussions, the global Verlinde's isomorphism 
is the isomorphism 

K : P B l = P(H[)LxG ^ Pp*L l, 

which is explicitly described by formula (5.1). 

Computation of the connections 

We choose a positive integer l. We denote by M the regularly stable 
locus of M G(X), and by 0 the line bundle L on M, 5.3. As explained 
above, the line bundle 0 exists over M l ) i . 
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6. Deformat ions of global sect ions and connect ions 

Let U i, i G I be an affine open cover of any smooth variety V. Let 
s be a global section of the line bundle L on V. For the convenience 
of the reader, let me first recall some deformation theory of the triple 
(V,L,s) (see [22]). We denote by (V€,Le,se) a deformation of (V,L,s) 
over the length 2-scheme Df = Spec(C[e]) with e2 = 0. 

6 . 1 . The restriction [ i j £ of Ve to U is trivial, because U is smooth 
and affine. Let us choose an isomorphism 

i - O U i[e] = O U i®C[e]^O U i^ 

which restricts to Id when e = 0. The matrix of i~ o ti is of the form 

/ I d 0 \ 

where i;j is a derivation of O U^U The image of the cocycle (£i,j) 
in Hl{Vj T V) is the Kodaira-Spencer class of the deformation Ve. One 
checks that this procedure identifies isomorphism classes of infinitesimal 
deformations of V and ^(V^T V). 

6.2. As above, the restriction L Uuf of Le to U is trivial. Let us 
therefore choose a morphism 

f i : L U i[f]=L U iMC[e]^L U i^ 

which restricts to Id when e = 0. The morphism fi is an isomorphism, 
and the matrix of fj~ o fi is of the form 

(Id 0 \ 

Vlij Id 

where rjij is a first order differential operator of symbol rjij of Lji ^U 
Let D i(L), i G N be the sheaf of differential operators of order < i on L. 
The image of the cocycle (Ìij) in Hl(V, Dl(L)) is the Kodaira-Spencer 
class of the deformation (Ve,Le). One checks that this procedure iden­
tifies isomorphism classes of infinitesimal deformations of (V, L) and 
Hl(V,D\L)). 

6.3 . There exists a (uniquely defined) section i of L U i such that 
the restriction s Uue of se to U can be written, 

s U i,e = fi{s U i +eai). 
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One has the tautological relation s U{ = s j on £i", fl U j and, by definition 
of 7], one has the equality 

(*) <7j-<7i = i,j(s)-

Let d i s,i G N be the complex: 

= [D i{L) - ^ L 
i s~ deg(0) deg(l). 

The equality (*) means that 

(rij,ai)GC1(fU i g,d1s)=C1(fU i g,Dl(L))®C°(fU i g,L) 

is a cocycle and therefore defines a class in H 1 (dis). One checks that this 
procedure identifies isomorphism classes of infinitesimal deformations of 
(V,L,s) a n d H ^ d i s ) . 

7. How to compute Hitchin's connection 

Let us first explain why it is enough to compute the covariant deriva­
tive. 

7.1. Let E be a vector bundle on a (smooth) variety V, and r 
be a connection on the projective bundle PE of lines of E. Let v b e a 
vector field defined on some open subset U of V, and let s be a section 
of E on U. Let u be a point of U(C), and v be the tangent vector v(u). 
Let us denote by (u,v(u))r the tangent vector of PE at s(u), which is 
the horizontal lifting ofv. Then, the difference 

(7.1) Vv(s)[u] = ds(v) - (u,v(u)r G T s{u)PE 

is tangent to the fiber PE u and therefore lives in T siu\PE u = E (g) 
C(u)/C.s(u). Because the space of connection is an affine space under 
H°(V, OV(g)End(E)/O V.Id), and V is reduced, the collection r v(s)[u],u G 
U(C) determines the connection r . 

7.2. Let t G Hl(X,T X) and te : De —> M g be the corresponding 
morphism. Let us denote the pull-back t*(M G, X, O) of the universal 
data simply by (Xe, M€, Ge), and its restriction to (e = 0) by (X, M, O). 

Remark 7.3. Recall that for any vector bundle F on X, the Cech 
complex C F 

H°(D,F)®H°(X*,F) -^H°(D*,F) 
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associated to the flat cover D t X* —H- X of X calculates the coho-
mology H*(X,F). In particular, the complex C TX defines a projection 
from the vector space of meromorphic vector fields T D* on D* onto 
H1(X,T X). If t is a meromorphic vector field on D, which projects to 
t, then the infinitesimal deformation Xe of X over De can be described 
in the following manner: one glues the 2 trivial deformations X*[e] and 
D[e] of X* and D respectively along D*[e] thanks to the automorphism 
of D*[e] defined by 

O D.[e]^O D*[e\ 

< 

f ^ f + e<t,df>, 

In particular, a formal coordinate z on X lifts canonically to a formal 
coordinate on X€. 

7.4. Let s be a global section of 0 . To construct Hitchin's connec­
tion, one has to lift s to a global section s r of @e. The basic observation 
of Hitchin's construction is that the cup-product pairing 

Hl{X, T X) <8> H°{X, Ad(E) <g> u)X) ->• HX(X, Ad(E)), 

where E is a regularly stable bundle on X, induces by Serre duality a 
morphism 

(7.2) r : Hl(X,T X) -* S2 ^ ( a d ^ ) ) = ( S 2 T M)[E], 

which globalizes when [E] runs over M ( C ) to give the quadratic differ­
ential 

(7.3) T:H1(X,T X)^H°(M,S2T M). 

The short exact sequence of complexes 

(7.4) 0 ->• d i s ->• d2s - • S2 T M[0] ->• 0 

gives a morphism 

^ : H ° ( M , S 2 T M ) ^ H 1 ( d i s ) . 

Let 
w s: H1(X,T X)^H1(d1s) 

be the composition ö o r . 
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L e m m a 7.5 ([9]). The deformation of (M, 0 ) defined by the pro­
jection of -w s(t)/(2l + 2h v ) in H1(D1(&)) is isomorphic to ( M e , 6 e ) . 

Proof. Let A be the integer defined by U>M G = O(—k) where O(1) 
is the determinant bundle. One has the equality A = 2h v (see [12] for 
instance). By Theorem 3.6 of [9], the projection —w s(t)/(2l + A) in 
H1(M,T M) is the Kodaira-Spencer class of M€. Because the codimen-
sion of the nonregularly stable locus is at least 2 (see the appendix), 
^{M.O M) is zero and the symbol map Hl(M,Dl\&)) ->• Hl(M,T M) 
is injective. Because the image of (M£, 0 £ ) in H1(M,T M) is (tautologi-
cally) the Kodaira-Spencer class of M e , the lemma follows, q.e.d. 

R e m a r k 7.6. Strictly speaking, only the case where G = SL r is 
treated in [9]. But the proof in [9] can be straightforwardly adapted to 
the general case if A is defined by the equality UJM G = O(—k) as above. 

7.7. By the lemma, —w s(t)/(2l + 2h v ) defines a section over t of 
Qe denoted by (s,t)r well-defined up to Ker(Aut(6 e ) —H> Aut (0 ) ) = 
1 + eC which is the horizontal lifting (for Hitchin's connection) of t 
through s. If se is a section of @e restricting on s when e = 0, the 
difference se — ( s , t ) r lives in eH°(M, G ) / C . s and one has the equality 
(cf. (7.1)) 

(7.5) e(r t se)(0) = se-(s,t)r. 

7.8. The explicit Cech calculation (relative to the covering U i of 
w s(t) goes as follows. Choose second order differential operators D i on 
@U i whose symbols are r ( t ) on U i. The differential of fD i g G C°(d2s) is 

(D j - D i, D i s) e C1(d2s) = CX{D2Q) © C°(0) . 

Because the symbol of D j — D i vanishes, D j — D i is of order one and 
(D j — D i,D i s) is a cocycle of Cl(d\s) (as it has to be). By definition 
of the connecting homomorphism, in H1(d\s) one has the equality one 
has the equality 

(7.6) w s(t) = [D j-D i,D i s] 

(compare with (3.17) of [9] and [22, p. 187]). With the notation above, 
one has 

r]ij = symbol(D j — D i) and i = D i s. 
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7.9. Suppose that the diagram 

N xM N = t ij U i n U j =>- N = tU i —H> M 

is replaced by 

N1 = N xM N =q N —r M, 
p 

where N —H- M is any etale epimorphism such that r*(Me ,0e) is 
trivial. We suppose also that the pull-back of the quadratic differ­
ential T(t) is the image of a second order differential operator 9(t) G 
H°(N,D2(r*0)) by the composite 

H°(N, D2(r*@)) sy-mbol H°(N, S2 T N) -^ H°(N, r* S2 T M). 

The degree-one piece C1(r, d\s) of the Cech complex of r is 

C{r1d ls) = H°(Nup*D1(®))®H°{N1r*®)i 

where p = r o p = r o q. Because the coherent cohomology can be 
calculated using the etale topology, one has a canonical morphism 

C ̂ ( r d i s ) -» -H^d is ) . 

Then, as in (7.6), one has the equality in Hl(dis) 

(7.7) w s(t) = [p*r,e{t) - q*r*e(t),e{t).r*s], 

and the infinitesimal lifting (s, t ) v defined by the class — w s(t)/(2l+2hv) 
is given on N by 

(7'8) { s ^ = r's-WTh]mr"s-

Suppose that the global section se of @e is given on N by 

se = u + ev, u,v G H°(N,r*@). 

Then, the formula (7.5) gives 

(7.9) Vt*e(0) = v + ^fu in H\Nr<d)lC.u. 
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8. Sugawara tensors and differential operators 

Recall that r * 0 is the homogeneous line bundle L \ where A is the 

character x~l of L+G. If LG were finite dimensional, one would have a 

morphism 

U ( L g ) ° P P ^ H ° ( Q , D ( L ) ) , 

and the Sugawara tensor T(t) would define a second order differential 

operator on L \ , a natural candidate for 9(t) (see 7.9). Let LG (resp. 

Q°) be the regularly stable locus of LG (resp. Q). To avoid too much 

abstract nonsense about differential operators on ind-schemes, one uses 

quasi-section 
Q° 

a S 
N -r ^ M 

(cf. [6]) of 7T : Q° —> M to construct the differential operator 9(t) 
using T(t) (formally, one just pull-back T(t) by a). By convention, all 
cohomology groups of any coherent sheaf on N are endowed with the 
discrete topology. 

8 .1 . Let us first define the "differential" 

a* dir: Lg -+ H°(N,r*TM) ^> H°(N,TN). 

Let n G N(R) and x be an element of Lg. The image of 

exp(ex).cr(n(e)) G Q°(R[e]) 

by 7T is a point m(e) of M[e] which restricts to r(n) when e = 0 (recall 
that Q° is open in Q). Because r is etale, there exists a unique point 
v{e) of N[e] such that v(0) = n and r(v(e)) = m(e). If f is a regular 
function defined near n, the expansion 

f(u(e)) = f(n) + ex.f(n) 

defines a regular function near n. The corresponding vector field is 
denoted by a*dn(x). One checks that 

a* dir: Lg™ ^ H°(N,T N) 

is a morphism of Lie algebras and therefore induces a morphism of 
filtered algebras 

(8.1) U(Lg)°™ ^ H°(N,D(O N)). 
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8.2. We want to extend (8.1) to a completion of U(Lg) in which 
lives the Sugawara tensors. Let U be the enveloping algebra of g (g> K. 

For n > 0, let U n be the subspace of u G U which is of order < n. We 
define a filtration F i U n,i > 0 by 

F U = U.g i n U , 

where g i is the kernel of the projection g (g> O —H- g <g> O ix. The fam­
ily F i U n,i > 0 defines a topology of U n; let U n be the corresponding 
completion, and U = Un e N?n be our completion of U. It is a complete 
associative algebra which is filtered by definition and acts on every in-
tegrable representation. Let us choose a formal coordinate z at x. For 
x G g and i G Z, let me denote the vector X ® z i by x(i). 

L e m m a 8 .3 . There exists an integer i such that 

a*dn(x{j)) = 0 

for all x G g and j > i. 

Proof. Because N is of finite type, there exists i such that 

Ad(7).exp(ex(j)) G L+G(R[e\/{e2)) for all j > i and 7 G a(N(R)). 

The lemma follows since 7r is right L+G-invariant. q.e.d. 

In particular, we get continuous morphisms (see 8.2 for the definition 

of the completion U n,opp(Lg)) 

(8.2) U n>opp(Lg) ->• H°(N,D n(O N)). 

8.4. Let n be a point of N . Let us consider a(n) as a pair (E,p) 
where p is a trivialization of E * • The geometric interpretation of 

a*d-Kn : Lg -+ T n N = H x ( X , Ad(E)) 

goes as follows. Let x G Lg and let E e be the underlying G-bundle on 
X[e] of exp(e)a(n). The family E e defines a Kodaira-Spencer map 

T0De^H1(X,Ad(E)). 

Then, the image of d/de G TQDS is a*d-Kn(x) by the Kodaira-Spencer 
map. 
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8.5. One can of course explicitly calculate this map. The trivializa-
tion p defines an isomorphisms between C Ad(E) (cf ^-^) and 

H°(D,Ad(E))®g®A X ->g®K. 

The corresponding surjection 

(8.3) Lg^»g®K—»^iX^diE)) 

is the differential a*d-Kn. 

8.6. Let t G T D* which projects to t G Hl{X,T X) 7.3 and 
r(t) G H°(M,S2T M) the corresponding quadratic tensor (7.3). One 
can compute the value 

r*r(t)n G S 2 T n N = S2H1(X,Ad(E)) 

of r*r(t) G H°(S2TN) at n as follows. The Killing form of g defines 
an isomorphism between Ad(E) and its dual. The residue theorem says 
that the residue res : QD* —> C factors through 

nD*/(nX* © QD) = H\Cx) ^ H\X X) 

to give the canonical isomorphism H1X, X) —> C defined by the mero-
morphic form dt/t. By Serre duality, r*r{t)n is therefore a quadratic 
form on H°(X, Ad(E) ® X)- By 7, r*r(t)n is induced by the cup-
product 

H 1 (X,X)«)H 0 (X,ad(E)(g)c t X) ^ Hl{X, Ad{E)). 

The trivialization p defines an injection 

H°(X,Ad(E)®u)X) ^g®ttX*. 

The Killing form defines a pairing 

(8.4) tr : [g <g> ftX*] ® [g ® K] ->• K <g> OX* -4 0D*. 

The tensor r(t)n G S2H1(X, Ad(E)) of 7 is characterized by the 
formula 

(8.5) T(t)((f)®(f)) = res tr(0 <g> t.c/>) 

for every 0 G H°(X, Ad(E) ® X ) mapping to 0 G g (g) OX* and t G T D*; 
the contraction t.0 is thought as an element of g ® K. 
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8.7. The twisted version is analogous. Consider the commutative 
diagram with a cartesian square 

N 

N 

— • 

D 
a 

r 

LG° 

Q° 
7T 

M 

The morphism of C-space N —> N is a L+G-torsor, and sections of 
r*@ = a*L\ are functions on N which are A-equivariant. Let f be such 
a function, and let n = (n,j) be a point of N(R). With the notation 
above, 

exp(ex)n := (y(e),exp(ex)7) 

is a point of N(R[e]) restricting to n when e = 0. The expansion 

f(exp(ex)n) = f(n) + ex.f(n) 

defines a morphism of Lie algebras 

opp Lg -)• H°(N,r*e) , 
x '—• (f'—>x.f). 

As above, Lemma 8 allows us to define continuous morphisms 

(8.6) U n<opp(Lg) ^ H°(N,D n(r*&)). 

The arrows (8.6) and (8.2) are compatible, meaning that the symbol 
diagram 

H°(N,D n{r*Q)) 
Ti \ symbol 

(8.7) U n>opp(Lg) H°(N,S n T N 

symbol 

H°(N,D n O N) 

is commutative. 

8.8. Let me recall the definition of T n G U (see [fO, (12.8.4)]). Let 
x i be an orthonormal basis of g (for the Killing form). The sequence of 
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operators 
oo 

To =^2x i x i + 2^2x i(-n)x i(n), 
(8.8) i n=1 

T n =y y^ x i(—m)x i m + n) if n 7̂  0 
i 

is well defined and does not depend on the choice of the x^s. 

Remark 8.9. The notation is not standard. Usually, l/(2l+2hy)T n 
is denoted by L n and the formal power series P L n u~n~2 is denoted by 
T(u) (for instance in [21]); notice the opposite convention in [18], giving 
a change of sign in the definition of the WZW connection. 

8.10. Suppose that n is positive. Because x i(—m) and x i(n + m) 
commute in U(Lg), one then has x i(—n)x i(n + m) G F<-n'2>U2(Lg) for 
every integer m . Therefore, 

T n G F ̂ n^ U2(Lg) and lim T n = 0. 

Let d n be the meromorphic tangent vector z n+ld. 

Definition 8.12. Let t = P > - N t di be a meromorphic vector 
field on D*. The Sugawara tensor T(t) G U2(Lg) is defined by the 
equality 

T{t)= J2 t n T n. 
n>-N 

The second order differential operator 9(t) G H°(N,D2(r*Q) is the im­
age of T(t) by the morphism 

U2>opp(Lg) ^ H°(N,D2(r*e)) 

of (8.6). 

8.12. Let (j) G H°(X, Ad(E) <g> tX) be a mapping to 4> G g (81 QX*, 
and t G T D*. The series 

E Z Yl < '̂ x(~m) X <£> x(m + n) > 
i 

has finite support which allows us to define 

(8.9) < 4> <g> 4>,T n > = y ^ y ^ < 4>,x i(-m) X 4>,x i(m + n) > . 
z —'mgZ *•—/ 

i 
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One defines < (f> (g> 0, To > by the analogous formula. By (8.3) and 8.7, 
the symbol of 9(t) evaluated at 

4> <g> 4> G S2 T*N = S2 H°(X, Ad(E) <g> X) 

is equal to the finite sum 

neZ n<2\val((p)\ 

Proposition 8.13. The symbol of 0(t) is the quadratic differential 
T(t) of (7.3). 

Proof. By (8.5) (keeping the notation above), one has to prove the 
equality 

res tr(0 <g> t.<j>) =<4>®4>, T symb(t) > . 

Observe that the preceding expression still makes sense if (f> lives in 
g (g> uD*. Now, if the valuation val(0) is big enough, both the scalars 
< 4> <g> 4>,T symb(t) > and res tr(c/> o t.<f>) are zero. One can therefore 
assume that cf> = x j(l)dz for some l G Z, and also that t = d n,n G Z. 
Now, we compute 

< x j(l)dz <g> x j(l)dz,T n >= Sn+2l,-2 = res(z n+1+2l dz) 

(even in the case where n = 0), and obtain 

res tr(x j(l)dz o d n.x j(l)dz) =res tr(x j <g) z dz o z n+l — .x j <g) z dz) 

n+1+2l 
res(z n+L+zl dz) 

q.e.d. 

8.14. The computation of the Hitchin's covariant derivative 
VtSe(0),se G H°(De,E) is now easy. Let us choose a local coordinate 
on X, which lifts to a local coordinate on Xf along x (see Remark 7.3), 
identifying the universal pair (Q°, O) over Df to the trivial deformation 
(Q°[e], 0[e]). We pick quasi-section 

Q° 

N -r+ M 
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of n : Q° —> M. We define 9(t) as in 8.12; one is under the hypothesis 
of 7.9. By 5.7, there exists 2 linear forms U, V on Hi such that 

K(U + eV) = se. 

With the notation of 8.7, the pull-back a*se can be decomposed as 

a*se = u + ev, 

where the section u of r*0 can be thought of as a A-equivariant function 
on N defined by (5.1) 

n = (n,7) i—> u{n) = U{j.vK), 

vK being the highest weight vector of H ̂ . The action 8.7 of x G Lg on 
u is defined by the e-derivative of 

u(exp(ex).n) = U(^.vK) — ex.U{^.vK). 

Therefore, one has the equality 

x.u = -<J*K(x.U) and T(t).u = a*n(T(t).U). 

Formula (7.9) thus becomes 

r* r t-s£(0) =v + T(t)/(2l + 2h ^).u 
{ ' ' =a*K(V + T(t)/(2l + 2hy).U) modu. 

9. WZW connection 

Let me recall how the WZW connection on V\ can be explicitly 
computed (see [21, Definition 5.1.2]). 

9.1. We start with a versal deformation X —> S of the pointed curve 
XQ. Let t be a meromorphic vector field on D, which projects to the 
image by the Kodaira-Spencer map of some tangent vector r G TQS. If 
f is a function on S, and u is a linear form on Hi, the WZW-connection 
A on Vj* is defined by the formula 

(9.1) AT(u<g>f) = u®t.f + T(t)/(2l + 2hy)u®f mod(u<g>f) 

(see [18, Definition 2.7.4]) and Remark 8.9. 
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9.2. The tangent vector r defines a morphism De —> (S,0) such 
that d/de maps to r . Let us pull-back the situation by this morphism. 
The first order expansion of (9.1) then gives 

(9.2) Ad/de(u + ev) = v + T{t)/{2l + 2hy).u modu , 

which is precisely rQ/Q£K(u + ev) (see (8.10). We endow P ( V dK)* with 
the WZW connection, and P p * 0 K with the Hitchin's connection. Com­
paring (8.10) and 9, we have proved 

T h e o r e m 9 . 3 . With the notation of 5.7, the morphism K 

PB l ^p*L l 

is a flat isomorphism of flat projective bundles over M g,i-

R e m a r k 9.4. In fact, the result remains true if g = 2, at least if G 
is not SL2 or SP4 (see the appendix below). 

10. T h e Picard group of Q 

We know that the Picard group of each fiber q~1(s) (s a complex 
point of M gti) is Z.L s (see the appendix); this defines an integer deg(L) 
of every line bundle on Q, which is the exponent e such that L s = L s 
(recall that M l ) i is connected). 

e 

Propos i t i on 10 .1 . The sequence 

q* deg 
0 - • P i c ( M g)i) ^ Pic(Q) ^ Z -^ 0 

is exact and the morphism L ̂ e is a splitting. 

Proof. The grassmannian Q is the direct limit lim Q w where w G 
W aff/W = Q(RV) and Q w is the relative Schubert variety of index 
w which can be geometrically described as follows. Let L>0G be the 
inverse image of 1 by the evaluation L+G — H - T, and let w be the 
direct image of the G m-torsor V(O(—x)) n 0 by w : G m —> G; because 
O(—x) is canonically trivial on X*, the G-bundle w is trivialized on 
X* and therefore defines a point of Q. The Schubert variety Q w is 
as usual the union Q w = Uwi<w L>0Gw'.l where 1 is the class of the 
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trivial (trivialized) G-bundle). The choice of a local coordinate near the 
marked point trivializes the restriction q w of q to Q w proving that q w 
is flat. Each Schubert variety Q w(s) over s G M g ji(C) is projective, 
and integral. Moreover, the natural morphism Pic(Q) —> Pic(Q s;w) is 
an isomorphism. By construction, the restriction of M = L deg(L) (g> L~l 

to Q w(s) is trivial. Because M g,i is reduced, the base change theorem 
implies that the direct image q*>w M w of the restriction M w to Q w is a line 
bundle M w on M g,i and that the morphism q*w q wi*M = q*w M w —> M w is 
surjective and therefore an isomorphism. The isomorphisms (M w)0 —> 

M wi for w' < w induces isomorphisms M wi —> M w; let M be the direct 
limit l imM w (which is isomorphic to each of the M w). By construction, 
L 4 L deg(L) £ q * ^ qed_ 

R e m a r k 10 .2 . In particular, the Picard group of Q is Z 3 . 

L e m m a 10.3 . Let H be a C-group. Let H\, H<2 be 2 C-subgroups of 
H and ip2 '• H<2 —> G m a character defining a line bundle L% on H/H ^. 
The pull-back L ip on Hi/Hip (where Hip = H\ C\H2) of L% is the line 
bundle associated to the restriction ipi,2 of ip2 to Hip. 

Proof. By definition, L2 is defined by the morphism 

H/H2 —> BH2 —?• BG m, 

where H/H2 —> BH is defined by the (H2-equivariant) morphism H x 
H/H2 (H being seen as an H2-torsor over H/H2, and BH2 —> BG m 
being Bip2)- The pull-back on Hi/Hip is defined by the composite 

Hi/Hip -»• H/H2 -»• BH2 -»• BG m. 

The diagram 

Hi/Hip —> H/H2 —)• BH2 

\ S 
BHip 

is 2-commutative (BHip —> BH2 being the natural morphism deduced 
from Hip <—>• H2). The proposition follows because the composite 
BHip ->•' BH2 ->• BG m is B^1,2. q.e.d. 

10.4. Let a the section of Q defined by the trivial G-bundle (with 
its canonical trivialization on the punctured curve) over X x M gii- It 
corresponds to the unit section of LG —> M gi- The above lemma 
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proves that a*L is trivial. We can therefore rewrite Proposition 10 in 
the following form: for every L G Pic(Q), one has the formula 

(10.1) L = L degL®q*{a*L). 

10.5. Let p : G —> SL N be a linear representation of G, which 
can be assumed to be nontrivial. Let E be the universal G-bundle on 
Q XM g,i X, and Lp the line bundle on Q 

(10.2) Lp = det{RYE{C N))-1. 

The degree deg(Lp) is the Dynkin index dp of the representation p 
(see [13]). The formula (10.1) gives therefore an isomorphism of L%G-
linearized bundles 

(10.3) Lp <g> q* det RYOx ^ L d" 

well defined up to H°(M g,i, O*)1. 

R e m a r k 10.6. Both sides of (10.3) descends to the universal mod­
uli space. The corresponding projective bundles of global sections 

PRTLp and PRTL df 

have therefore a Hitchin's connection and are isomorphic (as projective 
bundles). The construction of Hitchin's connection is certainly functo-
rial and the preceding isomorphism is flat. 

11. A p p e n d i x 

For completeness, let me prove a codimension estimate (see [8, The­
orem II.6] for similar statements) which is certainly well known to the 
experts. 

L e m m a 11 .1 . Let n : E —>• S be a (right) G-bundle over a con­
nected C-scheme S with G reductive. Assume that E has a noncentral 
automorphism of finite order N. Then E has an L-structure F where 
L is a proper reductive subgroup of G. 

1One can show that this group is in fact C*, proving that (10.3) is well-defined 
up to a non-zero scalar. 
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Proof. Let e be a point of E(C) and g the (unique) point of G(C) 
such that 0(e) = e.g. Let T —> S be an S-scheme and F(T) be the set 

F(T) = fe G Hom S(T,E) such that cf>{e) = egg. 

The obvious functor 

JSchemes opp ->• Ens, 
: T i—• F ( T ) 

is a formally principal homogeneous space under the centralizer L of 
G. This group is reductive (not necessarly conneceted) and proper (g ^ 
Z(G)). One has to check that F(s) is nonempty for every s G S(C). 

Let s G S(C) and t G E s over s. There exists a unique g t G G(C) 
such that 0(t) = t.g t . The conjugacy class of g t depends only on s. 
Because g t is of finite order, it is semisimple and one can define a map 
f : S ( C ) —> T / W ( C ) which sends s to the conjugacy class of the 
semi-simple element g t . Because E is locally trivial, f is algebraic. The 
functions on T/W are generated by the characters of the fundamental 
representations. Because g t is of order N, the eigenvalues of the corre­
sponding matrices are in JJ,N and therefore the image of f is finite. Since 
S is conneceted, this image is a point, the class of g say. This proves 
the lemma, q.e.d. 

R e m a r k 11 .2 . Suppose that S is a smooth complete curve and that 
E is semistable. Because L is reductive, the morphism g —H- g/Lie(L) 
has a G-invariant section. The degree-0 vector bundle Ad(F) is therefore 
a direct summand of Ad(E) = F(g) and is semistable. 

11 .3 . Let X be a smooth complete and projective complex curve, 
and G a reductive algebraic group. 

Definit ion 11 .4 . A regularly stable G-bundle on X is a stable 
bundle with Aut(E) = Z{G). 

L e m m a 11.5. The locus of regularly stable bundles is open in the 
moduli space of stable G-bundles M G { X ) . 

Proof. By [17], M G(X) is the GIT quotient of some smooth polar­
ized quasi-projective scheme S by SL N- Moreover, all points of S(C) 
are stable (properly stable in the old terminology) for a suitable lin­
earization (induced by some embedding of S "—>• P N _ 1 ) . Let G be the 
S-group scheme defined as the inverse image of the diagonal by 

{g,x) i—> (x,gx). 
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The geometric fibers of G are automorphisms groups of stable bundles 
and therefore are finite. In particular, G —> S is quasi-finite. By Corol­
lary 2.5 of [15], the action G x S —> S is proper (all the points are 
assumed to be stable), and hence G —> S is finite (proper and quasi 
finite). By the theorem of formal function, the locus in S where 

Z(G)S M- G 

is an isomorphism is open, q.e.d. 

Propos i t i on 11.6. The closed subset B of M G(X) parameterizing 
semistable bundles E which are not regularly stable is of codimension 
> 3 for g > 3 or g = 2, and g has a factor of type A\ or C<2-

Proof. One can assume that G is semisimple (divide by the neutral 
component of Z(G)). Let E b e a semistable bundle which is not regu­
larly stable. If E is not stable, there exist a unique standard parabolic 
subgroup P and a P-structure F of F such that F = F / r a d u P is stable 
(as P / r a d u P-bundle). If L is a Levi subgroup of P , this shows that 
[E] = [F(G)] is in the image of the rational map M L(X) ->• M G(X) 
in this case. If now E is assumed stable with Aut(E) ^ Z(G), let us 
choose a a noncentral automorphism cp, necessarly of finite order. Let 
F be the L-structure of gr(E) determined by (f>. Then, F is semistable 
and E is in the image of the rational morphism M L(X) —> M G{X). We 
have therefore to compare 

d i m M L(X) ={g - 1) dim(L) + d imZ(L) and 

(g - 1) dim(G) = d i m M G(X). 

The function 

L ' — > ( g - l ) dim(L) + dim Z(L) 

is increasing; one can assume that L is maximal. In this case, the 
dimension of Z(L) is at most 1 and, except that g has a factor of type 
Ai or C-i-, one has dim(G) — dim(L) > 4 (use exercices VIII.3.2 and 
VI.4.4 of [2] for instance), q.e.d. 
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