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Abstract 
We show that a certain class of manifolds admit metrics of positive Ricci 
curvature. This class includes many exotic spheres, including all homotopy 
spheres which represent elements of bP2n-

§o. 

In this paper we investigate the Ricci curvature of a certain class of 
manifolds which includes many exotic spheres. In particular we will be 
concerned with constructing metrics of positive Ricci curvature. Our 
main result is as follows: 

T h e o r e m 2 .1 . Homotopy spheres which bound parallelisable man­
ifolds admit metrics of positive Ricci curvature. 

The diffeomorphism classes of homotopy spheres bounding paral­
lelisable manifolds of dimension m form an abelian group under the 
connected sum operation. This group is denoted bP m. It was shown 
by Kervaire and Milnor in [5] that bP odd = 0, bP k+2 is either 0 or Z2 
(depending on k), and bP k is cyclic. In [4] Hernandez showed that a 
certain class of Brieskorn manifolds carry Ricci positive metrics. This 
class includes homotopy spheres representing the non-trivial element of 
those groups bP k+2 which are isomorphic to Z2 ( a case previously 
covered by Cheeger in [3]]), as well as many elements in bP k. Until 
now, however, it was an open question whether in fact all such homo­
topy spheres admit Ricci positive metrics. Theorem 2.1 will actually 
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follow as a corollary of a more general theorem, which states that cer­
tain manifolds arising from a construction known as 'plumbing' admit 
Ricci positive metrics. 

This paper is comprised of two sections: §1 concerns the plumbing 
of disk bundles and §2 contains the main results and their proofs. 

The author would like to thank Stephan Stolz for suggesting this 
problem and for many valuable conversations. 

§1-

The technique of plumbing is closely related to that of surgery. With 
it we can explicitly construct manifolds with a prescribed even intersec­
tion form. A general reference for the background material is [2, Chapter 
5]. Below we give a brief description of those aspects which we will need. 

The building blocks which we use for plumbing are the disk bundles 
associated to smooth, oriented, metric vector bundles, i.e., oriented vec­
tor bundles with a smoothly varying inner product on the fibres. As­
sume the fibres, base and total spaces are oriented compatibly. We will 
restrict our attention to bundles whose base spaces are spheres. Though 
we need not restrict ourselves in this way, it will prove sufficient for our 
purposes. Note that (metric) oriented vector bundles over a sphere of 
dimension k are classified by the group ik BSO k-

Suppose we have two such disk bundles 

a : Ea —> S r, 

where the fibres of a and ß are D t and D r respectively. We can 'plumb' 
these bundles together as follows. Choose two small disks d r C S r and 
d t C S t. Since these are contractable, there exist unique trivialisations 
of the bundles restricted to these regions. In other words we have dif-
feomorphisms: 

a \d r ^D rx D t 

ß \d t ^D tx D r. 

We can now use these diffeomorphisms to make a 'cross-identification', 
i.e., fibre disk of a with base disk of ß and vice versa. To do this we 
must choose diffeomorphisms 

0 ! : D ra — • D r0, 02 : D ta — • D t . 
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The object thus produced is said to be the result of plumbing a and ß. 
It can be made differentiable by simply straightening out the angles. 

The diffeomorphisms 9\ and #2 can be chosen to either preserve or 
reverse orientation. We shall say we plumb with sign + 1 if both 9\ 
and 02 are orientation preserving, and sign —1 if both are orientation 
reversing. Note that the result of plumbing two disk bundles is oriented 
compatibly with the given orientations, irrespective of sign, if at least 
one of r and t is even. 

We can represent the plumbing by a schematic diagram in the follow­
ing way. For each bundle we draw a dot, which should be labelled with 
the appropriate element of the group ik BSO k- Each time we plumb 
two of the bundles together, and join the appropriate dots with a line. 
If both r and t are odd, then we should label this line with the sign of 
the plumbing. In this way we construct a graph. This graph reflects 
some of the homotopy properties of the manifold. Precisely: the graph 
has the same homotopy type as the 1-skeleton, assuming r and t are 
> 1. Thus, for example, if the graph is simply connected, the same will 
be true of the manifold. 

If we restrict ourselves further to using only stably-trivial bundles 
with 

base dimension = fibre dimension = k G 2Z, 

we can associate to our graph a symmetric matrix M over Z with even 
entries on the diagonal. We do this as follows: begin with n bundles over 
the k-sphere. Arrange these in some order. Suppose that the i bundle 
is represented by \iTS k G ik BSO k where rS k G ik BSO k represents the 
tangent bundle of S . Suppose further that the plumbings between any 
two bundles have the same sign. Let M ii = 2Ai. For i / j let 

p if bundles i and j are plumbed together p times 

with sign + 1, 

—p if bundles i and j are plumbed together p times 

with sign — 1, 

0 otherwise . 

Clearly M ij = M j i . 
The matrix M defines a quadratic form on the free n-dimensional 

Z m o d u l e V after an ordered basis has been chosen. Intersection homol­
ogy theory tells us that this quadratic form is the same as the intersec­
tion form of the manifold obtained by plumbing the original graph (See 
[2, Theorem V.2.1]). 

M i j 
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The transition from graph to quadratic form can be reversed, and 
in so doing the assertion at the start of §1, that plumbing gives a way 
of constructing manifolds of prescribed even intersection form, can be 
established. 

Given an even quadratic form q on V, choose a basis for V and write 
down the corresponding (n X n) symmetric matrix M with even diagonal 
entries. Draw n dots, order them, and for each i < n label vertex i with 

-lfS k {exk BSO k). 

For each off-diagonal matrix entry M ij, draw jM ij j lines joining vertices 
i and j . Label each according to the sign of M ij. By plumbing the re­
sulting graph we create a manifold whose intersection matrix is M when 
written down relative to a homology basis given by the zero sections of 
the bundles used. 

It is easy to see that each component of this plumbed manifold has 
the homotopy type of a wedge of k-spheres and 1-spheres. Moreover, 
provided k > 2 each component has a free fundamental group, which 
is isomorphic to the fundamental group of the boundary. The former 
statement can be seen by examining the corresponding graph. Perform­
ing surgeries on embedded circles in the boundary we can render both 
component and boundary simply connected. 

Consider now the connected sum of the (simply connected) bound­
aries. Call this object X. 

Propos i t ion 1.1. X is a homotopy sphere <==?- det M = ± 1 . 

For the proof see [2, Lemma V.2.7]. 
For our applications, we need to avoid both surgeries on 1—spheres 

and performing connected sum operations. We therefore restrict our 
attention to plumbings involving simply connected graphs and base 
spheres of dimension > 3. 

L e m m a 1.2. The result of plumbing any two stably-trivial disk 
bundles over stably parallelisable manifolds is a parallelisable manifold. 

Proof. Consider the composition: 

KO(E A F) =* KO(M V N) =* KO{M) ® KO(N), 

where E n g m is a disk bundle over M m, F n g m is a disk bundle over N n, 
and the symbol A denotes plumbing. 
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The first isomorphism is due in part to the fact that 

EAF~MVN, 

and both isomorphisms rely on the fact that KO is a (reduced) coho-
mology theory. 

We need to show that the tangent bundle T g E AF) is stably-trivial. 
Since E A F is a manifold with boundary, it will follow from this (for 
example by [5, Lemma 3.4]) that E A F is parallelisable. 

Clearly, the composition maps T(E AF) onto the direct sum of KO-
theory elements representing the tangent bundles of M and N. If these 
latter bundles are stably trivial, then this means the image of T(E g F) 
is zero. Since the composition is an isomorphism, we deduce T(E A F) 
represents the zero element KO(E A F) and therefore T(E A F) is 
stably-trivial. 

N o t e . More generally we see that plumbing stably-trivial disk bun­
dles according to any simply-connected graph will yield a parallelisable 
manifold. 

Before proceeding further we introduce two algebraic results. 

L e m m a 1.3. Let q\ and qi be even quadratic forms on Z-modules 
V\ respectively V2, q\ unimodular, whose associated graphs with respect 
to some Z-bases of V\, V2 are simply connected. Then there exists a 
basis for V\ (J) V2 such that the graph for q\ (J) qi is simply connected. 

Proof. Suppose the basis for V\ is e\,..., e n, and the basis of V2 is 
f i , . . . , f m. Consider the basis eu ..., e n, 0, f2,..., f m for V i 0 V 2 , where 

n 

0 = fi + ^2 /ii e i 
i=l 

for some integers //i. 
In order for the corresponding graph to be simply connected it suf­

fices to demand that 

he>*>= I n 1 i f i " n ' W 
0 otherwise. 

We have 

he i,0) = le i,^2,Hi e i) i 
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and since q\ is unimodular it follows that we can find values of i so 
that (*) is satisfied. 

Propos i t ion 1.4. For each positive integer n it is possible to find 
an even, unimodular quadratic form over Z having signature 8n and 
whose associated graph is simply-connected. 

Proof. We proceed by induction. For the case n = 1 we consider 
the simply-connected graph E&. Assuming all vertices are labelled with 
TS k and all lines with + 1 , the associated matrix is clearly: 

/ 2 1 \ 
1 2 1 

1 2 1 
1 2 1 

1 2 1 1 
1 2 1 

1 2 

V 1 2 / 

This matrix defines an even, unimodular quadratic form of signature 
8 on some free Z —module V\. 

Now assume the result is true for n = r — 1. We therefore have a uni­
modular even quadratic form q r-\ on a Z-module V r_ i , with signature 
8(r — 1) and an associated graph that is simply connected. Consider 
the form q r_i (J)Eg on V r-i^V\. This is an even unimodular form 
with signature 8r. By Lemma 1.3 we can rechoose the basis for this 
latter module so that the associated graph is simply connected. Setting 
V r = V r_i (J) V\ and q r = q r-\ @ Eg completes the induction step. 

We now come to the main result of this section. 

Propos i t ion 1.5. A representative of any non-trivial element in 
bPik arises as the boundary of a manifold constructed by plumbing stably-
trivial k — disk bundles over k —spheres according to a simply connected 
graph. 

Proof. This result is well-known in the case of Kervaire spheres, 
(the exotic spheres arising in dimensions congruent to 1 modulo 4 - see 
for example [6, p.162]). We therefore only need give our attention to 
the groups bP k. About these we know the following facts [5, §7]: 

(1) Let (k be the quantity 

ak = 22k+1(22k~1 - 1). numerator B , 
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where B k is the k Bernoulli number. There is an isomorphism 

bP ̂ k > Z k-i 
8 

which is realised by the mapping 

rv4k-i],__. ° (mod ak) 
L J 8 ' 

where a is the signature of a parallelisable manifold which S 
bounds. 

(2) A given integer a occurs as a(M) for some s-parallelisable M 
bounded by a homotopy sphere ^=> <7 = 0 mod 8. 

It is clear from this that if we can produce a homotopy sphere of 
dimension 4k — 1 bounding a parallelisable manifold of signature 8n 
for all integers k > 1, n > 1, then this collection will contain a set of 
representaives of each of the diffeomorphism classes. 

Given n, k as above, consider the matrix of signature 8n guaran­
teed by Proposition 1.4. Plumb 2k—disk bundles over 2k—spheres ac­
cording to this matrix. The resulting manifold has signature 8n and 
is parallelisable by Lemma 1.2. Moreover, Proposition 1.1 shows the 
(4k — 1)—dimensional boundary is a homotopy sphere, as required. 

§2. 

Our main results are as follows: 

T h e o r e m 2 .1 . Homotopy spheres which bound parallelisable man­
ifolds admit metrics of positive Ricci curvature. 

T h e o r e m 2.2 . The boundary of any manifold obtained by plumbing 
n—disk bundles over n—spheres (n > 3) according to a simply connected 
graph admits a metric of positive Ricci curvature. 

T h e o r e m 2.3 . The boundary of a manifold obtained by plumbing 
together two disk bundles over spheres admits a Ricci positive metric 
provided the fibre disks and base spheres have dimension > 3. 

Notice in this last theorem that we are not insisting the base and 
fibres have the same dimension. This is interesting for two reasons. 
Firstly, we can deduce that the boundary of the manifold obtained by 
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plumbing the 5—dimensional vector bundle over S 4 generating KO(S4) 
with the non-trivial 4—dimensional vector bundle over S5, admits a 
metric of positive Ricci curvature. This manifold is a homotopy sphere, 
but does not bound a parallelisable manifold. Thus the converse to 
Theorem 2.1 is not true. 

Secondly, it can be shown that the same homotopy sphere has non-
trivial 'improved Witten genus' (see [7] for definitions and details). This 
shows that a conjecture of Stolz and Höhn claiming the vanishing of the 
Witten genus for a Ricci positive spin manifold with \p\M = 0 can­
not be refined by replacing the Witten genus by the 'improved Witten 
genus'. 

We will prove the above theorems in reverse order. First though, we 
need to discuss the boundaries of plumbed manifolds in some detail. 

Suppose W n+m+ is an (m -\- 1)—disk bundle over an n—sphere, 
with boundary M\. Let W n + m + be an n—disk bundle over an ( m + 
1)—sphere, with boundary M2. Consider the boundary of a plumbing 
between W\ and W2. We can describe this in terms of the sphere bundles 
M\ and M2 as follows. 

Choose embedded disks d M1 and d M2 of maximal dimension in the 
base spheres of M\ and M2 respectively. There exists a unique trivial-
isation fi of M i over d M i, i = 1,2. Restricted to the boundaries, these 
give trivialisations <j)\ and <f)2 thus: 

fa-.Milad M — • S n" 1 x S m, 

fo:M2\dd M2 -^S mxS n-\ 

Now remove the interior of d M1 and d M 2 ) and the portion of the 
respective sphere bundles lying above. We are then left with two sphere 
bundles over disks, each equipped with a boundary trivialisation. De­
note these bundles a\ and a2. To complete the 'boundary plumbing' 
simply identify the two boundaries using the trivialisations in the canon­
ical way. Symbolically this can be represented 

d{Wx AW2) = ( a i I I a 2 ) / ~ . 

Notice that we could also describe the manifold {a\ II « 2 ) / ~ as 
being the result of performing an appropriate surgery on M\. Equally, 
by reversing the roles of M\ and M2 we could regard the construction 
as a surgery on M2. 
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Let us assign a metric to M\ using the Vilms method (see [1, The­
orem 9.59]). For this we need to specify a metric on the base, a metric 
on an abstract fibre which is invariant under the action of the structural 
group, and a connection on the associated principal bundle. 

We choose round metrics of radii N and p on the base and fibre 
spheres respectively. We choose a principal connection in the following 
way. The trivialisation <j)\ is a diffeomorphism onto a product, namely 
d M1 X S m. Regarding this as a trivial bundle over d M1, we note that 
there is a canonical principal connection on the associated principal 
bundle d M1 X SO(m + 1). Pulling this back via (f>i, we obtain a flat 
principal connection for that portion of the SO{m-\-l) bundle associated 
to M\ which lies above d Ml • Now extend this connection over the whole 
principal bundle. (In general, of course, it will not be possible to do 
this, so the connection is globally flat.) 

With these pieces of data, the Vilms construction gives us a sub-
mension metric on M\ with totally geodesic fibres, which is isometric 
to a product over d Ml • Without loss of generality, we will assume from 
now on that d M1 is a geodesic disk of radius R. 

It is well known (see for example [1, Proposition 9.70]) that if the 
number p is chosen small enough, the resulting metric on M\ will have 
positive Ricci curvature. We will suppose this is the case. Of course, 
this metric will restrict to give a positive Ricci curvature metric on a\. 

L e m m a 2.4. Assume n > m + 1 > 3. There exists K depending on 

n, m, W\ and the ratio Rj, such that if N < K then we can choose a 

Riemannian metric on oii which gels smoothly with the metric on a\ to 

give a Ricci positive metric on {a\ II « 2 ) / ~ . 

Proof. This becomes a trivial consequence of [8, Theorem 2.1] after 
observing that W\ determines the pair (ai,<^i) in an essentially unique 
way. 

L e m m a 2.5. Given K' > 0, there exists K > 0 such that if N < K 
we can arrange for the metric on oii described in Lemma 2.4 to satisfy 
the following additional conditions: 

(1) Above a small disc of radius R' in the interior of the base of oii, 
we can choose the metric so we have an isometry with D n ̂  ^N') X 
S m{p') for some p' and N'. Here D ̂ (N') is a geodesic disc of 
radius R' in a round n—sphere of radius N', and S m(p') is a round 
m—sphere of radius p'. 

(2) Nr < K>. 
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(3) N = A where A is a fixed constant depending on n and m only. 

Proof. This is just Proposition 2.2 of [8]. 

Proof of Theorem 2.3. Consider a plumbing between the bundles 
W n + m + 1 and W n + m + 1 . Recall tha t the base of Wx is an n - sphe re , and 

d{Wx AW2) = ( a i I I a 2 ) / ~ . 

Lemma 2.4 asserts that this manifold admits a positive Ricci curvature 
metric provided n > m + 1 > 3 and N < K, some K < 0. Assume 
for the moment that n > m + 1, (we have that n and m + 1 are > 3 
by hypothesis). The statement of Lemma 2.4 implies that p and K are 
independent. Therefore we can certainly arrange to have -^ < K by 
simply choosing p smaller if necessary. 

Suppose now that n < m + 1, so Lemma 2.4 will not work. There is 
nothing to prevent us reversing the roles of W\ and W2 (and therefore 
« i and «2) in this lemma and its preceeding discussion. We would then 
have that d{W\ A W2) can be equipped with a Ricci positive metric 
provided m + 1 > n > 3 and -^ < K\, some «i > 0. The dimensional 
condition is now satisfied by assumption, and we can arrange for the 
second condition to hold in the same manner as before. 

Remark . In [9], the author generalises this theorem to cover 
plumbings with straight line graphs of any (finite) length. 

Proof of Theorem 2.2. The fact that we can restrict our attention 
here to n—disk bundles over n—spheres (n > 3) means the dimensional 
requirement of Lemma 2.4 is always satisfied. 

Suppose we define a Ricci positive Vilms metric on the boundary of 
a disk bundle W\ and use Lemma 2.4 to obtain a Ricci positive metric 
on the boundary of some plumbing W\ A W2 as described earlier. We 
consider three extensions to this construction. 

(i) Suppose we wish to plumb a further bundle to W\. Call this 
bundle W3. By rechoosing the principal connection if necessary, 
arrange for the metric on dW\ in a neighbourhood of the pro­
posed plumbing to be isometric with a product in the usual way. 
To invoke Lemma 2.4 we will need some condition -^ < K2 to be 
satisfied. But this can be arranged by choosing a smaller value 
for p. It is clear that then Lemma 2.4 can be successfully ap­
plied to both plumbings to guarantee a Ricci positive metric on 
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d(W3 A W\ A W2). Of course, this generalises to any number of 
further plumbings on W\. 

(ii) Suppose we wish to plumb a second bunde to Wi- Again, we 
will refer to this bundle as W3. To see that d(Wx A W2 A W3) 
admits a Ricci positive metric we need Lemma 2.5. Assertion (1) 
of this lemma says we can arrange our Ricci positive metric on 
d(W\ A W2) to take a form on some neighbourhood inside dWi 
which permits further applications of Lemma 2.4. 

However, if we aim to apply Lemma 2.4, some condition of the form 
N < K' will need to be satisfied. Now by Lemma 2.5 (3), K' only 
depends on W3, as all other parameters are fixed. 

Given a value for K', we can find a corresponding value for K which 
is possibly smaller than that used for the first plumbing. If so, we may 
need to rechoose p to ensure that the condition -^ < K is still satisfied. 

We then perform the plumbing inside the region sitting over the disk 
of radius R' guaranteed by Lemma 2.5 (1). Assertion (2) of this lemma 
then states that our condition -N < K' is satisfied, so by Lemma 2.4 we 
can conclude the existence of a Ricci positive metric on 

d{Wx AW2 A W 3 ) . 

Should we wish to plumb a further bundle, W4, to W3, the same 
approach will work. We obtain a value K" for the third plumbing (de­
pending on W4), which gives a value for K' and in turn a value for K, 
and this imposes an upper bound on p. 

(iii) Suppose once more we begin with W\ A W2, but this time want 
to plumb both W3 and W4 to Wi- To apply Lemma 2.4 to each 
of these plumbings we will need to satisfy conditions involving 
constants K'3 and K'4. Set K' = min(K'3, K'4). We ensure -N < K' as 
described in (ii), and perform both plumbings where the metric on 
dW2 is 'nice' in the sense of Lemma 2.5 (1). We can then invoke 
Lemma 2.4 to guarantee the existence of a Ricci positive metric 
on the boundary of the resulting manifold. 

Having presented these three special cases, it should now be clear 
how to inductively build a Ricci positive metric on the boundary of any 
plumbing with a simply-connected graph. 
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Proof of Theorem 2.1. In Proposition 1.5 we see that any homo-
topy sphere bounding a parallelisable manifold can be expressed as the 
boundary of a manifold plumbed according to a simply connected graph. 
The result follows by Theorem 2.2. 
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