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JANUS-LIKE ALGEBRAIC VARIETIES

BRUCE HUNT & STEVEN H. WEINTRAUB

1. Introduction—the examples

Let & be a bounded, symmetric domain (or equivalently, a Hermitian
symmetric space of noncompact type), and I' C Aut(2) (holomorphic
isometries) be a discrete group acting properly discontinuously on & .
Supposing further that I" acts freely, V' = I'\Z is a complex manifold.
If T is in addition cocompact, then this complex manifold is an algebraic
variety (complete, and of general type) as Kodaira proved in 1954 as an
application of his embedding theorem. More generally, we may consider
the case where I'\Z has finite volume. In 1960 it was shown that if T’
is arithmetic, then I'\Z is always algebraic (quasi-projective); in fact the
Baily-Borel embedding of the Satake compactification (I'\Z)" realizes
I'\Y as a Zariski open subset of a normal algebraic variety. Somewhat
later on (1975) the theory of toroidal embeddings was applied to yield
smooth compactifications (I'\ &), which dominate (I'\2)"* and have the
property that the complement (T\Z) — (I'\2) is a normal crossings divi-
SOT.

If we are given that the projective variety V is of the form I'\Z for
some bounded symmetric domain & and some group I' as above (i.e.,
compact), then we may recover both & and I' from V', simply by calcu-
lating Chern numbers and applying Hirzebruch proportionality. However,
in the case V =TI\, this is not necessarily true. A priori, it is possible
that there exists a locally symmetric ¥ with two sets of normal crossings
divisors, say A, A,, such that

V-A =T\9; V-A,=T,\%,,
and 9, and ¥, are two completely unrelated bounded symmetric do-

mains. (This statement can also be formulated as: (I',\Z,) = (I',\9,)) .
We call such a variety V Janus-like. ' It is the object of this paper to
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! The reader will recall that the Roman god Janus was depicted as one having two faces.
This name is also the origin of the word January, for the month looking back into the last as
well as forward towards the next year.
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give examples of Janus-like varieties ¥ . In our main examples, 91 ~B,,
the complex 3-ball, and &, = S,, the Siegel space of degree 2. Recall
that Aut(2,) = PU(3, 1), and Aut(Z,) = PSp(4, R). Let &, be the
ring of algebraic integers in the field K = Q(v-3), and for an ideal n&
let ' (n) denote the principal congruence subgroup of level » in the Pi-
card modular group U(3, 1; ). Let I['(N) be the principal congruence
subgroup of level N in the Siegel modular group Sp(4, Z). In order to
state our main result we introduce the following notation: For a lattice I’
in Sp(4, Z) welet X(I) =T\S,, X*(I') = (I"\S,)", and XD = F\Sz,
and for a lattice I'y, in U(3, 1; &) welet Y(I'y) = I['x\B;, Y*(Ty) =
(FK\IB3)* , Y(Ty) = (T \B;). We write X(N) for X(I'(N)), and simi-
larly for X*(N), X(N), Y(n), Y*(n), and Y(n).

Our main result is the following.

Main Theorem. There are isomorphisms

() X(H=Y(1),
(i) X (2 I

(ii) X(3)=Y(2),

(iv) X(6) = Y(2V=3).

Further, under these isomorphisms the boundary components of X ()
are mapped isomorphically onto modular subvarieties of Y (n), i.e., com-
pactifications of quotients of subdomains of B,, and the boundary com-
ponents of Y (n) are mapped isomorphically onto modular subvarieties
of X(N), i.e., compactifications of quotients of subdomains of S,. In-
deed, establishing these two sets of isomorphisms is an essential step in
our proof. We note that these isomorphisms themselves produce examples
of Janus-like surfaces, the first with &, =S, x C and Y, = B,, and the
second with 9, = C? and Z, =8, x8,. (Of course, S, = B,). We shall
not give the relevant lattices here, to avoid excessive notation at this point,
but just refer the reader to 3.8 and 3.19 below. In turn, to produce these
we first find Janus-like curves, with &, =S, and &, =C, in 3.1 and 3.2.

We should note that, strictly speaking, some of these examples leave
the discussion at the beginning of the introduction. In cases (i) and (ii),
both groups act with fixed points, and in (iii), I'(2) acts with fixed points
while I'(3) does not. The quotient in case (i) is a “ V'-manifold”, i.e., has
finite quotient singularities (and is in fact globally the quotient of a smooth
variety), but in cases (ii) and (iii) is nonsingular. In case (iv), however,
we are in the situation discussed above; both groups act freely.

Case (iv) of the theorem is particularly interesting because the variety
there is of general type; also both Zariski open parts are log-general type.
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In cases (ii) and (iii) the variety is rational, but has a rich structure, never-
theless. Indeed, these two varieties have alternate descriptions. They are
isomorphic to varieties which have been known since the 19th century—
the desingularizations of the Segre cubic and Burkhardt quartic respec-
tively. The original proof of the isomorphism in case (ii), from which
that in case (i) easily follows, was based on the explicit identification of
the Satake compactification Y*(v/—3) with the Segre cubic and of X*(2)
with the projectively dual variety. Similarly a proof of case (iii) may be
based on the identification of the Satake compactification Y*(2) with the
Burkhardt quartic and of X*(3) with (the normalization of) its projec-
tive dual. Our proofs here are much simpler, being based on the moduli
interpretations of X(N) and Y(n). However, since these identifications
are themselves interesting, and formed part of our original motivation for
studying these varieties, we devote the remainder of this introduction to
their description (though we make no use of it in the proof of the main
theorem above).

The Segre cubic. The first variety which came to our attention ([10, §5]
contains the first observation to this effect) was the Segre cubic. This is the
cubic 3-fold given in P’ = {[x, -+ » x5]} by the following two equations

& = {in =0, Zx? =0}.
Since the first equation has degree 1 we see that the Segre cubic is a
hypersurface. One sees easily that % has 10 ordinary double points
([t, 1,1, -1, -1, —1] and its transforms under the symmetric group X,
which obviously acts on %) . It has been known since the last century that
there is a unique cubic hypersurface in P* with 10 nodes (see [9, Theorem
1.11] for a proof). The following 15 P*’s lie entirely on % :

Xp0) T Xe3) = Xo1) T Xo(a) = Xa2) T Xo(s) > o€

In fact, each such P? contains exactly 4 of the 10 nodes, and the inter-
sections with the other P?’s yield the line arrangement shown in Figure A
(next page) in each P.

To visualise . more precisely, one can utilize the fact that & is
rational. The explicit birational map is as follows: let H,,--- , H, be

the arrangement of 10 planes in P’ given by the equations:
x;=0, i=0,---,3; X, =x;, Ii#]

These planes are the faces and symmetry planes of a tetrahedron in P,
Blow up: (1) the four corners and center, (1,0,0,0),---,(0,0,0,1)
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[] = node

—— = intersection
with other P2

FIGURE A

and (1,1, 1, 1); (2) the 10 lines joining two of the five points. Note that
after (1), the normal bundle of each such line in (2) is Z(—-1)®&(-1); (3)
hence each exceptional P! x P! can be blown down to an ordinary double
point. The result of (1)-(3) is precisely the Segre cubic.

Theorem 1. & is the Satake compactification Y"(v/=3).

The fact that % is a ball quotient is mentioned in [9]; the determination
of the group is a straightforward 3-dimensional generalisation of the work
of Holzapfel [6].

Let £ denote the dual variety to % . This is a hypersurface of degree
3(3- 1)3— 10-2 = 4 (see [5, 4.4.3]). The 10 double points on . determine
10 double tangents of &, and the 15 P*’s determine 15 singular lines on
@ . One sees without too much trouble that £ is the quartic known as the
Igusa quartic, given in P’ by five linear relations and the single nonlinear
relation:

2
o, —40,=0,

where the o; are the elementary symmetric functions. The following was
known essentially in the last century from work on theta functions (see for
example [15, p. 505]), and rigorously proved by Igusa [8].

Theorem I'. & is the Satake compactification X*(2).

Now dual varieties (of degree > 3) are birational, so these two theorems
yield a big step toward the proof of the main theorem above in case (ii).

The Burkhardt quartic. The next example that came to our attention
was the Burkhardt quartic, which is given in P’ by the following equations:

$={in=0, Z x,.xjxkx,=0}.

i#j#kAl



JANUS-LIKE ALGEBRAIC VARIETIES 513

As above, & is a hypersurface. It has 45 nodes:
15 nodes, (ij):={xl.=l,xj=—1,xk=0,k;éi,k;éj}.
30 nodes, (ij.kl.mn):={x;, = x; = L,x,=x=p,x,=x,= pz,

p=e"P it jtk#l#m#n).

It has recently been proven that this property uniquely determines % [4],
i.e., any quartic hypersurface in P* with 45 nodes is projectively equivalent
to the Burkhardt quartic (and 45 is the maximal number of nodes which
a quartic 3-fold can have—in this case the Varchenko bound is sharp). In
addition there are 40 planes lying entirely on % , given by the equations

Xi=x;/p=x/p", i<j<k (20),
Xi=x;/p =x/p, i<j<k (20

Each such P? contains 9 of the 45 nodes, and these 9 are in fact the 9
base points of the Hesse pencil of elliptic curves. Recall that this pencil
has four degenerate cubics which are each a triangle of lines. These 12
lines in each P’ are the intersections with the other 39 of the 40 planes.
From the equation of % one sees immediately that the symmetric group
X acts on it. But in fact a much larger group acts: the group of the even

permutations of the 27 lines lying on a smooth cubic surface in P’ , the
simple group of order 25,920 which we denote G25’920. Namely, the 45
nodes of % correspond to the 45 tritangents of a smooth cubic surface,
and the 27 lines on such a cubic correspond to 27 sets of 5 of the 45 nodes
not lying in a P’ (recall each line is contained in five tritangents; here
the inclusion relation is reversed, in some sense). These sets of five of the
nodes spanning P* are called Jordan pentahedra.

The 45 nodes are joined by lines containing two, resp. three, of them,
which are denoted e-/ines (containing two nodes) and x-/ines (containing
three nodes). (One sees from the coordinates for the nodes that no more
than 3 can lie on a line.) The 27 Jordan pentahedra are spanned by sets
of five nodes, all of which are joined by &-lines, such as the set:

(ij), (kl), (mn), (ij.kl.mn), (ij.mn.kl).

Thus these five nodes are the vertices of a coordinate simplex, and the 10
e-lines joining them in pairs are the edges (1-dimensional faces) of the sim-
plex. The 2-dimensional faces of the pentahedron, containing three nodes
and 3 e-lines, are called f-planes and intersect &% in 3-nodal (rational)
quartic curves:
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e = node e = node
— =¢-line

(@) (b)

FIGURE 1. (a) f-PLANE; (b) COORDINATE TETRAHE-
DRON IN JORDAN PRIME

The five sides (3-dimensional faces) of the simplex are so-called Jordan
primes, containing four of the nodes, six of the e-lines, and four of the
f-planes of the pentahedron of reference. For each of the nodes of the
simplex there is a Jordan prime which is the opposite side of the simplex.
There are given by the equations:

node = (ij), opposite face: J; = {x; - x; = 0},

node = (ij.kl.mn), opposite face :
2
J(ij.kl.mn) = {xi - xj TP (xk - xl) + p(xm - xn) = 0}
The intersection of this Jordan prime with % contains, in addition to

these four, two other sets of four nodes, each itself the set of vertices of a
(different) coordinate simplex. The intersection & NJ, ; is therefore a 12-

nodal quartic surface in P’ , and in fact is the famous “desmic surface”,
so called because of the triad of desmic tetrahedra whose vertices are the
nodes.

The relation to the 27 lines and 45 tritangents of the cubic surface can
now be precisely formulated: The 45 nodes correspond to the 45 tritan-
gents such that:

two nodes are joined by an &-line
(i.e., are the vertices of a Jordan pentahedron)
&
the corresponding tritangents meet in one of the 27 lines.
(45)
Hence the five nodes spanning a Jordan pentahedron correspond to the
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five tritangents passing through a fixed line.

It is also known that Gys 920 is the subgroup of index 2 in the Weyl
group of E, consisting of even reflections. The following table gives a
translation between these different realizations of Gys 95 and its sub-
groups:

Order Normalizer Normalizer on % Subgroup of Weyl
on cubic surface group W™ (E)
960 Line Jordan pentahedron W+(D5)
720 double-six set of 30 nodes W+(A5)
648 | triad of trihedral pairs | one of the 40 planes
576 - tritangent node W+(F4)
120 skew pair of lines 10 nodes lying in a P’ W+(A4)

It is also known that & is rational; however, as opposed to the Segre
cubic where the rationalization is X -equivariant, this rationalization of
# is not G,s 4yp-€quivariant. More useful for the study of F is the

projection from a node, which displays % as a double cover of P’. The
branch locus (of degree 6) splits into a quadric surface and a special 12-
nodal quartic surface (the desmic surface referred to above, see Figure
1b)). By the way, this property is essentially what is used in [4] to prove
uniqueness of % . The following, although known to us since 1987, has
not yet appeared in print:

Theorem II. & is the Satake compactification Y™ (2).

Although we will not prove this theorem here let us give a few remarks
on how to do it. First, one applies the Yau equality (in its logarithmic
form) to show that %#-{45 nodes} is a ball quotient, hence % is the
Satake compactification of a ball quotient. Of course, the (logarithmic)
Yau equality holds only for free actions, so modifications for fixed points
are necessary. It remains to identify the group. For this one can use the
moduli interpretation via moduli problems as in this papér. An alternative
method would be to identify the group “piece by piece”, as in §§3-4 of
this paper, first checking the parabolics, then modular subgroups. Note,
however, that Theorem II follows from II' below, our Main Theorem,
and some elementary arguments on birational modifications. Finally we
remark that recently Bert van Geemen has succeeded in proving Theorem
II directly, using theta functions. His method works in the present case
because of the fact that Y*(2) is a moduli space of abelian varieties which
have automorphisms, not just endomorphisms. For details see [22], which
treats this side of the Janus-like behavior from the standpoint of theta
functions.
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We consider also the dual variety to %, call it % . This is a variety
of degree 4(4 — 1)3 —2-45 = 18. The 45 nodes of & determine 45
double tangents, i.e., P' x P'’s lying on % . Furthermore, the 40 planes
determine 40 singular lines on % . These singularities are, as it turns out,
not normal [18]. Let % be the normalization of % . Then the following
is proved in [18]: s

Theorem II'. % = the Satake compactification X*(3).

Once again we remark that these two results imply that Y(2) and X(3)
are birational, and represent the main step in the original proof of the
main theorem above in case (iii).

Let us now sketch the strategy of the proof presented in this paper. We
could paraphrase this approach as a “consequent application of moduli in-
terpretations.” Since the work of Shimura in the early 1960s, it has been
known that Picard modular varieties (quotients of B, by Picard modular
groups) are natural moduli spaces of abelian (n + 1)-folds with certain
complex multiplications. In our case we have abelian 4-folds (principally
polarized), with complex multiplication by K = Q(v/=3). But the field K
is very special among imaginary quadratic fields, being itself cyclotomic,
K =Q(p), p=-exp(2mi/3). This makes it possible to identify the abelian
4-folds as the Jacobians of certain genus 4, trigonal curves. On the other
hand, it is well known that (I'(N)\S,) is the moduli space of abelian sur-
faces (principally polarized) with level N structure. By general theory,
then, these are the moduli spaces of genus 2 curves with level structures
and, as is well-known, all genus 2 curves are hyperelliptic. One checks
easily that both a genus 4 (Z,-Galois-) trigonal curve as well as a genus

2 hyperelliptic curve has six branch points on P! ; thus the main part of
our proof of the main theorem lies in identifying a level 2 (respectively
level 3, 6) structure on a hyperelliptic curve with a level v/—3 (respec-
tively level 2, 24/=3) structure on a trigonal curve. This observation then
yields the isomorphisms of the main theorem on Zariski open sets. On
the complements of these we determine precisely the structure of the di-
visors, and show they can be identified with each other also, yielding the
isomorphisms of the theorem.

2. The domains and groups

2.1. Domains.
In this section we introduce 2 types of Hprmitian symmetric spaces
9 = Gy/K of noncompact type, dual to & = G,/K and embedded
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2 C 2 by means of the Borel embedding. If p* denotes the holomorphic
tangent space of & at the identity, the Harish-Chandra map {: 2 — p*
realises & as a bounded symmetric domain D in C" = p* . The topologi-
calclosure D O D in p* (with the Euclidean topology) is called the natural
compactification of D and the maximal irreducible holomorphic arc com-
ponents of the boundary 8D =D — D are the boundary components; the
length of a maximal flag F; C F; C --- C F, of such boundary compo-
nents is the R-rank of the group G, (or of the domain &). Via Cayley
transforms c¢,: D — D, (inside p") the domain has different unbounded
realizations which correspond to certain standard boundary components
and which fibre onto them D, — F . In particular there is a total Cayley
transform corresponding to a 0-dimensional boundary component. Group
theoretically the boundary components correspond in a 1 to 1 fashion to
parabolic subgroups of G . There are other subgroups of G, of special
interest, namely the stabilizers of certain subdomains D, C D, which are
reductive subgroups of G,. For details on these matters see [2], [21] for
the general theory and [25] and [24] for the special cases interesting us.

2.1.1. Theball. We consider first the homogeneous space ' =U(3, 1)/
U(3)x U(1) with compact dual & = P’. & has the well-known bounded
realization as the 3-dimensional ball B,. We regard B, as embedded in
P’ by

Z)
B, = 2 1> 1z < 1
1

The automorphism group of P is PGL(4, C), and the automorphism
group of B, is the subgroup of PGL(4, C) leaving B, invariant, which
is PU(3, 1), i.e., the group of matrices preserving the Hermitian form

H=diag(1,1,1, 1),

acting by projective linear transformations on B,. (More precisely, we
should write PUy4(3, 1)). Its closure E3 is just the closed ball, and all
boundary components are 0-dimensional, as U(3, 1) has R-rank 1.

A typical Cayley transform is

CpiBy oDy = {(u, v, , v,)| Im(u) - %EI’UJZ > O}

given by
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Z Uy Zy
Ol Y21l %
Z3 ) Z3 ’
1 1 1
where T is the matrix
1 0 0 1
- L]0 -iv2 0 0
“V2l0 0o —-iv2 o0
i 0 0 —i

Then the automorphism group of D is just T PU@3, 1)T = PU,(3, 1),
the group of matrices preserving the Hermitian form J = THT . Con-
cretely,

~i

0

0
I=10
i

SO - O O

0
1 0
0 0
0 0

The domain B, has as a boundary component (1, 0, 0)=1[1,0,0,1],
and the corresponding parabolic in PU,(3, 1) takes triangular form.
PU(3, 1) operates transitively on the boundary components, and so any
two parabolics are conjugate.

As well, the domain B, has a subdomain B, given by z; = 0, which
under ¢, maps to the subdomain v, = 0 in D, . The group PU(2, 1),
regarded as a subgroup of PU(3, 1) (under the obvious inclusion) leaves
B, invariant and acts transitively on it. The stabilizer of B, is PU(2, 1)x
{z||z| = 1}, the second factor acting trivially. PU(3, 1) acts transitively
on the subsets of B, isomorphic to B,, and so any two subgroups iso-
morphic to PU(2, 1) are conjugate. An analogous statement holds for
B, = {z, = z; = 0} and corresponding subgroup PU(1, 1). If we let
(Dg), = cp(B,) and PU(2,1) = T 'PU(2, )T, and (Dg), = cx(B))
and PU)(1,1) = T PU(1, 1)T, similar statements hold as well (with
appropriate matrices T).

Note also that the given boundary component is contained in the closure
of the given B, (or B,).

2.1.2. Siegel space (of degree 2). Here we are concerned with & =
Sp(4, R)/U(2), which has the following bounded realization:

D={ZeM(C)|Z="Z,ZZ" - 1<0}.



JANUS-LIKE ALGEBRAIC VARIETIES 519

Its closure D consists of symmetric Z ’s such that ZZ* — | is negative
semidefinite. The holomorphic arc components have representatives

m  K=(y1). A={(o ?)ir<1}=sco

of dimensions 0 and 1 respectively (note that Sp(4, R) has both 0- and
1-dimensional boundary components, as this group has R-rank 2), and
every boundary component of D is equivalent to one of these under the
action of its automorphism group Spy(4, R), by which is meant the set
of all complex symplectic matrices fixing the Hermitian form

(i1, 0
H‘(o 45>

The total Cayley transform Z ~ i(1, + Z)(1, — Z)_l maps D onto
the well known unbounded realization D, = S, = {Z = ‘Z|Im(Z) >
0}, and the usual symplectic group Sp(4, R) is the automorphism group
corresponding to the usual symplectic form

_(0 -1,
= o)
acting in the well-known manner: Z — (4AZ + B)(CZ + D)_l for an

element (£ 5) e Sp(4, R). In this realization representatives of the cusps
are given by

B ) 7, 0 _
Fo= {Im(r.),lllri?rz)—»oo ( 0 T2>} - P

— 3 T 0 o S
2) F= {Im(ltllr)llvoo ( 0 1:2)} =85,C8,.

The corresponding parabolic subgroups are

a6 1 9y X

_ * * _ 6122

PO_{<0 *)}’ Fi= 0 0 a;; 0
0 a, |a; ay

Notice that P, is the stabilizer of a (totally) isotopic plane, while P, is

the stabilizer of an isotropic line in R*.
Consider the following subdomain

7, O
soxs,={(5 0))es.
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The automorphism group SL(2, R)xSL(2, R) C Sp(4, R) acts transitively
on §; xS, with embedding given by

a 0 b O

a, b a, b, o 0 a, 0 b
<(cl d1>’<cz d, ¢ 0 d 0 € 5p(4, R).

0 ¢, O d,

The stabilizer of S, x S, is an extension of Z/2 by this group, the non-
trivial element of Z/2 being represented by the matrix

0 1 0 O
1 0
0

-1

z, 0 z, 0
(0 Zz) o (0, 21)-

Note that the closure of S, xS, in 8_2 contains the 1-dimensional bound-
ary component F, above. Any other subdomain of S, isomorphic to
S, xS, is the image of this one under the action of an element of Sp(4, R),
and so any two subgroups isomorphic to SL(2, R) x SL(2, R) are conju-
gate.

2.2. Lattices.

2.2.1. Picard lattices. We consider first the matrix group Ugx(3, 1)
from 2.1.1. Let K be the imaginary quadratic field K = Q(v/-3), and let
O, denote its ring of integers.

Definition 2.1. The Picard modular group for the field K is the group

Iy :=Uy(3, 1)Nn M, (),
i.e., the set of all matrices in Uy(3, 1) with coefficients in & .

Note that I'y is a maximal lattice in the Q-group Uy(3, 1) N M,(K).
This group has Q-rank 1 and therefore has only 0-dimensional boundary
components. Now consider a subgroup I, x of I'y of finite index (possi-
bly I, = I'y). Each I'i-equivalence class of (0-dimensional) boundary
components is called a cusp of F’K . The theory of compactifications (see
§3) tells us that the cusps of F’K are in 1 — 1 correspondence with the
irreducible components of the divisor (I';\2) — (F’K\.@ ). The cusps (or
equivalently, the maximal Q-parabolics, each such being the stabilizer of
a cusp) correspond to the F'K-orbits of 1-dimensional subspaces of K*

isotropic with respect to the form H. We shall call these isotropic lines,
and denote them by /.

S OO

- 0
0 I
0 0

which sends
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Similarly, each l'“K-orbit of 3-dimensional subspaces on which H has

signature (2, 1) corresponds to the divisor which is the closure in (1"'K \9)
of a modular subvariety (I';),\B, of (I';\2). We call these subspaces
(2, 1) solids and denote them by A,. We may also consider (1, 1)
planes A, , F'K-orbits of 2-dimensional subspaces on which H has sig-
nature (1, 1); these correspond to the closure in (I"K\Q ) of subvarieties
(Tg);\B, of (I\2). Note that A, (respectively A,) determines and is
determined by its orthogonal complement, a 1- (respectively 2-) dimen-
sional subspace of K * on which H is positive definite.

The I"'K of interest to us will be the groups I'y(n), defined as follows:
consider an ideal of @ , necessarily of the form n¢, , for some n € Ox
(as &y is a principal ideal domain), which is invariant under conjuga-
tion, and let @, /nd; be its residue ring. Note that &, /n@, inherits a
conjugation from & .

Definition 2.2. The principal congruence subgroup of level n, T (n),
is the kernel of the map

T, — UQ3, 1;8/nd,)

given by reducing matrix entries modulo n& .
It is known that this map is an epimorphism, so there is an exact se-
quence
1 =Ty(n) =T, - UQB, ;G /n0) — 1.

We shall be considering the action of these groups on B, , and so we must
take their images in PU(3, 1), giving the exact sequence

1 - PTy(n)— PTy — PU(3, 1; 8 /n0) — 1.

2.2.2. Siegel lattices. We now turn our attention to the group Sp(4, R)
of §2.1.2. The Siegel modular group I' = Sp(4, Z) is the subgroup of
integral matrices; I" is contained in the Q-group Sp(4, Q) which has Q-
rank 2. Again we consider a subgroup I of T of finite index (possibly
I" =T). As we have observed, I' (or I') has both 0- and 1-dimensional
boundary components, and we call the I'-orbits of these the 0- and 1-
dimensional cusps of I". Again the cusps (or the maximal parabolics,
each such being the stabilizer of a cusp) correspond to the I"-orbits of
isotropic subspaces in Q4 with respect to the usual symplectic form. Such
a subspace is either 2-dimensional, in which case we call it an isotropic
plane and denote it by 4, or is 1-dimensional, in which case we call it
an isotropic line and denote it by /; these correspond to the 0- and 1-
dimensional cusps, respectively. Here the 1-dimensional cusps of I are
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in 1 —1 correspondence with the irreducible components of the divisor
(M\2) - (T'\2).

Similarly, we may consider proper subspaces of Q4 on which the sym-
plectic form is nonsingular over Z. Such a subspace J is necessarily a
plane, and has an orthogonal complement & L on which the form is also
nonsingular. Each I'-orbit class of pairs {6,0 l} corresponds to the divi-
sor which is the closure in (F’\SZ) of a modular subvariety (1"')2\81 x 8,
in 1"'\S2 . We call such pair a nonsingular pair and denote it by A.

The subgroups I" of interest to us will be the groups I'(N) defined as
follows:

Definition 2.3. The principal congruence subgroup of level N, T(N),
is the kernel of the map

T — Sp(4, Z/NZ)

given by reducing matrix entries modulo NZ.
Again this map is an epimorphism, and there is an exact sequence

1 - T(N) T — Sp(4, Z/NZ) — 1,

and again, as we are considering the action on S, , we must take the images
of these lattices in PSp(4, R) = Sp(4, R)/+1, to obtain an exact sequence

1— PF(N) — PT' - PSp(4, Z/NZ) — 1.

2.3. Moduli interpretations.

2.3.1. Abelian varieties with complex multiplication. We now wish to
consider lattices acting on nonbounded domains D, which are Cayley
transforms of B, . Of course one can just set

(FK)F = UJ(31 1) ﬂM4(ﬁK) s

where J = THT" is a transformed form as in §2.1. This group, however,
will not in general be commensurable with the lattice defined in the last
section, depending on the field of definition of T; for this reason some
care must be taken in defining the domain D, . Let J be the following
Hermitian form:
V3 0 0 V=3 0

3= 0 V3 ] g O VD

O 0 | 0 10

Furthermore let D, be the following domain:

D, = {(u, v, v,) € C’|Im(u) - ? 3 Iy, > 0}
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It is easy to see that U;(3, 1)NM, (&) is isomorphic to the Picard modular
group defined above. We have introduced the domain D ¢ to be able to
draw on results of Shimura giving (I'y)\D, a moduli interpretation.

To state Shimura’s result we must briefly digress to explain the notion
of abelian varieties with (complex) multiplication. Let K™ be the m-
dimensional vector space over our field K, ® a representation of K by
(m x m) matrices with complex coefficients. We say ® has signature
(p, q) if for all a € K, ®(a) has eigenvalues

(a’... ,a, ﬁ’ ’a)

p-times g-times

Let 4 be an abelian variety and recall that a polarization % (in the
sense of Weil, i.e., an algebraic equivalence class of a hyperplane section)
determines a positive involution of End,(4), a— a’ , defined as follows.
If Pic(A) is the Picard variety, then points of Pic(A4) are divisors on A
algebraically equivalent to 0; if X issuch adivisoron 4, CI(X) € Pic(A)
denotes the corresponding point on Pic(A4). If X C A4 is any ample divisor
on A, the map

@y: A— Pic(A)
u—Cl(X, - X), X, =[X+u],

defines an isogeny, and taking in particular X € & (the given polariza-
tion), a” (a € Endy(4)) is defined by:

p -1
a’ =9y ap,.

Definition 2.4. Let 4 = C"/A be a polarized abelian variety (with
Riemann form E(x, y)). A has complex multiplication by &, if thereis a
representation ®: K — GL(m, C) as above, such that ®(&) C End(4),
and which is compatible with the polarization, i.e.,

E(®(a)x, y) = E(x, ®(a")y).

We also speak of complex multiplication with signature (p, gq) if ®
has signature (p, q) as above.

Remark. This is a special type of complex multiplication; for the more
general formulation see Shimura. We should also remark the notion of
“complex multiplication in the sense of Shimura-Taniyama” is usually used
to refer to the case in which K itself is a totally imaginary extension of
a totally real field F, [F: Q] = m. Such abelian varieties do not have
moduli, hence this is not the case we are studying, although among all A4°’s
with complex multiplication as defined above, there are some (in fact a
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dense set) which do have complex multiplication in the sense of Shimura-
Taniyama.

We can now formulate Shimura’s result:

Theorem 2.1 [19, Theorems 1, 2]. Fix an abelian variety A with com-
plex multiplication in the sense of 2.4, i.e., a triple (A, E, ®), where ®
has signature (3, 1). Then the space (T'y)p\Dy is the moduli space of
principally polarized abelian 4-folds which are deformations of the fixed
A, with complex multiplication by &y (as just defined), ie., of triples
(A", E, ®), where E and ® are fixed, and A’ has a varying complex
structure.

Remark. The skew-Hermitian form R above defines the Riemann
form E by the formula R = (ri;)>

E(®(a)x;, x;) =tr(ar;;), X; a Z-base of A.

Note that since I'y\B; = (I'y) .\D , the same holds for I';\B, . Recall
the subdomain B, C B,; an application of the same result of Shimura
shows that its quotient (I'y),\B, is the moduli space of polarized abelian
3-folds (® has signature (2, 1)), hence of abelian 4 folds which split
A= 4* x A'. Note that the 1-dimensional factor A’ , an elliptic curve
with complex multiplication (here in the sense of Shimura-Taniyama) has
no moduli. In fact more can be said: A’ actually has an automorphism
of order 3, hence A = Ep =C/O .

We digress again briefly to describe level structures. Let A be an abelian
variety with complex multiplication by &, , and n@ an ideal. Then the
map “multipication by n” is well defined: ¢,: 4 2 A4, and its kernel is
called the “set of points of order n ™.

Definition 2.5. A level n structure on A is a choice of isomorphism
@/ né’K)4 = Ker(p,) respecting the natural symplectic and Hermitian
forms on both sides.

Let I'y(n) Cc Ty be a principal congruence subgroup, and let Y(n) be
the corresponding quotient. Then, as one easily sees, the inverse image of
the abelian variety corresponding to 7 € Y (1) under the natural covering
Y(n) — Y(1) consists of points corresponding to the same abelian variety
with markings of Ker(p,). Hence, as a corollary of Shimura’s result we
immediately obtain

Corollary 2.2. The quotient Y (n) is the moduli space of abelian 4-folds
with complex multiplication as above and with a level n structure.

In particular, for n = 2, Ker(p,) is just the set of points of order

2, since (G /2@],()4 = (IF‘4)4 = (Z2)8 , the second isomorphism being of
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the underlying additive groups. For n = =3, Ker(¢ ) is a subgroup
consisting of 9 of the 81 points of order 3.

2.3.2. Picard curves. The above moduli interpretation of ball quotients
derived from the fact that K is an imaginary quadratic field. In this
section we describe a moduli interpretation which derives from the fact
that K is, in fact, cyclotomic. Consider the following family of trigonal
curves:

6
(3) ¥ =T -¢).
i=1

These curves have genus 4 and, being (Galois-) trigonal, have automor-
phisms of order 3 given by (¥, x) — (py, x). Note that Q(p) = Q(v-3)
= K; since this automorphism of the curve passes on to the Jacobian
F » Aut([f) D Z,. One easily sees that there is ®: K — GL(4, C) with
d>(ﬁQ( p)) C End(#), hence the Jacobian variety of this trigonal curve has
complex multiplication by K. Furthermore, ®: K — GL(4, C) is equiv-
alent to the one in Theorem 2.1, where we take the fixed 4 to be (E p)4 s
and from the results of the previous section follows immediately

Corollary 2.3. The quotient Y (n) is a moduli space of (Galois-) trigonal
curves (Picard curves) of genus 4 and with a level n structure. The modular
subvarieties (I'y(n)),\B, parameterize those genus 4 curves which split
into a component of genus 3 (a Picard curve of genus 3, i.e., one whose
Jacobian has complex multiplication) and a component of genus 1 (an
elliptic curve with complex multiplication) meeting at a point.

(Note that in general I'y(n)\B, will have a finite number of distinct
modular subvarieties.) In fact, the elliptic curve in Corollary 2.3 is actu-
ally C/&y , the unique elliptic curve with automorphism group Z, since
this curve definitely occurs, but has no deformations (this is the complex
multiplication in the sense of Shimura-Taniyama mentioned earlier, which
makes a dense subset in moduli space but consists of isolated points). For
later use we make

Observation 2.4. A level \/—3 structure corresponds to an ordering of
the six points &, over which the trigonal curve in (3) is branched. Hence
the moduli space of ordered sets of six distinct points in P! is isomorphic
to a Zariski open subset of Y (v/=3).

To legitimate this claim we make the following remarks. Let p be
a branch point; clearly 3p = 0 (in the Jacobian). Hence +/-3p is a
point of order V=3, i.e., v=3p € Ker(p ). Recall that the fibre of
7€ Y(1) under Y(v/=3) — Y(1) is the set of level v/—3-structures; since
the symmetric group X, is the Galois group (see below), it is clear that
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an ordering of the six branch points determines an inverse image of 7 in
Y(v/-3) and hence a level structure.

2.3.3. Hyperelliptic curves. The moduli interpretation of I'(N)\S, is
well known.

Theorem 2.5. The space X(N) is the moduli space of principally po-
larized abelian surfaces with level N structure.

Now the generic principally polarized abelian surface is the Jacobian of
a nonsingular genus 2 curve. Every such curve is hyperelliptic and so is
given by the equation

6
(4) ¥ =[Jx-¢),
i=1
and since the branch points are points of order 2, we observe (see [11, §8])

Observation 2.6. A level 2 structure on the hyperelliptic curve (4) cor-
responds to an ordering of the six branch points.

We thus see '

Corollary 2.7. X(2) and Y(V/-3) have Zariski open sets which are
isomorphic.

Remark. The 15 copies of S; x S,-quotients on X(2) correspond to
curves (4) for which 3 of the {{;} coincide; these are curves which split
into two elliptic curves, with corresponding Jacobians which are products
E, x E, . On the Zariski open set in X(2) which is the complement of the
union of these divisors all {{;} are distinct.

2.4. Groups and complexes.

We have so far proceeded in parallel for I' and I' . In this subsection
we present some isomorphisms between the two situations which form part
of the reason for the isomorphisms given by our main theorem.

24.1. Groups. For N € Z, we have PI'/PT'(N) = PSp(4, Z/NZ),
and for n € @, , we have

PT /PT(n) 2 PU(3, 1; O, /nby).
We observe that & /n&, is a finite ring of cardinality the norm of n,
and if » is a prime it is a field (as K is a principal ideal domain). This is
in particular the case if » = v/-3, of norm 3, and if n = 2, of norm 4. In
the first case the conjugation on @ descends to the trivial automorphism
of F, (of course), in the second to the unique nontrivial automorphism
of F, (as may easily be checked).

Proposition 2.8. (i) PSp(4, Z/2Z) = PU(3, 1; F,) = X, the symmet-
ric group on six elements.

(ii) PSp(4,Z/3Z) = PU(3, 1; F,) = Gy5 gy, the simple group of or-
der 25,920.
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(iii) PSp(4,Z/6Z) =PU(3, 1;F, xF,) = X x Gys 920 -

Proof. For (i) and (ii) see [3, pp. 4, 26]; these immediately imply
(iii). q.e.d.

Here we must remark that our notation PU(3, 1; & /n&;) is non-
standard. We have choosen this notation as this group is a quotient of
PU(3, 1; &;). However, we see that for n = V=3, U(3, 1; & /n0)
is the group preserving the form xl2 + x§ + x§ - xf (conjugation being
trivial here), and this group is denoted GO, (3) in [3, p. 4]. Simi-
larly, for n = 2, U(3, 1;8¢/n0) is the group preserving the form
XX, + X,X, + X3X5 + x,X, (as 1= —1 here), and this group is denoted
GU,(2) in [3, p. 26].

The groups PI'/PI'(N) (respectively PI'y/PIj(n)) are the Galois
groups of the ramified covers X(N) — X(1) (respectively Y(n) — Y (1)),
which in fact extend to X(N) — X (1) (respectively Y(n) — Y (1)), and
the reader will note that the groups in parts (i), (ii), and (iii) of the above
proposition are the Galois groups of the covers in parts (ii), (iii), and (iv)
of our main theorem.

2.4.2. Complexes. We have seen that equivalence classes of subspaces
of K* (respectively Q4) correspond to cusps of modular subvarieties for
the action of ', on B, (respectively of I" on S,). Let us formalize and
generalize this notion.

Let V = K* (respectively Q4) and A be a subgroup of I'y (respec-
tively of T') of finite index. We consider certain non-trivial proper sub-
spaces of V' and put a partial order on them as follows:

(i) Siegel case: {/, h,A} with [ <h if ICh,and | <A={5,6"}
if Icéorlcor.
(i) Picard case: {/, A,, A;} with A, <A, if A, CA,,and [/ <A, if
[CA,.
Note that the action of A on V' induces an action of A on the above
sets, preserving the partial order.

Definition 2.6. The simplicial complex 7 (V') is the simplicial real-
ization of the partially ordered set above. The simplicial complex Z, (A)
is the quotient A\7, (V).

Observe that 7, (V) contains the full subcomplex .7 (V) whose vertices
are the isotropic subspaces of V', and the full subcomplex .#(V) whose
vertices are the nonsingular (with respect to the given form) subspaces of
V. The reader familiar with Tits buildings will recognize 7 (V) as the
Tits building of the Q-group I'y ; we call &~ (V) the scaffolding and the
complex J. (V) the Tits building with scaffolding for T, . Simplices of
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J.(V) not lying in I (V)UF (V) we call cross-simplices. We employ
similar terminology for 7 (A). We see here that in the Siegel (Picard)
cases, 7 (V) is 1- (0-) dimensional and (V) is 0- (1-)dimensional,
while in both cases the cross-simplices are 1-dimensional.

2.4.3. Duality.

Definition 2.7. For two groups A, and A,, J,(A)) and J, (A,) are
dual if there is a simplicial isomorphism a: 7 (A|) — Z,(A,) with
(T (A) =F(A,) and o(F(A))) =T (A,).

We will see that we have examples of dual Tits buildings with scaffold-
ings here, and this is part of the reason for our Janus-like behavior. Note
from what we have said in §2.2 that the vertices of .7 (V') (respectively
& (V)) parameterize cusps or (as we shall see in §3.2) boundary compo-
nents (respectively modular subvarieties) of the compactification (A\Y),
and the edges parameterize inclusions of components/subvarieties or (for
the cross-edges) intersections of modular and boundary divisors. First we
count these:

Lemma 2.9. The following table is correct:

N n Xp =V | Vp =X,
1 1 1 1

2|1 V-3 15 10

3 2 40 45

6 |2v=3 600 450

In this table x, (respectively y,) denotes the number of vertices in
T (L(N)) (respectively T _(T'y(n))) corresponding to isotropic lines, and
x,, (respectively y,) the number of vertices in Z(F(N)) (respectively
T, (Tx(n))) corresponding to maximal nonsingular pairs (subspaces).

Proof. We show that the values of X, (N) and y,(n) (in the obvious
notation) are correct; the values for x,,(N) and y, (n) follow by similar
arguments.

X, (1) = 1: Note that every line in Q4 is isotropic, as we have a sym-
plectic form here. Each such is generated by a primitive vector in zt R
well-defined up to multiplication by +1 (the group of units in Z). Thus
this claim is given by the well-known fact that Sp(4, Z) operates transi-
tively on those vectors.

X,(2) = 15: There are 15 nonzero elements in (Z/ZZ)4 ,and *1 acts
trivially.
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X, (3) = 40: There are 80 nonzero elements in (Z/3Z)4 ,and +1 acts
effectively.

y,(1) = 1: This is proved in [25, p. 50].

yb(\/:_i) = 10: We may take F, = {0, 1, —1}; note that the units
of &, act transitively on the nonzero elements of F,, and conjugation is
trivial. We are looking for (x5 X5, X3, X,) with )cl2 + x22 + x32 - xf =0.
If x, =0, x,,x,,x; may be choosen arbitrarily, not all zero, giving
eight possibilities, and if x, = +1, exactly one of X, X,, and x; must
be nonzero, giving six choices, and (8 +2-6)/2 = 10. Then yb(\/——?,) =
10-y,(1) =10.

¥,(2) = 45: We may take F, = {0, 1, p, p}; note that the units of
O, act transitively on the nonzero elements and conjugation is nontrivial.
We are looking for (x,,---, x,) with x,X, + x,X, + x,%; - x,X, =0. If
x, = 0, exactly one of x|, x,, x; must be zero and the others arbitrary
nonzero elements, giving 27 possibilities, and if x, =1, p, or 7, either
exactly one of x,, x,, and x, is nonzero, and may be arbitrary, giving
nine choices, or all of them are nonzero and arbitrary, giving 27 choices;
(27+3(9+27))/3 =45, and y,(2) =45-y,(1)=45.

Clearly x,(6) = x,(2)x,(3) and y,(2v/=3) = v,(2)y,(v=3) . This com-
pletes the proof.

Theorem 2.10. The following Tits buildings with scaffoldings are dual:

(1) F.(I(1)) and T (T (1)).
(i) Z.(T(2)) and T (T (V-3)).
(ili) J.([(4)) and T _(T'x(2)).
(iv) Z,.(I(6)) and Z(FK(ZJ—_3)).
Proof. (i) It is easy to check from Lemma 2.9 that for the Siegel case
we have the Tits building with scaffolding:

h / A

@ @ o
and in the Picard case

A A )

o e o

where in the Siegel (resp. Picard) case the full subcomplex containing the
leftmost two vertices (resp. rightmost vertex) is the building and the full
subcomplex containing the rightmost vertex (resp. leftmost two vertices)
is the scaffolding. Putting these together we have the diagram:
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T(T(1))
S (T(1))
o @ o
N Y, T(T(1))
S (L(1))

Then the simplicial isomorphism a from Z, (I'(1)) to J, (T'x(1))
which is determined by a(h) = A,, a(l) = A;, a(A) = [ is obviously
a duality, giving (i).

Let a group G act on a set 7. Then for t € T we let P(f) be the
stabilizer of ¢, i.e.,

P(1) = {g € Glg(t) = 1t}.
We have just established that I'/T(N) = T',. /T .(n) for (N,n) = (2, Vv=3),
(3,2), (6,2v/-3). Let G be this common group. We concentrate on the
first two cases, those of parts (ii) and (iii) respectively; part (iv) then fol-
lows immediately.

Let 7 be a vertex of 7, (I'(N)) and =, a vertex of 7 (I'y(n)). Then
as G acts on each of these, we have correspondences ©# « P(m) and
n, < P(n,). We will show that for proper choices of = and =, the
subgroups P(n) and P(m,) are equal, thus giving a 1-1 map from the
simplices of 7 (I'(N)) to the simplices of 7 (I'y(n)) by n — P(n) =
P(n,) — =, which respects the incidence relations, in other words is
a simplicial isomorphism. We have for the vertices in 7 (I'(N)) and
T (T(n)):

(5) P(l) = P(4,),
(6) P(h) = P(4,),
(7 P(A) = P(I).

Assuming this for the moment we then also have for the edges (/, /)

I <he P(l, h)=P(l)n P(h)
= P(A,) N P(4,) & P(A;, A,) & (A, A,)

with A, < A,, and for the edges (/, A)
I<Ae P(,A) =P()nPA)
=P(A)NP(l) = P(Ay, 1) & (A, ])

with / < A,, as required. Note also that this isomorphism maps .7 (['(N))
to F(Ig(n)) and F(I(N)) to I (I'y(n)), so is a duality.
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It remains to establish the equalities in (5)-(7) above. For this we may
refer to the descriptions of these subgroups given in [3]. We do N = 3,
n = 2, the complicated case; the case N =2, n = +v/—3 is similar. First
we note that [3] works projectively, and we do not, so that what is here
called an isotropic plane (respectively line) is there called an isotropic line
(respectively point). We refer henceforth to [3, p. 26].

First consider (5). Then, using our language, an isotropic line / (or
simply a line, all lines being isotropic with respect to a symplectic form),
corresponds to a nonisotropic line. But as we have observed, a nonisotropic
line determines, and is determined by, its orthogonal complement A, .

Next consider (6). Then an isotropic plane 4 corresponds to a base.
But this is just a 2-dimensional subspace on which the form is x,X,+x,X,,
so its orthogonal complement is A, .

Finally consider (7). Then we see “.S,(3)wr2 ” corresponds to an isotro-
pic line /. Thus to complete the proof we must show that this subgroup
is the stabilizer of a nonsingular pair A. But §,(3)wr2 is the subgroup
of Sp,(3) (Sp(4, F,) in our notation) given by

b .
<a, d{)eSp(z,lF:*),z:l,z xZ,

where x denotes semidirect product, and X, = Z, is generated by the
matrix

it is easy to check that this subgroup is the stabilizer of the nonsingular
pair A given by

{(1,0,0,0)A(0,0,1,0),(0,1,0,0)A(0,0,0, 1)}.

(The above group is a subgroup of Sp(4, F,); we take its image in
PSp(4, F 3) J)
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The following table is correct:

N n V(1) = Vg (s) | e(t) = ex(s) | u(s) = vg(t) | e(s) = ex(t) | e(c) = ex(c)
1 1 2 1 1 0 1

2| V-3 30 45 10 0 60

3 2 80 160 45 0 360

6 | 2v/-3 1200 7200 450 0 21,600

Here v(t), e(t), v(s), e(s), and e(c) denote the number of vertices
and edges in F (I'(N)), the number of vertices and edges in #(I'(N)) and
the number of cross-edges in J_(I'(N)), and similarly for F_(T'(n)).

Proof. Again we concentrate on the second and third rows of the table.
It is easy to calculate that each line / is contained in g = u(N) isotropic
planes # and each plane (isotropic or nonsingular) contains the same num-
ber u(N) of lines, where u(2) = 2-1=3 and u(3) = (32 -1)/2=4.
(Since Sp(4, Z) operates transitively on {/}, it suffices to check this for
any given /; taking / = +(1,0, 0, 0) makes the calculation simple.)
Hence there are the same number of /-vertices and A-vertices, this num-
ber being x,, so v(f) = 2x,, and e(t) = ux,. Also, v(s) = x,, and
e(c) = 2ux,, (the factor of 2 arisingas A = {4, (SL} contains two planes).
The values for the bottom row are then consequences of Lemma 2.9.

3. Compactifications: Minimal and smooth compactifications

For a Hermitian symmetric space < of noncompact type and an arith-
metic group I" acting freely on it there is a natural (singular) compactifica-
tion I\Z™, the Satake compactification. A fundamental result is the the-
orem of Baily-Borel, that I'\Z" can be realized as a normal algebraic vari-
ety by means of modular forms. I'\Z” can be desingularized by means of
toroidal embeddings, or, equivalently, one can find a smooth compactifi-
cation 1“\—9 which dominates I'\2" . These compactifications depend on
a choice of combinatorial nature (polyhedral cone decompositions), and it
is a fundamental result of [1] that one can find such cone decompositions
such that (a) I'\Z is smooth and projective, and (b) (IN\2) — (IN\2) is
a divisor with normal crossings. If the action of I' is not free, the same
methods and results apply, with the exception that in this case I'\Z and
T\Z may only be almost smooth, i.e., may have finite quotient singular-
ities. In this section we describe the compactifications I'\@* and T\Z
in our cases. We will assume the reader is familar with the general theory.
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3.1. Curves.

3.1.1. Siegel case.

First we consider curves in the Siegel setting. Let E ) be the elliptic
curve which is the quotient of C by the lattice generated by 1 and p.
Note that this lattice is precisely @, , so we have E = C/O .

Lemma 3.1. Let T'(6) be the principal congruence subgroup of level 6
in SL(2, Z). Then (I'(6)\S,) is isomorphic to E .

Proof. Observe E ) has an automorphism of order 6 given by multi-

plication by —p. It is easy to check that (I'(6)\S,) is a curve of genus 1
(with v(6) = 12 cusps) and has an automorphism of order 6 given by the
action of the element () of SL(2, Z). Since, as is well known, there
is a unique elliptic curve with such an automorphism, these two must be
identical.

Remark. Since the elliptic curve E ) is known to be the plane cubic
y2 =x -1 , we have shown that this cubic is Janus-like.

Corollary 3.2. The curves /Z and (T(2)\S, \S,) (respectively E /Z
and (I’ (3)\8 ), and E o/ Lg and (T(DO\S, N\S,)) are zsomorphzc This curve is
P! with v(N) cusps, where v(1) =1, v(2)=3, v(3) =

Proof. The curve (I'(6)\S,) has the following quotients (see Figure 2).
The Galois groups of the coverings p(N), N = 1, 2, 3, are PI'/PT(6),

2)/PT(6), and PI(3)/PT(6), respectively (recall that the action of
SL(2, Z) factors through PSL(2, Z)), which are groups of order 72, 12,
and 6, respectively. We now describe the actions explicitly.

p(3). PI'(3)/PI(6) acts by first translating by three of the nine 3-
division points (of course those “contained in” &, i.e., yielding the auto-
morphism of order 3 on E p) . This translation yields an isogeny of degree
3 iyt E, - Ep/(Z3); the quotient Ep/(Z3) is again isomorphic to E,,
and so composing with this isomorphism yields an isogeny i,: E , E -
Secondly, one divides by the involution (or order 2) of E > yielding a 2:1
map 7,: E , P! , branched at the 2-division points of E ) One then

sees easily that these four branch points on P' are acted on by the tetra-
hedral group, i.e., without loss of generality are (0,1, p, p) € P'. Hence
p(3)=m,o0 i3 (see Figure 2, next page).

p(2). PT(2)/PT(6) acts by translating by the subgroup consisting of
the 2-division points (all of them). This translation yields an isogeny of
degree 4:

iy E,— E,[(Z,® Zz)),

and again the quotient is isomorphic to E 5> SO composing with this
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FIGURE 2. QUOTIENTS OF E »

isomorphism yields an isogeny: i,: E Pl E,. Secondly, one divides by

the action of the automorphism of order 3, n,: E P p! , branched now
at the three 3-division points used to translate in the step above. Since
any three points on P! are equivalent, these branch points on P! can be
taken to be (0, 1, o) (note that E ) is the unique elliptic curve which is

a 3:1 cover of P' with Galois group Z,, hence no choices are involved).
Then p(2) =m;01,.

p(1): Here we combine the two situations above and have an isogeny
of degree 12: i, = iy-i,: E , E s then divide by the automorphism
group Zg, m: Ep - P! ,and p(l) = mgo1i,,. For this cover we have
the following branch behavior (see Figure 3) where O is the image of 0
on the elliptic curve, a is the image of the three 3-division points and
b is the image of the 2-division points. The corollary follows from these
descriptions.

><
N2 ;
><
X
>< Pl
AT

FIGURE 3. THE BRANCH LOCUS
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3.1.2. Picard case. Next, we want to consider curves which are quo-
tients of B, by lattices in PU(1, 1). Let ', = PU(1, 1; &), [Ci(n) =
the principal congruence subgroup of level n in [ . Since PU(1, 1) =
PSL(2, R), I'y, and I'y(n) may be identified with lattices in PSL(2, R).
This works as follows (see [24, II. 4.13]). An explicit isomorphism is given
by:

¥Y:B, — 5,
- (s B -y
1 3 V3) (1 V3iz+1) |
The cusps of B, are points of the form [(a+bv—-3)/(a—bv-3), 1] and
are mapped via ¥ onto the usual cusps b/a € QU{oo} of S,. ¥ induces
a group isomorphism
¥*: SU(1, 1) - SL(2, R)
_ -1 1
g Aga™", A= <\/§ ﬁ)

as above. Then the image of I'y is:
T = @ ﬂ = —
= {(5 4)este za=e0). p=r}.
which is a subgroup of the congruence group
ne={(5 §)esezp=03}.

of index 3. Zeltinger shows that f‘3 ,and so ', has only one cusp (as does
I'y(3)). Let us now consider I'y(n), n=+/-3, 2, and 2v/-3. To find
the number of I'y(n)-cusps one has to calculate the number of isotropic
vectors in (]F‘3)2 , (]1'«‘4)2 , and (F; x 113‘4)2 respectively. The forms will be
xl2 —x22 for F, (since conjugation on F, is trivial), x,X, + x,X, over F,
(since 1=—1 over F,), and x X, —x,X, over (F;x ]F4)2 . Obviously the
number of cusps of I'(2v/=3) will be the product of those for I'y(v-3)
and T';(2), so we only need to calculate those. One sees easily:

isotropic lines C (]F‘3)2: {(1, 1), (-1, 1)} (Fy=(0,1, -1)),
isotropic lines C (]F4)2: {(1,x),(1,1), (1,x)} (F,=(0,1,x,X)),

hence we have two cusps for I'y(v/-3), three cusps for I'y(2) and six

cusps for I',(2v/—3). Furthermore, calculations with the Euler numbers

together with the fact that (I"K\]Bl)* ~ P! shows that all curves involved

are rational.
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Lemma 3.3. (i) The six cusps of (Dx(2V=3)\B,)" = P' are the sixth
roots of unity on p'.

(ii) The three cusps of (T(2)\B,)" = P' are the third roots of unity on
P'.

(iii) The two cusps of (T (V-3)\B,)" = P' are 1 on P'.

Proof. Since (I' K\]B])* has only one cusp, we may without restricting
generality, take ittobe 1 € P! . Now note that the covers are given as:

(T (V=3)\B,)" —(T(\B,)",

2
zZ—2z,

(FK(z)\Bl)* —>(FK\]B1)* >
z27,

(T (2V-3)\B,))" »(T((V=3)\B,)",

3
zZ2Z,

(T (2V=3)\B))" —=(T(\B,)",
7z’ ,

which are all branched at 0 and infinity. Since cusps map to cusps, the
lemma follows from this.

3.2. Surfaces.

3.2.1. Siegel case.

Lemma 3.4. (i) X, (6):= (T(6) x T(6)\(S, xS§,)) = E, x E,.

(i) X, (3):=T3) xT3\(, xS,) =P xP'.

(it) X, (2):=T2)x T2\, xS,) =P xP'.

Each of these (product) surfaces has a configuration of curves in which
each curve is either {cusp} x C or C x {cusp}, C = E, in the first case,

P' in the other two, and in which there are a total of 24 (respectively 8, 6)
curves.

Proof. Obvious.

Now we consider the domain C xS, . This has as automorphism group

SL(2, R) x R’. Concretely, this is the matrix group

1 m n
{(0 a b)‘(“ Z)eSL(Z,R),(m,n)eRZ},
0 ¢ d ¢

and an element as above acts on a point (w, z) of C xS, by

(w Z)H(w+mz+n az+b
’ cz+d ’cz+d)’
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FIGURE 4. THE ELLIPTIC MODULAR SURFACE OF

LEVEL 3.

Lemma 3.5. For N=6, 3 (respectively 2), Yb(N):=(I“(N)\(<C xS,))
is the elliptic modular surface (respectively Kummer modular surface) of

level N, a holomorphic fibre space over (I'(N)\S,) with general fibre an
elliptic curve (respectively IP") , and with exceptional fibres of type I, (re-
spectively the union of 2 copies of P! meeting at a point) over the cusps.
Proof. This is well known; see for example Shioda [21] or Livne [14].
Lemma 3.6. These surfaces X,(N) have the following configurations of
curves:

(i) A configuration of N P' s forming for N > 2 (resp. N =2) an N-gon
(resp. two P! ’s meeting at a point) lying over each of the cusps and
(i1) N? sections of the projection

T(M\(C x S,) — T(N)\S,

which extend over the cusps,
each of the P' s in each cusp being intersected by N of the sections.

In case N = 3 the labels p, g, and r each denote a section in the
schematic of the configuration depicted in Figure 4, there being nine sec-
tions and four cusps in this case.

In case N = 2, the entire configuration is as in Figure 5 (next page)
(where of course the sections do not intersect). For N = 3 (respectively 2)
the curves in the exceptional fibres (which are P! ’s) have self-intersection
—2 (respectively —1), while in both cases the sections (which are P' ’s)
have self-intersection —1.

Proof. This is well known ; see, for example, [21], and [10] for N = 2.

Proposition 3.7. (i) The surface X,(2) is isomorphic to P? blown up
at four points.

(ii) The surface X ,(3) is isomorphic to P? blown up at the nine inflection
points of a smooth cubic.
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S

Ss

1 s A

FIGURE 5. THE KUMMER MODULAR SURFACE

Proof. (i) Blowing down the four sections (which are disjoint (—1)-
curves) we see that the proper transform of each fibre has self-intersection
4 (as a quadric in P’ ), and the proper transforms of the six components
of the singular fibres have self-intersection 1 (as a line in ]PZ) . Conversely,
start with P* , four points in it, take the pencil of all quadrics through
the four points; blowing up the base locus the result is _)fb(2) , with fibre
structure onto P' given by the pencil. The proper transforms of the six
lines in P, joining pairs of the four points are the components of the
singular fibres.

(i1) It is well known how to get Yb(3) geometrically. Consider the Hesse

pencil of cubics in P’ ; this pencil has nine base points and four singular
cubics which degenerate into the union of three lines. Blowing up the base
points fibres the family of elliptic curves over P' with four singular fibres
of type I;. The nine exceptional P! s are the nine sections of Yb(3) .
Note there is a natural action of the group SL(2, Z/3) x (Z/3)2 on Yb(?’) ;
this group has order 24-9 = 216 . This action is actually effective (although
—1 € SL(2, Z/3) acts trivially on the base curve, this element induces a
reflection on the sections, as opposed to the translations). q.e.d.

It is known that the arrangement of the 12 lines (four triangles) of the
Hesse pencil is defined by a unitary reflection group of order 216; this is
of course the same group.

3.2.2. Picard case. Now we consider the surfaces that arise in the
Picard case. Let Y,(2v/=3) be (C/&;) x (C/@). Let Y,(2) be the
quotient of Y,(2v/=3) by Z, x Z,, where the generator of each copy of
Z, acts by multiplication by —1 on the corresponding copy of C. Let
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Y,(v=3) be the quotient of Y,(2v/=3) by Z, x Z,, where the generator
of each copy of Z, acts by multiplication by p on the corresponding copy
of C. Our notation is justified by Lemma 3.20 below.

We have the following examples of Janus-like surfaces:

Theorem 3.8. (i) Y,(2v-3) =X, (6).

(i) Y,(2)=X,(0(3).

(iii) Y,(vV-3)=X,,(2).
(iv) Y, (1)=X,(1).

Proof. & is generated over Z by 1 and p,so Y,(2V-3) = E,xE, .
The theorem now follows immediately from Corollary 3.2 q.e.d.

Of course, these examples are not too interesting, merely being products
of Janus-like curves. Our next examples, however, are much less trivial.
Let PU(2, 1; &%) acton B,, and let I';(n) be the principal congruence
subgroup of level 7 in this group. Let Y, (n) = I'y(n)\B,. We have the
following result of Holzapfel.

Proposition 3.9 [6, 0.3.3]. (i) Y, (V-3) = P’ - {p,, -, p;}, where
Py»D,, Dy, D, are the points in P? indicated in the following diagram:

Py

P3

Py

(i) Y, (vV-3) = P?, i.e., the Satake compactification of this B,-quotient
is actually smooth. .

(iii) Y, (V=3) = P? = P? blown up in D,s Dy, Dy, D, The three marked
points on each compactification divisor P! are the tangents of the three lines
in the diagram in (i) passing through each p;. (This diagram is, of course,
the same as that appearing in the introduction.)

Corollary 3.10. Y, (vV=3)=X,(2).

Proof. Immediate from Propositions 3.7 and 3.9.

Corollary 3.11. Ym(l) = Yb(l) .

Proof. Y, (1) is the quotient of Y,(v/-3) by PU(2, 1;F,), and
X,(1) is the quotient of X,(2) by SL(2, Z/2) x (Z/2)*; these groups
are both isomorphic to the symmetric group X,. Thus it remains to show
that the two group actions agree. We use the following principle: two
automorphisms of finite order on a smooth variety (or manifold) agree if
they agree on some open set (in the complex topology), and furthermore
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they agree on an open set containing a fixed point if their derivatives agree
on the tangent space to that point. Let us consider the point ¢, N¢, in
the notation of Figure 5. We claim first that the isomorphisms of these
two groups to X, is in fact given by their actions on the set {S,,-8,}.
They certainly both leave . := S, U---US,,aswellas J =, U---Ut,
invariant, so we get a map from each group to the group of permutations
of the indices {1, --- , 4}, which we claim is an injection, and hence an
isomorphism. For suppose we have an automorphism which leaves the
indices fixed. Then it leaves ¢, invariant (as this is the only ¢, intersected
by both S, and S§,), and similarly for 7,, so it leaves the points £, NS, ,
NS, t,NnS;, t,NS,,and t, Nt, fixed. Hence, it is an automorphism
of ¢,, and of ¢,, fixing three points on each, so must be the identity. But
then on the tangent space to ¢, N¢, its derivative has two eigenvalues of
+1, so it is the identity map.

A similar argument shows that X, can only have a single action fixing
the configurations . and 7 . Consider, for example, (12) (X, being
generated by transpositions). The same logic shows it leaves ¢, invariant
and ¢, invariant, fixing 7, N¢,, t,NS;, £,NS,, and interchanging t, NS,
and ¢, NS,, so that on the tangent space to ¢, N¢, it has an eigenvalue of
—1 in the direction tangent to ¢, and +1 in the direction tangent to ¢,,
thereby determining it completely. q.e.d.

Theorem 3.12. Let X 1? (6) consist of :Y—b(é) with the 36 sections re-
moved. Then

Y,,2V=3)=X,(6), Y, (2V=3)=X,(6).

Proof. First we prove that X£(6) is a ball quotient; for this it suffices
to show the proportionality

T1(X,(6), A) = 32,(X,,(6), A)
of the logarithmic Chern numbers, where A is the union of the 36 sections.
But

5,(X,(6), 8) = ¢,(X,(6)) - A,
SO

TH(X,(6), &) = A(X,(6)) — 2¢,(X,(6)) - A+ A’

=0+2-6-36+36(—6)=3-72,

and
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(8) 5)(%,(6). 8) = ¢,(X,(6)) = 72,

as claimed.

Now, since we have a covering map X 1? (6) — X g (2) sending cusps to
cusps (i.e., sections to sections), the fundamental group 7, (X, g (6)), which
by the above is a lattice in PU(2, 1), actually is a (normal) sublattice of
I, with quotient = G,,, = PU(2, 1;F,). Let T, = ,(X,(6)) . We have
exact sequences

I*F?ﬂrx — Gy 1

[ [
1 5 Tp(2V=3) 5Ty —— Gy — 1

and the reader will agree that ¢,(I',) must be equal to ¢(I(2v-3)).
However, we know of no general result which would guarantee this, so we
will have to work hard to identify the two.

Lemma 3.13. Let P, C I, be a parabolic (stabilizer of a cusp), P C
I',(2V=3) a parabolic. Then ¢,(P,) and ¢(P) are conjugate.

Proof. We know that X ,? (6) is an open ball quotient which is com-
pactified by adding the sections; these are all copies of E - We want to
conclude something on the structure of P, from this. Let D, be the
(2— dimensional) domain considered in §2.3, a Cayley transform of B, :

D, = {(u, v)|Im(x) — (V3/2)]v|* > 0}.
Then the parabolic in Uj(2, 1) of the cusp oo = (1, 0, 0) has the form

1 0 X
P_= { (\/—_33 1 y+(\/—_3/2)|x12) lxeC,yGR}.
0 0 1

Let I' C P_ be any lattice in P_. I’ acts on C* x C, as follows.
The elements x are contained in a lattice A, and C/A_ is the com-
pactifying elliptic curve. The elements y are contained in a lattice of R,
generated by some number, ¢ say, ¢ € R. Then C* x C/T', is just the
normal bundle of C/A_ in the ball quotient; the self-intersection num-
ber of the elliptic curve T = C/A_ in the ball quotient is given by the
formula (see [6, 1.1.2.2]):

(T)* = -21A /4,

where |A_ | denotes the volume of a fundamental domain of A . Hence
we see: two parabolics (lattices) in Uj(2, 1) are isomorphic, if
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(a) the elliptic curves are the same (the A__’s coincide), and

(b) the self-intersection numbers are the same (the g ’s coincide also).
Applying this in our situation, (a) is clear (since E = C/&y , which is the
compactifying curve for l"K(2\/_—_3)) , and for (b), both on X, (6) as well
as on Ym(2\/—_3) the self-intersection number is —6. This proves that
P, and P are isomorphic as abstract groups, hence conjugate in 'y, i.e.,
0,(Py)) = yogo(P)(po_' for some y, €'y . q.ed.

We shall simply assume 7y, is the identity. Otherwise our final conclu-
sion would be that

#,(Ty) = 70 (T (2V=3)), 5
but since these are normal subgroups, we have that they are equal if and
only if they are conjugate.

Before we can proceed we need the following auxiliary result.

Lemma 3.14. (i) Two cusps ¢, and c, of B, are equivalent under T,
if and only if they are equivalent under the normalizer of B in T,, B the
unique B, with c, and c, in its closure.

(ii) Two subballs B, and B, of B, with the same cusp c in their closures
are equivalent in T, if and only if they are equivalent under P,(c) =normal-
izerof ¢ in T,.

Proof. (i) First fix for the rest of this proof representatives for the I',-
cusps and modular curves. Suppose that ¢, and c, are both contained in
one of the representative modular curves. Then (i) follows “by inspection”,
since we know that the 12 classes of cusps in this B, are 12 of the 36 I,
cusps. Now (i) follows in general, as the property “equivalence of cusps
ina B, ” is preserved under equivalence of B, ’s under T, .

(ii) Suppose B, and B, are equivalent, i.e., 3y € ', with yB, = B,.
Let ¢ be the common cusp of B, and B,. Then y(c) € B, and is
equivalent to ¢, hence by (i) 36 € N(B,) with dy(c) = c. It follows that
dy(c) = ¢, and Jy(Bl) = B,, in other words B, is equivalent to B, by
0y € P(c). q.e.d.

Geometrically we have the cusp oo in D, and a finite number of mod-
ular subvarieties (curves of the form I'\B,) which meet at this cusp. From
Lemma 2.3 we see that the components of the singular fibres of X, (6) are
curves which are quotients (I'(2v/-3)\B,)", whose cusps are the inter-
sections with the sections. Since X,(6) has 12 singular fibres, there are
12 of these curves meeting at a given cusp. Let Nl? ey Nl?2 denote their
stabilizers in I,. In T'y(2v/=3) we also have 12 such modular curves
and stabilizers N, --- , N;, C I'y(2v/=3). (This can be seen as follows:
on Y, (1) there is a unique modular curve; on Y, (v/=3) three such meet
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at a cusp. Consider Y, (2v/-3) — Y, (v=3); then the 12 modular curves
are the inverse images of those 3). Furthermore, the part of N,.? and N,
acting effectively is just the lattice PU(1, 1; 2v/=3&), hence N;" = N,
as groups.

Lemma 3.15. ¢,(N)=¢(N,), i=1,---, 12.

Proof. Since the groups are pairwise isomorphic, the question is wheth-
er we can simultaneously identify their images under ¢, and ¢ respec-
tively. But note that this will follow if we can identify the 12 copies of
cp(B,) meeting at the cusp oo in D, , each being (a subgroup of finite
index of) the stabilizer of the same object in the same group I', . Each
one of these c(B,)’s is a linear section of D, hence is determined by
its tangent direction at the cusp. This tangent direction at the cusp is de-
termined by the intersection of the curve with the compactifying curve,
which is F ) Hence the lemma follows from the fact that the 12 points of
intersection on E, (on Y, (2v/-3)) are just the 2- and 3-division points,
which are (on X,(6)) the base points for the singular fibres.

Lemma 3.16. T', is generated by P, and Ni?, i=1,---,12.

Proof. Let y €T,. Then y(cc) = c, some (other) cusp. If ¢ = oo, we
are done, as y € P,. Otherwise let B be the unique subball containing
oo and c¢ in its closure. Then by (i) of Lemma 3.14, there is a ' € N(B)
with 7'(c0) = ¢. Thus y 'y’ € P,. However, B is equivalent to some
(B,); (as these are representatives under T, of subballs), and both B and
(B,); have oo in their closures. Therefore

N(B) =7"N((B))") " =7" )",
But by (ii) of 3.14 we may choose 7" € P,,so N(B) C subgroup generated
by P, and N’ hence 7' € this subgroup, and since ™'y’ € P,, y € this
subgroup as well.

Corollary 3.17.  ¢,(T,) = (T, (2v-3)).

Proof. This follows from the last three lemmas. q.e.d.

This corollary also completes the proof of the theorem. gq.e.d.

Corollary 3.18 (of the Theorem). Y, (2) =X ,(3).

Proof As in the last section, Y, (2) = £,\Y,(2V-3), X,(3) =
24\7b(6) , and we need only check that the actions agree. The argument
here is similar to (though more elaborate than) the argument in Corollary
3.11, and so we omit it. q.e.d.

We gather here, for convenience, this last family of Janus-like surfaces.
Each are at the same time compactified quotients of B, and C xS, . Note
that the first of these is properly elliptic, while the others are rational, and
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the first three are nonsingular, while the last has singularities described in
[6, 1.3.6]. _ .
Theorem 3.19. (i) Y, (2v-3) = X,(6).

(i) 7,,(2) = X,(3).
(iii) ¥,,(vV=3)=X,(2)
(iv) ¥,(1)=X,(1).

3.3. Threefolds.

3.3.1. Picard case. We consider first the minimal compactification of
I'y(n)\B, . Since all boundary components are 0-dimensional, it follows
that I';.(n)\B, is compactified by adding a finite number of points (cusps).
If T'y(n) acts freely on B,, then these cusps are the only singularities of
(l"K(n)\]B3)* . To affect a desingularization we apply the theory of toroidal
embeddings. The decomposition of a parabolic as elaborated in [16]:

N(F)=(G,-G,-M)-V-U
has in this case the form (see [17, III, §4])

G,={0}, M=SUQ)xU(l), G,=R', U=R, V=cC.
Hence there is no choice of polyhedral decomposition, and the compact-
ification divisor is just V/I'), = c? /A, where T', is a lattice induced by
I'y(n)NN(F). To see what this lattice is, one writes down the parabolic as
described (in the surface case) in the last section; here it looks as follows
(see [20, 1.21)):

* 0 0 X,
0 * 0 X
P, = 2 e U(1) ,
2= | v3%, V3R, ya v || EYW
0 0 0 *
2
xeC,yeRy,

Pe={rePrcUN)NK,xecK*,yeq},
2
T)p NPy =F;, ={rePlxeU)NK,x €O, y€cl}
From this one sees easily that the compactification divisors are just prod-
ucts of those obtained in the case of surfaces, with normal bundle being

pI‘N ® 1)’2k N, where p; is the projection onto a factor, and N is the normal
bundle in the surface case. Explicitly we have
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Lemma 3.20. The compactification divisors for T'(n) are

(i) n=2v-3: E,xE,.

(i) n=2: P' x P' with four points marked on each copy.

(iii) n=+v=3:P' x P' with three points marked on each copy.

(iv) n=1: P' x P' with one point marked on each copy.

This also explains the notation Yb(n) of §3.2.2 for these surfaces—the
boundary components of Y (n).

3.3.2. Siegel case. We now turn to the Satake compactifications of
I'(N)\S, . As these are well known, we will be brief (see [24], [12] for de-
tails). The 1-dimensional boundary components are quotients I'(N)\S, ,
which are compactified by adding the cusps, which in our situation are
the O-dimensional boundary components of I'(N)\S,. The number of 1-
dimensional (=number of 0-dimensional) boundary components is listed
in Lemma 2.9. Obviously several 1-dimensional components must meet
at each O-dimensional one; since the subgroups I'(N) are normal, the
situation at each O-dimensional cusp is the same (at each level). Let
v(N) denote the number of cusps of I'(N)\S,, u;(N) the number of
i-dimensional cusps of I'(N)\S,, and #(N) the number of 1-dimensional
components meeting at each 0-dimensional cusp. Then

AL ), ) = (),
hence v(N) =t(N). We have v(2) =3, v(3) =4, and v(6) =12, and
of course u(N) is just the number x,(N) of Lemma 2.9.

We now turn to the smooth compactifications of I'(N)\S,. We will
be brief, and for details strongly recommend [7]. Let us start with the
parabolic of a 1-dimensional boundary component. In this case the de-
composition of N(F) is as follows:

N(F)=(G,-G,-M)-U-V,
G =Sp(2,R), G,=GL(l,R), M={1}, V=C, U=R

An element A4 of our parabolic P, factors as

a 0 b O\ /1 00 O
01 00)]lO0O«oO0 O
PsA=1.9040|loo0o1 o
000 1/\0 0O 1/u
1 000 1 00 n
01 0 r m 1 n O
“lo o1 0 0 01 -m]’
0001 0 00 1
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and G, acting on U defines the cone R" . The intersection I'(N )N P is
the corresponding integral group (= 1(N)), and according to the general
theory G, acts on the boundary component, while the “rest” acts on Ug x
V 2CxC. First U, acts on U, yielding C" x C; then the lattice part
of ¥, acts on C as z — mz + n. This combines with the action of
I'(N)NG, cSp(2, Z) on C' = S, toyield a quotient of S, x C, which of
course is just an elliptic (respectively Kummer) modular surface described
in Lemmas 3.5-3.6. This also explains the notation X,(N) used there for

this surface—the boundary components of X(N). This surface is then
glued into the open quotient as the divisor z = 0, z € C, C = (C"),
C' = U./Uy.

To complete the compactification one must consider the 0-dimensional
boundary components and the corresponding parabolics, whose decompo-
sition simplifies to:

G,=GL(2,R), U=R’,

P, = {(g ,guq)‘g € GL(2,R), u symmetric}.

In this case U, = c, Uc/Uy = (C*)* and the compactification is effected
by locally adding the coordinate axes of ((C*)3 and dividing out by I'(N)N
G,. The result is a union of curves (in fact P! ’s) meeting three at a
time at a number of points. The intersection diagram is the incidence
diagram of the polyhedral cone decomposition in the cone of symmetric,
positive definite matrices (= U C R3). Altogether one has (['(N)\S,) —
(T(N)\S,)" with the following: ,

(a) The compactification locus on each of these varieties has u, (N)
irreducible components, on each of which the map is the projection of an
elliptic, for N > 3 (respectively, Kummer, for N = 2), modular surface
onto its base.

(b) Each component of I'(N)\S, has v(N) singular fibres of type I,
lying over the cusps of (I'(N )\Sl)* (respectively three singular fibres for
N = 2), yielding the configuration of curves described in Lemma 3.6.

(c) Two such divisors meet along irreducible components of the I,
fibres; three meet at a double point of any one of the I,-fibres (and anal-
ogous statements hold for N =2).

3.3.3. Normal crossings divisors on threefolds. Recall now that we also
have in addition to the boundary components the 10 copies of the modular
subvariety I'(2)\S, xI'(2)\S,; on X(2), and hence 10 copies of (F(2)\Sl)*
x (T)\S,)" = P' x P' on X(2). We now describe the mutual inter-
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sections. Each cusp on each copy of I'(2)\S, determines one of the
cusps of I'(2) on S,: (cusp on S,) = {cusps of I'(2) on S,} x§,, and
since I'(2) has three cusps, it follows that on each ruling of P! x P! we
have three fibres which are intersections with the compactification divi-
sors _Xb(Z). These intersections on the divisor X,(2) are sections of
the Kummer fibering over P'. Hence each copy of Yb(2) meets six
other /_Y_b(2) ’s (along the three singular fibres) and four copies of the
X,,(2). Let 2(2) = U;2(X,(2); uU;2,(X,,(2)); be the normal cross-
ings divisor consisting of the union of the compactification divisors and
the modular subvarieties, and let I P02) be the dual graph. Similarly, let
&(W=3)=U2,(¥,,(vV=3));UU;2,(Y,(V=3), be the corresponding divi-
sor on Y(v/—=3) and Fg( V3 the corresponding graph. Then inspections
of the intersections as above yields

Lemma 3.21. The graphs Fg(z) and Fg( v=3) are isomorphic.

Corollary 3.22. The normal crossings divisors ' (2) and &(v/-3) are
isomorphic.

Proof. From Corollary 3.4 and the discussion of §3.1 we know that the
components of Z(2) and &(v/—3) are isomorphic; from the lemma we
know that the combinatorics of the intersections are the same. It remains
to show that the intersection curves are really the same on each copy. But
this is clear from our discussions of the surfaces in §3.2: on the Yb(Z)
the curves are either singular fibres or sections; on the _)Tm(2) we have the
curves of the form {cusp} x P' or P' x {cusp}, where “cusp” refers to
one of the three I'(2) cuspson §,. g.e.d.

We define also the followmg divisors:

2(3) = U2, (X,(3),uUL, (X <3

2(6) = u6°°< X,(6)); u9°°<

&(2) =UL,(Y,,2); uU}“,( ( ))
g(Z\/— UGOO 2\/—) U9OO(Y 2\/——)
We then have
Corollary 3.23. (1) Z(3) and &(2) are isomorphic.
(2) 2(6) and &(2v/-3) are isomorphic.
Proof. This follows immediately from the above.

4. The theorem
Theorem 4.1. We have the following diagram of modular varieties
X(N), Y(n):
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— .
X Y(3
\(\“‘) Y (3)
RN x> . AN
N . 7 N
. > X(36)— X(6) — n = v — Y(2vV=3) « Y(12) « ...
N N/

N X0 e Y v
/ SN
X(9) Y(4)

/ N

with isomorphisms as indicated, plus the fibre product isomorphism X (6)
2Y2V=3).

Proof. X(2) - Y(V-3):

From Corollary 2.7 we know that X(2) and Y(v/—3) have isomorphic
open subsets. This Zariski open set corresponds to hyperelliptic (respec-
tively Picard) curves

V=[lx-¢) ' =[x-¢&)

such that all &, are distinct. From the remark following 2.7 in the hy-
perelliptic case this is the complement of the union of modular subvari-
eties. Letting 2° c X(2) denote this Zariski open subset, we thus have
X(2)-2(2) = 7 . From Corollary 2.3 we see that the Zariski open subset
on Y(v/=3) is the complement of the modular subvarieties; hence, denot-
ing this set again by 7", we have Y (v/—-3)—&(v/=3) = 7". On the other
hand, by 3.2.2, Z(2) = &(v/-3). Therefore, to show that the isomor-
phism of 7 (onto itself) extends to each compactification, it is enough to
show it extends to a homeomorphism of the compact varieties. Since the
isomorphisms are given explicitly by the “coordinates” ¢;, the question is
how this correspondence looks at Z'(2) and &(v/—3). These maps are
explicitly described in §5.3 below, from which continuity follows.

X(1) — Y(1): These are the quotients of X(2) and Y(v/-3) by
PSp(4,Z/2) and PU(3, 1;F,) respectively, and both of these groups
are, by Proposition 2.8, isomorphic to X.. These groups preserve the
configurations Z(2) and &(v/—3) used above. There is an indexing un-
der which the 15 boundary components X,(2) (respectively the 15 mod-
ular components ?m(Z)) correspond to unordered pairs of elements of
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123,456

135,246
13

46

125,346 136,245

146,235 134,256

FIGURE 6. CONFIGURATION IN X (2)

{1,---, 6}, and under which the 10 modular divisors Ym(Z) (respec-
tively the 10 boundary components /_Y'b(Z)) correspond to unordered pairs
of unordered triples of elements of {1, ---, 6}, and X, operates as the
permutations of {1, ---, 6} [10]. Again, we need to show that X, has
only possible action preserving the configurations 2 (2) and &(v/-3),
and again it suffices to check the action of a generator on the tangent
space to a fixed point (cf. proof of Corollary 3.11).

One has the following configuration in X(2) ([10], Fig. 2, reindexed to
accord with [13]) as shown in Figure 6. In this configuration each straight
line represents a P! which is the intersection of two boundary components,
and each half of each curved line is a P' which is part of the intersection
of a modular divisor with the boundary. The dots (solid or open) denote
triple points.

The point p in the center of the diagram is indexed by the unordered
triple of unordered pairs {{1, 3}, {2, 5}, {4, 6}}, and there are 15 such
pointsin X(2) = Y(v=3). The action of X is given by its natural permu-
tation representationon 1, --- , 6. Thus the image of p under an element
of X, is determined. It remains to check the action of the subgroup of
X, which stabilizes p on the tangent space at p. Now consider the ac-
tion of the element (25). It leaves each solid point fixed and interchanges
the two open points, thereby determining its action at the tangent space
to the point in the center of the diagram (eigenvalue +1 with eigenspace
spanned by the tangents along the two diagonal P! ’s, eigenvalue —1 with
eigenspace spanned by the tangent along the vertical ]P‘l) . The action of
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the other elements of the stabilizer may be checked similarly.
X(6) - Y(2 \/_ 3): We prove this using the same method as in Theo-
rem 3.12, where we proved X, (6) = Y (2v/=3). First let x° (6) be X(6)
with the surfaces Ym(G) removed (the translatcs of the diagonal).
Lemmad4.2. X 0(6) is a ball quotient.
Proof. Here we must prove the equality

3¢,(X(6), A) = 82,5,(X(6), A)

for the logarithmic Chern numbers, where A = |J X, (6) . Since the abelian
surfaces _)?m(6) are disjoint, one sees easily (using adjunction):

¢, (X(6),4) = ¢,(X(6) A,  T,(X(6), A) = c,(X(6)).

Furthermore, applying adjunction to each component X, (6) of A yields

2

¢,(X(8)) - X,,(6) = ¢,(X,,(6)) + (X,,(6))" = (X,,(6))",

so ¢,(X(6))-A= A”. Hence for the numbers we have

c = cI 3(X(6)) - 3cl( (6)) - A+ 3¢,(X(6)) - A" — A
= ¢} (X(8)) -
0, (X(6), 4) = c,cz(m),
so the equality to be shown is
362 (X(6)) — 8¢,¢,(X(6)) = 3(A)’.

All intersection numbers involved can be taken from Yamazaki’s paper.
Let X(N) be the Igusa desingularisation of the Siegel 3-fold of level N.
Then

N T -p 7)1 =p7%

(X)) = T [-9N> + 360N — 880],
N 1-pHa-p*
¢, 6(X(N)) = H”'N(24 ;)_ 5)( P )[—N3 + 30N — 60],
NlO -2 1 — —4
(A)3 Hp|N 26 22 )( D ).

Substituting N = 6 into the above we get
3(—119520) — 8(—69120) = 3 - 64800,

which checks. This proves the lemma. q.e.d.
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Now since we know that X 0(6) is a ball quotient (compactified by
adding the abelian surfaces TY_m(6)) , let T, be the lattice in PU(3, 1)
such that X0(6) = IL\B,; from the cover X°(6) — X0(2) we see that
I, c PU(3, 1; V=30). It is a normal subgroup with quotient Gys. 920>
and again we strongly suspect I', = PU(3, 1; 2v/=3&). To prove this,
we start as in §3.2.2 with a parabolic. Let P, denote the parabolic in
I, for a cusp, and P c PU(3, 1;2v/-30}) the parabolic of a cusp (all
parabolics are isomorphic since T',, I';(2v/=3) are normal subgroups).
We have the following exact sequences:

@
1 » T, — Iy - G25,920

I I
I — T2V-3) & g — Gy590 — 1

Lemmad3. P,=P, ¢,(P)=¢(P).
Proof. A parabolic in PU ;(3, 1) looks as follows:

— 1

1 0 0 x1
P_ = 0 : 0 |x,eC,yeR
©= V| v33x, v3x, 1 y+ (/= /2 x| Y
0 0 0

As in the surface case, P._ NI acts on C* x C? by dividing c? by the
lattice generated by x,, x, and acts on C* (normal direction) by a lattice
with generator some g € R. One sees clearly that the quotient of c?
is a product, c? /A = C/O x C/O , and that its normal bundle N —
C/O xC|F, is N=p/N,®p,N,, where p, are the projections and N,
are the bundles over C/& which are the normal bundles in the surface
case. Furthermore, these two data suffice to determine the parabolic, and
since both are checked in §3.2.2 (here being just the product situation),
the lemma follows. q.e.d.
Next, consider a fixed cusp oo with compactifying surface

S, 2Y,(2V-3) = E,xE,

There are 24 subvarieties B, = Y, (2v/=3) of Y(2v/-3) whose closures
intersect S_, each along a curve of the form {p;} x E, or E, x {g;},
i=1,---,12, where the p, and g, are the 12 points of order 2 and
3 used in §3.2.2, on the first and second copies of E ) in §_. Each B,
is uniformized by a subball B, C B, which passes through oco. Such a
B, is a linear section of B, , hence is determined by its tangent directions
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at oo, or by its intersection with S_ . Let N(B;), i =1,---, 24, be
the stabilizers of the B;, N(B,) c PU(3, 1;2v-36), (N,); C T, the
corresponding stabilizers in T, .

Lemma 44. ¢(N(B)) = p,((N,),), i=1,---,24.

Proof. As in the surface case this will follow if we can verify that the
24 subballs B, C B, are the same: the argument of Lemma 3.15 carries
over here with no change (note that Lemma 3.14 is valid here also (with
obvious modifications for the change in dimension), with identical proof).
To show that the 24 subballs are the same, it is sufficient to note that the
divisors on S_ are the same in both cases. q.e.d.

Finally, we have here as in the surface case

Lemma 4.5. ¢,(I,) is generated by ¢,(P,) and ¢,((N,),).

The argument is completely analogous to 3.16 and we therefore omit
it. q.e.d.

From the last three lemmas we get ¢,(I’,) = ¢(I';(2v/=3)) from which

the claim X(6) — Y (2v/=3) follows.

X(3) - Y(2): This follows from X(6) — Y(2v-3), X acting on
both spaces in a natural way, as soon as we have identified both group
actions. This is done as above by computing eigenvalues at fixed points,
hence we omit the explicit verification.

Remark. Bert v. Geemen has found a direct proof of this last case, on
Zariski open subsets, by showing that the data used to fix a level 3 structure
on a genus 2 curve corresponds bijectively to the data used to fix a set of
level 2 structures on a genus 4 Picard curve. This rather vague statement
is difficult to make precise without going into details, so we just refer to
the paper by van Geemen [22] mentioned in the introduction.

Corollary 4.6. Consider the isomorphisms X(N) = Y (n). Under each

such the boundary components of X(N) are mapped to the modular subva-

rieties of Y (n), and the modular subvarieties of X(N) are mapped to the

boundary components of Y (n) .

Remark. The really interesting isomorphism of the theorem is X (6) —
Y(2v/=3). This is because in both cases the lattices act freely, hence
the open quotients X (6) and Y (2v/—=3) fulfill logarithmic proportionality
with ¢./¢;¢; = 9/4 for X(6) and = 8/3 for Y(2v=3).

5. A remarkable duality

Corollary 4.6 shows that the isomorphisms of Theorem 4.1 actually
have more structure than just isomorphisms: there is obviously a duality
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of some sort involved, between boundary components and modular subva-
rieties, or as mentioned in the introduction, projective duality. Probably
the most prominent expression of this duality is the duality between Tits
buildings with scaffoldings, discussed in §2. Here we sketch three other
aspects.

5.1. Modular forms.

For a lattice I' and domain & asin §2, let R, (I') denote the ring of I

modular forms of weight k (belonging to the representation (ade)®k) 2.
It is well known that the Baily-Borel embedding of I'\Z" is given by
Proj(@, R, (I)) , hence the coordinate ring of I'\Z™ in the sense of al-
gebraic geometry is @, R, (I"). Consider the dual variety of I'\Z", and
let @, D, be its coordinate ring. Then we say @, R (I') and @, D,
are projectively dual rings. Thus 4.1 and the discussion of the varieties %
and & in the introduction imply

Proposition 5.1. For the following levels, the rings of modular forms for
T(N) are projectively dual to the ring of modular forms for T (n): n = V=3
and N=2; n=2 and N =3.

Question 5.2. Is the same true for n =2v/-3 and N =67

From a somewhat different point of view, a modular form on T\Z is
a section of the line bundle Qm(log)m , where the logarithmic poles are

along the divisor I'Z — (I'\Y) . So from the above proposition we have:
Proposition 5.3. The following rings are projectively dual:

P H (XN, Qpzy(log)™). GBH Qprr(lon)™),
k

with N, n asin 5.1.

Let us consider now cusp forms, i.e., modular forms of weight k£ vanish-
ing along the compactification divisors. Hence these are sections of the line
bundle Qﬁg(log)g’k ' Qr\_.@ In particular, cusp forms of weight 1 are
just sections of the canonical bundle. For N =2, 3; n= /-3, 2 there
are none such, but for N = 6 the number has been calculated by Weis-
sauer, the result being 2906. Note that in this case there is no distinction
between the Picard and Siegel modular cases. Therefore the calculation
being done for I'(6), we get for free the number of cusp forms of weight
1 for I'y(2v/=3): itis 2906. In fact, as a consequence of 4.1 we can state

2 This is perhaps not the usual notion of weight, namely the power of det which occurs
. . Qk
in the representation (ad)” .
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Proposition 5.4. The following C-vector spaces are isomorphic:

{ cusp forms of T(6) } ~ { cusp forms of T (2v/=3)) }
of weight 1 - of weight 1 ’

5.2. Metrics.

Consider a bounded symmetric domain & with its Bergmann metric.
For a lattice I' acting freely on &, this metric, being Gp-invariant and
in particular I'-invariant, descends to the quotient I'\Z to give a metric
there. By Mumford’s extension of the proportionality principle to the non-
compact case, this metric extends to a metric on F—\g with logarithmic
singularities along the compactification divisor. To apply this we stick with
X (6) = Y(2v/=3), since as mentioned above, both groups act freely in this
case. Let us call this variety X ; then we have two natural Bergmann met-
rics, each with logarithmic singularities along one of the compactification
divisors. Now note also that the modular subvarieties have a geometric
interpretation in terms of the Bergmann metrics. In fact, the subdomains
S, xS, CS, and B, C B, are fotally geodesic submanifolds with respect
to the Bergmann metrics on S, and B,. Furthermore, although there are
positive dimensional families of such totally geodesic submanifolds on the
universal covers S, and B,, there are finitely many such which have the
following property: they are invariant under the lattice, so yield totally
geodesic submanifolds on the quotients, and are such that they contain
(a maximal number of) boundary components. We call such subvarieties
parabolic totally geodesic. Since the intersection of two totally geodesic
submanifolds is again totally geodesic, we see that the union of these de-
fines a finite complex, which is easily seen to be the scaffolding as defined
in §2.4. Also the locus of logarithmic singularities is a normal crossings
divisor; hence we have on the quotients two normal crossings divisors.
The conclusion is

Proposition 5.5. Let g, and g, be the Bergmann metrics, extended to
Z,. &, on X. Then these two metrics are dual, that is

locus of logarithmic | _, [ locus of parabolic totally geodesic
singularities of g, | ~ submanifolds of g, ’

where the isomorphism is of divisors. The same is true for g,, g .

5.3. Moduli.

We give here a table of all degenerations occuring in our families of
curves of genus 4 and genus 2 respectively; here the degeneration does not
see the level structure—the degenerations are independent of the level.
Hence we assume N =2, n =+/—3. We employ the following notation,
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the equations (3) and (4) from §2.3 defining the curves:

D; = divisors X ,(2)

=Y, (V-3): two of the £, coincide, i=1,---, 15
D, ;= D,NnD I two pairs of the £, coincide
D, = D;n Dj NnD,: three pairs of the £, coincide
E, = divisors X, (2)

=Y, (V-3): three of the £, coincide, t=1,---, 10
E,=D,NE,: one pair and one triple of the £,

coincide

E, ;= D;;NE: two triples of the ¢, coincide

The reader should have no difficulty verifying these degenerations. To
complete the proof of our main theorem, we use the fact that the depen-
dency on the parameters &, is continuous. As an example we describe
this on the generic singular locus, i.e., along D, and E,.

Picard case.

D, : If one pair of the ¢, coincide, we have a 3-fold cover, branched
at five points, one of them double. Without restricting generality, we can
assume one of the points (say the double zero) is at oo . The resulting cover
splits into two components, one of them a smooth genus 3 curve (Z,-
trigonal) and the other an elliptic curve. Note that the Jacobian of this
curve still has complex multiplication, and, in addition, both the genus
3 and the elliptic curve have an extra automorphism. This means, in
particular, that the elliptic component is the curve E ) with no variation
in the family. More generally, one easily sees that all the elliptic curves in
the degenerations corresponding to the divisors D; (i.e., occurring in the
second to fifth rows in Table 1) are this particular elliptic curve.

E, : Here the cover splits into two curves of genus 1, but the automor-
phism is lost, i.e., one just has an endomorphism. The parameter (moduli)
of the elliptic curve is given by the double ratio of the four branch points.

Siegel case.

D, : If two of the ¢, coincide, then we have a double cover with five
branch points; this is a genus 1 curve with one double point. Since D, is
the Kummer modular surface, its points can be given coordinates (z, w)
with z € T(2)\S,, w € E,/Z; = P'. Then z is the moduli point of the
elliptic curve, and w gives the double point.
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TABLE 1
Locus branch points on P! genus 4 curve genus 2 curve
generic | YO HXXX-
Ir1ri1TT1 g=4 g=2

—

p A—X——H
' = 5 Jl\_/

tij

=
=
o

E,: When three of the ¢, coincide, the curve is y2 = Hi(x -¢.),an
elliptic curve. More precisely, let

6
=Tl -¢&)
kzl

be the original equation, and write it as

V= (6= &) = &) (x — &) (x — E,)(x — M) (x = &),

and the degeneration is then given by letting A — oo. The limit curve is

thus y2 = ]'ﬁ (x—¢&,), with a fourth branch point at infinity, and changing
variables to X := Ax we get

VY= (= 1) (- A (% = 38)(% — &) &) ~ &),

which for 4 — co becomes y* = nj(x —¢&,), with fourth branch point at
infinity. Therefore, over ¢ € E, the corresponding degeneration consists
of the two elliptic curves above, meeting at their common branch point.
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