
J. DIFFERENTIAL GEOMETRY
39(1994) 659-680

CONJUGACY AND RIGIDITY FOR MANIFOLDS
WITH A PARALLEL VECTOR FIELD

CHRISTOPHER B. CROKE & BRUCE KLEINER

Abstract

The main theorem in this paper is that any compact Riemannian man-
ifold with geodesic flow isomorphic to the geodesic flow of a local Rie-
mannian product M = (X x R)/Γ is isometric to M.

1. Introduction

In this paper we consider the question: Which compact Riemannian
manifolds M are determined uniquely by their geodesic flows? To for-
mulate this precisely we need a few definitions. If M and N are complete
Riemannian manifolds, then their geodesic flows are C° conjugate if there
is a homeomorphism F: SM —• SN from the unit sphere bundle SM
to the unit sphere bundle SN which commutes with the geodesic flows:
F o gι

M = g*N o F for all t e R where gt is the geodesic flow after time
t. If 0 < r < oo, and F can be chosen to be a Cr diffeomorphism, then
M and N have Cr conjugate geodesic flows. A complete Riemannian
manifold M is Cr conjugacy rigid if any Riemannian manifold N whose
geodesic flow is Cr conjugate to the geodesic flow of M is isometric to
M. A more precise formulation of our question then is: Which compact
Riemannian manifolds M are Cr conjugacy rigid?

It was pointed out by Weinstein (see [2, §4F]) that the geodesic flow of a
Zoll surface is C°° conjugate to the geodesic flow of a round sphere. Using
a variation of this idea we show in §6 that on any smooth manifold there
are infinite-dimensional families of pairwise nonisometric metrics with
mutually C°° conjugate geodesic flows. In particular, any Riemannian
manifold containing an open subset isometric to a neighborhood of an
equator Sn~ι (1) c Sn(1) is not conjugacy rigid.

On the other hand, surfaces of nonpositive curvature are C° conjugacy

rigid (see [4] for the C 1 case, and [6] for the C° case). When both M and
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N have negative curvature this question is closely related to the question of
whether M and N must be isometric if they have the same marked length
spectrum (see [18], [4], [6]). In [5] it was shown that if the geodesic flow
of a compact /2-dimensional Riemannian manifold N is C° conjugate
to the geodesic flow of a flat manifold M, and vol(iV) = vol(Af), then
TV is isometric to M. Finally, we mention that RPn with its standard
metric is C° conjugacy rigid as follows from the Blaschke conjecture for
spheres (proved for n = 2 in [9] and for general n in [2, Appendix D]);
this implies that spherical space forms Sn/Γ, where Γ c O(n + 1) has
even order, are also C conjugacy rigid.

The rigidity result in this paper concerns a special class of compact
Riemannian manifolds which includes Riemannian products X x S for
any compact Riemannian manifold X, nonproduct flat tori Tk , and Rie-
mannian products X x Tk where Tk is nonproduct flat torus. These
are manifolds that have a parallel vector field. By the de Rham splitting
theorem (see [14, p. 187]) a complete Riemannian manifold Mn has a
nontrivial parallel vector field if and only if it is of the form (X x R)/Γ
where Γ c Isom(Z) x Isom+(i?) c Isom(Λf x R), X is a simply con-
nected complete Riemannian manifold, X x R has the product metric,
and Isom+(i?) are the orientation preserving isometries. Our main re-
sult is that compact Riemannian manifolds with a parallel vector field are
determined by their geodesic flows.

Theorem 1.1. Let Mn be a compact Riemannian manifold with a non-
trivial parallel vector field. Then Mn is C 1 conjugacy rigid.

An ingredient in the proof of the above theorem which is of independent
interest is

Proposition 1.2. If M and N are compact Riemannian manifolds with
C conjugate geodesic flows, then they have the same volume.

It is easy to construct C°° self-conjugacies of the geodesic flow of a
round sphere that do not preserve the Liouville measure. Hence although
C conjugacies do not have to be measure preserving, Proposition 1.2
states that the total measure must be preserved. In particular the result of
[5] thus implies that flat manifolds are C 1 conjugacy rigid.

In §3 we study conjugacies between manifolds both of which are non-
trivial Riemannian products. The ideas in this section also have interesting
applications in the setting of manifolds of nonpositive curvature, which
we will pursue in a future paper with Patrick Eberlein.

Outline of the proof of Theorem 1.1. Suppose F: SM -* SN is a C ι

conjugacy of the geodesic flow of Mn to the geodesic flow of Nn . If v o l ^
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and v o l ^ are the Liouville volume forms on SM and SN respectively,
then F*VolSN = φvolSM for some φ e C°(SM). Our first step is to prove
that if M has a unit parallel field S, then φ = 1 on the "vertical" (i.e.,
{S(m)\m e M}) directions in M (Proposition 2.4). We then exploit an
extremal property of the Jacobi equation along the vertical geodesies in
Mn to show that vol(7Vn) > vol(Mn) with equality holding only if F(S)
is a parallel vector field on Nn . By Proposition 1.2 we have vol(Afπ) =
wo\(Nn), and so F(S) is a parallel field in our situation (Proposition 5.3).
To complete the proof, we use the behavior of nearly vertical geodesies to
see that M and N are isometric (Corollary 3.3).

Remark. The conjugacy problem formulated above is very closely re-
lated to the boundary rigidity problem discussed in [3]. A Riemannian
manifold (M, dM, g0) with boundary dM is called boundary rigid if ev-
ery (N,dM,g.) (with diffeomorphic boundary) with dσ (p,q) = dσ (p, q)
for every p, q e dM must be isometric to M (d represents the distance
in M between boundary points).

Theorem 1.1, along with the arguments in §§5 and 7 of [3], yields the
fact that SGM subdomains of compact Riemannian manifolds with a
parallel field are boundary rigid. The condition SGM is a condition on
dσ (see [3, §1]) which states, loosely speaking, that every geodesic segment
whose interior lies in the interior of M is the unique geodesic between its
endpoints. We mention that Viktor Schroeder had independently noticed
that the arguments of [3] show that SGM subdomains of a manifold which
is a product with an interval are boundary rigid.

The other known examples of boundary rigid manifolds are subdomains
M of an open hemisphere of a round sphere (see [17] and [11, §5.5B]),
compact Mn that can be isometrically immersed in Rn (see [11, §5.5B],
[17], and [3]), and any SGM surface (two-dimensional) of nonpositive
curvature [4].

We would like to thank the referee for his suggestions which made this
paper more readable.

2. The behavior of volume under C1 conjugacy

In this section we will often be dealing with differential forms θ with
continuous coefficients whose exterior derivatives (defined weakly by
Stokes' theorem: fc dθ = Jdc θ for every smooth chain c) are also dif-
ferential forms with continuous coefficients. We denote the space of such
forms on a smooth manifold M by Ω^o(Λ/), and note that Ω^o(Af) is
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closed under exterior differentiation, pullback by C 1 maps, and wedge
products.

Lemma 2.1. Let M2n~ι be a compact manifold, and let X be a smooth
vector field on M. Suppose 0O, θx eΩι

co{M) are both invariant under the
flow of X and satisfy Θ.(X) = 1, / = 1, 2. Then

Proof By Cartan's identity we have ixdθi - Lχθt - diχθi = 0. (Note
that each of the terms in the identity is well defined since dθ. e Ω^o(M),
θt is invariant under the flow of X, and iχθi = 1 moreover the identity
holds as one can see by integrating both sides over arbitrary 1-chains.) Let
θt = (1 - ήθQ + tθχ, and θt = dθjdt. Since iχθt = 0, we have

iχ{θt Λ (dθt)
n-{) = (iχθt) Λ (dθt)

n-1 -(n- l)θt Λ (iχdθt) Λ (dθf2 = 0.

Hence θtΛ(dθt)
n~ι =0 and

Λ {dθ<)n~ι+{n - ι)L-> θ< Λ ̂  Λ

Λ ^ Λ

which is 0 since M2n~ι is closed. Therefore

q.e.d.
We recall that the canonical contact form θ e Ω (SM) is given by

where i; G *SM, ξ e Ty(SM), and π: iSM -^ Af is the bundle projection.
For a discussion of the following facts, we refer the reader to [2, Chapter

1]:
1. θ is invariant under the geodesic flow;

2 V0ISΛ/
 = (Λ-i)!^ Λ {dθ)n~ι where vol 5 M is the canonical volume

form on SM
3 /5Λ# v o I ^M = v o l ^ " 1 ) fM volM = vol^-^voKΛ/) where v o l ^ " 1 )

is the volume of the standard (n - l)-sphere.
As a consequence of the preceding lemma, we get Proposition 1.2 of the

introduction.
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Proof of Proposition 1.2. If F: SM -> SN is a C 1 conjugacy of
geodesic flows, and ΘQ, θ{ are the contact forms on SM and SW re-
spectively, then ΘQ and F*θχ e Ω^o(Af) both satisfy the conditions of
the previous lemma. Hence volume(S'M) = volume(5W) and so M and
N have the same volume, q.e.d.

If we have a Riemannian product M{ x x Mk , then we define a =

(aχ, ••• , α f c): 5(Afj x xAffe) —• i? by α^v) = l ^ * ^ ) ! where π̂  : Λft x
• x Mk -» Λ/ is the projection onto the zth factor. If M = (Mχ x x
Mk)/Y where Γ C Isom(M1) x x Isom(Affc) c Isom(Λf1 x x Mk),
then a descends to a map defined on SM, which we also denote by a.

Proposition 2.2. Let M be a compact Riemannian manifold of the form
(M{X' 'xMk)/Γ where Γ C IsomtΛ/^x xIsom(M^). If F: SM -> SN
is a C 1 conjugacy for some compact Riemannian manifold N, then

L w = /
JF(a-ι(

for every domain Ω c (i?"1")^, wA r̂̂  vol 5 M α«rf v o ^ are the Liouville
volume forms on SM and SN respectively.

Remark. The proof shows in fact that

•/„
V 0 lSM = / Y0lSN

u JF{U)

for U a connected component of a~ (Ω).
Proof. It suffices to consider compact domains Ω c ( 0 , o o ) x x

(0, oo) c Rk with smooth boundary. Let θ0 be the canonical contact
form on SM and let θχ be the pullback of the contact form on SN by
the conjugacy F . We want to show that

r

Ja~ (Ω)

Let θt = (l- t)θ0 + tθχ, and θt = dθjdt. Differentiating we get

d f
Ji / i '
a ι Ja~ (Ω)

-I
( n ( θ A ( d θ t ) ' 1 ^ - ( n - l ) d ( θ t A θ t A \

a~ι(Ω)
AI-2

φ. Λ (rfβ,)" ' + (n - \)θ. A dθt A {dθf 2)

= f (n(θt Λ (dθf-1)) - (n - 1) / Λ Ot Λ
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We will show that both integrands are zero for small t. If X is the vector

field generating the geodesic flow, then iχθt = 0 and iχdθt = 0, so we

have iχ(θtΛ{dθt)
n~ι) = 0 and hence θt/\{dθt)

n~ι = 0. For small t, dθt

is nondegenerate when restricted to Ker(0,), so for small t there exists a

unique continuous vector field Yt satisfying θt(Yt) = 0 and iγdθt = θt,

since the map Yt \-* iγdθt is a linear isomorphism from Ker(0,) to the

annihilator of X. The uniqueness of Yt together with the fact the θt

and dθt are invariant under the geodesic flow of M implies that Yt is

invariant under the geodesic flow as well. The next lemma guarantees

that Yt is tangent to the level sets of a in particular Yt is tangent to

d(a~ι(Ω)). This implies that the form θtAθtA (dθt)
n~2 restricts to zero

on d(a~ι(Ω)) since for every x e d(a~ι(Ω)) either Yt(x) = 0, giving

θt(x) = (iγdθt)(x) = 0,oτ ^ ( x ) ^ O a n d iγ(θtAθtA(dθt)
n~2) = 0.We

complete the proof of the proposition by noting that Vol, = /α-wΩ) θt A

(dθt)
n~{ is a polynomial in t since θt = (1 - t)θ0 + tθx therefore Volr

must be constant since it is constant for small t. q.e.d.
Lemma 2.3. Let M be a compact Riemannian manifold of the form

(Mχ x ••• x Mk)/Γ where Γ c Isom(M1) x ••• x lsom(Mk). Then any
continuous vector field Y on SM which is invariant under the geodesic
flow must be tangent to the fibers of a: SM -> Rk .

Proof The geodesic flow shears the fibers of a, forcing invariant vector
fields to be tangent to the fibers. To convey the idea of the proof in a
simplified setting we give an analog for the lemma in the k = 1 case.

Model. Let TV be a compact Riemannian manifold, and let Z be
a continuous vector field on TN which is invariant under the geodesic
flow of N. Then α#(Z) = 0 where a: TN -> R is defined as before,
a(υ) = \v\.

Proof of model. Let X and ξ be the geodesic spray and the homothetic
vector field on TN, respectively. Let TQN = {v e TN\ \v\ φ 0} , and let
C be the distribution on TQN whose restriction to each sphere bundle
α - 1 ( r ) is the canonical contact distribution (i.e., the kernel of the contact
form θ). If Φ' : TN -• TN is the geodesic flow after time t, then
Φ[(ξ) = ξ + tX, Φ[(C) = C, and we have a direct sum decomposition
TT0N = RX Θ Rξ 0 C. Now consider the projection of Z to the φ '
invariant subbundle D — RX e Rξ . This is invariant under the geodesic
flow, and so it must lie in RX since otherwise the shear Φ[(ξ) = ξ + tX
will produce arbitrarily long vectors. Hence Z lies in RX e C, and
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Proof of the lemma. Let T0M = {v e TM\\v\ φ 0}. We extend

Y to a flow invariant vector field on T0M using the fiber homothety

(i.e., if Sλ: TM -> TM denotes scalar multiplication by A, then Yy =

SiVμYυnυ\), and denote the resulting vector field by the same name. For

i = 1, , k let T0M. = {υ e TMt\ \v\ Φ 0} , Xt be the geodesic spray on

TM{, and ζ. be the homothetic vector field on TMt, and let Cz be the

distribution on TQMi whose restriction to a~ (r) is the canonical contact

distribution. If φ(. is the geodesic flow on TMt, then Φ*r (ξ.) = ξi + tX.,

Cz is invariant under Φ z , and

We now let Xt, ζ., and Ci be the corresponding objects on T0Mχ x x

T0Mk C ΓMj x x ΓM^ ~ Γ(Mj x x Mk). If Φ/ is the geodesic flow

of T(Mχ x x Mk), and Zλ = RX{ e Λ^., then we have a Φ* invariant

decomposition

T(T0M{ x x Γ0Λ/Λ) = Z ) 1 θ C 1 θ θ Z ) J k θ C j k ,

and Φ[(ξj) = ί, + tX(. Now observe that our flow invariant vector field Y

lifts to a Φ* invariant vector field on TQM{ x x TQMk , and so we may

project this to each subbundle Zλ to get Φ* invariant sections Yi. Now

as in the model, Φ* shears ξ{ into ξ{ -h tX{ and yj. actually sits in RX{

otherwise, by flowing Yt under φ ' we would get arbitrarily long vectors.

But this implies that Y is a section of RXχ θ C j θ θ RXk θ Ck , so it

is tangent to the fibers of a .
Proposition 2.4. WAew M = (X xR)/Γ for Γ C Isom(ΛΓ) x Isom+(i?)

is compact, and F: SM -* 5JV i n C1 conjugacy of geodesic flows, then
F*volSN = </>vol̂ M wΛere 0(υ) = 1 /or ^vβry vertical vector v e SM (i.e.,
every v e SM tangent to the local R factor).

Proof Since v o l ^ , vo\SN are flow invariant and F is a C conju-
gacy, φ: SM —> R is a continuous, flow invariant function. We will first
show that 01 α-1(0) is constant on each of the two component (£/+ the

'upward' component' and U~ the 'downward' component) of a~ι(0).
Pulling φ back to S(X x R) we get a continuous flow invariant function
φ, and it is enough to see that Φ\a-UQ\ is constant on each component (U+

and U~). Pick xχ, x2 e X, and find a sequence of geodesies γn: R —•

X x Λ such that ^ ( ^ ( 0 ) ) = x , π^y,,^)) = x2 and α^y^O)) -> 0,
α i(^«(O) ~̂  ^ ^ s s u m e Λat )/(0) converges to a vector in C/+ . Then
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the uniform continuity of φ implies that

φ\d+(xι xR) = limn^J{y'n{Q)) = Kff l^(ί B )) = φ\dΛ*2

 x R)>

so that φ\~+ = ΦQ for some φζ e R. Similarly for U~~.

The proposition now follows from Proposition 2.2 by integrating

φvolSM over each component of a~ι([0, ε)) and letting ε -> 0. More

precisely, let U* be the 'upward' component of a~\[0, ε)) and apply

Proposition 2.2 and the remark following it to get for every ε > 0,

+Ue

= φDividing by Ju+ vol5Λ/ and letting ε -* 0 we deduce that φ\u+ = φ$ = 1

3. Conjugacy rigidity for products

By a uniform conjugacy F: SM -* 57V between the unit sphere bundles

of complete Riemannian manifolds M and N we mean a C° conjugacy

where both F and F~ are uniformly continuous.

Lemma 3.1. Let F: SM —• SW te <2 uniform conjugacy between the

unit sphere bundles of complete Riemannian manifolds M and N. Then

there is a D > 0 such that for all υ, w e SM:

-ID < dM(πM(v), πM{w)) - dN(πNF(v), π ^ ( w ) ) < 2Zλ

The uniform continuity of the conjugacy implies that F (resp.

F~x) carries fibers of πM (resp. πN) to sets of uniformly bounded di-
ameter D in SN (resp. SM). For v, w e SM, let τ: [0, /] -• M be
a minimizing geodesic from π M (t0 to πM(w). Then both dN(πNF(υ),
πNF(τ\l))) and dN(πNF(w), πNF{τ'(l))) are bounded by D and

^ ( . / ( ί ' f O J J ^ / f T ' f / ) ) ) = dN(πNF(τ\0)),τN(gl(F(τf(0)))))

<l = dM{πM{v),πM(w)).

Hence the first inequality in the lemma follows from the triangle inequality.
The second follows from the same argument applied to F~ι.

Proposition 3.2. For i = 1, 2 let Mt = Xt x R be complete Rieman-
nian manifolds, let π2: Mi —• R be projection onto the second factor,
and let dx be the standard \-form on R. Let Ui = {v e SMt\ax{v) =
0, dx(π2* (v)) > 0} Ui is the set of "upward pointing" elements of SMi.
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Suppose F: SMχ —• SM2 is a uniform conjugacy of geodesic flows satis-
fying F{Uχ) = U2, and define G: Mχ -> M2 by G{π{ύ)) = π{F{u)) for
every u e Uχ. Then G is an isometry.

Proof Our first step is to show that F preserves a. For x. e Mi

let 5/(x/) e Ui be the "vertical" vector at xr Pick x. e M{ such
that F(Sχ(xχ)) = S2(x2). Let h(: M. -> R be the Busemann func-
tions coming from the vertical geodesies γ. (i.e., y'.(0) = S^Xj) and
h.{y) = l i m ^ ^ diγ^ή, y) - t). Let i/ : SAf. -> i? be the induced map
(i.e., H = hioπM). Lemma 3.1 allows us to conclude that H2oF -H{ is
bounded. This forces F to preserve a2 since for every v e SMt, a2(υ)
is determined by the growth rate of hi along the geodesic t »-• exp(ίυ).
Thus F preserves a.

Let G: Xχ -> Λf2 be the map induced by G: M{ -+ M2, i.e., G(x) =
π{{G{x, t)) for all (x, t) e X{ x R = Mχ. We first show that G has
Lipschitz constant < 1. Pick x, y e X{ and a minimizing geodesic

segment σ: [0, /] —> Λ^ from x to y . Define ^A: [0, \//2 + λ2] -> Xχx
R = MY by

,Λ I ί tl \ tλ \
ηλ(t) = σ

so length(σ) = aχ{ηλ(t))\zn%\\v{ηλ). Let ^ : [0, \//2 + λ2] -• Z 2 x i? be

the geodesic in Af2 corresponding to ηλ'-W^{t) = ττw o F o ^ ( ί ) . Let

σ λ = πj o ηχ . Then

length(σA) = a ^ k

^ = length(σ).

As λ goes to oo, d{rfλ{0), F{Sx{x,0))) and d(ηλ{\/l2 +λ2),

t y , A))) go to 0. Thus σλ(0) -> G(JC) and σλ(Vl2+λ2) - . G(y),

from which we see that d(G(x), £?()>)) < ί/(x, y) for all x, y e Xχ. Ap-

plying the same reasoning to G we conclude that G: Xχ —• X2 is an

isometry.

To complete the proof that G is an isometry we will show that for
every t e R, the set G(Xχ x {t}) lies at a constant height in X2x R.
Choose a geodesic y: R —• Mj of the form ^(ί) = (x t , /) for some
xχ e Xχ, and let y2: R -• Λf2 be the corresponding geodesic in Af2 . We
may assume that y2(0) = (x 2, 0) for some x2 e X2 since otherwise we
may arrange this by composing F with the differential of a translation.
Pick mχ 6 Xχ x {0}, and let ^ r [0, lλ] -^ Mχ be a minimizing geodesic
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segment from mχ to γx(λ). If rjλ is the corresponding family of segments
in M2, then ηλ(0) -+ G(mχ) and d(ηλ(lλ), γ2(λ)) -* 0 as A -> oo by the
uniform continuity of F . Hence

) = Umsup(έ/(G(m1), y2(A))-λ) < 0.
Λ.—*oo A—> o o

This forces π2(G(mχ)) e [0, oo). Letting A —> -oo instead of +oo we get
π2(G(mχ)) € (-oo, 0]. Hence G(Xχ x {0}) C X2 x {0} . q.e.d.

Corollary 3.3. Lei Λ/̂ . be compact manifolds with unit parallel fields

Sr If there is a C° conjugacy F: SMχ -> SM2 such that F{S{(M{)) =

S2(M2), then Mχ is isometric to M2.

Proof If n > 3, then we can lift F to a conjugacy F: SMχ ->

5Άf2 , and apply the preceding proposition to get a Γ equivariant isometry

G: Mχ —> M2 . This descends to the desired isometry G: Mχ —• M2 .
The case n = 2 (which concerns only flat tori and Klein bottles) was

done in [4]. q.e.d.
Similar arguments give results for more general product manifolds.
Proposition 3.4. Let M = MχxM2 and N = Nχ x N2 be Riemannian

products such that dim(M.) Φ 0. If there is a uniform conjugacy F: SM —•
SN which preserves a, then M is isometric to N.

Proof The proof is similar to the proof of Proposition 3.2. We will
show that Mχ is isometric to Nχ the proof that M2 is isometric to N2 is
the same. Let τ be any geodesic in M2 , then there is a unique unit vector
field W along Mχ x τ(0) such that πχ.{W) = 0 and πr{W) = τ'(0).
We define a map G: Mχ -> Nχ by G(x) = πχ{F{W(x, τ(0)))) which we
will show is an isometry. Let x, y e Mχ and let σ: [0, /] —• Mχ be a

minimizing geodesic segment from x to y. Define ηλ: [0,
M = Mχ x Af2 by

Let y/Λ: [0, v/ +λ ] —• iV be the geodesic corresponding to f/λ: 7/̂ (0 =
πNo F o ηχ(t). Let α ^ ^ o ^ , Then as in Proposition 3.2 we see that
length(σλ) = length(σ) and further that as λ -* oo, ~σλ converges to a
geodesic segment from G(x) to G(y), so G is distance nonincreasing.
Reversing the roles of M and iV we see that G is an isometry and the
proposition follows, q.e.d.

Although it is easy to find conjugacies of products where a is not pre-
served (for example, take F to be the identity on Xχ x X2 x X3 where



CONJUGACY AND RIGIDITY FOR MANIFOLDS 669

Mχ = Xχ while Nχ = Xχ x X2) in most cases one expects a to be pre-
served. For example, if the M{ 's are manifolds all of whose geodesies are
closed of the same period, then any conjugacy to a nontrivial product man-
ifold must preserve α. Another important special case where Proposition
3.4 can be applied is the case where N (and sometimes M) is assumed
to have nonpositive curvature. We will study these cases in a future paper
with Patrick Eberlein.

4. Jacobi tensors and conjugacy

We begin by studying the image of minimizing geodesies under C°
conjugacies. A line in a Riemannian manifold is a geodesic which is the
minimizing geodesic between any pair of points on it. A geodesic γ is
said to be recurrent if there exists an increasing sequence t. —• oo such
that /(ίj) —> / ( 0 ) . For a geodesic γ let γ be a lift of γ to the universal
cover M of M. Then we define excess(>>) = excess(y) = l i m ^ ^ t -
^Λ/(?(0) > y(0) > which is possibly infinite. In fact, we have

Lemma 4.1. Each recurrent geodesic y on a complete Riemannian
manifold M either has excess(y) = oo or lifts to a line in the universal
cover M.

Proof We will show that excess(y) is 0 or oo . Thus if excess(y) < oo
then excess(y) = 0. This clearly shows that γ is a ray (i.e., γ minimizes
from y(0) to γ(t) for all t > 0). But for all s > 0, γs(t) = γ(t - s) is
also recurrent and hence has excess^) = 0. Thus γ is a line.

Assume excess(y) > 0. Then there is E > 0 and T such that for all
t > T, d~{γ(0), γ(ή) <t-E. Let ε = E/4. By the recurrence property
of γ we can choose tt > T such that d(γ(0), γ{t0)) < ε, tχ: + t0 < ti+ι,
and some lift γ. of γ to M has dft(γ.(t.), y(0)) < e and d^(γi(ti +1 0 ) ,
y(t0)) < ε. Let τ be a minimizing geodesic segment in M from γ(0)
to γ(t0), and τ its projection to M . We know that the length L of τ
satisfies L < t0- E . By the above we can choose lifts τ/ of τ such that

dS(W > f , (°)) < ε a n d ^JGrWi + Ό) > f i ( L ) ) < ε H e n c e

da(W' ^ ^ + 'o)) <L + 2ε<t0- E/2.

Thus excess(y) = oo . q.e.d.
For compact (or finite volume) M the recurrent geodesies are dense

in SM (see [15], Theorem 2.3]). Hence Lemma 4.1 has an interesting
consequence:
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Corollary 4.2. If M is a compact manifold without conjugate points,
and N is a Riemannian manifold whose geodesic flow is C° conjugate to
that of M, then N also has no conjugate points.

Proof We first lift the conjugacy F to a uniform conjugacy between
the universal covers F: SM —• SN. For n > 3 it is clear that such a lift
exists. For surfaces of genus greater than one this can also be done (see
[4]). For surfaces of genus one M is flat by Hopf s theorem [12], and it
was shown in [4] that N must be flat. Hence we can assume we have such
a lift.

Now Lemma 3.1 tells us that for any geodesic γ, excess F(y) =
excess F(y) is bounded. Now if γ is recurrent, then F(y) is also re-
current, and hence F(γ) is a line. Thus N has no conjugate points since
the recurrent geodesies are dense in SM. q.e.d.

Let F: SM —> SN be a C 1 conjugacy. The space of Jacobi fields Ψ
along a geodesic γ splits as Ψ = Ψ x + ψ ί + ψb , where Ψ"1 consists of
those Jacobi fields that are perpendicular to γ , Ψι is spanned by γ , and
Ψ is spanned by ty . The Jacobi fields in Ψ x + Ψ* are the ones that
come from variations of geodesies that are parameterized by arc length.

For a Jacobi field j in Ψ"1 + ψ' we define a vector field Tj along Ty
in SM as the variation field of the variation Tγs, where γs is a variation
of parametrized geodesies whose variation field is j . Tj is determined
by the fact that πM*(Tj) = j and that the vertical (with respect to the
usual connection) component v(Tj) of Tj is equal to / , the covaria-
tion derivative of j with respect to y when υ(Tj) and j are thought
of as tangent vectors perpendicular to y . As is easy to see, the Tj's are
precisely those vector fields along Ty that are invariant under Dgt. Since
F takes parametrized geodesies to parametrized geodesies and is differen-
tiable, it induces a map Φ from Ψ± + Ψ* to the corresponding Jacobi
fields along the image geodesic. More precisely we see F^(Tj) = TΦ(j),
and hence πN*(F^{Tj)) = Φ(j). In particular Φ is a linear isomorphism.
For j € Ψ"1 4- Ψt we can write Φ(j) = Φ(j)1' + ^U)F(τϊ) where c(j) is
a constant. It is easy to see that Φ(j)± is zero if and only if j e Ψt.

Similar arguments apply to Jacobi tensors. These are tensors fields /
of type (1,1) along a geodesic γ , which when applied to parallel vector
fields P yield a Jacobi field J(P). / is said to be perpendicular if J(P)
is perpendicular to γ whenever P is perpendicular to γ. We will let J^~
be the corresponding perpendicular Jacobi tensor, i.e., for P perpendic-
ular to γ, J±(P) is the perpendicular part of J(P). If we fix a parallel
orthonormal basis for γf± we can think of perpendicular Jacobi tensors as
matrices whose column vectors represent Jacobi fields with respect to this
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basis; they are the solutions to j"(t) + R{t)J(t) = 0 where R(t) is the cur-
vature transformation (see [8] or [2, p. 239]). Along a geodesic yυ{t) there
are two perpendicular Jacobi tensors of particular interest to us. They are
called Iυ{t) and Jv(t) and are determined by Iυ(0) = Id, ΐv(0) = 0,
Jv(0) = 0, / > ) = Id. Let Av(t) = Φ(Iv)(t) and Bυ(t) = Φ(Jυ)(t) be
the corresponding (not necessarily perpendicular) Jacobi tensors along γv .
Strictly speaking in order to define the tensors Aυ(t) and Bv(t) we need
to choose an isomorphism from j/ x(0) to 7^~(0). It is of course sufficient
to choose parallel orthonormal bases along γυ and Yv . All equations will
be written with respect to such fixed choices. Of course determinants and
norms are well defined independent of such choices and vary continuously.

A nonsingular perpendicular Jacobi tensor / is Lagrangian if
J(t)fJ(t)~ι is symmetric. If Av(t) is a nonsingular Lagrangian Jacobi
tensor, we define a new Lagrangian Jacobi tensor Zυ(t) by

(4.1) = Av(t) f A-
Jo

Note that Zy(0) = 0 and Z'υ(0) = Λ~ u (0), which is nonsingular. In
which case, for dimension reasons, we can write our perpendicular Jacobi
tensor B^ uniquely as

(4.2) BΪ(t) = ZΌ(t)Cυ + Aυ{t)Dυ,

where Cv and Dυ are constant matrices.
Lemma 4.3. Let M be a compact Riemannian manifold, and F: SM-+

SN a C 1 conjugacy. Let υ e SM be such that Aυ(t) = A^(t) is nonsin-
gular Lagrangian. Then det(Cv) = φ(υ) where Cυ is defined by equation
(4.2), and φ(v) is defined by F*\olSN = φyolSM.

Proof. Fix v £ SM. Then DFy is a linear isomorphism from TυSM
to TF,υ)SN which takes XM{v) to XN{v), XM and XN are the vector

^fields generating the respective geodesic flows. Let DF^ be the linear iso-

morphism from XM{V) to X^(F(v)) gotten by restricting DF to X^

followed by projection to X^ . Then φ(υ) = det{DF{v)) =

Since the Liouville measure is the Riemannian measure with respect to

the canonical Riemannian metric on SM and, we have fixed parallel or-

thonormal frames along γv (resp. γυ), there is a canonical choice of

orthonormal bases for X^(v) (resp. X^(F(v))) which consists of 7Y.(0)

where Jf is a Jacobi field with «//(0) = 0, and /z(0) a basis vector or of

the form /-(0) = 0, and J (0) is a basis vector. With respect to these
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bases it is easy to see that

7J._(AV(0) < ( 0 ) \ (Aυ(0) Zυ(0)Cv+Aυ(0)Dυ

I \A'υ(0) Zl(0)Cv+A'v(0)Dj

Since Zυ(0) = 0 and Z'υ(0) = A~ι*{0), we see that

v(0) 0

1(0) ^- u (0 )

5. Rigidity for manifolds with a parallel field

In this section we will complete the proof of Theorem 1.1.
Let S be a parallel field of unit length on a compact Riemannian man-

ifold M. For a vertical vector υ (i.e., v — S(x)) let γv be the corre-
sponding geodesic (i.e., yυ(o) = v), and yv the image geodesic in N.
The flow transformations of S are isometries, while the integral curves
of S are the geodesies γv tangent to the local Euclidean de Rham fac-
tor. Since *S induces a measure preserving flow in M, by the Poincare
recurrence theorem [15, Theorem 2.3] there is a dense set of γv which are
recurrent and therefore Lemmas 4.1 and 3.1 (as in the proof of Corollary
4.2) tell us that for all v , lifts of γv and ~γυ are lines in the universal
covers. Hence by Theorem 1 of [7] no bounded Jacobi fields ever van-
ish along these geodesies. Because of the local product structure, if P is
a parallel unit vector field along γυ , then iv(t) = P{t), jυ(t) = t P(t)
and qs

υ(t) = siv(t) + jυ(t) are Jacobi fields along γυ where qs

v{t) is just
jg-sv(t + s) (note that the parameter shift has yg-'υ(t + s) = yυ(t)) - Since
Tiv is a bounded vector field along Tγ, we have TΦ(iυ) = F^(Tiv) is
bounded, and therefore Φ(iv) is bounded and, hence by the above, never
vanishes. Also Φ(ig-sυ)(s + t) = Φ(iv)(t) since both sides are the image
of P under F. We also have

fit) + (sc(iv) + cUυ))7υ(t)

= sΦ(iυ)(t) + ΦC/JίO = Φ{qυ){t) = Φ(jgsv)(t + s)

As tί; varies over SM and P varies over parallel unit vector fields along
yw , c(jw) varies continuously and hence is bounded. Therefore c(iυ) =

0, Φ(iv) = Φ ( g \ and ΦU^fit + s) = Φα f , ) ± (0 + J Φ ( ϊ t l )
± ( 0 - In

particular F maps parallel perpendicular Jacobi fields P along γv into
perpendicular Jacobi fields along γv that never vanish.
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If v = S(x) for a parallel vector field S, then using the fact that the
metric is a product metric along γυ , it is easy to see that Iv(t) = Id and
Jυ(t) = t - Id with respect to a parallel orthonormal frame. The above
arguments show that

(5.1) Ag-,υ{t + s) = AΌ{t), BΪ-,υ(t + s)=sAi(t) + BΪ(t),

and Aυ(t) is a nonsingular bounded perpendicular Jacobi tensor.
Lemma 5.1. Let M be a compact Riemannian manifold with a unit

parallel field S and let F: SM —> SN be a C 1 conjugacy. Then the
map G - πN o F o S is a C 1 diffeomorphism from M to N. Further
if V e TχM is perpendicular to S{x), then DG{V) is perpendicular to
DG(S(x)) = F(S(x)). Hence we can define a vector field F(S) on N by
F(S)(G(x)) = F(S(x)).

Proof The action of DG on S(JC)1" is encoded in the tensor As,Jt)
(i.e., As,χM) represents DG with respect to our fixed choice of bases).

Thus DG takes 5(JC)"L to DGiSix))1" and is nonsingular, so G: M -> N
is a covering map. If n > 3, then πM and πN induce isomorphisms
of fundamental groups (since the fibers are simply connected), so G is a
composition of maps which are isomorphisms on πχ, and therefore G is
a diffeomorphism in this case. The fact that DG(S(x)) = F(S(x)) follows
from the fact that G takes γs,χ, to F(γs^χΛ .

If n = 2, then Af is a flat torus (or Klein bottle), and results in [4]
show that TV must then be isometric to M. Although there are many
self-conjugacies of the geodesic flow of a flat 2-torus, they all satisfy the
lemma, q.e.d.

We note that if v = S(x) for some x e M, then Aυ(t) is a nonsingular

Lagrangian tensor (i.e., Af

v(t)A~ι(t) is symmetric). This follows since

Af

υ(t)A~ι(t) is the second fundamental form of the image under G of a

local horizontal slice of M (recall M is locally a product). (Although in

general the image under G of a smooth submanifold needs only be C ,

in this case the normal is the image of S(x) and hence is differentiate.)
Lemma 5.2. If M is a compact manifold with a parallel unit field S,

and F: SM —• SN is a C 1 conjugacy, then for all vertical υ (i.e., v =
S(m) for some m e M) we have

lim det" 1 / 2 - f A~\x)A~u{x)dx\ = 1.
s—>oo I S J _ 5 J

Furthermore the convergence is uniform in v .
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Proof. For fixed /, (4.2) and (5.1) yield

(5.2) Zg-.Ώ{t + s)Cg-.v + Ag-.v{t + s)Dg-.v = Zv

Now Ag-,υ{t + s) = Aυ(t) (Equation (5.1)) and

z,-«

= Av{t)U\-υ\x)A~υ

U{x)dx\+Zυ{t).

Thus (5.2) yields

• ^ ( O ^ + ^ W
Since the norms of Cυ and Z)̂  vary continuously with vertical υ , we see
that the norms are uniformly bounded. Thus on each side of the equation
there is only one term which is not uniformly bounded in s . Thus dividing
by s and letting s go to oo we see that uniformly in v ,

-v = Λv{t).

Thus the nonsingularity of Aυ(t) and the fact that dcί(Cw) = 1 for all
vertical w (by Lemma 4.3 and Proposition 2.4) allow us to conclude that

Γ1 r®
lim deΓ 1 / 2 - / A~\x)A~im(x)dx = 1. q.e.d.

In the next proof we will use the strict convexity of Ξ = det 1 / 2 on

the space, S?$f , of positive definite selfadjoint endomorphisms (see [1,

11.8.9.5]), which is an open, convex subset of the linear space of self-

adjoint endomorphisms. For fixed SQ we define the linear part, Ls , of

Ξ by ls (S) = DΞS (S - So) + Ξ(SQ) and the remainder, Rs , of Ξ by

Z(S) = Ls (S) -h Rs (S). The strict convexity of Ξ implies that Rs is

nonnegative and strictly convex.
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Let S be a measurable map from a space P, with probability measure
dp, to Sfof . Integrating Ξ = Ls + Rs with So = fp S(p) dp we see

(5.3)

Proposition 5.3. If M is a compact Riemannian manifold with a unit
parallel field S, and F: SM —• SM is a C 1 conjugacy, then F(S) is a
parallel vector field on N.

Proof We will show that along any vertical geodesic γv , that Av(t)
is constant. This will imply that the Jacobi fields coming from variations
of integral curves of F(S) are parallel. Now if V is a (locally defined)
vector field invariant under the flow of F(S), then V\- is such a Jacobi

_ °
field along γυ so

VVF(S) = VF{S)V- [F(S), V] = VF{S)V = 0.

Hence F(S) is parallel.
On M the vertical flow St(m) is measure preserving, hence, using (5.3)

yields

Vol(Λf) - Vol(TV) = ί det(DG(m))dm
JM

= - [ ί det{DG(St(m)))dmdt
s J-SJM

M Λ J _ S iS{m)«))dtdm

dm

ί I
J M °

where Q(v ,s) = (l/s) f_s A^iήA^iή dt. But letting s go to infinity

Lemma 5.2 tells us that

= °
Now let H{v,a,Q) = /α

α+1 RQ[A~\t)Aυ '*(/)] dt. By change of vari-

able, H(v,a,Q) = H(gav ,0,Q). Hence if we let

H(v, a) = inf{H(v , a, Q)\Q e ^ 2 / } > 0,
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then H(υ, a) = H(gav, 0). We note that H(υ ,a) = 0 if and only if
A~x(t)A~u{t) is constant for t e [a, a + 1]. We now have for Ns the
greatest integer less than s > 0:

f t " I i " I r

> / - Σ H(S{m),a)dm = - Σ / H(gaS(m),Q)dm
JM S

 a=_Ns

 s

 a=_Ns JM

/ H(S(m),O)dm = -*- H{S(m),O)dm,
JM S JM

where we have used the facts that dm is invariant under the flow St

induced by S, and that gaS(m) = S(Sam). Thus letting s go to oo we

see that fMH(S(m))dm = 0, and hence H{S{m), 0) = 0 for almost all

m, and A~\t)A~ι*(t) is independent of t. (Use continuity to get all

from almost all.)

Now differentiating the fact that A*v(t)Av(t) is a constant, we obtain

that Af

υ(ή = -A~u(t)A'*(t)Aυ(ή , while the fact that Aυ(t) is Lagrangian

implies that A'υ(t) = A~ι*(t)A'*(t)Aυ(t). Thus A'Ό(t) = 0 and hence Av{t)

is independent of t. q.e.d.
Proof of Theorem 1.1. The theorem follows immediately from Propo-

sition 5.3 and Corollary 3.3.

6. Examples

In this section we first give a criterion for two surfaces of revolution
(with boundary) to have conjugate geodesic flows, and then we apply this
criterion to show that any smooth manifold Mn admits highly nonrigid
metrics. We construct such examples by gluing in different surfaces of
revolution which are isometric near their boundaries. Furthermore, these
conjugacies can be arranged to preserve the contact forms (see §2 for defi-
nition). Let M2(f, a) be the surface of revolution obtained by revolving
about the x-axis the graph of the smooth positive function f(x) defined
on an interval [0, a]. More generally let Mn(f, a) be the corresponding
^-dimensional manifold of revolution.

Let Ω be the collection of pairs (/, a) of smooth positive functions
/ defined on some interval [0, a] such that f(a) = /(0), / has a max-
imum at some c e (0, a), f{x) > 0 for x e [0, c), and f{x) < 0 for
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x € (c, a]. For y e (/(0), f{c)) there are two points xy_ e (0, c) and

x£ € (c, a) in f~ι(y). Thus / € Ω gives rise to a function

DLf{y) = ^(xy_) - ^(xy

+) for y € (/(0), f{c)),

where s(x) is the arc length along the graph of y = f{x). Notice that
ds/dy is positive at x^ , negative at x+, and larger than 1 in abso-
lute value at both points. We will say (g, b) e Ω is compatible with
(/, a) e Ω if g agrees with / in a small neighborhood of 0 and such that
DLf = DL hence in particular / and g have the same maximum and
minimum values, and for small values of t > 0 we have f(t) = g(t) and
f(a -t) = g(b -t). In this case, we see that there are canonical isometries
70 and Ia mapping a neighborhood of each of the two boundary compo-
nents of Mn(f, a) to the corresponding neighborhood of Mn(g, b). We
note that for a given (/, a) there are lots of compatible (g, b). In fact
we can choose for the increasing part of g any smooth function increas-
ing from /(0) to f(c) as long as ds/dy < DLf{y) - 1 (where ds/dy
refers to the graph of g) and then define the decreasing part of g by
DLg = DLf as long as we get smoothness at the maximum.

Lemma 6.1. Let (/, a) and (g, b) be two compatible elements of Ω.
Then there is a smooth contact diffeomorphism F between the unit sphere
bundles SMn(f, a) and SMn(g, b), which is equal to DI0 or DIa near
the two boundary components, and Fog1 = gί o F wherever they are
defined.

Let Mn be a compact Riemannian manifold without boundary such
that some Mn(f, a) for (/, a) e Ω is a subdomain of M. Then for
any compactible (g, b) e Ω we can construct a new smooth Riemannian
manifold Nn by replacing Mn(f,a) with Mn(g,b). The lemma tells
us that the geodesic flows of M and N are C°° contact conjugate, where
the conjugacy is the identity outside SM(f, a). Thus for any such Mn

there is a large family of nonisometric Nn with geodesic flow C°° contact
conjugate to the geodesic flow of Mn . Also it is easy to see that on any
differentiable manifold there are metrics such as above by, for example,
choosing the metric in an open ball to be a metric ball of radius \π with
constant curvature 1.

Proof of lemma. We will only give the proof in the case of two dimen-
sions, as the extension to higher dimensions is straightforward.

For our surface Λ/2(/, a) (resp. M2(g, b)) we will use coordinates
(JC, θ) for x e [0, a] (resp. [0, b]) so the metric is ( / 2 (JC) + \)dx2 +
(f2(x))dθ2 . For a unit vector V on M2 we will let φ(V) be the angle
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which V makes with the curve x = const, so that Clairaut's relation along
a unit speed geodesic γ(t) states that cos(φ(γf (t)))f(x(γ{t))) is constant.

For a unit vector V in M2(f, a) with base at (x0, 0O) such that x0 e
[0, c] and ( F , d/dx) > 0 (or x0 e [c, a] and ( F , d/dx) < 0) then the
geodesic γv(t) determined by V will have an increasing (or decreasing) x
coordinate for t e [0, /0] until the first value /0 of t such that f(γv(l0)) =
f(x0). Now if W is a similar unit vector in M2(g, 6) at (xχ, θx) where
φ(V) = φ{W) and /(JC) = g{xx), then we shall show

Claim. l0 = lχ and θ(γv(l0)) -θo = θ(γw(l0)) - θχ.
To see the claim it is sufficient (by integration over y) to see that

for every y e [f(xo),f(c)] we have (dθ/dy)(xy_) - {dθ/dy)(xy

+) and
{dt/dy)(xy_) - {dt/dy)(x^_) are the same for γv and yw . By Clairaut's
relation for any y, dθ/dt and ds/dt are the same for γv and yw at
points with the same y value. Now

dθ_ = dθ_dlds_
dy dt ds dy '

hence combining the results at xy_ and xy

+ and using the fact that (/, a)
and (g, b) are compatible we get the result we need. Similarly using

dt _ dt ds
dy ds dy

we get the other equality we need, and the claim follows.

We divide the geodesies and hence the unit sphere bundle into two

sets: the interior ones {SέM) are those unit vectors tangent to geodesies

that never intersect the boundary, and the exterior ones (SeM) whose

geodesies do intersect the boundary. Any vector V e SeM
2(f, a) can be

uniquely written as g(VQ) where Vo is a unit vector at a point (0, θ)

(note that t will be negative if VQ points outside M2(f, a), and for

the special case where Vo is tangent to the boundary take the smallest /

in absolute value). Then let Vχ in SM2(g, b) be the corresponding unit

vector at (0, 0), and the claim tells us that F(V) = g1^) is well defined,

maps SeM
2(f, a) smoothly onto SeM

2(g, b), and is precisely DI0 or

DI{ near the boundaries. For V e 5r M 2 ( / , a) there is a unit vector Vo

with g{V0) = V, φ(V) = 0 (or π) , and the base point (JC0, 0O) has

*o - c - ^ e will let Fj be the corresponding unit vector in SM2(g, b) at

(x{, 0O) where f(x0) = g(x{), and define F(V) = g{Vχ). Although there

is some ambiguity in the choice of Vo (and t), the claim tells us that the

map F is well defined. Further it is clear that F is C°° and commutes
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with the geodesic flow. (Note that the geodesic flow can take vectors near
StM Π SeM to vectors in neighborhoods of the boundary where F is just
DI0 and hence is smooth.)

The only question left is whether the map F above preserves the con-
tact form. Since the contact form is preserved by isometries and geodesic
flows, this is clear for V e SeM

2(f, a) and for V near the boundary of
S^if, a). Let γ be the geodesic in M2(f, a) with y(0) = (xQ, 0) and
/(0) tangent to the curve x = x0. Let yχ be the image geodesic. By the
S symmetry and the invariance of the contact form under the geodesic
flows, it is sufficient to show that the contact form is preserved at / ( 0 ) .
To do this we need to find two independent Jacobi fields in Ψ±(γ) that are
mapped to Ψ±(γι). One such Jacobi field is the variation field through the
geodesies γt where γt(0) = (JC0 + t, 0) and φ(γt{0)) = 0. This variation
(reps, the image variation) will consist of geodesies whose initial tangent
vectors are perpendicular to the geodesic θ = 0, and hence the variation
Jacobi field will have derivative 0 at t = 0 and therefore remain perpendic-
ular to γ (resp. γ{). To find the other Jacobi field we use the Sι symmetry
of the two spaces. The Killing field d/dθ is a Jacobi field along both γ
and γχ, and F takes one to the other. The tangential components are
easily seen to be \(d/dθ)(xQ90)\fγ{t) and \{d/dθ){x{, 0 ) 1 ^ ( 0 . Since
f(xQ) = g(x{), the tangential components of d/dθ are taken to each other
and hence so are the perpendicular components (d/dθ) . Except along
the geodesic x = c and its image (which can be handled by continuity),
(d/dθ)± is a nontrivial Jacobi field which is independent from the other
Jacobi field we considered since (d/dθ)L(ϋ) = 0, and thus F is contact.

References

[1] M. Berger, Geometrie, 5 vol., CEDIC-Nathan, Paris, 1976.
[2] A. Besse, Manifolds all of whose geodesies are closed, Ergebnisse Math. u.i. Grenzgeb.,

no. 93, Springer, Berlin, 1978.
[3] C. Croke, Rigidity and the distance between boundary points, J. Differential Geometry

33(1991)445-464.
[4] , Rigidity for surfaces of non-positive curvature, Comm. Math. Helv. 65 (1990)

150-169.
[5] , Volumes of balls in manifolds without conjugate points, Interaat. J. Math. 3

(1992)455-467.
[6] C. Croke, A. Fathi & J. Feldman, The marked length-spectrum of a surface ofnonpos-

itive curvature, Topology 31 (1992) 847-855 .
[7] J. Eschenburg & J. O'Sullivan, Growth of Jacobi fields and divergence of geodesies,

Math. Z. 150 (1976) 221-237 .
[8] L. Green, A theorem ofE. Hopf, Michigan J. Math. 5 (1958) 31-34 .
[9] , Aufwiedersehenflάchen, Ann. of Math. (2) 78 (1963) 289-299 .



680 CHRISTOPHER B. CROKE & BRUCE KLEINER

[10] D. Gromoll & J. Wolf, Some relations between the metric structure and the algebraic
structure of the fundamental group in manifolds of non-positive curvature, Bull. Amer.
Math. Soc. 77 (1971) 545-552 .

[11] M. Gromov, Filling Riemannian manifolds, J. Differential Geometry 18 (1983)
1-147 .

[12] E. Hopf, Closed surfaces without conjugate points, Proc. Nat. Acad. Sci. U.S.A. 34
(1948)47-51 .

[13] W. Klingenberg, Riemannian manifolds with geodesic flow of Anosov type, Ann. of
Math. (2)99(1974) 1-13.

[14] S. Kobayashi & K. Nomizu, Foundations of differential geometry, Vol. 1, Interscience,
New York, 1963.

[15] R. Mane, Ergodic theory and differentiable dynamics, Ergebnisse Math. u. i. Grenzbeg.,
3 folg, band 8, Springer, Berlin, 1987.

[16] , On a theorem of Klingenberg, Collection: Dynamical Systems and Bifurcation
Theory (Rio de Janeiro, 1985), Pitman Res. Notes Math. Ser. Vol. 160 , Pitman,
London, 319-345.

[17] R. Michel, Sur la rigiditέ imposee par la longuer des geodesiques, Invent. Math. 65
(1981) 71-83.

[ 18] J.-P. Otal, Le spectre marque des longueurs des surfaces a courbure negative, Ann. of
Math. (2) 131 (1990) 151-162.

UNIVERSITY OF PENNSYLVANIA




