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1. Introduct ion 

Let G be a complex reductive group and B a Borel subgroup of 
G, and let BG and BB denote the classifying spaces of these groups. 
Then BB —> BG is a flag bundle: a fibration with fibers isomorphic to 
the flag variety G/B. The diagonal A C BB XBG BB can be used to 
define a class in H*(BB XBG BB). For classical groups this class has 
been studied by Fulton and by Pragacz and Ratajski (see [14], [15], [21], 
[22]). This paper studies the class of the diagonal for general G, from a 
Lie-theoretic point of view. Here H* denotes cohomology with complex 
coefficients; see Section 2 for a discussion of integer cohomology and 
Chow groups. 

The motivation for this study comes from degeneracy loci. In its 
simplest form, if V and W are vector bundles on M and (f> : V —» 
W a generic bundle map, the locus Z C M where (f>z has less than 
maximal rank is called a degeneracy locus. More generally one can 
consider a vector bundle V equipped with a pair of flags of subbundles 
E\ C . . . C E n = V and F\ C • • • C F n = V. This corresponds to 
G = GL n. For each w £ S n (the Weyl group of GL n) there is a locus 
Z w C M defined by certain incidence relations between the flags E 
and F. Bundles equipped with an orthogonal or symplectic form, and 
isotropic or Lagrangian flags of subbundles, correspond to the groups 
SO(n) or Sp(n). Many schemes can be realized as degeneracy loci and 
for this reason general facts about such loci are useful (see [23] for a 
survey, and also [9], [16]). 
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The problem considered in [14], [15], [22] is to find polynomials F w 
in the Chern classes of the E i and F j such that [Z w] = F w n [M]. 
Because much is known about Chern classes, such polynomials are useful 
in studying the Z w, for example, in proving that Z w is nonempty, or 
intersecting Z w with other subvarieties. 

To solve this problem it suffices to consider the most degenerate 
locus, namely the diagonal Z e = A, the locus where the flags coincide, 
since F w can be obtained by applying divided difference operators to 
F e ([14]). As discussed below, it also suffices to consider the universal 
case where M = BB XBG BB, since any other case pulls back from 
this. Although BB XBG BB is infinite-dimensional, it is a limit of 
compact finite dimensional manifolds, and A is a limit of codimension 
2d submanifolds (here d is the complex dimension of G/B), so Poincare 
duality can still be used to define a class f G H*(BB XBG BB). We 
call f the class of the diagonal and write f n [BB XBG BB] = [A]. 

Let H C B be a maximal torus with Lie algebra h and let W denote 
the Weyl group of H in G. Write R = S(h*), S = S(h*)W. It is 
well-known that 

H*(BG) = S, H*(BB) = R, 

and it is easy to show that 

H*(BB XBG BB) =R®S R-

(Proposition 2.1). The class f is thus an element of R ®S R. The 
problem of finding a formula for the class of the diagonal, considered by 
Fulton and Pragacz-Ratajski, is essentially the problem of finding a lift 
F of f to R ® c R. 

The formulas of [15] are quite different from the formulas of [22]: the 
two constructions produce different lifts of f. It is difficult to compare 
these formulas algebraically and for this reason (and on general princi­
ples) it is desirable to have a description of f which does not depend on 
a particular choice of lift. 

The main result of this paper is the following description off , which 
is valid for any connected reductive G. First note that Spec R ®S R = 
h Xh/W h . This scheme is a union of irreducible components h w = 
{(x,wx) j x G h } . The diagonal component is h i . 

T h e o r e m 1.1. Let f G R<S>S R = H*(BB XBG BB) represent the 
class of the diagonal. Then f satisfies and is determined by the following 
two properties: 
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1. f vanishes on each component h w of h XhiW h with w / 1. 

2. f restricted to hi = h is Y\a>0 a G R, where the product is over 
the set of positive roots. 

This result is proved in Section 3. 

In Section 4 we prove a result similar to the theorem of Pragacz 
which was used to derive the formulas of [22]. Using this we obtain 
a formula (Proposition 4.2) for a lift of f which is valid for any G. 
Although this formula is unwieldy, it can be combined with Theorem 
1.1 to yield a result about the action of W on S(h*) (Corollary 4.3). It 
would be interesting to give a purely algebraic proof of this corollary. 

The remainder of this paper is primarily devoted to connections with 
degeneracy loci and the work of Fulton and Pragacz and Rajatski. Their 
work concerns a space X equipped with a vector bundle V and two flags 
E\ C . . . C E n and F\ C • • • C F n of subbundles of V. There are 4 
cases corresponding to the 4 families of classical groups: A n_i , where V 
has rank n; B n (resp. D n) where V is equipped with a nondegenerate 
quadratic form, E i and F i are isotropic subbundles, and the rank of V is 
2n + 1 (resp. 2n); and C n, where V has a nondegerate skew-symmetric 
form, E i and F i are Lagrangian, and the rank of V is 2n. There are also 
twisted versions of types B n, C n, and D n, where the form takes values 
in a line bundle L —> X. In each case the goal is to find a formula for the 
locus where the flags E and F coincide. If G is one of the classical groups 
SL(n), SO(2n+l), SO(2n),or Sp(2n), then BB XBG BB is equipped 
with a standard vector bundle and flags as in the preceding paragraph 
(there is no twist by L) and the results of Fulton and Pragacz-Rajatski 
apply to give formulas for the class of the diagonal. 

To go in the other direction, to prove formulas for degeneracy loci 
from the results of this paper, there are two steps. The first is to use 
Theorem 1.1 to prove formulas for the class of the diagonal in BB XBG 
BB. The second is to show that BB XBG BB is the universal case. 

The first step is carried out in Section 5, where we show that for 
classical groups, the formulas for the class of the diagonal BB XBG BB 
obtained from [14], [15] (by viewing the diagonal as a degeneracy locus) 
satisfy the conditions of Theorem 1.1. This gives a new proof that 
these formulas represent the class of the diagonal. I do not know of a 
direct algebraic proof that the formulas of [22] satisfy the conditions of 
Theorem 1.1; in fact comparing the methods of [22] with Theorem 1.1 
is the theme of the preceding section. 
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The second step is carried out in Section 6 for the case where V has 
rank 2n and a quadratic form with values in L (the other cases being 
similar or easier). We show that given a space X equipped with a vector 
bundle and two flags of isotropic subbundles, this da ta is pulled back to 
X by a map X —> BB XBG BB. If the line bundle L is trivial, then the 
group G can be taken to be SO(2n), but for arbitrary L the appropriate 
group is an extension of SO(2n) by C*. 

Finally, note that Theorem 1.1 applies to the exceptional groups as 
well as to classical groups. In Section 5 we use this theorem to prove 
a formula for the exceptional group Gì- This formula is much more 
concise than the general formula of Proposition 4.2. It seems possible 
that with some effort one could obtain formulas of a similar character 
for other exceptional groups. The expression for type Gì leads to a 
conjecture that certain characteristic classes, which are a priori only 
rational cohomology classes, are actually integral. A similar result was 
proved in [10] for the orthogonal groups. 

The results of this paper are connected with equivariant cohomology, 
in the following way. It is easy to see that the spaces BB XBG BB and 
EG XG [GJB) are isomorphic. The cohomology of the second space is by 
definition the B-equivariant cohomology H B(G/B). Thus, H*(BBXBG 

BB) = H B(G/B). Under this isomorphism, the class of the diagonal 
corresponds to the B-equivariant fundamental class of a point. In [3] 
and [8], the problem of expressing the (Poincare dual to) the class of a 
point in G/B in terms of the isomorphism H*(G/B) = R/J is solved 
(here J is the ideal in R generated by positive degree elements in S). 
Theorem 1.1 may be therefore be viewed as a B-equivariant analogue 
of this result. 

Finally, we remark that there is work of Arabia and Kostant-Kumar 
([1], [2], [18], [19]) on the T-equivariant K-theory and cohomology of 
the flag variety (in the more general context of a Kac-Moody group). 
Here T = B n K is a maximal torus in a maximal compact subgroup K 
of G. Because the groups T and B are homotopic, we have H T(G/B) = 
H B(G/B). By means of this translation into T-equivariant cohomology, 
Theorem 1.1 follows from the work of Arabia and Kostant-Kumar; in 
this paper we will prove Theorem 1.1 directly. Some of the results of 
Kostant-Kumar are extended to equivariant Chow groups in Brion [5]; 
see also [13]. 

A c k n o w l e d g m e n t s . I would like to thank William Fulton for his 
helpful comments, Dan Edidin for some useful conversations, and Sam 
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Evens for informing me of the work of Arabia and Kostant-Kumar. 

2. Prel iminaries 

In this section we discuss a few preliminaries. Throughout this pa­
per, we will let H* denote cohomology with complex coefficients. From 
the results with complex coefficients, results can be deduced which apply 
to cohomology with integral coefficients, and also to operational Chow 
groups. This is discussed at the end of the section. 

Let G denote a complex reductive group and B a Borel subalgebra of 
G. The positive roots will correspond to the roots in the Lie algebra of 
B. A character X of H extends to B as usual (by sending the unipotent 
radical of B to 1). Let M\ denote the line bundle G XB C \ —» G/B. 
Then M\ corresponds to a positive divisor if the weight —A is dominant 
[8, §4.6]. 

Let EG denote a contractible space with a free right G-action. Any 
subgroup of G acts freely on EG] thus, BB = EG/ B —> BG is a fiber 
bundle with fiber G/B. Let L\ denote the line bundle EGXB C\ —> BB. 
We have maps 

R = S(t)*) -> H*(BB) -> H*{G/B), 

where the first map takes a character A to —ci(L\) and the second 
map is restriction to a fiber. The first map is an isomorphism, and the 
composition induces an isomorphism R/J —> H*(G/B); here J is the 
ideal in R generated by the homogeneous elements of positive degree in 
S = R W. Under this isomorphism the Poincare dual of a point in G/B is 
represented by | W | _ 1 n a > o a mod J ([8, §4.5], [3, Theorem 3.15]; note 
that the map R/J in both of these references takes A to ci(M\), which 
accounts for the extra factor of ( — 1) w ) , omitted in [3]). 

Let K be a maximal compact subgroup of G, and T = B n K a 
maximal torus of K. Then as manifolds, G/B = K/T. The Weyl group 
W = N K(T)/T acts on K/T on the right by kT • w = kwT, where we 
use w to denote both an element of W and a lift to N K(T). 

Because we want to use the W-action it is convenient to work with K 
rather than G. Under the natural map BK = EG/K —> BG (which is a 
homotopy equivalence), the bundle BB —> BG pulls back to the bundle 
BT —T- BK. Our results about the class of the diagonal in BB XBG BB 
are equivalent to results about the diagonal in BT XBK BT. We will 
therefore usually let A denote the diagonal in BT XBK BT. 
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Propos i t ion 2 .1 . Suppose X —p Y is a fiber bundle with fiber F. 
Assume that F has finite dimensional cohomology and suppose there 
exist elements ai in H*X which restrict to a basis of H*F. Then the 
natural map 

<j> : H*X ®H*Y H*X -+ H*(X xY X) 

taking x\ <8> xi to it\(x\)it:\(x'2) is an isomorphism. 

Proof. By the Leray-Hirsch theorem, the classes ^ ( a i ) form a basis 
of H*(X XY X) over -KI(H*X). Hence the map <f> is surjective. But then 
both H*X <S)H'Y H*X and H*(X XY X) are free H*Y-modules of the 
same finite rank, so (f> is injective as well. q.e.d. 

p i 

Integrality. Note that BT XBK BT —> BT is a fiber bundle with 
fiber K/T. Both K/T and BT have torsion-free integral cohomology 
which vanishes in odd dimensions. Therefore the same holds for the 
integral cohomology of BT XBK BT. Hence the class of the diagonal in 
H*(BT XBK BT; Z) is determined by the class in H*(BT XBK BT; C). 
In general we do not know which classes in H*(BT XBK BT;C) are 
integral, but the class of the diagonal is integral because it is represented 
by a submanifold. 

C h o w groups . Although in this paper we will work in cohomology, 
the same results are valid for operational Chow groups, in the category 
of schemes over C By work of Totaro, there is a good algebraic ap­
proximation to BG: Let V be a representation of G and let U C V be 
an open subset on which G acts freely such that a quotient U/G exists. 
If C = V — U has codimension greater than i, then U/G approximates 
BG (in operational Chow groups) up to degree i. Now, U/G is also 
a topological approximation to BG ([12]), since the homotopy groups 
TTj (U/G) vanish for j < 2i. (If (f> : S j —> U, we may view (f> as a map 
into V, extend it to a map B j + l —> V, and assume that this extended 
map is smooth and transversal to C. If j + 1 < 2i + 1, transversality 
implies that the image of B j + l does not intersect C and hence lies in 

Since U/G is smooth, there is a cycle map 

A i (U/G) - • H2i(U/G;Z) 

and hence a map 

A i(BG) -^H2i{BG;Z). 



t h e c l a s s o f t h e d i a g o n a l in f l a g b u n d l e s 477 

Now, A*(BG) ® C ^ S(h*)W, [11]. As is well-known the same is true 
for H*(BG), so (with complex coefficients) the cycle map is an isomor­
phism. Similarly, the map 

A i BH XBG BH) - • H2i BH XBG BH) 

is an isomorphism (with complex coefficients). Hence with complex 
coefficients the formula for the diagonal in Chow cohomology agrees 
with that in singular cohomology. 

Finally, the operational Chow groups of BHXBG BH are torsion-free 
[11], so the remarks about cohomology apply. 

3. T h e main t h e o r e m 

In this section we give the proof of Theorem 1.1. First note that part 
(1) of the theorem, combined with the fact that the degree of f is d = 
the number of positive roots, determines f up to a constant multiple. 
For by part (1) f vanishes on hi Dh w (w / 1). Identifying hi with h, 
this implies fj h1 vanishes on each root hyperplane, so fj h1 is divisible 
by each positive root a. Since the degree of f is d, this means fj h1 is a 
constant multiple of Q a . Par t (2) then says that this constant is 1. 

To show part (1) we must show that f(x, w~1x) = 0 for all w / 1. 
Equivalently, we must show that 7Tw(f) = 0, where irw : R ®S R —> R is 
the map taking r\ <g> r2 to r\ • wir ^). There is a natural right W X W­
action on BT XBK BT given by 

(eiT, e2T) • (w1,w2) = (eiwiT, e2w2T). 

Let i w : BT —> BT XBK BT denote the map taking eT to (eT,ewT). 
This induces on cohomology a map i*w : R ®S R —» R. By Lemma 3.1 
below, i*w = -Kw. 

Let Aw = i w(BT). The action of W on BT is free, so if w ^ 1 then 
Aw Pi A is empty. Since f represents the class of A, we see i ̂ (f) = 
irw(f) = 0. This proves (1). 

Write f i = fj hj and B = K/T. By the remark above, f\ = c Q a , 
and we have only to show that c = 1. Let f denote the image of f\ 
in R/J = H*(B), so f = c Q a mod I . Now, f is the pullback of the 
class of the diagonal in B X B by the diagonal embedding. Let fa w g and 
fb w g be Poincare dual bases of H*(B), indexed by w £ W. The class 
of the diagonal in B X B is represented by P a w <S> b w, so f = P a w b w-
Since fa w g and fb w g are dual bases, a w b w represents the class of a point 
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in H (ß). As noted above, the class of a point is \W\ 1 Yia mod J-
Thus 

f = J2a w b w = J2\W\-1Y\a = Y[a mod J, 

showing that c = 1. q.e.d. 

In the proof we used the following lemma. 

L e m m a 3 .1 . The maps i*w and irw from R ®S R to R coincide. 

Proof. The map S(t*) - • H*(BT) takes a character A G T C t* to 
— ci(L\), where L\ is the line bundle 

EK xT CA - • E K / T = BT. 

On BT XBK BT we have line bundles Ti*(L\), where 7i : BT XBK BT —> 
BT is the i-th projection. It suffices to show that 

and 

w^CLA) = L/A-

The first equation holds because TÏ\ O i w is the identity map, and the 
second equation is easy to check. The result follows. q.e.d. 

4. T h e m e t h o d of push-forwards 

Pragacz and Ratajski obtain formulas for the diagonal by applying a 
theorem of Pragacz ([21, Theorem 5.2]). The following result is similar 
to Pragacz's theorem. 

T h e o r e m 4 .1 . Suppose X —» Y is a fibration of manifolds with 
fiber the compact manifold F. Suppose Xi and y i (i = 1 , . . . ,N) are 
elements of H*X, of pure degree, such that the sets {xg and {yg each 
restrict to a basis of H*F. Define b ij G H*Y by b ij = ir*(x i y j). Then 
the following hold: 

1. The matrix B = (b ij) is invertible. 

2. Let A = (a ij) denote the matrix ( B _ 1 ) t . Then the class of the 
diagonal f G H*(X XY X) is given by 

f = ^ a ij x i®y j . 
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Proof. (1) Observe that ir*{x i y j) = 0 if deg Xi + deg y j < dim F. 
Without loss of generality we may assume that the Xi (resp. y j) are 
ordered by decreasing (resp. increasing) degree. Then the matrix B 
contains blocks along the diagonal, with each block B k corresponding 
to the ordered pairs (i,j) where deg Xi = k and deg y j = dim F — k. 
Below these blocks, the entries of B are 0. To show that B is invertible 
it suffices to show that the block diagonal matrix B' = (b ij) with blocks 
B k is invertible. Now, b ij = F i*x i • i*y j , where i : F -̂> X is the 
inclusion of a fiber. Thus B' is invertible by Poincare duality applied to 
F. In more detail, let f j g be a basis of H*F Poincare dual to fi*x k g. 
Both f j g and fi*y k g are bases of H*F, and i*y j = P b j z i- On the 
other hand, z j = P r ij i*y i for some r ij- Then (b ij) and (r ij) must be 
inverse matrices. 

(2) Let 7 denote the projection X XY X —> Y. As in [21], if g, h G 
H * X then (with f denoting the class of the diagonal) 

K*(g-h) = 7 * ( f - (g®h)). 

Now we can write 

for some ij in H*Y. Then 

= X c i j 7 r * ( x y ) 7 r * ( x k y j ) 

i,j 

= (BC t B)kl. 

That is, B = BC t B, so C = ( B - 1 ) t = A. q.e.d. 

In the situation of the theorem, write A = H*X, B = H*Y. Then 
A is a free B-module of finite rank. Think of B as the ground ring, and 
define an inner product (, ) : A®B A —> B by (a1,a2) = ^*{a\a2)- Using 
this inner product we can identify A with A* = Hom B(A,B) . Thus 

A (&B A = A* (&B A = Hom B (A, A), where a\ <8> a2, viewed as a map 
from A to A, is given by 

(ai <g) a2)(a) = (a1,a)a2. 
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The preceding result implies that the class of the diagonal, viewed as a 
map from A to A, is the identity. 

Now let X = BT,Y = BK, H*X = R, H*Y = S. Since we can 
view Y as a limit of compact manifolds, the above theorem still holds. 
The map 7r* : R —> S is given by 

where w is the divided difference operator corresponding to the long 
element w of W. The first equality is from [4] and the second from 
[7]. Hence the inner product coincides in type A with the inner product 
introduced by Lascoux-Schutzenberger [20]. Just as in type A we have 
(<9«ri,r2) = (ri,<9„r2). 

The above results imply the following explicit formula for the class 
the diagonal (i.e., for a lift of f ) . First note that we can obtain an 
explicit basis of R as S-module; one choice is to let p e be any element of 
R which agrees with (W^ - 1 [ ] a > 0 a mod J , and then set p w = dw-ip e. 
If we choose two such bases we obtain the following proposition. 

Propos i t ion 4 .2 . Let {p w g and {q w g be bases of R over S, indexed 
by w G W; assume that p w and q w have pure degree. Let b uv = w (p u q v) 
and let (a uv) be the inverse transpose matrix to (b uv). Then the class of 
the diagonal is represented by 

y ^ a uv p u®q v. 
u,vEW 

q.e.d. 

This formula is explicit but complicated. Other formulas for lifts of 
f to R ®c R are discussed in the next section. 

Let m : R ®S R —» R denote the multiplication map. Identifying 
R&S R with Hom S(R, R), we will view m as a map from Hom S(R, R) to 
R. Then the inner product 7r* O m is just the trace map HornS (R, R) ~^ 
S. As an S-module, R is free of rank \W\, and the natural representation 
of W on R over S is equivalent to the regular representation (see [6]). 
Hence 

^ o m ( l ) = Trace(l) = \W\, 

and if w G W is not equal to 1, then 

7T* o m(w) = Trace(w) = 0. 
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From the geometric arguments of this paper we see that the following 
stronger statement is true. 

Corollary 4 .3 . Let w £ W and view w as an element of 

Hom S(R,R) = R®S R-

Ifw/1 then 

m(w) = 0, 

and 

m(l) = Y a. 

Proof. The identity map in Hom S(R, R) corresponds to f G R($S R, 

and the element w G Hom S(R, R) corresponds to (1 X w)f. By Theorem 
1.1, we have m(f) = Qa>o a and m ( ( l x w)f) = 0 for w ^ 1. q.e.d. 

It would be interesting to have a purely algebraic proof of this result 
which applies to root systems of type H3 and H4 (which are not covered 
by the corollary). 

5. Express ions for the class of the diagonal 

In this section we discuss some expressions for the class of the di­
agonal. For the classical groups, expressions follow from the work of 
Fulton, and of Pragacz and Ratajski for the orthogonal and symplectic 
groups. We will sketch a verification that Fulton's expressions satisfy 
the conditions of Theorem 1.1, thus providing another proof that they 
represent the class of the diagonal. We will also give an expression for 
the exceptional group G ̂ - In this section it is not necessary to inter­
pret the terms of these formulas as Chern classes of subbundles (but see 
Section 6); we have only to check the conditions of Theorem 1.1. 

We remark that the method of proof in [15] is to construct a se­
quence M = ZQ D Z\ D • • • D Z k = A, where Z i+\ is the zero-locus of a 
vector bundle on Z i. This yields a formula for the class of the diagonal. 
Algebraic arguments convert this into a formula with a more "determi-
nantal" appearance. It turns out that this algebra is precisely what is 
needed to verify that these formulas satisfy the conditions of Theorem 
1.1, even though the proof of this theorem is quite different from the 
proofs of [15]. 
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For the classical groups we have standard realizations of h* and of 
the roots. For B n, C n, D n we will write 

S(h*) 0C S (h*) = C[x1}... ,x n,y1}... ,y n]; 

for A n_i we impose the relations P x i = P y i = 0- Our convention 
is that x i and y i represent the same coordinate on h; on h X h, Xi 
corresponds to the first factor and y i to the second. (We note this 
because under the convention of [15] our y i would be y n+i_i.) For 
A n_i, the expression of [14] is 

Since the Weyl group acts by permuting the coordinates, and the posi­
tive roots are Xi — x j (i < j), the conditions of Theorem 1.1 are clear. 
For D n, the expression of [15] is 

(5.1) F{x,y) = Y{x i-y j)-Fl{x,y). 
i<j 

Here Fi(x,y) = det(c ij), where ( i j ) is the n X n matrix whose (i,j) 
entry is 

c ij = i;{e k{x) + e k(y)) , k = n+l + j -2i. 

Here e k(x) and e k(y) denote the k-th elementary symmetric function in 
the variables Xi and y i, respectively. The only properties of Fi(x,y) we 
will use are that it is invariant under permutations of the Xi or y i, and 
that if €i = ± 1 (with an even number of ei equal to —1), then 

is 0 unless all ei are equal to 1, in which case it equals Q ^ j ̂ 2-i + x j)-1 

The Weyl group of D n consists of signed permutations on n letters, 
which involve only an even number of sign changes. If w is in the Weyl 
group, then F(x, wx) is 0 unless all the signs are 1; in that case w is just 
a permutation, and F(x,wx) clearly vanishes unless w is the identity 
permutation. Likewise, 

F(x, x) = Y(a;i2 - x j) = Y a(x). 
i<j a>0 

The analogous result for type C n is proved in detail in [15]; this is indicated 
there. 
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This verifies Fulton's formulas for types A and D; types B and C are 
checked similarly. 

For type G2, we use the description of [17]: we realize the maximal 
torus of G2 as the subset of C3 where the coordinates add up to 0, and 
write 

S(i)*) ®c S (I)*) = C[x1, x2, x3, yi , y 2 , y ] 

modulo the relations P x i = P y i = 0- The 6 positive roots are Xi — x j 
(i < j), x i~\-x j — 2x k- Note that as a function on t), x i + x j —2x k = —3x k. 
The Weyl group is generated by permutations of the coordinates and 
the map multiplication by —1. It is easy to check that 

27 
— ^ ( x i - y2)(xi - y ) (x2 - y3){xix2x3 + y1y2y) 

satisfies the conditions of Theorem 1.1 and hence represents the class of 
the diagonal. This suggests the conjecture that ^(xix2x-\-yiy2y3) is an 
integral cohomology class. This is like [10, Theorem 1] (which concerned 
the orthogonal groups), and probably can be proved similarly. 

6. Loci defined by flags of vector bundles 

The papers of Fulton and Pragacz-Ratajski give formulas for de­
generacy loci defined by flags of vector bundles. As indicated in the 
introduction, the spaces BB XBG BB are the universal cases, in that 
formulas derived for this space can be pulled back to an arbitrary space. 
In this section we explain this in detail. For simplicity, we will only con­
sider the even orthogonal case and its twisted analogue; there are similar 
(simpler) versions for the other classical groups. At the end of the sec­
tion we indicate the modifications to the argument necessary to apply 
it to Chow groups. 

Suppose that V —> X is a rank 2n vector bundle equipped with 
a nondegenerate quadratic form with values in a line bundle L —> X. 
Suppose that E\ C • • • C E n = V and F\ C • • • C F n = V are maximal 
flags of isotropic subbundles, so E i and F i are isotropic of rank i. We 
will assume that E and F are in the same family, i.e., dim (E n)x = 
dim (F n)x for all x G X. (The case of opposite families can be reduced 
to this.) Formulas for the locus where the flags E and F coincide are 
given in [15] and (if L is trivial) in [22]. In this section we will show 
that the formulas of [15] can be deduced by pulling back to X from 
BB XBG BB for a suitable choice of G. In the untwisted case where L 
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is trivial we can take G = SO(2n). As noted in [15], while a formula 
for the general (twisted) case can be obtained from the untwisted case, 
information about 2-torsion is lost. It is better to deal directly with the 
twisted case. 

For the twisted case, the appropriate group G is an extension of 
SO(2n) by C*, defined as follows. Let V' = C2n with the quadratic form 
defined by (e i e2n+l-j)' = Sij Let G' denote the set of g G GL(2n) such 
that for all v, w G V , (gv,gw)' = j(g)(v,w)'. Here j(g) is a constant 
depending only on g, and the map 7 : G —> C* is a homomorphism. The 
condition (gv,gw)' = j(g)(v,w)' implies that det(g)2 = j(g)2n. The 
group G' has 2 components: the identity component, defined by the 
condition det(g) = j(g)n, and the other component defined by det(g) = 
—j(g)n- Let G denote the identity component of G'. 

The group G has V' as standard representation; it also has a 1-
dimensional representation (denoted by L ) defined by the character 
7. Over BG we have the vector bundle V = EG X V and the line 
bundle L = EG XG L . A section v of V is a map EG —> V satisfying 
v(e • g) = g~lv(e). There is a similar description of sections of L. 
The vector bundle V has a quadratic form with values in L: if v\ and 
v2 are two sections of V, then (v1,v2) is the section of L defined by 
(v1,v2)(e) = (v1(e),v2(e)y. 

Let E[ C . . . C E'n be the flag of isotropic subspaces of V with u i 
equal to the span of e 1 , . . . , e i Let B C G denote the stabilizer of the 
flag E'. The pullback of V to BB has a flag E of isotropic subbundles 
defined by i = EG XB E i . The pullback of V to BB XBG BB has two 
isotropic flags. We will abuse notation and write E = TT^E, F = TT^E-

Suppose V —T- X has a quadratic form with values in a line bundle 
L. We show that there is a classifying map from X to BG, as fol­
lows. Cover X by open sets U i on which V and L are trivial. Let s i 
denote the trivializing section of L on U i, and assume our trivializing 
sections v i , . . . , v i n of Vj U i satisfy (v k, v n ~j) = kj s i. These trivial­
izing sections define, in the obvious way, maps 4>i : U i X V —> Vji and 
g j i = <jj~l o fi : U ji X V -> U ji X V (here U ji = U j l~l U i). As usual, 
we may view g ji as a map from U ji into G L ( V ) . By construction, if 
x G U ji and v, w G V', then (g ji(x)v, g ji(x)w)' = s (x)(v, w)' . Thus, our 
transition functions g ji take values in the group G'. Hence they define a 
G"-principal bundle P —> X with associated bundle P XG V = V. This 
bundle is pulled back from the universal bundle by a classifying map 
X '• X —> BG'. By construction, V = X*V, L = X*L and the quadratic 
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form on V is the pullback of the form on V. 
If V is equipped with a flag of isotropic subbundles E\ C • • • C E n, 

then we can assume our trivializations of Vjji have the additional prop­
erty that v j is a basis for (E j/E j_i)j Ut- Thus our transition functions 
g ji will take values in B C G. Hence \ lifts to a classifying map 
X '• X —> BB, and the pullback of E i is E i. Likewise if X has two 
isotropic flags E and F, then this da ta is all pulled back to X by a 
map X —T- BB XBG BB, and the locus where E and F coincide is the 
pullback of the diagonal in BB XBG BB. 

This shows that BB XBG BB is indeed the universal case for this 
problem. We now wish to find a formula for the diagonal in terms of the 
Chern classes of E, F , and L The Lie algebra g of G is g = g i©z, where 
gt = so(2n) and z = fcI j c £ Cg. A maximal torus of g is h = hi © z, 
where hi is the diagonal maximal torus of so(2n). This splitting gives 
a dual splitting h* = h \ ©z*. Define elements x i, z G h* as follows. Any 
A G h can be written as A = Ai + cI , where Ai G hi is a diagonal 
matrix with entries (ai,... , a n, —a n,... , — a\). Set x-(Ai + cI) = a i, 
z(Ai + cI) = c. Thus, x\,... , x n, z form a basis for h*, and x i , . . . , x n 
is the standard basis for h \ . Write 

S{h*) ®c S(h*) = C[x i , . . . , £ n , z, y i , . . . , y n, w], 

where x- (resp. y i) are the standard basis of the first (resp. second) copy 
of h l , and z (resp. w) is the element above in the first (resp. second) 
copy of z*. 

Because g is the direct sum of so(2n) and an abelian Lie algebra, the 
roots and Weyl group for g are the same as for so(2n). It follows that 
the class of the diagonal is given by the same formula as for G = SO(2n) 
(equation (5.1)). Note that this expression does not involve z and w. 

Finally, we must relate the Xi to Chern classes of the bundles E i on 
BB. The restriction of the character 7 of G to H is 2z. Now, E i/E i-i is 
the line bundle EG XB {E'i E'^). The Lie algebra h acts on E'i E'^ 
by the character x i + z. (Note that x i and z define characters of h but 
not H. However, both x i + z and 2z integrate to characters of H.) 
In the notation of Section 2, E i/E i-i is the line bundle L x i+z. Hence 
under the isomorphism S(h*) = H*(BB) defined in Section 2, we have 
— (x i + z) = ci(E i/E i-i). Also, the pullback of L to BB (which we will 
still denote by L) is the line bundle Liz, so under our isomorphism, 
z = -\cx(L). Thus x i = -^(E i/E i-i) + \ci{L). 

This calculation is for bundles on BB. Recall tha t on BB XBG BB 
we have bundles E and F (we abuse notation and write x i = TT^Xi, 
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y i = ir^x i, E = TT^E, F = TT^E)• The preceding calculation implies that 
for these bundles on BB XBG BB we have Xi = — c\{E ili-\) + ^c i (L) , 
y i = —c\{F ilF i-\) + ^c i (L) . If we substitute these expressions into the 
formula (5.1) we recover the formula of [15]. 

The preceding arguments are for cohomology, but if X is a scheme 
over C, they work for Chow groups with only minor modification. This 
argument uses some results of Totaro on his algebraic model for BG, 
which are explained in [11]. The only difference is in the part of the 
argument showing that BB XBG BB is universal. The vector bundle V 
on X is still associated to a principal G-bundle P —> X. The presence 
of flags of isotropic subbundles implies that this bundle is locally trivial 
in the Zariski topology [10]. In the algebraic setting we cannot assume 
that P —> X is pulled back from the algebraic model for BG. However, 
if X is quasi-projective, we can find an affine bundle IT : X' —> X such 
that P' = ir*P is pulled back from an algebraic model for BG. The 
formula for the locus where the (pulled-back) flags coincide holds on X' 
by the arguments above. Since IT* is an isomorphism of Chow groups, 
the formula holds on X. If X is not quasi-projective, then consider a 
Chow envelope X' —> X. The pullback is injective on Chow groups, 
so it suffices to prove the formula on X', but it holds there because by 
definition X' is quasi-projective. 
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