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H A R M O N I C F U N C T I O N S W I T H P O L Y N O M I A L 
G R O W T H 

TOBIAS H. COLDING k WILLIAM P. MINICOZZI II 

0. Introduct ion 

Twenty years ago Yau, [56], generalized the classical Liouville theo­
rem of complex analysis to open manifolds with nonnegative Ricci curva­
ture. Specifically, he proved that a positive harmonic function on such 
a manifold must be constant. This theorem of Yau was considerably 
generalized by Cheng-Yau (see [15]) by means of a gradient estimate 
which implies the Harnack inequality. As a consequence of this gradient 
estimate (see [13]), one has that on such a manifold even a harmonic 
function of sublinear growth must be constant. In order to study further 
the analytic properties of these manifolds one would like to restrict the 
class of functions to be considered as much as possible while minimizing 
loss of information (cf. [22], [26]). From the results of Cheng and Yau, 
it follows that a natural candidate is the class of harmonic functions of 
polynomial growth (note that they must be of at least linear growth). 
In fact, in his study of these functions, Yau was motivated to make the 
following conjecture (see [58], [59], and [60]; see also the excellent survey 
article by Peter Li, [37]): 

Conjecture 0 .1 . (Yau). For an open manifold with nonnegative 
Ricci curvature the space of harmonic functions with polynomial growth 
of a fixed rate is finite dimensional. 

We recall the definition of polynomial growth. 

Definit ion 0.2. For an open (complete noncompact) manifold, M n, 
given a point p G M let r be the distance from p. Define H d(M) to be 
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the linear space of harmonic functions with order of growth at most d. 
This means that u G H d if u is harmonic and there exists some C > 0 
so that \u\ < C(l + r d). 

The main result of this paper is the following. 

T h e o r e m 0.3 . Conjecture 0.1 is true if M has Euclidean volume 
growth. 

M n is said to have Euclidean volume growth if there exists p £ M 
and a positive constant V such that Vol(B r(p)) > Vr n for all r > 0. Note 
that by the Bishop volume comparison theorem (see [3]) we have that 
Vol(B r(p)) < Vo( l ) r n for r > 0. Here as in the rest of this paper V ^( r ) 
denotes the volume of the geodesic ball of radius r in the n-dimensional 
space form of constant sectional curvature A. 

We show Theorem 0.3 by giving an explicit bound on the dimension 
of H diM) depending only on n and d. 

From the new results given by the investigation initiated by the first 
author in [17], [18], and [19], and later on further developed by the 
first author jointly with Cheeger in [6], [7], and [8], and finally the joint 
work of the first author with Cheeger and Tian in [11], we have a good 
understanding of the geometry of spaces with Ricci curvature bounded 
from below. 

For the present paper, it is particularly important that it was shown 
in [6] that every tangent cone at infinity of a manifold satisfying the 
assumptions of Theorem 0.3 is a metric cone. For an open manifold M n 
with nonnegative Ricci curvature, we say that a metric space, Mx,, is 
a tangent cone at infinity of M if it is a Gromov-Hausdorff limit of a 
sequence of rescaled manifolds (M,p,r~ g), where r j —> oo. Recall tha t 
by Gromov's compactness theorem, [28], any sequence, r i —> oo, has 
a subsequence, r j —> oo, such that the rescaled manifolds (M,p,r~ g) 
converge in the pointed Gromov-Hausdorff topology to a length space, 

Moo. 

Examples of Perelman ([49]; see also [7] for further examples) show 
that MQO is not unique in general even if M has Euclidean volume growth 
and quadratic curvature decay (cf. [19] and [12]). 

We also note that examples of Perelman (see [50]) most likely can 
be modified to give examples of manifolds with nonnegative Ricci cur­
vature, Euclidean volume growth and infinite topological type. 

It is a classical result tha t the space of harmonic functions of polyno­
mial growth on Euclidean space is spanned by the spherical harmonics. 
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Recall tha t the spherical harmonics are the homogeneous polynomials 
whose restriction to every sphere centered at the origin is an eigenfunc-
tion of the spherical Laplacian. We will observe in Section 1 that this is 
a general property of metric cones. That is, the harmonic functions of 
polynomial growth on a metric cone with smooth cross-section can be 
written as a linear combination of harmonic functions which separate 
variables (into the radial and cross-sectional directions). Further, they 
are homogeneous in the radial direction; it follows that the restriction to 
the cross-section gives an eigenfunction, where the eigenvalue depends 
on the dimension and the order of growth. We will show that asymp­
totically this picture still holds in the general case of nonnegative Ricci 
curvature and Euclidean volume growth (cf. Theorem 4.60). That is, on 
many sufficiently large annuli, harmonic functions of polynomial growth 
will almost separate variables and be approximately homogeneous in the 
radial direction. 

It seems worth pointing out some of the difficulties that arise in 
the general case of nonnegative Ricci curvature and Euclidean volume 
growth compared with the model case of a cone. Here we will only 
indicate three such. The first is the low regularity of the cross-section 
of tangent cones at infinity (cf. [7]). The second is that the frequency 
function (see Section 2 for the definition of the frequency function) is no 
longer monotone in the general case; see Section 11 and [26]. Thirdly, 
the frequency function is not known to be bounded; see [26] for further 
discussion of this. 

Simple examples show (see Section 11) that there exist manifolds 
with nonnegative Ricci curvature which admit no nontrivial harmonic 
function with polynomial growth; in fact, we can take such a manifold 
to have positive sectional curvature. However, to our knowledge no such 
example exists with nonnegative Ricci curvature and Euclidean volume 
growth; see [26] for further discussion of this. 

Important contributions on this Conjecture of Yau and related prob­
lems have been made by Donnelly-Fefferman, Kasue, Li, Li-Tam, Wang, 
and Wu (see [27], [31], [32], [36], [37], [38], [41], [42], [54], and [55]). In 
related work, F.-H. Lin has studied asymptotically conical elliptic oper­
ators. 

The organization of this paper is as follows: 

Section 1 is concerned with the description of harmonic functions 
with polynomial growth on cones and serves to illustrate the methods 
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tha t we will employ in the general case. 
In Section 2 for later use we introduce an important tool which is a 

generalization of Almgren's frequency function. 
A lower bound for the frequency of a harmonic function on good 

annuli is given in Section 3. 
We study in Section 4 the monotonicity properties of the frequency 

function for harmonic functions on manifolds with nonnegative Ricci 
curvature and Euclidean volume growth. We also study the asymptotic 
homogeneity properties of harmonic functions with polynomial growth 
on these manifolds. 

Section 5 deals with orthogonality properties of harmonic functions 
on these manifolds. 

We get in Section 6 an explicit upper bound for the number of or­
thonormal functions with bounded gradient on a compact manifold with 
Ricci curvature bounded from below and diameter bounded from above. 

Section 7 contains the proofs of some elementary results for functions 
of one variable with bounded growth, that will be used later on. 

Given a set of independent harmonic functions with polynomial 
growth on a manifold with nonnegative Ricci curvature and Euclidean 
volume growth, we show in Section 8, how to produce large annuli and 
a set of independent harmonic functions with good properties. This 
together with the results of Section 7 allows us to convert the (global) 
polynomial growth condition to information on a definite scale (local). 

With the aid of the results of Sections 7 and 8 we obtain, in Section 
9, a technical result tha t will be needed in the inductive step of the 
proof of Theorem 0.3. 

Using the results of the previous sections, Theorem 0.3 is proved in 
Section 10, by giving a bound on the dimension of the space of harmonic 
functions with bounded growth (and suitable independence properties) 
on any sufficiently large annulus in an open manifold with nonnegative 
Ricci curvature and Euclidean volume growth. 

Section 11 furnishes various examples that illustrate the difficulties 
in the Euclidean volume growth setting compared with the model case 
of a cone; see [26] for further discussion of this. 

In the appendix, we will collect some consequences of the first vari­
ation of energy that we need for this paper. 

Finally, we point out that in a joint paper with Cheeger (see [10]) 
we study the case of linear growth harmonic functions. 

Throughout this paper, if N is a closed manifold, we take the conven-
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tion that a function g is an eigenfunction with eigenvalue A if Ag + \g = 
0. With this convention, A is a negative operator but we will say that 
the eigenvalues are positive. 

Acknowledgment. We wish to thank Jeff Cheeger and Gang Tian 
for numerous helpful discussions, and Chris Croke, Peter Li, Fang-Hua 
Lin, Grisha Perelman, and Richard Schoen for their interest. 

The results of this paper were announced in [21]. 

Some time after the submission of this paper, in part by further 
developing the ideas presented here, we solved the general case of the 
conjecture of Yau, [23]. We wish to point out that in this paper in 
addition to showing the finite dimensionality of H d, we also describe the 
asymptotic structure of the harmonic functions with polynomial growth 
(like the almost separation of variables). This finer description is in part 
due to the asymptotic cone structure of the manifolds considered here. 
It should also be pointed out that the bounds for the dimension of the 
space H d given in this paper depend exponentially on d. In a subsequent 
paper to [23], we gave polynomial bounds sharp in the order of growth, 
see [24]. 

1. Harmonic funct ions w i th po lynomia l growth on cones 

In this section N n _ 1 will be a closed smooth (n — l)-dimensional 
manifold. The study of function theory on the Euclidean cone on N 
is meant to illustrate the methods that we will employ in the proof of 
Theorem 0.3. Note however that the results of this section will not be 
used in the proof of Theorem 0.3. 

We will often further assume that Ric N > (n — 2). This condition 
is equivalent to the Euclidean cone C(N) = (0, oo) xr N n _ 1 having 
nonnegative Ricci curvature. In this section u(r, 9) is a smooth function 
on the Euclidean cone C(N) which may be extended continuously to 
the vertex. On such a cone, the Laplacian can be written as 

(1.1) AC{N)u=—u+———u+-AN u{r,-). 

In general, we will say that a function is homogeneous of degree p if it 
is of the form u(r, 9) = r p g(9). 

First, we claim that if u(r, 9) = f(r)g(9) is harmonic, then f(r) = r p 
for some p > 0 and g is an eigenfunction of N. To see this note that 
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f 1.1) becomes 

:i.2ì AC(N)u = f'g + (n - 1)— g + —AN g. 

From this we have that 

(1.3) AN g + Xg = 0. 

Note also that if Ric N n-i > (n — 2) then A = 0 or A > (n — 1). Substi­
tuting (1.3) in (1.2) gives 

0 
(1.4) 

Therefore 

(1.5) 

f"g+ (n- l)—g —^Xg 

f " + ( n - 1 ) r - A f ) g . 

f"+{n-l)f--\^ 0. 

We easily see that if p(p — 1) + (n — l)p — A = p2 + (n — 2)p — A = 0, i.e., 

(1.6) p = 2 n - 2 ) + ( n - 2 ) 2 + 4A 

then f ( r ) = r p is a solution of (1.5). Note that we take only the non-
negative solution p because the negative solution has a pole singular­
ity at the vertex. Further, we see that if we require that p < d then 
A < d(d+ n — 2), and therefore 

(1.7) A = p(p + n — 2) . 

Collecting the previous calculations, we have the following elemen­
tary lemma. 

L e m m a 1.8. A function u(r,9) = f(r)g(9) on C(N) is harmonic 
if and only if 

(1.9) 

and 

(1.10) 

where A = p(p + n — 2). 

AN g + \g = 0 

f(r 
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Let E\(N) denote the linear space spanned by the eigenfunctions of 
N with eigenvalues less than or equal to A. Further, we let 0 = Ao < 
Ai < A2 < • • • denote the distinct eigenvalues of N and let p j > 0 be 
determined by Xj = p j (p j + n — 2). 

The following theorem is well known (see [5]). 

T h e o r e m 1.11. (Harmonic functions on a cone). If u is a har­
monic function on C(N), then 

(1.12) u(r,9) = ^2a j r p g j(9), 

j 

where the a j are constants. Furthermore, u has polynomial growth if 
and only if this is a finite sum. 

Proof. We may assume that u(0) = 0. By the spectral theorem 
applied to N, we may write 

(1.13) u(l,0) = Y^a j g j(0). 

j 

Consider the harmonic function 

(1.14) v(r,0) = u(r,0) - ^ a j r p j g j(0) . 

j 

Note that v vanishes on dB\ and at the vertex; by the maximum prin­
ciple, v vanishes identically. The second claim follows easily from the 
first. q.e.d. 

We will now obtain a second proof of Theorem 1.10 that is closer to 
the proof of Theorem 0.3. 

If u is a Lipschitz function on C(N) then we set 

(1.15) D{r) = r2~n Z \Vu\2, 

(1.16) I(r) = r1-n Z u2, 
JdB r(p) 

du 

dr 
; i . i7) F(r) 

dBAp) 
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and finally the frequency (cf. [1] and Remark 2.16) 

r R B r(p)\Vu\2 D(r) 
1.18 U(r 

dB r p) u I ( 

;i.2o) 

Lemma 1.19. If u is harmonic then U is monotone nondecreasing. 

Proof. To show this note that 

D'(r) I'r 
(logU)'(r) 

D(r) I(r) 

Further, from the first variation of energy, i.e., Proposition A.23, we 
have that 

D'{r)=r2-n Z \Vu\2 + ^—n D(r) 
JdB r(p) r 

:i.2D 2r 2-n 

dB r(p) 

du 

dr 

F(r) 

and, since Au2 = 2|Vu|2, 

I'(r)=r1-n {Vu2,Vr) + rl~n u2Ar + - -I(r) 
dB r(p) JdB r(p) r 

1 n 

n.22) 

Therefore 

1-n Au2 = 2rl~n |Vu|2 = 2 D r 
B r(p) B r(p) r 

;i.23) (logUy{r) = D r 2 D ( r 

;i.24) 

;i.25) 

D{r) rI{r) 
2-n R \du\2 , , 

D(r) rI(r) 

2r 3-2n 

D(r)I(r) 8B r(p) 

du 

dr 

d 

8B r(p) 
2 

u 

dB r{p) dr 

file:///du/2
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From the Cauchy-Schwarz inequality we get that 

(1.26) ( l o g U ) ' > 0 . 

q.e.d. 

We will later see (Theorem 1.66 and Lemma 1.26) that in the case 
of a cone many U are in fact constant. 

Next we have the following: 

L e m m a 1.27. If u is harmonic and U is constant, then u(r,9) = 
f(r)g(9). Conversely, if u(r,9) = f(r)g(9) is harmonic, then U = p, 
f ( r ) = r p and ^g + p(p + n — 2)g = 0. 

Proof. Since U is constant, then by the equality in the Cauchy-
Schwarz inequality, see (1.23), we have 

du . . 
1.28 — = h(r)u. 

or 
Integrating (1.28) shows that u(r, 9) = f(r)g(9). The lemma now follows 
from Lemma 1.7 and an easy computation. q.e.d. 

L e m m a 1.29. If u e H d(C(N)) then U < d. 

Proof. Equation (1.22) is equivalent to 

(1.30) ( l o g I ( r ) ) ' = H U r . 
r 

Integrating equation (1.30) yields 

(1.31) I(r) = exp( r ^^-dt)I(s). 

Since U is monotone nondecreasing, we see that U must be bounded by 
d. q.e.d. 

Definit ion 1.32. (Order at infinity). If u is harmonic, then we 
define the order at infinity of u, ord0 0(u) , by 

(1.33) ord0 0(u) = lim U(r). 
r—>oo 

Note that this limit exists since U is monotone nondecreasing by 
Lemma 1.18. When u has polynomial growth, then Lemma 1.28 shows 
that ord0 0(u) is finite. Likewise, the monotonicity of U allows us to 
make the following definition. 
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Definit ion 1.34. (Order at the vertex). If u is harmonic, then we 
define the order at the vertex of u, ordo(u), by 

(1.35) ordo(u) = lim U(r). 
r—»0 

L e m m a 1.36. If u and v are harmonic functions, then 

(1.37) ordoo^u + v) < maxford00(u), ord ̂  ^v)} • 

Proof. By the Cauchy-Schwarz inequality, we have that 

( 1 3 8 ) log(I u + v ) < l o g ( 2 I u + 2 v ) 

<log(4) + m a x f l o g ( u ) , l o g ( v ) } . 

Further, from (1.30) it follows that 

(1.39) ( l o g I ( r ) ) ' = U r l 

for any harmonic function. If ord0 0(u + v) > maxford 0 0(u) , ord 0 0 (v)}, 
then there exist an R > 0 and an e > 0 such that for any r > R, 

(1.40) (logI u+v(r))' > max f ( logI u(r)) ' , (log v(r)) '} + - . 

Since - is not integrable, this would contradict the inequality in (1.38); 
therefore, (1.37) follows. q.e.d. 

L e m m a 1.41. Suppose that u and v are harmonic functions on 
C(N). If in addition v(r,9) = r p g(9), then 

(1.42) r1'n Z uv = r2p Z uv. 
JdB r JdBi 

Proof. Using Green's formula, we get that 

d- (rx-n Z uv) =rx~n Z ^-(uv) 
dr JdB r JdB r or 

l-n J u 1-n Z dv : i - 4 3 ) =r v ^ + r udr 

'1.44) =2r1~n Z u^-. 
dB r dr 
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From the homogeneity of v, we have that -v = p v. Substituting this 
into (1.44), 

Integrating (1-45) yields (1-42) and the lemma follows. q.e.d. 

Definit ion 1.46. We say that two harmonic functions, u and v, on 
C(N) are orthogonal if 

(1.47) / uv = 0. 

Note that by Lemma 1.40, if v is homogeneous, and u and v are 
orthogonal in the sense of Definition 1.45, then 

(1.48) uv = 0 
dB r 

for all r > 0. Also note that from the maximum principle it follows that 
the left side of (1.47) defines an inner product on the space of harmonic 
functions on C(N). 

L e m m a 1.49. Suppose that u is harmonic on C(N) with ord ̂  ^u) 
= d < oo and that u is orthogonal to the homogeneous harmonic func­
tions whose growth is less than d. Then for r > s > 0, we have 

(1.50) D(r) > (-) D(s). 

Proof. Let A be given by (1.7), tha t is, 

(1.51) \ = d(d + n-2). 

By the orthogonality assumption and Lemma 1.40, we get the following 
scale-invariant Poincare inequality for the cross-section dB r: 

(1.52) dB R j j > 4 . 
h dB uc 

where r u is the tangential gradient. Note that 

(1.53) j r u j 2 = j r T uj2 + 
du 

dr 
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Using (1.53), we can rewrite (1.52) as 

(1.54) rD'(r) - (2 - n)D(r) - F(r) > 2\I{r) . 

From the first variation of energy (see equation (1.21)) it follows that 

(1.55) D'(r) = 2Fr-. 
r 

Eliminating F(r) in (1.54) and using (1.55), we have 

,, ^ 2(2-n)D(r) 2\I(r) 
(1.56) D'(r) - — '—-t > — . 

Dividing (1.56) through by D(r) and noting that I = U 1 > d 1 , give 

D'(r) 2(2-n) 2A 2A 
(1.57) — - - > > . 

D(r) r ~ rU{r) ~ dr 
Substituting (1.51) for A in (1.57), combining the - terms, and rewriting 
the first term as a logarithmic derivative, we obtain 

2d 
(1.58) ( l o g D ( r ) ) ' > — . 

r 

Integrating (1.58) yields (1.50). q.e.d. 

L e m m a 1.59. If u is harmonic, u(0) = 0, and ordo(u) = 0, then u 
is identically zero. 

Proof. We may assume that u is not constant; this implies that 
I(r) is positive for every r > 0. By (1.31) we get 

(1.60) I{r) < 2 d I (r 

where d = U(l) and we take r < 1. From the scale-invariant Poincare 
inequality, we have that 

2 2 T 2 2 2 (1.61) A i / u2<r2 i r u ^Kr2 | r u , 
JdB r JdB r JdB r 

where Ai is the first eigenvalue of the Laplacian on N, and r u is the 
tangential gradient of u. Using (1.60) and the monotonicity of I , and 
integrating (1.61) from r to r we are led to 

r 

2-2dX1rI(r) <\xrI (-) < 2Xt I(t)dt 

2r 

This shows that U(r) > A i 2 - 2 and the lemma follows. q.e.d. 

;i.62) 

2rD(r 
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Corollary 1.63. Suppose that u is harmonic on C(N) with 
ordoo^u) = d < oo and that u is orthogonal to the homogeneous har­
monic functions whose growth is less than d. Then u is homogeneous. 

Proof. By Lemma 1.58, we may assume that ordo(u) > 0; let 
c = ordo(u). By the definition and monotonicity of U, 

(1.64) cD{r) < I{r) < dD{r) . 

Therefore, by Lemma 1.48, for r > s > 0, we have 

c /r\2d 

(1.65) I r ^ d s ) I s -

Setting r = 1 and taking s < 1, we see that 

(1.66) I(s) < cjs2d I(l) . 

By equation (1.31), (1.66) implies that ordo(u) = d. Since U is mono­
tone, we conclude that U is constant. The corollary now follows from 
Lemma 1.26. q.e.d. 

We are now ready to give a second proof of Theorem 1.10. 

T h e o r e m 1.67. (Harmonic functions with polynomial growth on 
cones; second version). If N n~l is a closed (n — 1)-manifold, then 

(1.68) dim(H d(C(N))) = dim(E d{d+n_2)(N)). 

In fact, if u G H d(M) then 

(1.69) u(r,0)= X rVj g t f ) , 
p j-Cd 

where g j is an eigenfunction with eigenvalue Xj. 

Proof. The inequality " > " in (1.68) follows from Lemma 1.7. We 
will show the reverse inequality, i.e., " < " , by induction on j . For j = 0 
we have by Lemma 1.28 that ord0 0(u) = 0; by the monotonicity of U, 
and Lemma 1.18, u must be constant. Assume now that the theorem 
is true for p j and will show that it is true for p j+i- Given u G H p + 1 , 
by the inductive hypothesis and Lemma 1.35 we may assume that u = 
u' + u" where u' G 'HPj+1, u" = P k<p j r p k g k{0)1 and R Bi u'v = 0 for 
all v G H p j - We have therefore, by Lemma 1.40, that JdB r u'v = 0 for 
all r and for all v G H p • By Corollary 1.62, we conclude that u is 
homogeneous; the theorem follows. q.e.d. 
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R e m a r k 1.70. For Ric N > (n — 2) then the case d = 0 in Theo­
rem 1.10 or Theorem 1.66 is essentially a special case of the Liouville 
theorem of Yau, [56]; the cases 0 < d < 1 follow from the gradient esti­
mate of Cheng-Yau, [15], and is in this case equivalent to Ai > (n — 1) 
(Lichnerowicz's theorem, [45]). 

E x a m p l e 1.71. In many cases where Ric N > (n — 2) and N is 
diffeomorphic to S n _ 1 , it is possible to round off the metric on a cone 
while preserving the condition that the Ricci curvature is nonnegative. 
In fact the change in the metric can often be done by a compactly 
supported change in the warping function. As a consequence of Theorem 
1.66 and Proposition 11.5 we see that for such a perturbation dim(Td) = 
d im(E d (d+n_ 2 ) (N)) . 

2. Tools to s t u d y the growth of harmonic funct ions on 
manifolds 

From now on, unless explicitly stated otherwise, let M n be an n-
dimensional open manifold with nonnegative Ricci curvature. Set 

Vol{B r{p)) 
(2.1) V M = lim 

oo 

note that by the volume comparison theorem this limit exist (in fact the 
quantity in (2.1) is nonincreasing) and is independent of the point p. We 
will also assume that M has Euclidean volume growth, that is, V M > 0. 
Fix a point p G M and let G denote the global Green's function on M 
with singularity at p. It is well known that G exists in this setting (see 
for instance [52]). 

For ease of exposition, we will henceforth restrict our attention to 
the case of n > 3. The case n = 2 was done earlier by Li-Tam, [42] (in 
fact, for surfaces with finite total curvature). For another proof in the 
case n = 2 using nodal sets see Donnelly-Fefferman, [27]. 

Set 

When M is R n, the function b defined in (2.2) is just the distance 
function to p. When studying the global analytic properties of M, 
the function b is the proper replacement for the distance function (cf. 
Proposition 2.21; see also [17]-[19], [6]). 



h a r m o n i c f u n c t i o n s w i t h p o l y n o m i a l g r o w t h 15 

(2.3) 

With this choice of b we have 

V M 
Vb 

( 2 - n ) V n ( i 
b n _ 1 V G 

IVbI 
(2.4) Ab=(n-l)i—-t 

and 

(2.5) Ab2 = 2n\Vb\2. 

We define the following quantities 

(2.6) I(r) 1-n u 2 |Vb| , 
b=r 

(2.7) D(r) 2 - n IVuI 
b<r 

(2.8) F(r) 3 — n du 

dn 
|Vb|, 

and finally the frequency function (cf. [1] and Remark 2.16) by 

D(r) 
(2.9) U(r 

Ir) 

Observe that if r < s, then 

(2.10) 
2 —n 

D r < r D(s) 

R e m a r k 2 .11 . S.Y. Cheng, [14], showed that locally the critical 
sets (sets where the function is constant and its gradient vanishes) of 
any harmonic function are of codimension two on any smooth manifold 
(see also Hardt-Simon, [30]; their results are valid for low regularity 
elliptic equations). Since the critical sets of b coincide with those of G 
(which is harmonic), it is easy to see that these calculations are valid 
on all level sets of b (and not just at regular values). 
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Differentiating (2.6) gives 

D(r) 
(2.12) I'{r) = 2 

and therefore 

(2.13) ( logI ( r ) ) ' = H U r 

r 

From (2.13) we have for s > r > 0 

(2.14) I (s) = exp (2 Z s U t - d t I{r) . 

The quantity I u(r) is a weighted average of u2, and I i ( r ) is the 
weighted volume of the level set b = r. By (2.12), Ii(r) is constant. 
From the definition of b it is easy to see that 

(2.15) I ( r ) = n V M<nV n ( l ) . 

R e m a r k 2.16. This generalization of the usual frequency function 
for harmonic functions (and harmonic maps) on Euclidean space has the 
advantage of being well defined globally and reflecting the global ana­
lytic and geometric properties of the open manifold. When the manifold 
is Euclidean space, the monotonicity of the frequency is an analytic ver­
sion of the Three Circles Theorem of J. Hadamard. This type of ratio 
has been used by Almgren in his study of multi-valued harmonic map­
pings (see [1]), by Lin for the study of mappings to cones (see [46]), 
and by Gromov-Schoen in their work on harmonic mappings to singular 
spaces (see [29] and [51]). 

We shall use some asymptotic estimates of the Green's function on 
manifolds with nonnegative Ricci curvature. For the convenience of the 
reader, we recall these now. Note first tha t it follows directly from the 
Laplacian comparison theorem together with the maximum principle 
that the Green's function, G(x,y), satisfies 

(2.17) r2-n<G(x,y), 

where r is the distance from x to y. 
Regarding an upper bound on the Green's function, we have the 

following estimate (see [44] and [48]): 
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If n > 3 and M n is an n-dimensional manifold with Ric M > 0 and 
Euclidean volume growth, then there exists a constant C > 1 such that 

(2.18) r2~n <G(x,y) < Cr2~n . 

It follows from (2.18) that there exist positive constants (depending 
on M) C\ and C ì such that 

(2.19) C\r<b<C2r. 

R e m a r k 2 .20 . In [44], Li-Yau proved a stronger bound on the heat 
kernel which implies the bound on the Green's function. In fact, they 
got an estimate even in the case where M does not have Euclidean 
volume growth. 

We shall need the following improvement of this estimate. This 
proposition shows that in the case of nonnegative Ricci curvature and 
Euclidean volume growth the Green's function has conical asymptotics; 
cf. [6]. 

P r o p o s i t i o n 2 . 2 1 . ([22]). If n > 3 and M n is an n-dimensional 
manifold with Ric M > 0 and Euclidean volume growth, then for each 
fixed x Ci M 

(2.22) lim Gxy V ° ( 1 ) 

r(y)^oo r2 n V M 

Observe that (2.22) implies the strengthening of (2.19): 

b 
(2.23) lim - = 1. 

r—>oo r 

Furthermore, from Section 4 of [6] and (2.23) given any S > 0, there 
exists R = R(p, S) > 0 such that for all r > R, we have 

(2.24) Z | | V b | 2 - l |2 < 5Vol(b< r) 
b<r 

and 

(2.25) b |Hess(b2) - 2g\2 < 5Vol(b < r) , 

where g is the metric tensor on M. 
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In fact, all tha t we essentially require of G (for this section and 
Sections 3 and 4) is tha t it is harmonic on an annulus and C° close to 
a multiple of r2~n, where r is the distance to the center of the annulus. 
It then follows from [6] that b has the properties similar to (2.24) and 
(2.25) (see Section 4 of [6] and cf. [22]). 

We will also use the following meanvalue inequality of Li-Schoen, 
which for convenience we state only for the case of nonnegative Ricci 
curvature. 

Propos i t ion 2.26. (Li-Schoen, [40]). Suppose that M n is an n ­

dimensional manifold with Ric M > 0 and v is a nonnegative subhar-

monic function on M. Then 

(2-27) s u p v < C Z v, 
B r(p) Vol(B,(p)) B {p) 

l 2 

where C = C{n). 

Often, we will get natural integral bounds for harmonic functions 
and their gradients; the meanvalue inequality, Proposition 2.26, will 
allow us to get supremum bounds on a subset. 

Finally, we will use that for each r, I(r) defines a quadratic form on 
the linear space of harmonic functions. The associated bilinear form is 
given by 

(2.28) rx~n uvjVb 

for harmonic functions u and v. Note that from the maximum principle 
we have that for the regular values, s, of b, (2.28) defines an inner 
product on the space of harmonic functions on {x j b(x) < s}. Clearly, 
this also follows from the monotonicity of I. 

3 . Lower bound of the frequency 

In this section, we will give several versions of a lower bound for 
the frequency of a harmonic function. In a future paper we plan on 
undertaking a more careful study of this and some of its consequences. 

We now define quantities analogous to those of Section 2 which are 
technically easier to work with. Let 

(3.1) E(r) = r2-n Z jVuj 2 jVbj 2 

b<r 
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and 

(3.2) W(r) 
E(r) 

I (r) 

We will first show that when M has Euclidean volume growth, the 
quantity E is equivalent to D when the growth of D is controlled. By 
definition, the equivalence of D and E implies the equivalence of U and 
W. 

Propos i t ion 3 .3 . (Equivalence of E and D). Let M n be a manifold 
of nonnegative Ricci curvature and Euclidean volume growth. Fix p G 
M. Given e > 0, i7o > 1, and y > 1, there exists R = R(p, j , e, QQ) > 0 
such that if r > R, 1 < Ci < QQ, and u is any harmonic function on M 
with 

(3.4) 

then for all r < s < Çlr 

D{2Qr) < jD(r) 

(3.5) log 
D(s) 

E(s) 
e 

Proof. Note that |1 — s| < -^ implies that 

(3.6) |log(s)| < 
i_ t 

< e. 

From [6] and the asymptotics of the Green's function, Proposition 
2.21 (see also the remarks following that proposition), given any S > 0, 
there exists R = R(p, S) > 0 such that for all r > R, we have 

(3.7) 

and 

(3.8) 

b l o g -
r 

S. 

IVbI 
b<r 

l\ < 52Vol(b< r) 

Note that (3.8) implies by the Cauchy-Schwarz inequality that 

(3.9) | V b | 2 - il < 5Vol(b< 
b<r 
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We shall assume that S is small enough to arrange that exp(25) < | . 
By definition, we have for s > R, 

jD(s)-E(s) 

(3.10) 

2-n 

2 2 < s sup jVuj s 
b<s 

V u j 2 ( l - jVbj2) 

1 1 - jVbj2 | 
b<s 

< s2 sup jVuj2 ÄV n( l ) exp(nS) , 
b<s 

where the last inequality follows from (3.7), (3.9), and the Bishop vol­
ume comparison theorem. 

From the Bochner formula, jVuj2 is a subharmonic function. Since 
exp(25) < | (3.7) and Proposition 2.26 yields that for r > R, 

(3.11) 
C 

sup jVuj2 < — - Q - 2 r - 2 D ( 2 Q r ) ; 
b<îîr V M 

where C\ = C\(n) > 0; in (4.22) we do this again in more detail. 
Using (3.4), (3.10), and (3.11) we obtain, for r < s < Çlr, 

jD(s)-E(s)j< 

(3.12) < 

V M 

V M 

V M 

D(2Çir)SV n(l) exp(nS) 

yD(r)5V n(l) exp(n5) 

jD(r)5V n(l) Q V 

Finally, to finish the proof, we use the trivial bound, for s between r 
and Çlr, 

(3.13) 

and set 

(3.14) 

D(r) 2 - n j u j 2 r 2-n 

b<r 
j u j 2 Qn-2D(s 

b<s 

, i r l l 4 Q2~n V M z n e 

q.e.d. 

Lemma 3.16 will illustrate some of the advantages of working with 
E as opposed to D; the main advantage comes from the form of the first 
variation formula (see the appendix). 
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Differentiating (3.1) gives 

(3.15) E'(r) = r2-n Z |Vu| 2 |Vb | + (2 - n)Er- . 
b=r r 

From this, we will see in Lemma 3.16 that r~2E(r) is nondecreasing. In 
Section 4, we will investigate other monotonicity properties of E. 

L e m m a 3.16. (E grows at least quadratically). Let u be a har­
monic function on a manifold M with nonnegative Ricci curvature. 
Then r~2E(r) is monotone nondecreasing. 

Proof. First we note that for any subharmonic function v, 

(3.17) J v(r) = r1'n Z v\Vb\ 
b=r 

is monotone nondecreasing; this follows from 

(3.18) J'v(r) = r1-n Z Av, 
b<r 

which uses Stokes' theorem and (2.4). In particular, the above holds for 
v = |Vu|2 since this is subharmonic by the Bochner formula. 

Applying the co-area formula to (3.1), we obtain 

(3.19) r~2 E u(r) = r~n s n-1J v(s)ds. 
o 

Differentiating (3.19) gives 

r 

(3.20) (r-2E u)' = -nr-n-1 s n _ 1 J v(s)ds + r _ 1 J v(r) . 
o 

Integrating the first term of (3.20) by parts yields 

(3.21) (r~2E u)' = r~n-1 Z s n J'v(s)ds > 0 . 
o 

q.e.d. 

If the frequency is locally bounded from above, we will get a lower 
bound for the frequency. We will have two versions of this lower bound. 
First, Lemma 3.22 will give a crude lower bound for the frequency func­
tion and later, in Section 4, Corollary 4.40 a more refined version. 
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L e m m a 3 .22 . (Lower bound of the frequency; crude version). Let 
M be an open manifold with nonnegative Ricci curvature and Euclidean 
volume growth and let p G M be fixed. Given Ci > 2, there exist C = 
C(n) > 0 and R = R(p) > 0 such that for any harmonic function u 
with u(p) = 0, we have for r > R, 

(3.23) I(r) < CQ-2D(Qr) . 

Furthermore, if U(s) < d for r < s < Çtr, we get a lower bound for 
U{Çlr); that is, 

r ) 2 - 2 d 

(3.24) —C- < U(Qr) . 

Proof. By (2.23), we can choose R = R(p) > 0 such that for r > R 

4 
(3.25) b 2 l o g -

r 
< log 3 

which implies that the set fb < r} is contained in a ball of radius p r. 

As in (3.11), by Proposition 2.26, we have (since Ci > 2) 

C 
(3.26) s u p | V u | 2 < — - Q - 2 r - 2 D ( Q r ) , 

b<r V M 

where C\ = C\(n) > 0. 
By integrating equation (3.26) along geodesics starting at p and 

using the fact that u(p) = 0, we get 

4 C 
(3.27) s u p u 2 < - — - Q - 2 D ( Q r ) . 

b<r 3 V M 

The claim (3.23) now follows from the weighted volume bound for the 
level set, (2.15), with C = ±nC\. 

If U < d, then by (2.14), 

(3.28) I(Qr) < Q2d I(r) < CQ2d-2D(Qr) , 

and the second claim follows. q.e.d. 

We are now prepared to give a uniform lower bound for the maximum 
of the frequency on arbitrary annuli outside a compact set. In contrast 
to Lemma 3.22 the importance of this result is tha t it does not require 
any control on the function. 
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Corollary 3 .29. (Uniform lower bound of the maximum of the fre­
quency). Let M be an open manifold with nonnegative Ricci curva­
ture and Euclidean volume growth and let p G M be fixed. There exist 
C L = C L{n) > 0 and R = R(p) > 0 such that for any harmonic function 
u with u(p) = 0, we have for r > R, 

(3.30) max U(s) > C L . 
r < s < 2 r 

Moreover, given e > 0, there exists QL = f2L(n, e) > 2 such that for any 
harmonic function u with u(p) = 0, we have for r > R, 

(3.31) max U(s)>(l-e). 

Proof. Suppose that d is a uniform upper bound for the frequency; 
we will show that d cannot be too small. We apply Lemma 3.22 with 
Q = 2 to get an R = R(p) > 0 and a C = C{n) > 0 such that for r > R, 
if U(s) < d for s between r and 2r, then 

9 2 - 2 d 

(3.32) U ( 2 r ) > _ _ . 

Hence, we have 
2 2 - 2 d 

(3.33) d>——>0. 

This implies that d > C L = C L(n) > 0. 
Moreover, with the same R = R(p), for any Ci > 2 and the same 

C = C(n) > 0, if r > R and U(s) < (1 — e) for s between r and Çlr, 
then 

(3.34) 1 > U(Qr) > - C 2 e . 

This is not possible for Ci > QL = f2L(n, e) = m a x { C ~ , 2}. q.e.d. 

R e m a r k 3 .35. We will see in Section 4 that there are many large 
annuli on which the frequency function is almost monotone. As a result, 
Corollary 3.29 will imply a lower bound for the frequency function on 
the outer parts of these annuli. See Section 4 for a precise version, and 
[24] for other results in this direction. 

We will now show how to get control of the growth of D just from 
a bound on the growth of I (cf. Theorem 4.60). In later sections, this 
will allow us to work with bounds only on the growth of I . 
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Propos i t ion 3 .36. (Bounding the growth of D by the growth of I). 
Let M be an n-dimensional manifold with nonnegative Ricci curvature 
and Euclidean volume growth, and let p G M be fixed. There exists 
R = R(p) > 0 such that for r > R and any Ci > 1, if u is any harmonic 
function on M with u(p) = 0 such that 

(3.37) I(2Qr) < CI (r) , 

then 

(3.38) D(Qr) < C 2 C i D ( r ) , 

where C ì = C i {n) . 

Proof. By Lemma 3.22 we get an R = R(p) > 0 and a K = K ( n ) > 
0 such that for r > R, 

(3.39) I(r <KD{r). 

From (2.12), we have 

2ür D( \ 
(3.40) 2 Z —-^ = I(2fìr) - I (Or) < I (2 î î r ) , 

J Sir s 

and hence 

2îîr 
(3.41) 2 Z s n"2 D(s) < {2Qr)n-1I{2Qr) . 

Jür 

By definition, (2.7), s n~2D(s) is monotone nondecreasing, and therefore 

(3.41) yields 

(3.42) 2 (Qr)n-1 D(ttr) < 2n~l (fir)n"1I(2ttr) . 

Dividing through by 2(Qr)n~1 gives 

(3.43) D(Qr) < 2 n " 2 I ( 2 0 r ) . 

Combining (3.37), (3.39) and (3.43), we obtain (3.38) with C2 = 2n~2K. 

q.e.d. 
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4. Almost monotonicity of the frequency and almost 
separation of variables 

In this section we will show that when M has Euclidean volume 
growth the frequency function behaves much like it did in the cone 
case. In particular, we will first show that the frequency function is 
almost monotone (Proposition 4.11). This will allow us to show that 
harmonic functions with polynomial growth come close to separating 
variables on infinitely many large annuli (Theorem 4.60). 

Differentiating log W, we get 

(4.1) W r = E r - I r ' 

which together with (2.13), that is, with (logI)' = 2r~l U, implies 

E'(r) 2D(r) 
(4.2) (logW(r)y 

Er) rI(r) 

From the first variation of energy (Proposition A.23) it follows that 
(3.15) is equivalent to 

E'(r) =2r 2-n 

b=r 

du 

dn 

A-n 

IVbI + \Vu\2Ab2 

b<r 

(4.3) 1 - n Hess(b2) (Vu, Vu) + (2 - n) 
b<r 

E(r) 

F(r) 2 , , 
2—K—t + -E(r) 1 - n 

b<r 
Hess(b2)(Vu, Vu) 

where the second equality follows from (2.5) and (2.8). 
Substituting (4.3) for E'(r) into (4.2), we get 

(4.4) 

(log W(r))'=^ + F r \ 
r rE(r) 

1 - n R b<r Hess(b2)(Vu,Vu) 2D( 

E(r) rI(r) 

Grouping terms, we rewrite (4.4) as 

^~n R b<r Hess{b2){Vu,Vu) 
(logW(r))' 

(4.5) 

+ 

2 r 
r 

2F{r) 
rE(r) 

E{r) 

2D(r) 
rI(r) 
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By the divergence theorem, we can express D(r) as the boundary 
integral 

du 
(4.6) Dir) 2 - n 

dn 

Applying the Cauchy-Schwarz inequality to (4.6), we get 

D(r)2 r1'n u2\Vb 

du 

3 — n du 
\Vb\~1 

dn 
\Vb\~1 (4.7) =I(r) r3~n 

which is equivalent to 

2r2~n R | | u | 2 IVbI"1 2D(r) 
b=r I on I I I V / (4.8 

D(r) rI(r) 

In view of (4.8), we now rewrite (4.5) as 

> 0. 

(logW(r)y = 
2 r2-n R l n r i V b l " 1 2D(r) 

D(r) rI(r) 

(4.9) + 

+ 

2 

r 

2F 

rE 

rl~n R b<r Hess(b2) (Vu, V u ) " 

E(r) 

'r) 2r2~n R I f u h v b l - 1 

v / b=r 1 on I ! ! 
(r) D( r ) 

Define the first term in brackets to be 

[ Vless 
(4.1UJ (log W yr)) 

^ - n R^lnriVbI-1 2D(r) 
D(r) rI(r) 

note that by (4.8), [(log W)']ess is nonnegative. To this point we have 
not used any assumption on M other than the existence of a global 
Green's function. We will show that the remaining terms are small on 
many large annuli if M has nonnegative Ricci curvature and Euclidean 
volume growth, and u has polynomial growth. 

Examples of [26] (see Section 11) show that the frequency function is 
no longer monotone under the assumptions of Theorem 0.3. However, 
we will now prove almost monotonicity of the frequency function on 
many large annuli. 

file:///Vb/~1
file:///Vb/~1
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Propos i t ion 4 .11 . (Almost monotonicity ofW). Let M n be an n ­
dimensional manifold with nonnegative Ricci curvature and Euclidean 
volume growth. Fix p G M. Given positive constants 7, e, and i7o > 1, 
there exists R = R(p, 7, e, QQ) > 0 such that if 1 < Q < QQ, r > R, and 
u is any harmonic function on M with 

(4.12) D(2Qr) < jD(r) , 

then 

(4.13) Z min{( logW0' ( t ) ,0}d t> - e . 
r 

In fact we will show that 

(4.14) ZÜr\(logWy(t)- [(logWy(t)]ess\dt<e. 

Proof. Since the first term in (4.9) is nonnegative, (4.13) follows 
from (4.14). Therefore, it suffices to bound the integrals of the second 
and third lines in (4.9). 

We now recall some analytic facts. From the asymptotics of the 
Green's function and Section 4 of [6], given any S > 0, there exists 
R i = Ri(p, 5) > 0 such that for all r > R\, we have 

(4.15) 
b l o g -
r 

S. 

(4.16) \\Vb\2 -l\2 <52Vol(b<r) 
b<r 

and 

(4.17) Z |Hess(b2) - 2g\2 < 52 Vol(b < r) , 
b<r 

where g is the metric tensor on M. 

If we consider only S > 0 such that 

(4.18) exp(25) < 1 , 
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then (4.15) implies that for s > R\, 

fb<sgcB rjip), 

B s p-3(p) Cfb< 2sg . 
(4.19) 

From Proposition 3.3, we get an R2 = R2(p,y,S,Qo) > 0 such that 
D and E are equivalent; tha t is, for r > R2 and s between r and Qr, 
we have 

(4.20) log 
D(s) 

E(s) 
< S. 

We set R = maxfRi , R2g. 
Note also that Lemma 3.16 together with (4.20) implies that D is 

almost monotone; that is, for s between r and Qr, 

D(r) <E(r)exp(S) < E(s)exp(S) 

<D(s)exp(25) . 
(4.21) 

^D(s) e 

By the Bochner formula j r u j 2 is subharmonic. Therefore Proposi­
tion 2.26 and (4.19) yield that for r > R\, j r u j 2 is bounded by 

sup j r u j < sup j u j 
b<îîr 

(4.22) 

r(p) 

jruj 
b<2îîr 

< Ci V M " 1 ttr p ) 

= CQ-2r-2D(2Qr), 

where C\ = C\(n) > 0 comes from Proposition 2.26 and 

C = C V M ( p ) - n 2 n - 2 . 

Bounding the normal derivative by the full gradient, and using the 
weighted area bound for the level sets, (2.15), we see that (4.22) gives 
a bound for F. For s between r and Çlr, 

(4.23) F(s) 3 — n 

b=s 

du 

dn 
j rbj <CnV M D(2Qr). 
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We now bound the second line of (4.9) by 

^~n R b<s Hess(b2)(ru,ru) 2 s 

s 

(4.24) 
1 

2 + -
s 

E(s) 

s 2 s u p b<s | r u | 2 

E~{s) 

E{s)-D{sY 
E(s) 

|Hess(b2) - 2g\ 
b<s 

From (4.20) we get for s > R a bound on the above second term. We 
will now bound the first term in the second line of (4.24). From the 
monotonicity of E (see (4.21)) and (4.22), we have for s between r and 

(4.25) 
s2sup b<s\ru\2 D{mr) 

< C— < C7exp(ò) , E(s) E(r) 

where the second inequality follows from (4.20) and the hypothesis 
(4.12). We use the estimate (4.17) together with (4.15), the Cauchy-
Schwarz inequality, and the Bishop volume comparison theorem to bound 

(4.26) 
b<s 

|Hess(b2) - 2g\ < £V n( l ) exp(n^) . 

Put t ing it all together, we get a bound on the second line of (4.9), for 
r > R and s between r and Qr, 

2 s 

s 

l-n R b<s Hess(b2)(ru,r 

E(s) 

(4.27) <- [C7exp(Ä) ] [ÄV n(l)exp(nÄ)] 

+ - [exp(Ä) - 1] . 

Integrating (4.27) yields 

Sir 2 s 

s 

l-n R b<s Hess(b2)(ru,r 

Es) 

(4.28) 

< [Cyexp(5)][8V n(l) exp(nS)] l o g ^ 0 

+ 2 [ e x p ( 5 ) - l ] l o g O 0 

-C(î) 2 V o ( l ) 7 ^ o g ^ o + 2 [ e x p ( 5 ) - l ] l o g 0 0 . 
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It remains to bound the third line of (4.9); this must be done in an 
integral sense. We have 

(4.29) 

F s ) is2-n b=s u i v b 1 

sE(s) D(s) 

2s2"n R I f u d V b l - IVbI-1) 
b=s 1 on 1 VI I I I / 

+ 

D(s) 

D{s)-E{s) 

E(s) 
F(s) 
D(s) 

Using (4.23) and (4.20), and then (4.21) and (4.12), we get 

D(s) - E(s) 

E(s) 
F s 
D(s) 

(4.30) 

<(exp(5) - l)Cjexp(2S) 

< ( e x p ( 5 ) - l ) C 7 g . 

A similar application of (4.22), and then (4.21) and (4.12) yields 

2-n R I du I 
b=s Idn I IVbI - I V b I " 1 ! 

Dis) 

(4.31) < Cjs~n | |Vb| - |Vbl"11 ds exp(25) 
b=s 

IIVbI - | V b l _ 1 | d s . 
4 

< j C T s 
b=s 

By the co-area formula, we see that 

ür 

s \\Vb\ - |Vb | _ 1 | ds 
b=s 

I V b I 2 - 1 
{r<b<Qr} 

(4.32) 

r - n / | | V b | 2 - l | 
{b<îîr} 

Vol({b < Qr}) 

< SV ^(l)Qn exp(nS) 

n 
< 5vn(i)nn ' 4 

where the third to last inequality follows from (4.16), and the second to 
last from (4.15) and the Bishop volume comparison theorem. 
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Combining (4.30), (4.31), and (4.32), we get an integral bound for 
(4.29), 

"2F(s) 2s2-n R f e =s|u | 2 |Vb| - 1 " Sir 

sE(s) D(s) 

(4.33) < - C 7 ( e x p ( 5 ) - l ) l o g ^ o 

+ G0 2 C V U n . 
To control the four terms from (4.28) and (4.33), we first choose 

l 

Si = min { - l o g - , e 4 C ^ ) 2 V n ( l ) 7 l o g ^ o 

(4.34) 

re + 2 
3 \ 2 

e[C7V n ( l ) n _ 1 

Next, notice that for 0 < s < \ log | , 

(4.35) e x p s - l = 

therefore, choose 82 by taking 

( l 4 
(4.36) £2 = min - l o g - , e 

4 2 
exp tdt < — s 

32 
log^o 

128 
C 7 l o g ^ c 

Taking S = min{5i, 62}, each of the four terms from (4.28) and (4.33) is 
bounded by | , and the proposition now follows. q.e.d. 

Corollary 4 .37. Let M n be as in Proposition Jhll and let p G M 
be fixed. Given a positive constant e and 1 < Çio, there exists R = 
R(p, 7, e, S7o) > 0 such that if 1 < Ci < fio, r > R, and u is any 
harmonic function on M satisfying 

(4.38) D(2Qr) < jD(r) , 

then for all r < s < t < £ir we have that 

(4.39) 

where d = W(Qr). 

t x 2 ( l + e)d 
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Proof. This follows from Proposition 4.11 together with (2.13) and 
the equivalence of E(r) and D(r) (Proposition 3.3). q.e.d. 

In light of Proposition 4.11, the lower bounds for the maximum of 
U from Section 3 can now be used to derive pointwise lower bounds for 
the frequency on many annuli. 

Corollary 4 .40 . (Uniform lower bound of the frequency). Let M 
be a manifold with nonnegative Ricci curvature and Euclidean volume 
growth, and let p G M be fixed. Given | > e > 0, we let QL = ^ L ( n , e) 
be given by Corollary 3.29. Given y > 0 and S7o > &L> there exists 
R = R(p, 7, e, QQ) > 0 such that if r > R, QL < Q < QQ, and u is any 
harmonic function on M with u(p) = 0 and 

(4.41) D{2Çl2r) < yD{r) , 

then for s between Çlr and Çl2r, 

(4.42) (1 - 3e) < U(s) . 

Proof. From Corollary 3.29, there exists a R\ = R\{p) > 0 such 
that for r > R i , 

(4.43) ( ! " * ) < max U(s) . 

Given S > 0, Proposition 4.11 and Proposition 3.3 yield an Ri = 

Rzip-i 7> ài ̂ o) > 0 such that for r > R2, 

Q2r 

(4.44) / min{( logW)' ( t ) ,0}dt> -8, 

and for s between r and Q2r, 

U(s) 
(4.45) log- 6. 

W{s) 

Combining (4.44) and (4.45) we get for r < s\ < s2 < Q2r 

(4.46) U{sl) < esW(sl) < e2SW(s2) < e3SU(s2) . 

The corollary now follows from (4.43) and (4.46) by choosing 

1 1 e 
(4.47) 5 = - log 3 1 - 3e 

and R = max{Ri , R2J- q.e.d. 
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Definit ion 4 .48. (Almost separation of variables). Suppose that 
M n is an open manifold, p G M, e > 0, fr < b < Çlr} is an annulus, 
and u is a function on fr < b < Çlr}. We say that u e-almost separates 
variables on the annulus f r < b < Çlr} if there exists a function h : 
R —7- R such that for any r < s\ < s2 < £lr, 

(4.49) 
fsl<b<s2g 

b- h(b)u\Vb\ 
on 

< eI u(s2) 

The next goal is to show that harmonic functions with polynomial 
growth in fact almost separate variables on many large annuli. As in 
the conical case, we will show that a harmonic function almost separates 
variables by analyzing almost equality in the Cauchy-Schwarz inequality 
which implied the positivity of [(logW)']ess. This term is small because 
[(logW)'] is small and almost equal to [(log W)']ess by Proposition 4.11. 

We need some preliminary results which now follow. 

Propos i t ion 4 .50 . (U almost constant implies u almost separates 
variables). Let M n have nonnegative Ricci curvature and Euclidean 
volume growth, and let p G M be fixed. Given e, do, y > 0, and S7o > 1; 
there exists S = S (do, e) > 0 such that we have the following: there exists 
R = R(p, 7, do, e, S7o) > 0 such that if 1 < Ci < Çio, r > R, and u is any 
harmonic function on M satisfying 

(4.51) D(2Qr) < jD(r 

(4.52) 

and 

(4.53) 

max U(s) < do , 
rKsKÇlr 

U (Sir 

log U r ) 

S 
< 2 

then u e-almost separates variables on the annulus r < b < Çlr} in the 
sense of Definition Jh48. In fact, we can take h(s) f U(s) and choose 
S > 0 such that 

(4.54) S exp (6) < — . 
do 

Proof. Under the hypotheses, for each S > 0 there exists R$ > 0 
such that for R$ < r < s < Çlr, U(s) and W(s) are almost equal and 
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W(s) is almost monotone. That is, given S > 0, Proposition 3.3 and 
Proposition 4.11 guarantee the existence of an R$ = Rs(p, J, S, ^o) > 0 
such that for R$ < r < s < Qr, 

(4.55) log 
D(s) 

E(s) 
< 2 ' 

and 

(4.56) | ( l o g W 0 ' ( t ) - [( logW)' s ) ] e s s |d t< -

Note that (4.55) is equivalent to having for r < s < Çlr 

(4.57) log 
U(s) 

W{s) 
< 

Further observe that (4.55) implies by Lemma 3.16 that if s < s2 

(4.58) D(s) < exp Ç E (s) < exp i E{s2) < exp (5) D{s2) 

Therefore, by the co-area formula, we have for r < s\ < s2 < fir, 

fsi<b<s2g 

f)u 
b~n b— -U{b)u\Vb\ dn 

s 

si 

s 

si 

2-n 

b=s 

du 

dn 

du 

i 
s s—— IVbl 2 - U(s) u |Vb 

b=s dn 
2 

dn 

+U2(s)s-

\Vb\-1-2s1-n U(s) u u 
b=s dn 

u2\Vb\ 

s 
D(s)[(logW)'( 

sl 

<^exp(6)D(s2)Z r [(logWy 
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<-exp(S) D(s2) (logWy(s) 

+ \exp(5) D(s2) Z r \(logW)'(s)- [(logW)'{ 

(4.59) < 2exp(5) D^) 

< 2exp(5) D^) 

W(nr)5 
log W(r) 2 

U(Qr) 3 / 

< exp (S) U(s2) I(s2) S 

< S exp (S) do I(s2 ) . 

The claim now follows by choosing S by (4.54) and then taking R = R$. 
q.e.d. 

As an application of the techniques developed, we give now an 
asymptotic description of harmonic functions with polynomial growth 
on manifolds with nonnegative Ricci curvature and Euclidean volume 
growth. Namely, we show that a harmonic function with polynomial 
growth on such a manifold almost separates variables on an infinite se­
quence of large annuli. By improving the proof, we will in Section 10 
give a generalization of this for a set of independent harmonic functions. 
This generalization will be a key step in the proof of Theorem 0.3. 

Since it is the generalization of Theorem 4.60 given in Section 10, 
and not Theorem 4.60 itself, tha t we need in the proof of Theorem 0.3 
the reader can choose to skip Theorem 4.60. 

T h e o r e m 4.60. (Asymptotic description of harmonic functions with 
polynomial growth). Let M n be as in Proposition 4.11, and u G H d(M). 
Given Ci > 2 and e > 0, there exists a sequence r j —> 00 such that u 
e-almost separates variables on the annulus A r^r. 

Proof. We can assume that u(p) = 0. By the Cheng-Yau gradient 
estimate, |Vu| grows polynomially of order at most d — 1, and d > 1 if 
u is nonconstant. Combining this with the Bishop volume comparison 
theorem, we see that D(r) grows polynomially of order at most 2d. 

Choose an eo > 0 such that 

(4.61) e0 exp e0 < 
12d 

Let nL = QL(n, ±) > 2 and Rx = Ri(p) > 0 be given by Corollary 
3.29. Then for any r > R\, the maximum of U on the interval [r, ÇÎL r] 
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is at least | . Set fin = max{S7, QL}- Choose m > 2n and S > 0 so that 

(4.62) I 
exp 25 < - , 

and 

log 8d en 
4-63 - 2 — < -%-. y ' m - 2 4 

Since D grows polynomially of order at most 2d and 

hmd 
4.64 2d < , V ' 2m+l, 

there is a sequence r i —> oo such that 

(4.65) D(nlm+1r) < n5
0dm D(r), 

(cf. Corollary 7.9). 
By Proposition 4.11 and Proposition 3.3, we get an 

R2 = R2(p,n5
0dm,8,nlm+1)>o 

such that for r i > R2, 

(4.66) Z ° ' m in{ ( logW) ' ( t ) , 0}d t> - 5 , 

and for s between r i and ^ " r , 

(4.67) 
l D(s) 

< 6. 

Set R = max{Ri , R ̂ } -
From (2.10), we have 

(4.68) D(nlm r i) < Qldm+n~2 D{r i) . 

By the definition of U and (2.13), 

s Dir 
2m 

< (5dm + n - 2) log O0 + 35 

<6dmlog(i7o) , 
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where the inequality uses (4.62), (4.63), and (4.68). Since U is nonnega­
tive, the bound (4.69) implies that for some s i between fiJJr and Çt^m r i 
we have 

(4.70) U(s i)<3d. 

By (4.67) and the 5-almost monotonicity of W on the interval [r i, Çt^m r i\, 
(4.66), the bound (4.70) implies that for r i > R2, and s between r i and 
O m r i 

(4.71) W{s) < 3dexp(25) < d , 

where the last inequality follows from (4.62). By the 5-almost mono­
tonicity of W on the interval [r i, ^ " r ] , (4.66), the choice of fio, and 
(4.67), we have for r > R and s between f2or i and ^cm r i' 

(4.72) i<lexp(-25)<W(s), 

where again the last inequality follows from (4.62). Combining (4.71) 

and (4.72) yields that for s between f2or i and ^cm r i' 

(4.73) - <W(s) <4d. 

Again by the 5-almost monotonicity of W on the interval [r i, Çt^m r i\, 
(4.66), together with (4.73), we see that for r i > R, there exists an 
integer 2 < k i < m such that 

,4.74) log(W^)<2S+logd<^. 
' \W(Sk-lr i ) ' m-'2 2 

By (4.67) and (4.74), we conclude that 

(4.75) l o g f U«k r ) « . . 

From (4.67) and (4.73) it is seen that for s between f2or i and ^ r i, 

(4.76) l<U(s)<5d, 
8 
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2 U s ds 
s 

<log(14d) + 20d log( f ì 0 ) -

We can now apply Proposition 4.50 to get an 

R3 = R3(p, UdQ2
0
0d, 5d, e, Q2

0) > 0 

such that for r i > m a x i ? , R3}, u e-almost separates variables on the 
annulus f^0

Î_ r i < b < f l0*r i}. Finally, we note that when u e-almost 
separates variables it also does so on all subannuli, and the claim follows 
since Ci < S7o- q.e.d. 

5. Preserv ing a lmost orthogonal i ty 

In this section, we will use the previous work on almost separation 
of variables to show how to preserve the almost orthogonality condition 
for harmonic functions on an annulus. The importance of the results of 
this section is that it will allow us to show that two harmonic functions 
u and v have a definite separation at b = r 

provided that : 

(1) they have a definite separation at b = Çlr, 
(2) the growth of u and v from b = r to b = Qr has a definite bound, 
(3) we have good control of v between b = r and b = Çtr. (In 

fact v needs to be very close to separating variables on the annulus 
fr < b < Qr}.) 

We continue to take M n to be an n-dimensional manifold with non-
negative Ricci curvature and Euclidean volume growth. 

Propos i t ion 5 .1 . (Almost preserving orthogonality). Fix p G M, 
Ci > 1, and suppose that u and v are harmonic functions on the an­
nulus r < b < Çlr}, v S-almost separates variables on fr < b < Sir}, 
r < s2 f Qr, and 

(5.2) s2
1~n Z uv\Vb\ = Q. 

b=s2 
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Then for r < s\ < s2, 

(5.3) si 
l-n uvjVbj 

b=sl 

< " s 
4d+2 

I u{s2)I v{s2) 

where d = max{fev(s) j si < s < s2}, and h v is as in Definition 4.48. 

Proof. By differentiation, we get 

d 

ds 
A-n uvjVbj 

b=s 

(5.4) 

{l-n)s-n / uvjVbj 
b=s 

i_n Z ( du dv 

Z b=s Os Os 

l-n Ab 

+ s1 n uv-b=s 

using equation (2.4), we have 

d 

ds 
A-n uvjVbj A-n 

(5.5) 2s l-n 

Vbj 

du dv 
v— + u— jVbj 

us us 

dv 

on 

where the second equality follows from Green's formula together with 
the assumption that u and v are harmonic. Define err(s) by 

(5.6) s 
d 

ds 
A-n uvjVbj 

b=s 
2hjs) A-n uvjVbj 

b=s 
+ err(s) . 

By (5.5) and the definition (5.6), we get 

(5.7) jerr(s)j < 2s1"n s u- h v(s) 
b=s on 

uvjVbj 
b=s 

It follows from the Cauchy-Schwarz inequality that 

s u- h v(s) 
b=s on 

uvjVbj 
b=s 

juj 
b=s 

dv 
s— h v(s) vjVbj 

on 

(5.8) u 2 j V b j s p - - h v(s) vjVb\ - ^ j 
b=s b=s dn j jVb 

^ u s) Z (s^-h v(s)vjVbj - J - . 
b=s dn Vb 
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Combining equations (5.7) and (5.8) gives 

(5.9) s-'lerrisil2 < 4I u(s) s~n b fs^--h v(s)v Vb l 

Vbl 

Integrating equation (5.9), by the co-area formula and the monotonicity 
of I (specifically I u(s) < I u(t) for s < t), for r < s\ < t < Qr, we have 

s-1\err(s)\2ds<4I u(t) f b~n b— - h v(b) v\Vb 
si<b<t} 

(5.10) < A8I u(t)I v(t) . 

dv 

Here the second inequality follows since v 5-almost separates variables 
on the annulus fr < b < Çlr}. 

If we now write 

(5.11) g(s) = s i _ n uv\Vb\, 
b=s 

we see that by assumption 

(5.12) g(s2) = 01 

and that (5.6) implies 

(5.13) s\g'(s)\ < 2d\g(s)\+ | e r r (s) | . 

It remains to get an upper bound for |g(si) | . For ease of exposition, 
we set 

(5.14) a2 = 45I u(s2)I v(s2). 

If g(si)l ^ a) then we are done. Suppose therefore that |g(si) | > a, 
and let s be the smallest s > s\ such that \g(s)\ = a (such an s < s2 

must exist since g(s2) = 0). Replacing g with — g if necessary, we have 
for si < s < s , 

(5.15) g(s)>a. 

From (5.13) and (5.15) it follows that for s\ < s < s , 

(5.16) s Ulogg)'\< 2d + J y-^ . 
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Now integrating (5.16) leads to 

/ x / x s Id |err(s) 
(5.17) l o g g ( s l ) - l o g g ( s ) < s — + 

as 
ds. 

By absorbing inequality 2xy < X x + A y we get 

2 

(5.18) err s < 1 |err(s) 

- 2 a 
+ 2. 

Using (5.18) and substituting g (s) = a, from (5.17) we obtain 

si 

log g(s1) < log a + (2d + 1) log 

(5.19) 

si 

1 
H— a 

4 
s 1 | e r r ( s ) | 2 ds . 

Combining (5.19) with the estimate (5.10) gives 

s 
logg(si) < l o g a + (2d+ 1) log • 

s i 

1 
+ ^ a 2 4 5 u ( s 2 ) I 4 s 2 ) 

log a + (2d + 1) log — + -
s i 4 

Exponentiating (5.19) yields 

(5.20) 
2d+l 

a exp - , 

and the result follows since s < s2 and exp 5 < 2. q.e.d. 

For the applications it is crucial tha t the S in Proposition 5.1 is 
chosen small compared with Ci and the growth of u and I v from b = r 
to b = Qr. Namely given this then Proposition 5.1 implies that u and 
v are almost orthogonal at b = r in the following sense. 

Definit ion 5 .22. (Almost orthogonality). Let u and v be harmonic 
functions defined in a neighborhood of b = s. Given e > 0, we say that 
u and v are e-almost orthogonal at s if 

(5.23) A-n uv\Vb\ 
b=s 

<eI(s)I(s). 
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Noting that any linear functional on a Hilbert space is determined 
by its kernel and its action on any element orthogonal to the kernel, we 
see that Proposition 5.1 has the following simple corollary. 

Corollary 5.24. (Almost preserving the inner product). If u and v 
are harmonic functions and v 8-almost separates variables on 
fr < b < Sir}, then for r < s\ < s2 < Çlr 

s2
1~n Z uv\Vb\ - exp 2 Z s h s ds s!1"n Z uv\Vb\ 

b=s2 si s b=s\ 
/ \ 6d+2 

(5.25) < 3 2 < n s I u(s2) I v(s2) , 

where 

(5.26) d= max h v(s) . 

Proof. Orthogonally decompose u into 

(5.27) u = u\ + av , 

where 

(5.28) s2
l-n Z ulv\Vb\ = Q. 

b=s2 

We apply Proposition 5.1 to u\, and use the fact that v S-almost sepa­
rates variables to control the remainder. q.e.d. 

We note that in the applications we will use Proposition 5.1 and not 
Corollary 5.24. 

6. B o u n d i n g the number of a lmost or thonormal 
Lipschitz funct ions 

In this section we will bound the dimension of the space of almost L2-
orthonormal functions with a given Lipschitz bound under very general 
conditions. 

Definit ion 6 .1 . Given (X,d) a compact metric space, define C(X) 
to be the set of Lipschitz functions on X. We set 

Ck(X) = fue C{X) | Lip(u) < k}. 
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Definit ion 6.2. (^-almost orthonormal functions). Let (X,fj,) be a 
measure space with a probability measure, fj,, and suppose that fi, • • -, f m 
are L2 functions on X. We say that the f i are ^-almost orthonormal if 

(6.3) 

and for i / j 

(6.4) 

f 
X 

f i f j 
X 

< 1]. 

In the next proposition, we think of r as the scaling factor and Do 
and k as the constants. 

Propos i t ion 6.5. Let (X,d,ß) be a compact metric space with a 
probability measure, fj,, and diam(X) < Dor. Given k > 0, there exist 
at most N — 1 ^-almost orthonormal functions in L kr-i(X), where N = 
N (Do , k, v) and v is the maximal number of disjoint balls of radius -^. 

Proof. Let fi, • • -, f m be such functions. We let B\,..., Bv be a 
maximal disjoint covering of X by balls of radius -r\ x\,..., xv denote 
the centers of the balls. It follows from maximality that double the 
balls covers X. We now partition X into v (disjoint) subsets Si,.. .,SU, 
where B i C S i and S i is contained in twice B i. 

Let (P, fj,') denote the set of points fXj g with probability measure 
/ / , where fj,''(Xj) = [J,(S j). We can therefore identify functions on P with 
functions on X which are constant on each S j . 

Since the average of each f i is one and we have bounds on the 
Lipschitz constant and diameter, 

(6.6) sup jfj < kDo + 1 
X 

Let A denote the set f s j s G Z , jsj < 10(kD + 1)g- We will now 
construct an injective map M from the orthonormal set of functions to 
the set of maps from P (the points fxg) to A: let M (f i) (Xj) G A be 
any closest point of A to f i ( 
construction, for all y £ S j , 

(there are at most two possibilities). By 

jfy) - M(f i)(x j)j < j f y ) - f ( x j)j + jf i(x j) - M(f i)(x j)j 
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and hence 

(6.8) 
X 

jf i-M(f i)j 

i 
2 1 

< 
- io 

By the triangle inequality together with (6.8), we get for i / j , 

X 
jf i-f j j 

X 
jM(f i) - M(f j)j 

(6.9) 

1 

+ X f j-Mf j 

5 

Furthermore, since the f i are ^-almost orthonormal, we have 

(6.10) 

and for i / j , 

(6.11) 

Consequently, for i / j , 

(6.12) 

X 
jf i 

f i f j 
X 

1 

< 2 -

1 < jf i - f j 
X 

Combining (6.9) and (6.12) yields that for i / j , 

(6.13) 0 < ^ < (X jM(f i) - M(f j)j 

Hence, M is injective. The proposition follows by counting the cardi­

nality of the set of maps between two finite point sets (in fact, N < 

( 2 0 ( k D ) + l ) + !)")• q.e.d. 

R e m a r k 6.14. (Divergence of eigenvalues). Given a gradient bound 
C(A) for all eigenfunctions with eigenvalues at most A, that is 

(6.15) sup j r u j < C(A) sup juj 
X X 
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as is the case in the Cheng-Li-Yau gradient estimate (see [15], [39], and 
[43]), Proposition 6.5 gives a definite rate of divergence of the eigen­
values (compare [43] and Weyl's asymptotic formula). In applications 
X = fb = r } and the functions will be the restriction of harmonic 
functions on M with bounded growth. Moreover the restriction of the 
harmonic functions will be approximately eigenfunctions with eigenval­
ues given in terms of the frequency. Due to the fact that these functions 
are restrictions of harmonic functions on M we have a gradient bound 
already on M. This bound is given in terms of the frequency. For this 
reason we need not deal with spectral properties of X. 

7. G r o w t h propert ies of funct ions of one variable 

In this section, we will prove some elementary results for functions 
of a single variable with polynomial growth. 

The first two results (Lemma 7.1 and Corollary 7.9) show the exis­
tence of infinitely many annuli with bounded growth. 

The basic idea is that for any set of 2k functions with polynomial 
growth of degree at most d, we can find a subset of k functions and 
infinitely many annuli for which the degree of growth from the inner 
radius to the outer radius of each of the functions in the subset is at 
most 2d. 

We will think of this elementary fact as a weak version of a uniform 
Harnack inequality for a set of functions with polynomial growth. 

This simple idea of restricting attention to a large subset in order to 
make the constants independent of the number of functions in the set 
will be used over and over again. 

In the next section, we will produce functions of one variable with 
the properties of the functions of this section. 

The main results of this section are Corollary 7.9 and Corollary 7.21. 
Whereas Corollary 7.9 will be used to start the proof of Theorem 0.3 
(see Corollary 8.14), and Corollary 7.21 in the inductive step in the 
proof of Theorem 0.3; see Section 9. 

L e m m a 7.1 . Suppose that fi,..., f; are positive nondecreasingfunc­
tions on (0, oo) such that for some d, K > 0 and all i, 

(7.2) f i(r)<K(r d+l). 

ld 

For all Q > 1, k < l, and any C > Ql~k+1, there exist k of these 
functions fai,..., fak and infinitely many integers, m > 1, such that 
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for i=l,...,k, 

(7.3) fai(Qm+1)<Cfai(Qm). 

Proof. We will show that there are infinitely many m such that 
there is some rank k subset of ff i}, where the subset could vary with 
m, satisfying (7.3). This will suffice to prove the lemma; since there are 
only finitely many rank k subsets of the l functions, one of these rank 
k subsets must have been repeated infinitely often. 

Set 

l 

(7.4) g(x) = Y f i(x); 
i=l 

note that 

(7.5) g{r) < K l(r d + l)l 

and g is a positive nondecreasing function. Assume that there are only 
finitely many such m and let m — 1 be the largest. Then for all j > 1 
we have 

(7.6) g(ttmo+j) > C l-^ginm^-1) . 

Iterating this gives 

(7.7) g(ttmo+j) > C j(l-k+1ïg{Qmo) . 

From the upper bound on g, equation (7.5), we have for all j > m that 

(7.8) c (Qj)dl > C j(l-k+1)g(Qmo) , 

ld 

where c = c(l,m0,Q,K). Since C > Ql-k+i and g(Qm°) > 0 this is 
impossible, yielding a contradiction. q.e.d. 

Corollary 7.9. (Weak version of a uniform Harnack inequality for 
a set of functions with polynomial growth). Suppose that fi,..., fik are 
positive nondecreasing functions on (0, oo) such that for some d , K > 0 
and all i, 

(7.10) f i(r)<K(r d + l). 

For all Ci > 1, there exist k functions f a i , . . . , fak and infinitely many 
integers, m > 1, such that for i = 1 , . . . , k, 

(7.11) fai(ttm + 1)<tfd fai(ttm). 
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Proof. This is an immediate consequence of Lemma 7.1 with l = 2k. 
q.e.d. 

R e m a r k 7.12. That the upper bound in Corollary 7.9 for the de­
gree of growth of fai, • • • , fak from Çtm to Çtm+l can be made indepen­
dent of k, C, and K is crucial for the applications. 

In the proof of Theorem 0.3, we will use Corollary 7.9 to get an 
initial annulus on which we have some growth control (see Corollary 
8.14). Henceforth, we will work on an annulus where we have this 
control on the growth, and then produce subannuli where we have even 
better control of the growth. This better control is needed in the proof; 
see Remark 7.25. 

L e m m a 7.13. Given Q > 1, suppose that f is a positive nonde-
creasing function on [r, Çl'm r] such that for some do > 0, 

(7.14) f(fìm r) < Qd°m f{r) . 

Then for d = d m m1 ; there exists some j with 0 < j < m — 2 such that 

(7.15) f(j+1r) < nd f(üj r) 

and 

(7.16) f(j+2r) < Q2d f(Qj r) . 

Proof. Suppose that the lemma is false; then for every j , we have 
either 

(7.17) f(j+1r) > Qd f(Qj r) 

or 

(7.18) f(j+2r) > n2d f(nj r) . 

In particular, either for k = 1 or for k = 2, we must have that 

(7.19) f(Qk r) > Qkd f(r) . 

Continuing inductively, by (7.17) and (7.18) we get (7.19) for k = m 
or for k = m — 1. Hence the monotonicity of f, together with (7.19) 
implies that 

(7.20) f(ttm r) > ^m-^d f(r) . 



48 t o b i a s h . c o l d i n g & w i l l i a m p . m i n i c o z z i ii 

By the assumption (7.14), and the definition of d, (7.20) yields the 
desired contradiction. q.e.d. 

Lemma 7.13 has the following easy corollary. 

Corollary 7 .21 . (Double growth condition). Given Ci > 1, suppose 
that fi,..., f km are positive nondecreasing functions on [r, Çl'm r] such 
that for some do > 0, and all i = 1 , . . . , km, 

(7.22) i ( ^ m r ) < d m i ( r ) . 

Then for d = d m m 1 , there exist k functions f a i , . . . , fak and some j 
with 0 < j < m — 2 such that for i = 1 , . . . , k, 

(7.23) fai(j+1r)<nd fai(j r) 

and 

(7.24) fai(j
+2r)<n2d fai(j r). 

Proof. Applying Lemma 7.13 to the functions f i, for each i we get 
a j i such that f i satisfies (7.23) and (7.24) with j = j i. Since each j i 
must lie in the set 0 , . . . , ( m — 2) and there are km of them, at least k 
of j i must be equal. q.e.d. 

R e m a r k 7.25. In the application (Proposition 9.1) of Corollary 
7.21 we will only use (7.24) for fai. In contrast (7.23) will be used 
for all fai with i > 1. The reason for this is that in the inductive step 
of Theorem 0.3 we will need to find an annulus and a subset f f a g of 
ff i g such that these fai have almost the same degree of growth on this 
annulus as on a certain larger annulus, and uai has bounded frequency 
(the bound must be uniform in terms of the polynomial rate of growth 
of uai). To achieve this, we apply Corollary 7.21 to find a pair of annuli 
one contained in the other and so that we have controlled growth on 
both annuli for fai. The bounded growth on the larger annulus and the 
almost monotonicity of the frequency then imply the desired frequency 
bound for uai on the interior annulus; see Section 9 for further details. 

8. Construct ing independent harmonic funct ions w i th 
good propert ies from given ones 

In this section, given a linearly independent set of functions in H d 
we will construct functions of one variable which reflect the growth and 
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independence properties of this set. In particular, here we shall establish 
that these functions of one variable satisfy the conditions of Section 7. 

The results of this section rely heavily on the properties of harmonic 
functions on manifolds with nonnegative Ricci curvature; we use in par­
ticular that u is monotone nondecreasing for all harmonic functions. 

In Section 10, we will use these results to show that given linearly in­
dependent harmonic functions with polynomial growth we can produce 
annuli and harmonic functions on these annuli which are separated and 
have controlled growth. 

We begin with two definitions. In the first definition we construct 
the functions whose growth properties will be studied. 

Definit ion 8 .1 . (w ijr and f i). Suppose that u\,..., u k are linearly 
independent harmonic functions. For each r > 0 we will now define an 
orthogonal basis w i<r with respect to the inner product 

(8.2) rx~n Z uv\Vb\, 
b=r 

and functions f i . Set wi<r = w\ = u\ and f i ( r ) = I ul(r). Define w i<r by 
requiring it to be orthogonal to u j for j < i with respect to the inner 
product (8.2) and so that on fb = r } we have 

i-l 

(8.3) u i = X Xji(r)u j + w ir . 

j = 1 

Set 

(8.4) i(r) = r 1 - n Z w i r | V b | . 
b=r 

Definit ion 8.5. (Barrier). We will say that a function f is a (left) 
barrier for a function g at r if f(r) = g(r) and for s < r, f(s) < g(s). 

We will use the barrier property to conclude that the growth of g 
from s to r is not larger than the growth of f from s to r (cf. Remark 
8.16). 

In the next proposition, we will establish some key properties of the 
functions f i from Definition 8.1. 

Propos i t ion 8.6. (Properties of f i). If u\,.. .,u k G H d(M) are 
linearly independent, then the f i from Definition 8.1 have the following 
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three properties: There exists a constant K > 0 (depending on the set 
fu i}) such that 

(8.7) 2d f i{r)<K{r d + l), 

f i is a positive nondecreasing function, (8.8) 

and 

(8.9) f i is a barrier for I w ir at r. 

Proof. Note first tha t 

(8.10) f i(r) < I u i(r) . 

Furthermore, for s < r 

i-l 

i(s) 
A-n 

(8.11) s 

r 

1-n 

1-n 

b=r 

E^ 
j = 1 

i-1 

EAj 
j = 1 

i-l 

E^ 
j = 1 

i(s)u j 

i(r)u j 

i(r)Uj 

IVbI 

IVbI 

IVbI 

= f r ) , 

where the first inequality of (8.11) follows from the orthogonality of w i<r 
to u j for j < i, and the second inequality from the monotonicity of I 
for harmonic functions (see (2.12)). Since u i are linearly independent, 
by (8.11) we get (8.8). 

Using (8.11), we also see that f i is a barrier for I w i r at r; this shows 

(8.9). 
Finally, we shall verify (8.7). It follows from the asymptotics of the 

Green's function that r is bounded and therefore Ui G H d implies that 
there exists a constant K such that | u ( x ) | < K(b(x)d + 1). Using the 
C° bound on u i and the weighted volume bound for the level set b = r, 
(2.15), we get 

(8.12) 
f r ) <I u i(r) < K 2 ( r d + l)2I u^(r) 

<2K2(r2d+l)nV n ( l ) . 
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If we set K = 2K2nV n(l) then we obtain (8.7). q.e.d. 

Although we will not use it, we note that since log f i is a barrier for 
log I w i, we also get that 

(8.13) (log i ) r > (log w > ) = 2 U r . 

The following corollary of Corollary 7.9 and the properties of the f i 
will be used to get initial control of the growth in the proof of Theorem 
0.3. 

Corollary 8.14. Suppose that u\,..., u ̂ k G H d(M) are linearly in­
dependent. Given Ci > 1, then there exist a subset fai,..., fak and 
infinitely many m such that for i = 1 , . . . , k 

(8.15) fai m+1)<rtd fai(nm). 

Proof. This follows immediately by combining Corollary 7.9 and 
Proposition 8.6. q.e.d. 

R e m a r k 8.16. We will continue to work with the functions f i. 
However since the way they are defined is a bit abstract, we will try to 
clarify their usefulness by explaining a particular consequence of Corol­
lary 8.14. The reader should note however that this consequence will not 
be used later on, and rather we will need to use more of the information 
that the functions f i carry. 

Given a set of 2k linearly independent functions fug of H d, Corol­
lary 8.14 allows us to find infinitely many m for which there exist k 
orthonormal (at b = Çlm+1) harmonic functions (in fact in the span of 
fu i g). Further, these k functions have growth of degree at most 2d on 
the annulus between b = Qm and b = Qm+1. Note however that for 
different m the set of harmonic functions with growth of degree at most 
2d may be different. That is, from Corollary 8.14 together with (8.9) 
we have the following: 

Under the assumptions of Corollary 8.14 we have infinitely many m 
such that for i = 1, • • • , k, 

( 8 - 1 7 ) w inm+r ( ^ m + 1 ) < V4d I w a i t n m + 1 ( ^ m) , 

and for 1 < i < j < k 

(8.18) Z waÇim+iwaÇim+ijrbj = 0. 
b=üm+1 
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Note also that if we could show that these k harmonic functions were 
orthogonal at Çtm (and not at Çtm+l) then, after applying the gradient 
estimate together with the meanvalue inequality, Theorem 0.3 would 
follow immediately from the results of Section 6. 

9. Towards the induct ive s tep 

In this section we will use the results of Sections 7 and 8 to show 
a result (Proposition 9.1) that will be used in the inductive step of 
Theorem 0.3. 

Given a large annulus and a set of independent harmonic functions 
fug such that the corresponding functions f i (see Section 8) grow poly-
nomially of order at most do on this annulus, we show how to get 

(a) a subset a i , 
(b) a subannulus, 
(c) a nonconstant harmonic function u in the span of fUj jj < a\g, 

(d) a constant d > do, and 
(e) a larger subannulus, 

such that on this subannulus (b) 

(1) fai grows polynomially of order at most d, 
(2) i < U u < 2d on double the subannulus, and 
(3) U u is almost constant, 

and on the larger subannulus (e) 

(i) u is orthogonal to fUj j j < a\g at the outer radius, and 
(ii) u grows polynomially of order at most d. 

It will be important that we will be able to take d very close to do 
and U u very close to being constant if we are willing to go to a relatively 
small subset of the functions and a relatively small subannulus. In the 
applications, Proposition 4.50 together with (2) and (3) will allow us 
to conclude that this u is very close to separating variables on this 
subannulus. This together with (i), (ii), and Proposition 5.1 will allow 
us to conclude that the harmonic functions that we define inductively 
in this way are almost orthogonal on a subannulus. 

We will now make this precise in the following proposition. 

Propos i t ion 9 .1 . (Towards the inductive step of Theorem 0.3). Let 
m > 5, m > 9, Q > f2L(n, | ) > 2, and do > 1 be given. Here Î7L(n, | ) 
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is given by Corollary 3.29. Set 

(9.2) d = d m m 
m - Im A \m 

There exists R = R(p, m , do, Ci) > 0 such that if r > R and fi, • • -, f l 
are as in Definition 8.1 where u i(p) = 0 and 

(9.3) f i{Qmm r) < Qdomm f i{r) 

for all i, then we have the following: 

There exist l functions f a i , . . . , fal and integers h and j with 
0 < h < m — 2 and m h < j < m (h + 1) — 1 such that for i = 2 , . . . , l, 

(9-4) fai(j
+1r)<nd fai(j r), 

and setting u = wa tim(h+2)r, we have for Çtj r < s < Çtj+2r, 

(9.5) 2 <U u{s) < 2 d : 

(9.6) 

and 

(9.7) 

I u(nm{h+2r) < n2dm I u(nmh r), 

U u{j+1r) 
log' 

U u(j r) 

log(5d) 

Proof. First, we apply Corollary 7.21 to get lm functions 
fß1,..., fßlm such that for some h with 0 < h < m — 2 and i = 1 , . . . , lm, 

(9.8) 

and 

(9.9) 

where d 

f i(nm(h+1)r) < ndim f i(nmh r) 

f i (fi 
m(h+2) mh ) < Q2^ m f i(Qmh r) 

mjdo. Note that we will only use (9.8) for i > 1 and (9.9) 
only for i = 1. Set u = w^ tim(h+2)r and a\ = ß\. From the barrier 
property, (8.9), it follows that (9.9) implies 

(9.10) I u(Çm(h+^r) < Çl2dlm I u(Çmh r) < Çl2dm I u(Çmh r) . 
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In particular by Proposition 3.36 (noting that Q > 2), there exists 
R0 = Rjp) > 0 such that for r > RQ, 

(9.11) 
D u(nm(-h+^-1r) < C2Q

2dlm D u{tmh+lr) 

< C2Sl3d°m D u(nmh+1r) 

where C2 = C2(n) > 0. 
Set 

J l 6 1 9 logf 
e = m i n < — log —, — log —, =• 

| 3 5 ' 4 8 ' 2 m ^ 
(9.12) 

By Proposition 4.11, Proposition 3.3, and (9.11) we can choose 

Rx = Rx{pi C2n
3d°m, e, Cl2m~2) > R0 so large so that for r > Rx and 

Qmh+lr s Qm(h+2)-2r 

(9.13) 

and 

(9.14) 

log DJs) 
E J s) 

< e 

çim(h + 2)-2r 

ümh+1r 
minjlogW u)'(t),0}dt > - e . 

Note that (9.13) is equivalent to that for Çlmh+lr <s< fìm(h+2)-2r 

U u s) 
(9.15) log < e. 

W u s) 

From (9.14) wehave for Qmh+1r <s<t< fìm(h+2)-2r, 

(9.16) W u s)<eW u(t), 

which together with (9.15) implies that for Çmh+lr < s <t < fìmCh+2)-2r 

(9.17) fu(s) < e W u{s) < e2'W u{t) < e3'U u{t) . 

Since u is nondecreasing, from (9.10) it follows that 

I unm (h + 2 ) - 2 r ) <I u Q ^ h + 2 r ) 

(9.18) <Çi2dlm I uÇmh r) 

<Cl2dlm I u{0m(h+lr) . 
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By (2.14) and (9.18), there exists some so with 

Çtm(h+l)r < s < Qm(h+2)-2r 

such that 

(9.19) 
m 5 

U u(s0) < -di < -di . 
m — 2 3 

Combining (9.17) and (9.19) we see that , for Çlmh+1r <s< Qmh+^r, 

(9.20) U u(s) < e3eU(s0) < e 3 e | d ! < 2dt. 

By Corollary 3.29 we can choose R2 = R2(p) > 0 so large that if 
r > R2 then there exists a si satisfying 

mh-\-l mh+1 Qmh+ir <sl< nL(n, -)ttmh+"r < Q 
o 

mh+2 

with 

(9.21) 
5 

< U u(sl) 

We now set R = max{Ri , R2J- By (9.21) and (9.17) we have that for 
r > R and Çlmh+2r < s < Çlm(h+i)r 

(9.22) \ < e-3fl < e-^U(sl) < U u(s) . 

Combining (9.20) and (9.22) we get that for Qmh+2r < s < Çmh+^r, 

1 
(9.23) <U u{s) < 2 d i . 

Note that (9.23) implies that for Qmh+2r <s<t< Qm(h+1)r, 

U u(s) 
(9.24) log 

U u{t) 
< log(4di 

Consider the (m — 3) subintervals given by Qmh+j r to Qmh+j+1r for 
j = 2 , . . . , m — 2. From (9.15) and (9.24) it follows that there exist 
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at least ( m — 3 — m) subintervals on which the variation is less than 
^ ( M i ) . That i 

m-2 

X 
j = 2 

log 
W u(Q mh+j+l 

m - 2 

j = 2 
m-2 

W u(Q mh+j+l 

W u(nmh+j r) 

W u{Qmh+j+l m — 4 

(9.25) < log 

j = 2 
W uiQmh+j r) -,o 

< log 

W u(fìmh+2r) 
n m(fe+l ) - l r 

2 Z minf( logW u) '( t) ,0gdt 
îî?f t fe+2r 

U u(nm(h+1)-1r) 

U u(Qmh+2r) 
+ 4e < log(4di) + 4e 

9 9 
< l o g ( 4 d i ) + l o g - = l o g - d i 

By (9.15) and (9.25), there exist at least ( m — 3 — p o ) many j between 
2 and m — 2 such that 

log 
U u(îî hm+j + l 

U u(Qhm+j) < log 
W u(n hm+j + l 

(9.26) < + 2e < 

+ 2e 

logddo logddo^logf 
m 

log(5di) 

m 

We will call such intervals good. 
We now consider the restriction of the ffßtg to the union of the 

good intervals. By (9.8), these restricted functions grow with exponent 
at most equal to d2 d\. Again applying Corollary 7.21, this 

m — 3 — \m 

time to the union of these good intervals and the restrictions of the 
functions, fß{, we get a j with m h < j < m (h + 1) — 1 such that 

(9.27) log 
u(Q-j + i 

U u(j r) 
< 

log(5di 
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and l — 1 functions f a 2 , . . . , fal such that for i = 2 , . . . , l, 

(9.28) fai(j
+1r)<nd fai(j r), 

where d = m 5 f p d2- Finally, note that (9.23) gives (9.5). q.e.d. 

Note that for all s > 0 and all i > 1 

(9.29) Z w0iümih+2)r w0iys\Vb\ = 0 . 
b=s 

This follows since wa tim(h+2)r lies in the linear span of fu k \k < a\g 
and waits is orthogonal to u k (k < a{) at b = s for i > 1. Note also that 
Ro, Ri, R2 (and hence R) are independent of l and also of the particular 
harmonic functions. 

The key for applications of Proposition 9.1 is, for given l and Ci > 2, 
to choose m and m so large that the degree of growth, d, of the functions 
fa2i ' • • ) f « l from the inner radius b = r (= Çtj r) to the outer radius 
b = Çr is not much larger than do. In fact, in the applications, the 
more times that we need to iterate this step, the closer that d needs to 
be to do. Further, we will choose m and R so large that U u is almost 
constant (i.e., almost separate variables) on the annulus between b = r 
and b = Qr. Here if Ci is large then u has to be even closer to separating 
variables, so m needs to be even larger. The reason for this is that we 
want to apply Proposition 5.1 to get a definite separation at b = r . 

In Section 10 we will need to keep close track of these relationships. 

10. Harmonic funct ions w i th po lynomia l growth 

As before, let M be an n-dimensional Riemannian manifold with 
nonnegative Ricci curvature and Euclidean volume growth, and let p G 
M be fixed. 

We are now prepared to prove the main theorem. After some pre­
liminary remarks, the proof will consist of three steps. First, we will 
find annuli and a subspace of the harmonic functions with polynomial 
growth such that a basis for this subspace has controlled growth on 
these annuli. This step relies mainly on the properties of the functions 
f i constructed in Section 8 and the general properties of functions of 
one variable with polynomial growth. 

Next, we will construct a set of harmonic functions contained in 
this subspace which have controlled growth, almost separate variables, 
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and are pairwise almost orthogonal on a subannulus. We accomplish 
this through repeated applications of Propositions 9.1, 4.50, and 5.1. 
In essence, this step gives an effective version of the finiteness theorem, 
and it is here that we strongly use the results on the frequency function 
(and thus the Euclidean volume growth assumption). 

Finally, we will use the uniform bound on the growth and the mean-
value inequality to get a Lipschitz bound for these harmonic functions 
on a subannulus. Proposition 6.5 gives a bound on the number of such 
functions, and the theorem will then follow since we can use this to 
control the number of functions that we started with. 

Proof. (Theorem 0.3). Fix Q > max{i7^(n, | ) , 4} . Here i7^(n, | ) 
is given by Corollary 3.29. Set 

( \ — 
- j 16C'nd432d, 

where C = C(n) > 0 is the constant occuring in the meanvalue inequal­
ity, Proposition 2.26. 

By (2.23) we can choose RQ = Ro(p) > 0 so large that for r > RQ, 

(10.2) 

If r > R then 

b l o g -
r 

2 
< l o g p 

(10.3) X = {b=^r}cAn^ p (p). 

The relative volume comparison theorem, [3], [28], together with (10.3) 
imply that there exists an integer v = z/(n, k) such that there exist at 
most v disjoint balls of radius -^ with centers contained in X. We think 
of X as a metric space with distance function given by the restriction 
of the Riemannian distance on M. Let ß be the probability measure on 
X given by 

(10.4) fi(A) = Afr)1~n Z |Vb| . 

Note that the normalization in (10.4) comes from the fact that I\ = 
n V M ) that is (2.15). Applying Proposition 6.5 to X with the probability 
measure /i, we get a constant N = N(k, n) such that for f] =\ any set 
of ^-almost orthonormal functions with Lipschitz bound j r o n X has 
at most 1 elements. 
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We will show that if dim H > C, where C = C(N), then for all 
R > 0 we can find an r > R and N ^-almost orthonormal functions 
with Lipschitz bound -^ on X. This contradiction yields the result. 

Choose integers m > 5 and m > 9 so large that 

(10.5) ( -m f m = ) <2, 

and 

(1„.6) e x p f 2 p N ) < 2 . 

Further, let (?«i)i=i,...,N satisfy TOi > m, and set 

(10.7) (i = 1 d l o g < 4 d ) 

Observe that (10.6) implies 

(10.8) — exp — < — . 
v ; 8d 8d - 4d 

To simplify notation, define inductively N\f, A/N-i> -A/N-2) • • • >Ni, N , 

by 

(10.9) 

Further, for i = 0 , . . . , N — 1, set 

(10.10) 

V = 0, 
N ; = (N i+i + 1) m + 1 m . 

M i = m N-iUN i+1m j , 

and 

(lo.i i) üi = nM*. 

Finally, for i > 1 let 

{-\ n 1 o\ 2 o f~*208 diht-\-4iht 

(10.12) i = 8ei_1ili 

Note that fìi m° m% depend not on m ' _ i but only on m j for j > i. 
On the other hand e i i depends only on m - i . These two facts will allow 
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us to choose m ' _ i large so that Ti < r], where i] < ^- That is, choose 
m > ^m-i) • • • ) m1 inductively so large that Ti < TO Observe that this 
implies that if Ctm% is large then ei_i must be small. The numbers TOi 
are now fixed, as are the quantities N i, M i, fii, ei, Ti which are defined 
from the m i. 

We will show that we can take C(N) = 2N + 1- To see this, 
suppose that u = 1, u i , . . . , u2N G H d(M) are linearly independent. 
We may assume that u i(p) = 0 for all i > 0. Given this set of harmonic 
functions, we will now proceed, for all R > 0, to construct an r > R and 
a set, v i , of TO-almost orthogonal harmonic functions on the annulus 
fr < b f g lrg. In addition each i will ei-almost separate variables on 
an annulus, fr i < b < ^ r i g, containing the annulus, fr < b < Çlrg. 
In fact, for any j with 1 < j < N the functions i with i < j will be 
pairwise ^ -a lmos t orthogonal on the larger annulus fr j < b < Qj r j g D 
fr < b < Çlrg. Note that in order to show that i and v j are ^ -a lmos t 
orthogonal (with Tj < r]) on fr j < b < Qj r j g if i < j we will need i 
to ei-almost separate variables on fr i < b < Cli rg D fr j < b < Çlj r j g. 
Since Qi-i is much larger than fij_i if i < j we will need i to be much 
closer to separating variables than j ; cf. Section 5. Note also that 
for different r the i may be different. It will be possible to do the 
following construction for infinitely many annuli; however, in the end 
we need only do our construction on a (single) sufficiently large annulus. 

As in Definition 8.1, we set 

(10.13) fi = I ul, 

(10.14) wl,r = ul, 

and let f ^-, • • •, f2N and w2,r, • • •, w2N,r be as in that definition (with 
respect to u\,..., u2N)- These f i and w i<r will be fixed from now on. 

The first step of the proof consists of finding a sequence of annuli 
where a subset of the functions, f 1 , . . . , f 2 N ) has controlled growth. 
To get the initial control, we apply Corollary 8.14 to get a subset 
f a i , . . . , faM and infinitely many integers jo such that for i = 1 , . . . , N , 

(10-15) fat(Qj+1)<Qtd f a j ) -

Fix such a jo, and set ro = Çij0°. 

The next step is, for any such jo which is sufficiently large, to in­
ductively construct an independent set of harmonic functions which are 



h a r m o n i c f u n c t i o n s w i t h p o l y n o m i a l g r o w t h 61 

pairwise ^-almost orthogonal and whose growth is controlled. At the 
i-th stage of the induction, we will be working with N i functions and 
i independent harmonic functions on an annulus r i < b < ^ r i g C 
fr i-i < b < i_ i r i_ig C • • • C fr i < b < Çiirig f fr0 < b < ïï0r0g. 
These N i functions will grow at most like "id i on these annuli, where for 
i = l,...,N, 

;io.i6) d = 2d m TTi n j = i m j — 4 m — 1 

Note that from the choice of m and m (see (10.5)), we have 

(10.17) d i < d2 < ••• < d N < Ad. 

Applying Proposition 9.1, we get a R\ = Ri(p, m i , 8d, Ç}\) such that 
if jo is large enough to ensure that 

'10.18) r0 = W0j > R i , 

then there exist N \ + 1 functions fß1,..., fßK +1 and integers h\ and j \ 
with 0 < h\ < m — 2 and m \ h \ < j \ < m \ { h \ + 1) — 1 such that for 
i = 2 , . . . , N i + l, 

(10.19) j l + i 2d fß,(jr
Lr0)<n^fßt(^r0), 

for fìj r0 <s< Qj1+2r0 

(10.20) 

and 

(10.21) 

- < U v1 (s) < 4di < 16d, 

log 
U vi(nj1+1r0) 

U v î î j ro 

log(10di 

m i 

log(40d) ei 

m i 16d 

Here v\ = w m1(h1+2) • Set r\ = f j r - Note that 
ßi&i 

Q\ri < nml{hl+2)r0 < n0r0. 
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The frequency bounds (10.20) combined with (2.9) and (2.14) give 
the following bound for the growth of D v l, 

D v 1 ( î2Ï r 1 )=Cv 1 ( î2Ï r 1 )v 1 ( î2Ï r 1 ) 

(10.22) <lQdI v l(Q2
ir i) < l%dm\d I v l{r i) 

<32d^4d D v l(r i) . 

Now by Proposition 4.50 we have that (10.20), (10.21), and (10.22) 
together with (10.8) give the existence of an 

Rx = Rx{p, 32dn6
1
4d, 16d, ei, üj) > R0 

such that if 

(10.23) r0 = Slj > Ri , 

then v\ ei-almost separates variables on the annulus fr\ < b < Çi\ri. 
We proceed inductively. Again by Proposition 9.1, we get a R g 

R2(p,m2,8d,ÇÎ2) (in fact, R2 = R \ will do) such that if jo is large 
enough to ensure that 

(10.24) r0 = nj0° > R 2 , 

then there exist N2 + 1 functions f 1 1 , . . . , flAf , where 

f i ^ f f 2 ) ' ' ' ) f t v i + l g ' 

and integers h2 and j2 with 0 < h2 < m — 2 and 

m2h2 < j2 < m2(h2 + 1) - 1 

such that for i = 2 , . . . ,N2 + 1, 

(10.25) f » ( ^ 2 j + 1 r i ) < ^ f j ri) , 

for fìj r < s < Qj2
2+2ri 

(10.26) - < U v{s) < 4d2 < 16d, 

I vJQm(-h2+^r) <Q4d2m I vJQmh2r) 
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and 

'10.28) 

j + 1 
log 

U v { ^ r i ) 

log(10d2 

m 2 

log(40d) e2 

m 2 
16d 

Here v2 = w m(h2+2) . Set r2 = fi2j r i . Note that 

(10.29) 
r i < 0m h r i < r2 < ^2r2 < ^r2 

< Q 

m h 

m(h2+2) 
rl < ^ l r l 

Using Proposition 5.1 we will now show that v\ and v2 are 772-almost 
orthogonal on the annulus 

fQmh2ri < b < ttm{h2+2]rj D fr2 < b < Q2r2}. 

By definition, v\ is a linear combination of u\,--- ,u1 and at b = 

0 m { h 2 + 2) 

(10.30) 

r i , v2 is orthogonal to all Ui with i < ji; therefore 

v1v2IVbI = 0 . 
b=nm{h2+2)ri 

Note also that by (2.14) and (10.20) we have 

(10.31) I v1 (ttm
{h2+2]ri) < Qm64d I vl (Qmh2ri) . 

Since v\ ei-almost separates variables on the annulus, from Proposition 
5.1, (10.27), (10.30), (10.31) it follows that 

m h m(h2+2)r | 

and by (10.20), we get for Qmh2r < s < ttm{h2+2) 
r i 

A-n v\v2\Vb\ 
b=s 

< 8eiO (64d+2)2m I / 0 m ( h + 2) )r1)v(n m ( h 2 + 2) 
v2 \*L

2 r\) 

(10.32) 

< 8ei ^(64d+2)2m nl4dm I v l ( n m h 2 r i ) Q1
2
6dm2I v ( Q m h 2 r 1 ) 
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Here the last inequality follows from the monotonicity of I ; tha t is, for 
ÇImh r\ < s we have I i (Qmh r\) < I v i(s). This proves that v\ and v2 

are ^ -a lmos t orthogonal on all level sets in the annulus 

fQmh2ri < b < ttm{h2+2]rg D fr2<b< Q2r2g. 

The frequency bounds (10.26) combined with (2.9) and (2.14) give 
the following bound for the growth of D v , 

(10.33) D v {Q2
2r2) = U v {tt2

2r2)I v {Q2
2r2) 

(10.34) < lQdI v(Q2
2r2) < ldÇifd I v{r 2 ) 

< 32dn6
2
4d D v (r2) . 

Now, as above, by Proposition 4.50 we have that (10.26), (10.28), 
and (10.33) together with (10.8) yield the existence of an 

R2 = R 2 (p , 3 2 d ^ 4 d , 16d, e2, Q
2
2) > R0 

(in fact R2 = R\ will do) such that if 

(10.35) r0 = Qj0° > R2 , 

then v2 62-almost separates variables on the annulus fr2 < b < Çl2r2g. 
For each j 0 satisfying (10.15), (10.18), and (10.23), after N stages 

we are left with N linearly independent harmonic functions v\,..., v N 
on the annulus f r < b < £lrg, where 

(10.36) r = r N = nj N •••Cij . 

Note that [r1: Qiri] D [r2, ^ 2 r 2 ] D • • • D DN, ^IN^N] = [r, ^r]-
On the annulus, f r < b < £lrg, these harmonic functions, f i g, must: 
(a) have U bounded by 16d, 
(b) ei-almost separate variables, 

and, most importantly, 
(c) be pairwise ^-almost orthogonal at all level sets. 

The last step is to get a gradient bound, and hence a Lipschitz 
bound, on X for these functions. This will allow us to apply the results 
of Section 6 to deduce a contradiction. 

To get the gradient bound, observe first tha t the uniform bound on 
U v i on the interval [r, Qr], 

(10.37) U v i(s)<16d, 
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implies by (2.14) that 

(10.38) I v i(Qr)<4d2d I 
Q 

-r 4 

Furthermore, (10.37) yields that 

(10.39) D v i (Or) < 16dI v i (Or) . 

By (10.2) together with the meanvalue inequality, Proposition 2.26, 
we get a constant C = C{n) > 0 such that for r > R 

2 / ^ Z 2 
sup j r v i j < —— B j r v i j 

(10.40) p 2 " ^ Q r 

4 ^ CD i(Qr) 

ß (Or)2V M 

Combining (10.38), (10.39), and (10.40) leads to the gradient estimate 

n ~ 

' 4 \ ~ CD v i(Qr) 
sup jrv i j < 

B p 
V3 

'10.41) < 

3 (Or)2V M 

4 \ n l6CdI v i(Qr) 

3j (Or)2V M 

4 ^ n 1 6 C d 4 3 2 I f r 

3 (Or)2V M 

We now normalize the i to get N ^-almost orthogonal harmonic 
functions v i , . . . , v ^ on fr < b < Org with I i (^r) = n V M for i = 
l,...,N. From (10.41) it follows that 

(10.42) sup j r ^ j 2 < ( - 1 6 C n d 4 3 d ( O r ) " 2 . 
B p 3 

Finally note that by the triangle inequality we have that if x,y G 
fb = j r g C B p r then the minimal geodesic (in M) between x and y 

2 / 3 

lies entirely inside B p_ . 

Since the v; are ^-almost orthonormal at b = -^r and satisfy the Lip-
schitz estimate which follows from the gradient bound (10.42) together 
with the the above application of the triangle inequality, we can apply 
Proposition 6.5 to obtain the theorem. q.e.d. 
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R e m a r k 10 .42 . (Conical case). If M is C(N) (as it is in Section 
1), then U is monotone nondecreasing by Lemma 1.18. Given a set of 
independent harmonic functions fug C H d, at r = 1 we can extract an 
orthonormal basis i for the space spanned by the Ui. By Lemma 1.28, 
the frequency of i (G H d) is uniformly bounded by d. Integrating this 
out to r = 2 leads to a uniform bound on I v i (2) and hence, given the 
bound on U v i, we get a uniform bound on D v i{2). By the Li-Schoen 
meanvalue inequality, we obtain a Lipschitz bound for r < 1 for the 
independent functions. Proposition 6.5 now yields a bound on the di­
mension of H d(C(N)) just in terms of d and the lower bound on the 
Ricci curvature of N. In contrast to the results of Section 1, this bound 
is not sharp. 

11 . E x a m p l e s 

In contrast to the Euclidean case, it is possible for M with non-
negative Ricci curvature to admit harmonic functions with nonintegral 
rates of growth (cf. Example 1.70). Even if M is Ricci flat and Kahler, 
examples exist. 

E x a m p l e 11 .1 . (Tian-Yau, [53]). There exist Ricci flat Kahler 
manifolds with Euclidean volume growth which have harmonic func­
tions with growth strictly between one and two. 

We note that there are manifolds with positive sectional curvature 
which admit no nontrivial harmonic functions with polynomial growth. 
To our knowledge, no such example has been constructed with Euclidean 
volume growth even under the less restrictive assumption of nonnegative 
Ricci curvature; see [26] for more on this. 

E x a m p l e 11 .2 . There exist manifolds with nonnegative Ricci cur­
vature (in fact, positive sectional curvature) which admit no nontrivial 
polynomial growth harmonic function. In fact, one may round off a 
metric of the form dr2 + r2ad92, where a < 1 and d92 is the standard 
metric on S n _ 1 . 

In this case, since dB r(p) is connected, if u G d, then by the max­
imum principle there exists x G dB r(p) with u(x H u(p). Integrating 
along curves beginning at x, we obtain u = u(p) by using the gradient 
estimate together with the facts that u has polynomial growth and that 
diam dB r(p)/r —> 0. This example was observed by Kasue in [31]. 
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E x a m p l e 11 .3 . (Klembeck, [31], and cf. [47]). In the holomorphic 
case, there exists a Kahler metric on C n of positive sectional curvature 
and quadratic curvature decay which does not admit any nonconstant 
holomorphic functions with polynomial growth. 

The next example reveals some of the difficulties in the general case 
compared with the model case of a cone. It shows in particular that 
unlike the model case of a cone the frequency of a harmonic function 
on a manifold with nonnegative Ricci curvature and Euclidean volume 
growth may not be monotone. 

E x a m p l e 11 .4 . ([26]). There exist manifolds with nonnegative Ricci 
curvature, Euclidean volume growth, and quadratic curvature decay 
which admit harmonic functions with polynomial growth whose fre­
quency oscillate between two different numbers. 

Let us explain the idea behind Example 11.4. From Section 1 (The­
orem 1.66) we know that for a cone the order of growth of u G H d (on a 
large annulus) is given in terms of an eigenvalue of the cross-section (see 
(1.6)). If we consider a manifold which on a large annulus looks roughly 
like an annulus in a cone centered at the vertex, then the growth of such 
a u will be given almost in terms of an eigenvalue of the cross-section 
of the cone. By changing the cross-section slowly into a different cross-
section (see [7]) which is not isospectral to the original one we can change 
the growth of u. Oscillating back and forth between two non-isospectral 
cross-sections gives a harmonic function with polynomial growth on a 
manifold with nonnegative Ricci curvature, Euclidean volume growth, 
and for which the order at infinity is not well defined. 

We refer to [7] for an extensive discussion of examples of manifolds 
with nonnegative Ricci curvature and nonuniqueness of tangent cones 
at infinity. Examples of manifolds with nonnegative Ricci curvature, 
Euclidean volume growth, quadratic curvature decay, and for which the 
tangent cone at infinity is not unique were first constructed by Perelman, 
[49]. 

We end this section by showing that if one makes a small pertubation 
(in an appropriate norm) of the metric, then dim H remains unchanged. 
In fact we have the following proposition which says that any polynomial 
growth asymptotically harmonic function lies within a bounded distance 
of a harmonic function (this new harmonic function will of course be 
forced to have the same rate of growth). 

Propos i t ion 11.5 . Suppose that Ric M n > 0 and Vol(B r(p)) > Vr n 
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for some V > 0 (here we assume that n > 3). Suppose also that u is a 
smooth function on M, and u and | r u | have polynomial growth. If in 
addition 

(11.6) |Au| < f(r) 

for some bounded, integrable (on R n), and nonnegative function, f, then 

(11.7) lim e tAu(x) 
t—>-oo 

exists for all x, and further 

:n.8) \e tAu - uWoo < C(n) / f(s)s n-1ds + sup f 
o [0,oo) 

Proof. Since e t u(x) = R M H(x, y, t)u(y)dy, we have that 

d Z d 
— (e tAu)(x) = —H(x,y,t)u(y)dy 

AH(x,y,t)u(y)dy. 
M 

Integrating by parts gives 

(11.9) 

M 

AH(x,y,t)u(y)dy= r n H(x,y,t)u(y)dy 
B r(p) dB r(p) 

(11.10) 
dB r{p) 

H(x,y,t)r n udy 

+ H(x1y1t)Audy. 
B r(p) 

By the Bishop volume comparison theorem and the fact that u and | r u | 
have polynomial growth together with the fact that H and R A , , \rH\2 

decay exponentially we get that 

(11.11) lim Z AH(x,y,t)u(y)dy= lim Z H(x,y,t)Audy. 

Further, 

(11.12) 
B r(p) 

H(x, y, t)Audy H(x,y,t)f(r(y))dy. 
B r(p) 
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Using the Li-Yau estimate on the heat kernel [ see [44]; i.e., for any 
e > 0 there exists a constant C > 0 such that 

(11.13) 

we have 

(11.14) 

H(x,y,t)<Ct-texp-i-x-^] 

H(x,y,t)f(r(y))dy 
M 

< C t~~exp 
M 

\x - yy 

( 4 + e ) t 
f(r(y))dy. 

We will now deal separately with the cases t > 1 and t < 1. For 
t < 1, we bound the right-hand side in terms of the sup of f and the 
integral of the Euclidean heat kernel (again using the Bishop volume 
comparison theorem). That is, 

H(x,y,t)f(r(y))dy 

(11.15) 
M 

_n \x — y\ 
<Csupf t 2 exp -

M (4 + e)t 
< Csupf. 

dy 

For t at least one, we have that exp \x-y? 
At 

1, and 

(11.16) H(x,y,t)f(r(y))dy<Ct-- f(r(y))dy. 
M M 

Now combining (11.15) and (11.16) yields the bound 

| ( e t u x 

(11.17) 

< (Csupf) 

+ f{r{y))dy Ct~-
M l 

Z o o 
/ f(s)s n-1ds+ sup f 

Jo [0,oo) 

which proves (11.7). Since 

e t u(x) — u(x) = H(x,y,t)(u{y) — u(x))dy, 
M 

(11.8) follows by the same argument. q.e.d. 
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A p p e n d i x A . T h e first variation of energy 

In this appendix, we will, for the sake of completeness, collect some 
well-known consequences of the first variation of energy that we need 
for this paper. 

In the following, we will take M to be a complete Riemannian man­
ifold and u to be a smooth function on M. Given a one-parameter 
family (f>t of diffeomorphisms of M we define a one-parameter family of 
functions u t = u o <f>t. We let v denote -dt. 

Let B be a bounded domain in M. Henceforth, we suppose that 
the diffeomorphisms are the identity outside of B; equivalently, we take 
the vector field v to have support in B. Now we define E t to be the 
Dirichlet energy of u t in B, tha t is, 

(A.l) E t= Z \Vu t\2. 
B 

L e m m a A . 2 . (First Variation). Let M and v be as above. Then 
the first variation of energy is given by 

(A.3) E ( 0 ) = 2 Z V ( v ) ( V u , V u ) - Z \Vu\2div(v) . 
B B 

In the following, we will work in normal coordinates. We can then 
rewrite (A.3) as 

(A.4) E'(0) = 2 Z v ij u i u j - Z u2v jj , 
B B 

where additional indices refer to covariant derivatives, and the usual 
summation conventions are to be understood. 

Proof. By definition, we have 

(A.5) E t = dt Z t -

Differentiating under the integral sign gives 

(A.6) E't = Z d-\Vu t|2 = 2 Z {Vd {Vu t) , Vu t) . 
B dt B dt 
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We will now calculate the integrand above in normal coordinates. By 
the chain rule, 

(A.7) 
d 

~dt 
t=o 

Vu t\2 = 2 u j(f>otji + u j<j>otji (u j(f>otji) . 

By construction, we have 

(A.8) (j>oji = Sij a n d <j)0}ji = v ji. 

Combining (A.7) and (A.8) yields 

(A.9) 
d 

dt 
\Vu t|2 = 2 (uu i + u j u v ji) 

t=o 

Note that we can rewrite the first term above as 

d 

~dt 
(A.10) 2u u | v u | 2 ( ^ > t ) . 

t=o 

Integrating equation (A.10), we get that the integral of the first term in 
equation (A.9) is given by 

(A. l l ) 
d 

~dt 
IvulVt) 

t=QB 

which becomes, by the change of variables formula, 

(A.12) 
d 

~dt 
| V u | 2 J a c ( t _ 1 ) 

^ i9 d 

B dt t=0 t=0B 

To first order, we have that <f)t)ij = Sij + tv ij, therefore 

Jac (^ t) =det(Sij + tv ij) 

= 1 + t(v jj)+O(t2). 

Thus 

d 

Jac(ç!t x) . 

(A.13) 

(A.14) 
dt 

iVupJac^"1) Vu\2(-div(v)) . 
t=QB B 

Putt ing the above all together, the lemma now follows. q.e.d. 

We will now derive some general identities from the first variation 
formula, by making careful choices of the domain B and the variation 
vector field v. Let b be a Lipschitz function such that 

(A.15) B = {x e M\b(x) < r}. 
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Take 7 : R —> R to be a cut-off function with support in {|x| < r} such 
that 

(A. 16) j(x) = 1 for x < (r — e) and 7—7-0 linearly otherwise. 

Let Ae denote the region in B on which b > (r — e). Finally, we choose 
the variation vector field v to be 

(A.17) v(x) = -j(b(x)) rb2. 

We will often write 7 for job. 
Note that by (A.17), 

(A.18) div(v) = ^7A(b2) + \l'{rb, rb2i . 

It follows from (A.18) that given any function u, 

(A.19) 

ru|2div(v) = - 7 | r u | 2 A b 2 

B * B 

1 irurbirbr. 
e A £ 

Similarly, 

(A.20) v = ^ [ T ' b - ( ^ + 7 ( ^ 

(A.21) 
2 Z r v ( r u , r u ) = Z Z Hess(b2)(ru, r 

B B 

- b(ru,rbi2 

Combining (A.19) and (A.21), the first variation formula (A.3) implies 
the following: 

E'(0) = - - Z 7 | r u | 2 A b 
2 B 

+ - | r u | 2 b | r b | 2 

(A.22) 6 A* 
+ Z Hess(b2)(ru, r u ) 

B 

- - b(ru,rbi2. 
e AC 
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If we now let e approach zero, we get the following proposition. 
P r o p o s i t i o n A . 2 3 . If u is harmonic, and b and B are as above, 

then 

1 

(A.24) 

j u j 2 A b 2 Hess(b2)(ru,ru) 

r j r u j j rbj 
dB 

2r 
dB 

du 

dn 
jrbj, 

where -u is the normal derivative of u on dB. Recall that dB = 
on 

{xjb{x) = r } . 
Proof. Since u is harmonic, it is a critical point for the energy 

functional and E ( 0 ) = 0. By (A.22), we have 

1 

(A.25) 

7 j r u j 2 A b 2 - 7Hess(b 2 ) ( ru , ru) 
2 B B 

= - I jruj2bjrbj2 - - f b(ru,rbi2. 

As e —T- 0, the left-hand side in (A.25) clearly approaches the left-hand 
side in (A.24). Furthermore, the tube Ae is to first order a subdomain 
of the normal bundle of dB of width T ^ b- It follows that the right-side 
of (A.25) approaches the right-side of (A.24). q.e.d. 

C o r o l l a r y A . 2 6 . If u is harmonic, and p is the distance function 
from a fixed point p G M, then 

1 jruj2Ap2 - [ Hess(p2)(ru,ru) 

(A.27) r jruj 
fJB r 

2r 
dB r 

du 

dr 

where B r is the ball of radius r, and -u is the radial derivative of u on 
dB r. 

R e m a r k A . 2 8 . If we take M to be C(N), the cone on a compact 
manifold N, then Hess(/>2) = 25ij where p is the distance from the 
vertex. For example, C ( S ' n _ 1 ' ) is R n. Therefore, Corollary A.26 implies 
that 

(A.29) 

In 2) jruj 
B r 

r jruj 
dB r 

2r 
dB r 

du 

dr 
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where B r is the ball of radius r centered at the vertex of the cone. If 
we let D(r) denote the scaled energy on the ball of radius r centered at 
the vertex, then 

j u j 2 (A.30) D'(r) = (2 - n ) r _ 1 D ( r ) + r2~n Z 
JfJB r 

By substituting equation (A.29), equation (A.30) becomes 

2 - n (A.31) D'(r) = 2r2 

fJB r 

du 
> 0. 

dr 

Equation (A.31) is the usual monotonicity of scaled energy. 
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