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Introduction

A generic manifold M is a real submanifold of the complex space C

which is locally the generic intersection of real hypersurfaces. An analytic

disc attached to M is an analytic mapping A from the unit disc in C

into CN, continuous up to the boundary, mapping the unit circle Sι into

M . We shall say that A passes through a point p0 e M if A{\) =

p0. Analytic discs have been extensively used by many mathematicians

since the work of Lewy [14] and Bishop [6], and play a central role in

questions of holomorphic extendibility and propagation of analyticity for

Cauchy-Riemann (CR) functions defined on M. In this paper we study

the geometry of the set of all small analytic discs attached to M through

p0 whose derivatives are Holder continuous up to the boundary.

Using elementary Banach space techniques, including the implicit func-

tion theorem, we prove (see §2) that, for poe M, the set of discs defined

as above forms an infinite-dimensional submanifold $/ (M) of the Ba-

nach space of all discs valued in C^ . We also give a parametrization of

s/p (M) as well as an explicit description of its tangent space at each disc

in the manifold stfp (M). In particular, this allows us to construct families

of discs near a given small disc without use of the Bishop equation [6].

For any A e sfp (M), we consider (see §3) the analytic discs attached

to Σ(Λf), the conormal bundle of M, with base projection equal to the

given disc A. Then, for ζ e Sι, we introduce the defect of A at ζ as the

dimension of the subspace spanned by these discs in the fiber ΣA^(M).

In fact, this defect is independent of ζ if A is sufficiently small. For

small discs the notion of defect given here coincides with that introduced

by Tumanov [20], but ours is expressed in a geometric context and, in

particular, is invariant and independent of the choice of coordinates.
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Our approach (see Theorem 1 in §4) yields some variations and new
proofs of the main result of Tumanov [20] relating the rank of the eval-
uation map, A v-+ A(ζ0) from«#^ (M) into M, to the defect of A. In
Theorem 1 (ii) we also obtain new results for the image and the rank of the
derivative map A \-+ dA(eιθ)/dθ\θ=Q. For later applications, we extend
the results of Theorem 1 to the case where M is only assumed to be a CR
submanifold of C^, not necessarily generic. (See Theorem l' in §6.)

In §5, we describe the image of the mapping A >-> dA(eιθ)/dθ for any
real θ (see Theorem 2). As a corollary, we show that if the defect of a disc
A G s/p (M) is equal to the codimension of M in CN

 9 then its derivative,

dA(eιθ)/dθ lies in T°M, the complex bundle of M. We also show in
this section (Theorem 4) that if A is of defect 0 and dA(eιθ)/dθ\θ=Q is in
T°p M, then every CR function on M extends to a full neighborhood of
p0 in M. In §5 we also generalize the notion of minimal convexity that
was introduced in [3] in the case of a hypersurface. We prove that if M
is minimally convex at pQ and A is a small disc attached to M through
p0, then dA(eιθ)/dθ\θ=0 does not lie in the complex bundle unless A is
of maximal possible defect (Theorem 3). We conclude §5 by showing that
for a homogeneous hypersurface of finite type in C2 all nonconstant discs
are of defect 0 (Corollary (5.9)).

In §7 we give applications of the previous sections to holomorphic exten-
sion of CR functions on hypersurfaces as well as propagation of analyticity.
Theorem 6 states that if A e Ap^{M) and dA(eiθ)/dθ\θ=0 e T°pM, but

dA(eιθ)/dθ\θ=θ £ T^(eiθ0)M for some 0O, then any holomorphic func-
tion on one side of M near p0 extends to the other side. In Theorem7 we
prove a new propagation result, namely that the boundary of an analytic
disc propagates one-sided holomorphic extendibility. This in particular
implies the propagation result of Hanges and Treves [11] and its general-
ization (in the context of hypersurfaces) by one of the authors [19], who
used microlocal analysis for its proof. It should be noted that Tumanov
[21] has recently given propagation results related to those of Theorem
7. Finally, Theorem 8 gives a completely different proof of a propagation
result along a minimal CR submanifold, previously obtained by one of
the authors [19] by more complicated microlocal analysis arguments from
[18].

As mentioned above, analytic discs and the use of the Bishop equation
have appeared in many contexts. We mention here only a few: Hill and
Taiani [12], Boggess and Polking [8] (see also Boggess [7]), Bedford and
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Gaveau [5], and Trepreau [17]. It should also be noted that the use of the
conormal bundle as a submanifold of a complex manifold appeared first
in Sato-Kawai-Kashiwara [15] and, in the context of generic manifolds, in
Webster [22], Lempert [13], Sjostrand [16], [18], and others.

1. Generic manifolds and their complex and characteristic bundles

Let M be a smooth generic manifold in C^ of real dimension 2N-1,

given locally near p0 by p(Z) = 0, p = (pχ, ••• , pt), where the p.

are smooth, real-valued functions vanishing at pQ and dpx Λ Λ dρι Φ

0. We have used the notation df = Σ%t[(df/9Zj)dZj. Here p will

be considered as an / x 1 matrix. Note that if p is another matrix of

defining functions for M, then we have p = ap, where a is an invertible

I x I matrix of real-valued smooth functions. For Z eCN we shall write

Z = (Zj, , ZN). We denote by TCN the real tangent bundle of C * ,

and by TM the real tangent bundle of M. Also, we denote by T°M the

complex bundle of M, i.e., the real subbundle of TM invariant under J,

the complex involution of C^. Then for p e M near pQ, we have

TpM = {Xe TpC
N: (dPj(p)9X) = 2Re(dPj(p), X) = 0,

( i . i ) ; = i , , / } ,

T*pM = {X eTpC
N: (dPj(p), X) = 0, ; = 1 , . . ,/} .

Let CT*CN be the complexified cotangent bundle of C^ . For Z e CN,

a covector a in CT^CN can be written in the form

N

(1.2) a = £ λj dZj + βj dZj, λj, βj € C

We denote by Λ 1 ' 0 ^ the subbundle of CT*CN consisting of covectors of

the form (1.2) with μ., = 0, j = 1, ,N. The bundle Λ1 ̂ C ^ is then

a complex manifold which may be identified with C2N by the coordinates

We identify Λ 1 0 c " with T*CN ,_the real cotangent bundle of C*.

as follows. For θ = Σ, cj dZ< + Cj dZ e T^CN, we associate the cov-

ector a = HΣjCjdZj G Λ ! , > 0 C " , SO that (θ, X) = lm(a, X) for all

X e TZC
N. Under this identification, the conormal bundle Σ(M) of a

submanifold M in C" is then given by

(1.3) ΣJM) = {a£ Λ' V": Im(α, X) = 0, X e TM}.
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For p e M, the restriction map (i.e., pullback) r: Σp(M) -> T*M given

by
(r(a),X) = (a,X)9 X G TpM,

is in general not injective. However, if M is generic, as above, then the
map r defined above is injective and

(1.4) r(Σp(M)) = (Tc

pM)±cT*pM,TpM)cTp

where orthogonality is taken in the sense of duality between T*M and
TM. Hence the bundle Σ(M) can be identified with the characteristic
bundle {TCM)'L of the CR structure on M.

If M is locally defined by p = 0 as above and p is a point in
M near p0, then idpx(p), ••• , idp^p) form a basis of the real vec-
tor space Σp(M). If, in addition M is generic, then the pullbacks to M
of idpχ(p), , idp^p) form a basis of the characteristic bundle of M.
With the identification above we have

(1.5) ± '

where τB denotes the transpose of a matrix B. To summarize, we assume
M is generic, so that the characteristic bundle of M can be identified with
the submanifold Σ(M) of real dimension 2N in the complex manifold
Λ1 ^ C ^ , which is of complex dimension N.

Finally, if we choose an N x I matrix C with complex coefficients such
that

(1.6) Pz(Po)C = IM>

then we can write

(1.7) T*M = {τadZ + τad'Z + iτtdp(p), aeCN

9

 τCα = 0, teR1},

where the covectors in (1.7) are identified with their pullbacks to covectors
on M. Similarly, we have

(1.8) (TcM)± = {iτtdp(p), t€R1}.

2. Analytic discs attached to generic manifolds

An analytic disc in CN is a continuous mapping A: A —• C^ which
is holomorphic in Δ, where Δ is the open unit disc in the plane and
Δ = Δ U Sι, where Sι is the unit circle. We say that A is attached to
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M through pQ if A(Sι) c M and Λ{\) = p0. We shall always assume
all analytic discs to be of Holder class at least C l α ( Δ ) for some fixed
a e (0, 1). We denote by 3N the space of all analytic discs valued in
C*,i.e.,

(2.1) 3fN = {A: A -> c " : A e C1 ) Q(Δ) nJT(A)}.

We regard 3N as a real Banach space equipped with the C l j α (Δ) norm.
For p0 e CN we put

(2.2) 9T?o={Ae9TN:A(l)=po}.

We write (pQ) for the constant disc A(ζ) = /?0 for all ζ e~K. Note that

with the above notation we have 3ζ = (p0) + ^ f . We observe that ϋ ^

is a Banach subspace of i ^ , while 3^ is only and affine space. For
ε > 0 we put

(2.3) s £ β = μ € s j : μ - (po>lli.β <
 ε>

Denote by cl'a(Sι) the space of real-valued functions in C 1 ' α (5 1 )
vanishing at 1. If p is a defining function near pQ of a generic manifold
M as above, and ε sufficiently small, we introduce the map R: 2J^ ε ->

[Cl'a{Sl)]! defined by

(2.4) 3fp

N

Qtε 3A~ R{A)( ) = p(A( )) e [C^S1)]'.

With the above notation, the subset si oiQJ^ p consisting of those ana-
Po>b

lytic discs in 3jζ ε which are attached to M is given by

(2.5) si =^PQi£(M) = {A€9r£y. R{A) = 0}.

The following abstract arguments will show that if ε is sufficiently small,
the set si defined by (2.5) is actually a smooth (infinite dimensional)
closed submanifold of 3** P and will give a description of its tangent

Po>b

space.
Let E and F be two real Banach spaces, E an affine space with un-

derlying Banach space E and e0 e E. For ε > 0, we let
(2.6) Bε = {xeE:\\x-e0\\E<ε}.

Let R: Bε -> F be a smooth map with R(e0) = 0. Assume that the
linear map Rf(e0): E —> F has a right continuous inverse S: F —> E, i.e.,
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R'(eo)S = IF . Then we may write E = Eo Θ Eχ, where Eo = keri?'(e0)
and Eχ = S(F). Note also that Rf(e0) is an isomorphism from Eχ to F
with inverse S.

Let j / = { x e ί e : R(x) = 0} . By the implicit function theorem, there
exist η > 0 and a smooth map Φ: {x0 e Eo : ||JCO|| < η} —> £ j , with
φ(0) = 0, such that if ε is sufficiently small,

(2.7) j / = { x e £ e : x - e 0 = x0 + Φ(x0), x o e £ o } .

This shows that si is a manifold. For xe«ί/,we shall now describe
Tχsi , the tangent space of sf at x considered as a subspace of £ . Note
that for x close to e0 in l?e, R'(x)S is an isomorphism of F into itself,
since by assumption R'(eo)S is the identity map on F.

Lemma 2.8. For ε sufficiently small and x e s/ the tangent space
Tχs/ is given by

(2.9) TχJtf = {xeE:x = x0- S(R'(x)S)-ι[R'(x)x0], x0 e Eo}.

Proof. Let x e E. We may write uniquely x = x0 + Sy with x0 e Eo

and y e F. Then x e Tχsf if and only if Rf(x)xQ + Rf(x)Sy = 0. Using
the invertibility of R'(x)S and solving in y yield (2.9). q.e.d.

We shall apply the previous arguments, and in particular Lemma 2.8,
to describe TAs/ for A e stf given by (2.5). Here we take E = 2jζ, E =
&», F = [Cl 'Q(5 1)] /, and e0 = (p0). Hence we have Bε = &^ given

by (2.3). Recall that R is given by (2.4). To show that Rf({p0)): E -+ F
has a right continuous inverse S, it suffices to take S defined as follows.
Since M is generic, the I x N complex matrix pz(p0) is of rank /.
Choose an N x / matrix C with complex coefficients (as in (1.6)) such
that

(2.10)

For / G F, we define S(f) by

(2.H)

where Tχf is the Hubert transform of / vanishing at ζ = 1. Note that
Tγ maps F into itself.

For Ae 2jζ and A e 2ίζ ε we have the following:

(2.12) [R'(A)A](O = Pz(A(ζ))A(ζ)
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It is easily checked from (2.11), (2.12) and the definition of EQ and Eχ,
that we have R'((po))S = IF , and

( 2 1 3 ) E0 = {Ae&0:pz

Eχ = {Ae3f" :A

where C is as in (2.10) and S is defined by (2.11).
In order to use (2.9) to describe TA$f for A e sf , we need to compute

the inverse of the map R'(A)S of F into itself. We shall make use of the
following lemma.

Lemma 2.14. There is η > 0 such that if m(ζ) is an Ixl matrix with

complex-valued coefficients in Cι'a(Sι), satisfying m ( l ) invertible and

(2.15) \\m(eW)-m(l)\\Ka<η(\\m(l)-l\\)-1,

then there exists a unique invertible Ixl matrix u(ζ), whose coefficients

are real-valued functions in C 1 ' " ( S 1 ) , with v{\) = 7 / χ / , and such that the

function Sι 3 ζ »-> v(ζ)m(ζ) extends holomorphically to Δ as an invertible
matrix in Δ. Moreover, if f(ζ) is an Ixl vector of real-valued functions
in CUa(Sι) such that Sι 3 ζ *-* τm(ζ)f{ζ) extends holomorphically, then

(2.16) / ( O = V(C)/(1).

Proof Let X be the Banach space of all Ixl matrices whose co-
efficients are complex-valued functions in C 1 ' α ( 5 1 ) . Denote by Y the
closed subspace of X consisting of those matrices whose coefficients ex-
tend holomorphically to Δ . Also, denote by Z the subspace of X consist-
ing of those matrices whose coefficients are real valued. Then the mapping
B:Xx Y -*Z defined by

(2.17) B(n,h) = Imhn

is R-bilinear. Note that if / = It ; (the identity matrix), then B(I, /) =
0. By applying the implicit function theorem, it is easy to see that for any
matrix n e X sufficiently close to /, there exists h eY, also close to /,
such that B(n, h) — 0. In addition, h is unique up to left multiplication
by an invertible real constant matrix. The first part of the lemma follows
from the above statements by taking n(ζ) = m(l)m~\ζ).

We now prove (2.16). Since τf(ζ)m(ζ) extends holomorphically, so
does τf{ζ)m{ζ){nu(z)m(ζ))~ι = τf(ζ)u~\ζ). Since the latter is real-
valued, it must be constant, and hence (2.16) follows, since i/(l) = /.
This completes the proof of Lemma 2.14. q.e.d.
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For A e 2N

 o, with ε sufficiently small, we shall apply Lemma 2.14

for the matrix

(2.18) m{ζ) = pz(A(ζ))C,

and let v(ζ) be the matrix given by the lemma.
Lemma 2.19. For ε sufficiently small and A e si, an analytic disc

Ae9jξ is in TAsrf if and only if

(2.20) A = A0 + CD,

where Ao e Eo given by (2.13), C is the matrix given by (2.10) and

D e&Q is given by
(2.21)

-2D\sl = {vm)~\vpz{A)A0 + vpΊ{A)A^iTλ{vpz(A)\ + up^{A)A{))],

where m(ζ) is given by (2.18), and u(ζ) is the associated matrix given by
Lemma 2.14.

Proof To compute (R'{A)S)~ι, we let / e F by (2.11) and (2.12)
we have

(2.22) g = R\A)Sf= \[pz{A)C{f+iTJ) + p^(A)C(f - iTχf)].

Applying Lemma (2.14) for m given by (2.18), and multiplying (2.22) on
the left by v yield

(2.23) vm{f+iTJ) = vg + iTχ(vg).

Hence

(2.24) / + iTJ = (um)-l[ug + iTx{ug)].

We then obtain (2.20) and (2.21) from(2.9), (2.12),(2.24), and the fact
that Sf=CD, where D\sι = \(f + iTJ). q.e.d.

To conclude this section it should be noted that we have shown that if
ε > 0 is sufficiently small thenj/ = srfp ε(M) is an infinite-dimensional

submanifold of 3f£ ε, and that J / and its tangent space TA$/ at any

A e s/ are parametrized by Eo the closed subspace of 3ϊζ given by
(2.13).

3. Defect of an analytic disc attached to a generic manifold

Let ¥ be a generic manifold in C^ as in § 1. Recall that Σ(M),
the conormal bundle of M defined by (2.4), is a real submanifold of
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dimension 2N contained in the complex manifold Λ 1 ' 0 ^ . We con-
sider analytic discs B: Δ -> Λ 1 ' 0 ^ attached toΣ(M). The base projec-
tion of such a disc will then be an analytic disc in C^ attached to M.
Taking (Zx, , ZN, λχ, , λN) for global holomorphic coordinates in
Λ 1 0 ^ , we have

(3.1) *(C) = (Λ(CM(C)),

with λ(ζ) = (Aj (C) 9 — , ̂ ΛΓ(O) 9 where each λ is a scalar analytic disc.
The disc B given by (3.1) is attached to Σ(Af) if and only if

(3.2) A(Sl)cM and ^λ^dZj eΣA{ζ)(M), ζ € Sι.
j

For 4̂ attached to M, we denote by F^ the set of all discs of the form
(3.1) attached to Σ(M). Note that by (3.2), VA can be equipped with a
real vector space structure. For ζ e Sι, let VA(ζ) c ΣA,QM be defined by

(3.3) VA(ζ) = {ae ΣA{ζ)M : a = ̂  A/C) ̂ , , μ(C), A(0) € VA}.
j

Hence ^ ( ζ ) is a subspace of Σ^ ( C )M, and by the identification (1.4), we

have, for every ζ e Sι,

(3.4) VA(ζ) c (7^ ( C ) M)\

Definition 3.5. If ζ e Sι and A is a disc attached to M, we define
the dfe/ecί o/ ̂ 4 αί £, def̂  A, as the dimension of the real vector space

vA{Q.
The following shows that if a disc A attached to M is sufficiently

close to a constant disc, then its defect is independent of ζ e Sι. Using
the identification (1.5) we may regard VA(ζ) as a subspace of TA^M.
Making use of (1.7) we have:

Proposition 3.6. If ε > 0 is sufficiently small and A e s/ ε(M), then

defr A is independent of ζ e Sι. More precisely, for ζ0 e Sι, a covector

ξ e TA{QM is in VA(ζ0) if and only if

(3.7) ξ = iτbv(ζ0)dp(A(ζ0)),

with b e RZ, v given by Lemma 2.14 with m(ζ) defined by (2.18), and
such that ζ *-• τbv(ζ)pz(A(ζ)) extends holomorphically to Δ.

Proof An analytic disc B(ζ) of the form (3.1) with A e s/ is attached
to Σ(Af) if and only if

(3.8) Σλj(ζ)dZj = iτt(ζ)dp(A(ζ)), ζeS\
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with λj(λ) extending holomorphically to Δ and Sι 9 ζ H* t(ζ) £ Rl of

class Cι'a(Sι). This implies that the map

Sl3ζ^τt(ζ)pz(A(ζ))eCN

extends holomorphically. In particular, if C is the matrix given by (2.17),
then the map given by

Sl3ζ~τt{ζ)Pz(A(ζ))Ced

also extends holomorphically. By applying the second statement in Lemma
2.14 to m(ζ) given by (2.18), we conclude that t(ζ) = τv{ζ)t{\), where
v(ζ) is as given by the lemma. The characterization follows since v(ζ)
is invertible for all ζ e Sι. This completes the proof of the proposi-
tion, q.e.d.

For A e s/ , we denote by def A the defect of A at any ζ e Sι.

4. Variations on a theorem of Tumanov

For every ζQ e Sι fixed we define the evaluation mapping ^ : 2ίN —>

C^ given by

(4.1) fyA) = A(C0).

Also, for A e 2fN, we consider the push forward by A of the tangent

vector of Sι, d/dθ\θ=0, as a real tangent vector of C^ at A(\). We

introduce the derivative map 9: 2JΉ —• TCN given by

(4.2) SN 9 A « 9{Λ) = A, (Jj\J) € TA{l)C
N.

We consider the restrictions of the mappings ^ and 9, given by (4.1)

and (4.2), to the submanifold sf = sf {M) of 2fN defined by(2.5).
Their differentials at A e si are then real linear mappings

(4.3) 9-lμy.τ^^

(4.4) &'(A): TAs/ -» TpM.

Note that since ^ ( ^ ) = p0 for all ^ e J / , we have <^'(Λ) = 0. We can
now state the following theorem.

Theorem 1. Let ζ0 e Sι fixed, ζ0 Φ 1. If ε is sufficiently small,
Aes/po<ε{M),and VA(ζ0) c TA(ζ^M defined by (3.3),

(ϊ) °?-ζ'o(A)TAsf = VA(ζ0)
x,
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(ϋ) f'μir/^ i)1,
where orthogonality is taken in the sense of duality between TM and T*M.

Statement (i) of Theorem 1 is essentially proved in Tumanov [20]; how-
ever, our formulation is expressed in a more geometric and invariant way.
Statement (ii) is also inspired by a related result in [20].

Making use of (3.4), we obtain the following corollary of Theorem 1.
Corollary 4.5. Under the assumptions of Theorem 1, the codimension of

&:'{A)TΛ$/ in TA(r,M and the codimension of&r(A)T'sf in T M co-
incide and are equal to the defect of A. Furthermore the following inclusion
holds:

(4.6) Tc

A{ζo)M c 9^Λ)TAsf , rpM c &{A)TAs/.

Proof of Theorem 1. We shall first prove (i). For this, we shall begin
by showing the inclusion

(4.7) ^{Λ)TΛsf C VA(ζ0)\

Note that &~ζ'(A)A = A(ζQ) for A e TAs/ given by (2.20). Then using

Proposition 3.6, it suffices to prove that

(4.8) τbu(ζ0)pz(A(ζ0))[A0(ζ0) + CD(ζ0)] = 0,

for b e Rι such that ζ »-> τbv(ζ)pz(A(ζ)) extends holomorphically, and

Ao, C, D are as in Lemma 2.19. Replacing D in (4.8) by using (2.21),

and noting that Tχf — -if if / is a function on Sι which extends

holomorphically to Δ and vanishes at 1, we obtain (4.8), which proves

the inclusion (4.7).

To show that the opposite inclusion &lf(A)TAsf D ^(CQ)"1 holds, we

shall prove

(4-9) [Sr^A)TAs^t C VA(ζ0).

For this, let ξ e T^M such that

(4-10) (ξ,A(ζo)) = O

for all Λe TAs/ . We must show that ξ e VA(ζ0). By (1.7), we may take
ξ in the form

(4.11) ξ = τadZ + τadZ + iτtdp(A(ζQ)),

with aeCN, τCa = 0, and t e R1. We first choose Ao in (2.20) so that

A0(ζ0) = 0. Then (Re(τα</Z), A(ζQ)} = 0 and (4.10) becomes

(4.12) iτtpz{A(ζ0))CD(ζ0) - iτtpΈ(ζo)c'D{^) = 0.
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Substituting the expression for D fro n (2.21) in (4.12), we obtain

(4.13) ηiVCoΓ^z^KKCo) = o.

Note that if u(ζ) is defined on Sι we have

For deRN with p?(pQ) d = 0, we take A0(ζ) = (ζ-l)(ζ- ζo)ζk d, with
k any nonnegative integer. Then (4.13) and (4.14) imply that

(4.15) ζ~τtv(ζ0Γ
lv(ζ)pz(A(ζ))d

extends holomorphically. This, together with the fact that u(ζ)pz(A(ζ))C
extends holomorphically, implies that iτtdp(A(ζ0)) e VA(ζ0) -

To finish the proof of inclusion (4.9), it suffices to show that if ξ,
given by (4.11), satisfies (4.10), then a = 0. From inclusion (4.7) and
the previous step, we have (iτtdp(A(ζQ)), A(ζ0)) = 0 for any Ae TAsf .
Hence by (4.10) and the fact that τCa = 0, we have Re(ταiί0(C0)) = 0.
Since A0(ζ0) is an arbitrary vector in the kernel of pz(p0) in C^, it
follows that τα^40(£0) = 0, and hence a = 0. This completes the proof of
(i) of Theorem 1.

We shall now prove (ii) of Theorem 1. As in the proof of (i), we begin
by showing the inclusion

(4.16) &{A)TΛsf C VA(lf.

Note that &{A)A = dA(eiθ)/dθ\θ=Q for Ae TAs/ given by (2.20). Using
Proposition 3.6, it suffices to prove

(4.17) *bpM^{A^eW) + CD(eW)]\θ=0 = 0,

for b eRl such that ζ •-> τbu(ζ)ρz(A(ζ)) extends holomorphically and
Ao, C, and D are as in Lemma (2.19). Since pz(p0)A0(eιθ) = 0, we also
have pz(po)dAo(eιθ)/dθ = 0. Hence the first term in (4.17) vanishes.
Using the observations above, the rest of the proof of inclusion (4.16) is
similar to that of (4.7).

To show that the opposite inclusion &'(A)TΛs/ D VΛ{\)1' holds, we
shall prove

(4.18) \&(A)TAsίt c VAX).
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For this, let ξ e T*pM such that

for all Ae TAsf . We must show that ξ e VA(l). By (1.7), we may take
ξ in the form

(4.20) ξ = τa dZ + τa dZ + iτtdp(p0),

with a e CN, τCa = 0, and t G RZ. We first choose yί0 in (2.20) so

that dA0{ew)/dθ\θ=0 = 0. Then (Re(ταrfZ), dAQ(eiθ)/dθ\θ=0) = 0 and

since pz(p0)C = / , (4.19) becomes

(4.21)

Substituting the expression for 5 from (2.21) and (4.21) yields

(4.22) -^Tχΐtvpz{A)A0]{eW)\θ=0 = 0.

Note that if u(ζ) is defined on Sι with u{\) = du(eiθ)/dθ\θ=0 = 0, we
have

(4.23) -£:

For d eRN with pz(p0)d = 0, we take ^(C) = (C - l)2ζkd, with A:
any nonnegative integer. Then (4.22) and (4.23) imply that

(4.24) ζ » z

extends holomorphically. This, together with the fact that v(ζ)pz{A(ζ))C
extends holomorphically, implies that iτtdp(p0) G VA{\).

The rest of the proof of inclusion (4.18) is similar to that of (4.9). This
completes the proof of Theorem 1.

Remark 4.25. Another consequence of Theorem 1 is that for ε > 0
sufficiently small, the mapping sfp ε(M) 3 A \-+ defA e Z~*~ is upper
semicontinuous. Indeed, the map A •-> r a n k ^ (A) is lower semicontinu-
ous. Hence the claim follows from Theorem l(i).

Following [21], we recall that M is minimal at p0 if there is no germ
N of a submanifold of M through p0 with Tc

pM c TpN for all p e N.
The following corollaries are due to Tumanov [20].

Corollary 4.26. // M is minimal at p0, then there exist analytic discs
A of defect 0 attached to M through p0 with \\A - (po)\\Ua arbitrarily
small.
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Proof. Choose a disc A^ e sf of minimal possible defect in a neigh-
borhood of the constant disc (p0). After replacing A^(ζ) by A^ζ2),
which does not change the defect, we may assume A^(-l) = p0. If A^
were not of defect 0, then it would follow from Theorem 1 (i) that the im-
age of a neighborhood of A^ in sf by !F_χ is a proper submanifold TV
of M containing p0 for which TpM c Γ J V for all p e N, contradicting
the minimality of M at p0 . q.e.d.

The following is also an immediate application of Theorem l(ii).
Corollary 4.27. If A e sf is of defect 0, then there is a smooth map,

r ι-> A(r •), from an open neighborhood U of 0 in R2n+ into $/, such
that A(0, ζ) = A(ζ) and U 3 r .-> Am(r; d/dθ\θ=0) e TpM is of rank
2n + l.

Remark 4.28. If M is a generic manifold in C^, and poe M, one can
prove by techniques similar to those used in §2 that the set &p ε(M) of

all discs in 2JN attached to M within ε distance from the constant disc

(p0) forms an infinite-dimensional submanifold of the real Banach space

2fN. The manifold stfp ε(M) of §2 is then a submanifold of 3&p ε(M).

The tangent space to 3Sp ε(M) at any point of this manifold can be

parametrized by those analytic discs A £ 2JΉ for which pz(pQ)A(ζ) = ir,

with r e Rι. (See §2 for a similar calculation.) If Ao e 38 ε(M) is of

defect 0, by using the tangent space at Ao, one can show that the mapping

^ x [0, 1] 3 (A, ξ).- A(ξ) e CN, where ^ is a neighborhood of Ao in

^P β(^)» c o v e r s a n ° P e n wedge with edge ¥ in C^. Tumanov [20]

proves this result by solving the Bishop equation with parameters. His

argument is replaced here by the use of the implicit function theorem for

Banach spaces. If M is minimal at pQ, the filling of wedges by discs de-

scribed here, together with the approximation theorem in [4], shows that

every CR function in a neighborhood of p0 in M extends holomorphi-

cally to a wedge in C^.

5. Discs of maximal defect. Minimal convexity

In this section we shall use the notation of §4. We begin with the fol-
lowing result.

Theorem 2. If ε is sufficiently small, then for any Aes/=sf ε(M)

and any ζ0 e Sι, ζ0 = eιθ°, the following holds:
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Corollary 5.2. Let A be as in Theorem 2. If A is of defect I, the
codimension of M in CN, then for every ζoe Sι, we have

where ζ0 = eι °.

Proof of Corollary 5.2. Since A is of defect /, we have dimR VA(ζ0) = /

for all ζ0 e Sι. On the other hand, by (3.4) we also have

(5-4) rA{ζn) c VA(ζ0)\

Since dimR T^^ , = 2N - /, we conclude by dimension that the inclusion
in (5.4) is an equality when A is of defect /. Then (5.3) follows from
(5.1).

Proof of Theorem 2. Since A is attached to M, we have ρ(A(eιθ)) =
0. Differentiating this identity in θ yields

(5.5) ipz(A(ζ))ζA'(ζ) - ipγ(A(ζ))ζAr{ζ) = O, ζ e Sl.

Let ι/(C) be as in Proposition (3.6). For b e Rι such that

ζ~τbv(ζ)pz(A(ζ))

extends holomorphically to Δ, from (5.5) we obtain

(5.6) Re iτbu(ζ)pz(A(ζ))ζA'(ζ) = 0, ζeS1.

Since ζ »-+ τbv(ζ)pz(A(ζ))Af(ζ) extends holomorphically, we conclude

from (5.6) that τbv{ζ)pz(A(ζ))Af(ζ)ζ = 0, i.e., for every ζoeSι

(5.7) (^τbv(ζ0)pz(A(ζQ)), ^ ( ^ l « 0 ) ) = 0.

This proves the theorem, by using the description (3.7) of VA(ζ0) given
by Proposition (3.6).

Another proof of Theorem 2. We give here a different proof of Theorem
2 which could be of independent interest. Note that for c e Δ the mapping

(5.8) Φe(ζ) = (ζ + c){l+
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is an automorphism of Δ fixing the point 1. Let A e srf and assume A
to be of class C2a . Fix a e Δ. Consider the one-parameter family of
discs defined by

(5.9) A(t,ζ) = A(ΦJζ)).

If / is a small open interval containing the origin, then the map / 3 t »->
A{t, >)estf is a C 1 curve with ,4(0, •) = A( ) . Hence

(5.10)

Applying the chain rule, we obtain

(5.11) '

Hence for ζ0 = eιθ° we have

(5 12) Alt ) - A (±\
(5.12) A(ίo)-A^dθ\θ=θ

Assume ζ0 Φ 1 and take a e A such that aζ0 + aφθ. Since A(ζ0) e

9^{A)TAsf , (5.12) and Theorem l(i) imply (5.1). If ζ0 = 1, differentiat-

ing (5.11) and taking ζ = 1 yield ^(1) = -A'(a)(a + a), which implies

(5.13)

With a real and nonzero, (5.13) and Theorem l(ii) imply (5.1) for ζ0 = 1.
We conclude the second proof of Theorem 2 by observing that the discs
in $/ of class C2'a(Sι) are dense in s/ . q.e.d.

The following generalizes the notion of minimal convexity for hyper-
surfaces given in [3].

Definition 5.14. Let &~:s/ (M) -> T M/T^M be defined by

&"{A) = π(8?(A))9 where π is the canonical projection of Tp M onto

Tp M/T£ and 9 is defined by (4.2). We say that M is minimally convex

at p0 if M is minimal at p0 and there exists a closed, strictly convex

cone Γ c T^M/T^M such that Γ(A) c Γ for all A e sf = \i6(M)

and ε sufficiently small.

Note that, as observed in [3], in the case where M is a hypersurface,
i.e., / = 1, it follows from Tumanov [20] that if M is minimal at p0,
then either M is minimally convex at p0 or every CR function on M
near p0 extends holomorphically to a full neighborhood of p0 in C ^ .
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Theorem 3. If M is minimally convex at pQ, A esf ε(M), ε suffi-

ciently small, and A^(d/dθ\θ=0) eTpM, then A is of defect I and hence

A^d/dθ) e Tc

A{eiθ)M for all θeR. °

Proof By Corollary 5.2, it suffices to show that the assumption implies
that A is of defect /. We note first that rk^~f(A) = 0. Indeed, since
^(A) = 0 by assumption, if τk^'(A) > 1, then £Γ($f) contains a
nonsingular curve passing through the origin, contradicting the fact that
^ ( J / ) lies in a strictly convex cone, since M is minimally convex. By
Theorem l(ii) and (and also (4.6)), the rank of F at A is / - def A for
all Aesf , which proves that def A = I. q.e.d.

Using the remarks preceding Theorem 3 concerning minimally convex
hypersurfaces and taking / = 1 in Theorem 3, we obtain the following.

Corollary 5.15. Let M be a hypersurface in CN minimal at p0. Then
one of the following occurs:

(i) M is not minimally convex at p0.
(ii) There is ε > 0 which satisfies the following property. If Aes/p ε(M)

and Am(d/dθ\θ:s:0) e Ί*pM, then we also have A^d/dθ) e T^^M for

allθ.
For a general generic manifold in C^ we have the following result.
Theorem 4. Let M be a generic manifold and pQe M. Then there ex-

ists ε>0 such that the following holds. If A esfp^ε(M) and A^(d/dθ\θ=0)

G Tp M, then one of the following must occur:

(i) Every CR function on M extends holomorphically to a full neigh-

borhood of p0 in CN.
(ii) def A > 1.
Proof Let & be the map defined by Definition 5.14. Then we have

^(A) - 0 by assumption. If def(-4) = 0, then by Theorem l(ii), the rank
of &" at A is /. An argument similar to the one used in Remark 4.28
(or inspection of the proof of Tumanov [20]) will then show that the set
of discs attached to M through points near p0 fill a full neighborhood of
pQ in C^ hence (i) holds, q.e.d.

If M is a generic manifold of codimension / in Cn+ι, we shall say that
M is homogeneous if there exist holomorphic coordinates Z = (z, w),
with z eCn , wed, defining functions p = (p{, , pt), and integers
ml9 ••• , m/? mJ > 2, such that pw(0) is invertible, pz(0) = 0, and
Pj{tz, δtw) = Λ p / z , w), where δtw = {tm'wx, , tm'w,), t > 0.

Theorem 5. Let M be a homogeneous generic manifold of codimension

I in C / + 1 , minimal at 0. Then any nonconstant disc attached to M
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through 0 is of defect less than I. In particular, if for some nonconstant disc
A passing through 0, A^(d/dθ\θ=0) e T%M, then M is not minimally
convex at 0.

Proof Note first that since M is smooth, homogeneous, and minimal
at 0, it must be of finite type (in the sense of Bloom and Graham) and
hence M is of finite type, and therefore minimal, at every point. Assume
by contradiction that there is a nonconstant disc A(ζ) = (z(ζ), w(ζ))
attached to M through 0 of defect /. Let

A(r,ζ) = ((l+r)z(ζ),δ{Ur)w(ζ)).

For each r e R, r > - 1 , A(r, ζ) is attached to M through 0, by

the homogeneity of M. Since A is not constant, z(ζ) φ 0. We claim

there is Co € Sι such that ReζQz'(ζ0)z(ζ0) φ 0. Indeed, write z(eιθ) =

Σ Γ W and Cz'(CMO = ΣΓ=-ocbHeM then b, = Σto\Φ Φ
0. Hence the map (r, θ) »-> (1 + r)z(eιθ) is of rank 2 at (0, θ0), where

ew° = f0. The map (r9θ)~ Ψ(r, θ) = A(r, eiθ) e M is then also of

rank 2 at (0, θ0). We claim now that the image of Ψ contains a germ of

a CR submanifold of M through A(ζ0), which would contradict the min-

imality of M at 0 since dim T^M = 2 for all p e M. Indeed, applying

Theorem l(i) we have ^^d/dr^^) e (^ 1 ( r > . ) (^))" L . Also, by Theorem

2, Ψ^d/dθ\{rθ)) e ( K 4 ( Γ > . ) Λ ) ± . Since A(r, •) is of defect /, we have,

by (5.4), Γ$(Γ'OJI/ = ( ^ ( Γ , . ) ( O ) ± . Since r k Ψ > , θ) = 2 near (0, fl0),

this proves the claim and completes the proof of Theorem 5. q.e.d.

Taking / = 1 in Theorem 3, we obtain the following corollary.
Corollary 5.16. Let M be a homogeneous hypersurface of finite type in

C 2 , i.e., given by

M = {(z,w), zeC, weC, Imw =p(z, z)},

where p is a nonharmonic homogeneous polynomial. Then all nonconstant
discs A attached to M through 0 are of defect 0. In particular, if for some
nonconstant disc A passing through 0, A^{dldθ\θ={)) e T^M, then M is
not minimally convex at 0.

We conclude this section with some remarks and examples.
Remark 5.17. If A is a disc attached to a generic manifold M such

that A(A) c M9 we claim that A^d/dθ) e T^{eiθ)M for all θ. In-
deed, since p(A(ζ)) = 0, ζ e Δ, we have, by differentiating this iden-
tity, pz(A(ζ))A'(ζ) = 0, which proves the claim. Note, however, that
A(A) c M does not imply that A is of positive defect, as shown by the
following example.
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Example 5.18. Let M be the hypersurface in C3 given by Imw =
| z j 2 - \z2\

2 and A(ζ) = (z(ζ), z (ζ) ,0) , where z(£) is any noncon-
stant analytic disc valued in C, with z(l) = 0. We have A(A) c M,
A^d/dθ) e T^{eiθ)M for all 0 by Remark 5.17, but A is of defect 0.
Note also that all nonconstant discs through 0 are of defect 0 for this
hypersurface.

Example 5.19. If M is a hypersurface in C^, 0 € M, and A is
a small disc attached to M through 0, then the defect of A can be 1
although A(A) (jL M. For this, let M be the hypersurface in C3 given
by Imw = (Imz2 - | z j 2 ) 2 , and let A(ζ) = ( z ^ ζ ) , z2(C), 0), where the
disc B(ζ) = (Zj(C), z2(C)) is any nonconstant disc attached to the Lewy
hypersurface in C2 given by Imz 2 = \zχ\

2 . Then A(Δ) ΠM = 0 and 4̂
is of defect 1, since for ζeS1 pz{A{ζ)) = 0 and />ω(i4(C)) = 1/2/.

Remark 5.20. If M is a tubular hypersurface in C 2 , i.e., M is given
by Imit; = φ(Rez), with φ a, smooth, real-valued function satisfying
0(0) = φf(0) = 0, then for 4̂ any analytic disc of defect 1 attached to M
through 0, we have A(A) c M. Indeed, in this case ρz is real valued and

Example 5.21. We give here an example of a hypersurface in C2 given
by Imiu = φ(z), with φ a smooth, real-valued function of two real vari-
ables, satisfying φ(0) = 0, φ'(ϋ) = 0 with the following property. There
is no nonconstant disc A attached to M through 0 with ^ί(Δ) c M
in addition for any ε > 0, there is a nonconstant disc A attached to M
through 0 of defect 1 with norm < ε. For n > 1 let Cn be the circle
in C given by Cn = {z e C: \z - 1/2"| = 1/2"}. Let φ £ C°°(C) with
φ > 0 and φ(z) = 0 if and only if z e C = Uπ>i Cn - The existence of
such a function φ is standard by the Whitney TΪeorem. Note that since
φ > 0 we have necessarily φ'(z) = 0 for z G C . It is easy to check
that the hypersurface M satisfies the above properties. In particular, for
every n > 1, the disc An(ζ) = (2" π (l - C), 0) attached to M through 0
is of defect 1, and An(A) (JL M. Note also that the only nonconstant discs
attached to M through 0 of defect 1 are of the form A(ζ) = (z(£), 0)
where z(ζ) maps S 1 into C .

Remark 5.22. If M is a real analytic hypersurface in C2 minimal at
0 e M, we do not know whether there exist nonconstant analytic discs
attached to M through 0 of defect 1 and of arbitrarily small norm. Note
that Example 5.19 shows that such discs exist for minimal analytic hyper-
surfaces in C 3 .
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Example 5.23. A real analytic hyp<ίrsurface in C2 can have a noncon-
stant analytic disc of defect 1. Let M be the hypersurface in C2 given by
Imw = 2 | z | 2 + 2 z z 2 + 2 z z 2 + | z | 4 + z 2 + z 2 . The disc AQ(ζ) = (ζ-ί, 0) is at-
tached to M and is of defect 1. However, since this hypersurface is strictly
pseudoconvex in a neighborhood of 0, there cannot be a small disc of defect
1 through 0, since for any small disc A(ζ) we have A^{d/dθ\θ=0)
which implies A is not of defect 1, by Corollary 5.2.

6. Analytic discs attached to CR manifolds

Let M be a smooth manifold in C^ of codimension /. For each
p e M, let T°pM be the real subspace of TpM invariant under / , the

complex involution of C^. Recall that M is a CR manifold if dimR ΊlM

is independent of p. Since dimR T°pM is necessarily even, if M is CR

and 2« is the fiber dimension of the real bundle T°M, then we shall say

that M is of CR dimension n.
For the rest of this section we shall assume that M is a CR manifold

in C^ of codimension / and CR dimension n. The following local
characterization, whose proof is elementary, was given in [2].

Proposition 6.1 [2]. Let M be a CR manifold as above, poe M. Then

there exist holomorphic coordinates in CN near p0, vanishing at pQ, a

generic submanifold Mx in CNι, where Nx = 2N - n - I, and N -n-l

CR functions ψ{, , ψN_n_ι on Mχ near 0, vanishing at 0, such that

in a neighborhood of p0 in CN, M is a graph of a CR mapping over Mχ,

i.e.,

(6.2) M= {(Z, ψ{Z)) eCN:Ze M J ,

where ψ = (ψχ, , ψN_n_ι). The natural projection of M onto Mχ

is a CR diffeomorphism, i.e., it carries T°M onto TCM{, the bundle for
Mχ, and is invariant under J. Finally, if M is real analytic, then the
holomorphic coordinates can be chosen so that ψ = 0.

Using the results of §2 and Proposition 6.1, one can check that if ε
is sufficiently small, then again sfp >β(AΓ), the set of all analytic discs
attached to M through p0 and within ε distance of the constant disc
(p0) forms an infinite-dimensional manifold. Let M{ and Ψ be as in
(6.2), and A{ an analytic disc attached to M{ and sufficiently close to the
constant disc (0). By the approximation theorem [4], since each ψ. is CR,

the functions ψj(A{(ζ)) extends holomorphically from Sι to Δ. Hence
A = {A{(ζ), ψ(A{(ζ))) e $/ ε(M) if ε is sufficiently small. Conversely,
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any A £ srfp ε(M) is obtained this way. Hence for r > 0 sufficiently

small, there is a diffeomorphism

( 6 3 ) ^0,rε(M\) 3 A i ^ (Ai , ψ ( ^ i ) ) € S* ε(M)

of ^o>rε{Mχ) onto a neighborhood of {p0) in sfp ε(M).

As in §2, we let Σ(M) denote the conormal bundle to M in C^. For
p £ M, the restriction map (i.e., pullback) r: Σ (M) —> T*M given by
(r(a), X) = (a, X), X £ TpM, is in general not injective. However it can
be checked that M is CR if and only if the dimension of the image of r
is constant. For A £s/p ε(M), we let VA denote the set of all discs of the
form B(ζ) = (A(ζ), λ(ζ)), attached to Σ(Af), i.e., those analytic discs for
which ^(S 1 ) c M and ΣjλjiQdZj € Σ ^ f i f ) , ζ £ Sι. For ζ £ Sι, let
VA(0 C ΣA(ζ)

M b e d e f i n e d by VA(0 = i a e ΣA(QM: a = ΣjλjiQdZj,
(A(ζ), A(0) € F J . We define the defect of A at ζ by

(6.4) c

Proposition 6.5. // A = (Aχ, Ψ ^ ) ) as in (6.3), then defζ ^ = defζ Aχ

for every ζ £ Sλ. /« particular, if ε is sufficiently small, then def̂  A is

independent of ζ.

Proof Since the components of Ψ are CR functions on Mχ, we may

extend them to a neighborhood of 0 in C^1 so that ^Ψy| M = 0 for all j .

We write Z = (Z\ Z"), with Z' £ CNi and Z" £ CN~Nι. If Mχ is given

near 0 by p.(Zf) = 0, j = 1, , lχ, then a disc 5( ) = (A( ), A( )) € F,

with A = (Aχ, ψ{Aχ)) satisfies for all ζ £ Sι

N

(6.6)

where the ί are real-valued functions, and the h. and λ extend holo-
moφhically to Δ. Since the pullback to M of the form defined by the
second sum on the right-hand side of (6.6) vanishes identically, the propo-
sition follows from the definition of the defect, q.e.d.

Note that the defect of Aχ is the one defined in §3, since Mχ is generic.
We may now state an analogue of Theorem 1 in the context of CR

manifolds. Let ^ and *§ be defined as in (4.1) and (4.2).
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Theorem 1 ' . Let M be a CR submanifold of CN, poe M, and ζ0 e

SX\{1}. If ε > 0 is sufficiently small and AesfpQt8(M)9 then
±

(i)

(ii) A A

where orthogonality is taken in the sense of duality between TM and
T*M.

The proof of Theorem l' follows from that of Theorem 1 and the
results of this section. Details are left to the reader.

7. Applications to extension of holomorphic functions across

a hypersurface and propagation of analyticity

We recall the following result, which is a consequence of the work of
Diederich and Fornaess [9].

Proposition 7.1. Let M be a smooth pseudoconvex hypersurface and
A e s/ e(M). // ε is sufficiently small, and A^(d/dθ\θ=0) e T°pM, then

A(A)cM.
Proof Assume that M is a subset of dΩ, where Ω is a pseudocon-

vex open set. The proposition follows by applying the Hopf Lemma to
the function Δ 9 ζ »-• p(A(ζ)), where p is a plurisubharmonic defining
function for Ω as constructed in Diederich and Fornaess [9]. q.e.d.

We prove here some related results for nonpseudoconvex boundaries.

Theorem 6. Let M be a hypersurface in CN and poe M. Then there

exists ε > 0 such that if there is Aesfp ε(M) with A^(d/dθ\θ=0) e T°pM

but A^{dldθ\θ=θ ) £ TA,iθ0,M for some ΘQ e R, then every holomorphic

function defined on one side of M extends holomorphically to a full neigh-

borhood of p0 in CN.
Proof Let ε be given by Theorem 4. If there is a disc A as in the

statement of the theorem, then def A = 0 by Corollary 5.2. Hence The-
orem 4(i) must hold, i.e., every function holomorphic on one side of M
extends holomorphically across p0. q.e.d.

Theorem 7. Let M be a hypersurface in CN and poe M. Then there
exists ε > 0 such that if u is a CR function on M and Ao e stfp ε(M)

with AQ^(d/dθ\θ=0) e Tp M, such that u extends holomorphically to one

side of M near pχ = AQ(ζχ) for some ζχ e Sι, then u also extends
holomorphically to the same side of M near p0.



GEOMETRY OF ANALYTIC DISCS 401

Proof. We may assume that Ao is of defect 1, since otherwise, by
Theorem 4, every CR function extends to both sides of M near p0. Let p
be a local defining function for M near p0, and υχ e T CN nontangent
to M and such that vχ points to the side of M to which u extends
holomorphically near pχ. Hence we may assume

(7.2) Re(dp(pχ),vχ)>0.

Let φ e C™(CN) with small support concentrated near pχ and vanishing
identically near p0, 0 < φ(Z) < 1, and φ{pχ) = 1. We let ρ(Z, j/) be
the perturbation of p given by

(7.3) p{Z9η) = p{Z-ηφ(Z)υι),

and M^ the hypersurface defined by p(Z, η) = 0. Note that for η > 0
small, Af coincides with M in any open set in M on which φ vanishes,
and is contained on the side of M where u extends holomorphically near
pχ. Hence, the restriction of u together with its holomorphic extension to
M is a CR function on Mη . We shall show first that there is a disc A
attached to Mη through p0 such that Aη*(d/dθ\θ=0) £ T^ Mη9 or more
precisely,

(7-4) R

i.e., A* (1) points to the same side of M as υχ.
To construct a family of discs Aη attached to M for η e {-η0, η0),

with AQ the given disc, we shall use an argument similar to that in §2.
That is we use the implicit function theorem for Banach spaces. For this,
let 2p e be defined by (2.3). For ηQ > 0 sufficiently small, consider the

map R: S £ ε x (-η0, η0) - cl'a(Sι) defined by

(7 5) ^ { η ° ' * o ) { ' η)

= p{A{ )9η)eCl'a{Sl).

To solve the equation R{Aη ,η) = 0 with r/ H^ Aη smooth near η = 0 and

Λo the given disc, it suffices to show that the derivative R'A{AQ, 0): 9ίζ -•

Ĉ 1 'a(Sι) has a right continuous inverse. For Ae 2ϊζ, we have

(7.6) R'A(AQ, o μ =

Invertibility then follows by an argument similar to that used in §2, since
if ε is sufficiently small, Ao is close to the constant disc {p0). Note that
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the map η ι-> A is not unique due to its dependence on the choice of the
matric C satisfying (2.10) as in §2.

We shall show that (7.4) holds for η small. We write

(7.7) Aη = A0 + ηA + O(η2)

with A e 3ζ . Differentiating the identity R{Aη ,η) = 0 and using (7.5)

and (7.6) we obtain, after putting η = 0,

(7.8) Rt(dp(A0(ζ)), A(ζ)) = Rφp(A0(ζ)),

Since Ao is of defect 1, there exists v{ ) e Cι'a(Sι) real valued and
nowhere vanishing (say v{ζ) > 0) such that the mapping

Sl3ζ~v(ζ)dp(A(A0(ζ))eAι>°CN

extends holomorphically to Δ. Hence the mapping

Sl 3 ζ ~ h(ζ) = (u(ζ)dp(A0(ζ)), A(ζ)) € C

also extends holomorphically to Δ. We also denote by h(ζ) its holomor-
phic extension. We will apply the Hopf Lemma to the harmonic function
ReΛ(C). We claim first that Reh(ζ) > 0. For this, we observe that by
(7.8) and the reality of u(ζ), we have

(7.9) ReΛ(ζ) = v(ζ)φ(A0(ζ))Re(dp(A0(ζ)),Vι),

which implies the claim if the support of φ is sufficient close to px. Since
h{\) = 0, from the Hopf Lemma it follows that Redh{\)/dξ < 0, so
that dlmh(eιθ)/dθ\θ=0 < 0 by the Cauchy-Riemann equations. Since
.4(1) = 0, we obtain

(7.10) (

Using (7.7), (7.10), and the fact that AQ is of defect 1 yields (7.4) for
η > 0 small. _

We claim that for η sufficiently small, the images of Δ by all the discs
attached to M near Aη cover, near p0, the side of Mη defined by ^4 (̂1) ?

which is the same as the side defined by vχ. Indeed, by (7.4) and Theorem
l(ii), the disc Aη , for η > 0 and small, is of defect 0 for the hypersurface
M . (Note that this does not imply that M is minimal at pQ. Indeed
there need not exist arbitrarily small discs of defect 0 attached to M
through pQ.) The claim follows by an argument similar to that outlined
in Remark 4.28.
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Remark 7.11. If M is a hypersurface which is not minimal at p0,
then there exists a germ at pQ of a complex hypersurface <%* in C^ with
<%* C M. It is shown in [18] (see also Hanges and Treves [11] and [10])
that %? propagates one-sided extendibility of CR functions on M . In
this case, propagation of one-sided extendibility along the boundary of an
analytic disc is equivalent to propagation along βff since all A € £fp ε(M)
are actually attached to <%?, the boundaries of all such discs cover %*,
and necessarily A^(d/dθ\θ=0) e Tp M for all such discs. It should be
noted, however, that Theorem 7 is a stronger result, since it implies that
the side of extendibility is also preserved in the minimal case. Note also
that if M is minimal at p0, and the condition A0^(d/dθ\θ=0) € T^ M is
dropped in the statement of Theorem 7, then propagation of holomorphic
extendibility to the same side need not hold.

We shall give here, as an application of Theorems 6 and 7, a completely
different proof of one of the main results in [19].

Thereom 8 [19]. Let M be a hypersurface in CN, and pQ € M. As-
sume that there is a CR submanifold V of CN through pQ with V c M,
TpVc7^M, and V minimal at p0. Then the following hold:

(i) If there is no open neighborhood U of p0 in V such that TU c
TCM, then every CR function on M near p0 extends holomorphically to
a full neighborhood of p0 in CN.

(ii) There exists a neighborhood U of pQ in V such that any CR func-
tion u on M extending holomorphically to one side of M near pχ e U,
also extends to the same side of M near p0.

Proof To prove (i), we let sfp ε(V) denote the manifold of all discs

attached to V through p0 of norm less than ε. Note that srfp ε(V)

c sfp ε(M), and by the assumption, for every A e s/p ε(V) we have

A^(d/dθ\θ::=0) eT^M. We shall prove the following lemma. Then Theo-

rem 8(i) will follow from Theorem 4.

Lemma 7.12. Under the assumption (i) of Theorem 8, for every ε > 0,

sufficiently small, there is A e sfp ε(V) with defM^ = 0, where defM

denotes the defect of A, regarded as an element of srfp ε(M).

Proof of Lemma. Let ε > 0 be sufficiently small and let p{ be close

to p0 and satisfying TpV <fc T°pM. Since V is minimal at p0, if pχ

is sufficiently close to pQ, then by Theorem l' and its consequences in

§6 there is A e ^Pot£(V) with defF^ = 0 and Λ(-l) = pχ. As in §2,

we denote by ^_x the evaluation map at - 1 . By Theorem l' we obtain
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Note that we must have either &!xTAsf (M) = T^M or 9^XTAs(p^t{M)

= Tp M, depending on whether defM A = 1 or defM ^ = 0, by Theorem

l(ii). Since by assumption Tp V £ TpM, we must have defM^4 = 0,

which proves the lemma.
This completes the proof of part (i) of Theorem 8. To prove (ii), we

note that if u extends to one side of M near pχ e V sufficiently close to
p0, we may consider a disc A e s/p ε(V) with A(-l) = p{ (by Theorem

l' as in the proof of Lemma (7.12)). Then applying Theorem 7 yields the
desired result, which completes the proof of Theorem 8. q.e.d.
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