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COMPUTATIONS ON THE TRANSVERSE
MEASURED FOLIATIONS ASSOCIATED

WITH A PSEUDO-ANOSOV AUTOMORPHISM

LEV SLUTSKIN

The following is a brief summary of the work. Let g be a pseudo-
Anosov diffeomorphism of a compact surface S of genus p (p > 1).
First, we show how to make a partition of the lift of the unstable foliation
Φ^ associated with g to the universal covering space (the unit disk U)
into a countable number of layers approximating inaccessible points for
Φ^ at infinity (d U). We prove the following theorem.

Theorem 1. Let g*(z0) = z 0 . Then there exists an ascending sequence
of Cantor sets of measure zero on dU invariant under g*: Ύχ c T2 c
~Fn c -> , such that E = \JFn\A, where E is the set of the endpoints of
leaves of Φv and A is a countable set.

The regular step lines will be studied in the second paragraph, both in
U and on S. The idea of step lines belongs to Strebel (see [8]). We add
one more requirement that each step end at a singularity of φu . In many
aspects the regular step lines are similar to geodesies on a surface. For
example, we prove the following theorem.

Theorem 2. Let zQ, z e S. Then there exists a unique regular step
curve from z0 to z in each homotopy class of curves with fixed points at
zQ and z.

(Actually, z 0 in Theorem 2 is either a singularity of Φ^ or does not
lie on any horizontal or vertical leaf. But this requirement can be easily
lifted.) The regular step lines, also, minimize the total variations, both
of the first and second coordinates, in a homotopy class of curves with
fixed points at z0 and z. However, the regular step line from zQ to z
is different from the one from z to zQ. At the end of the second section
we use the regular step lines to parameterize U by sequences of real num-
bers, where g* has especially simple form. The above parameterization
induces a lexicographical order on points of U which agrees with the nat-
ural order on d U. We notice, here, that all results in the first two sections,
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except those related to the action of g, are automatically true for any pair
of transverse measured foliations which does not have any horizontal or
vertical connections between its singularities.

In the third section we obtain formulas for computing the fixed points
of both g and g* on S and in U, respectively, in terms of regular step
lines. In particular, a criterion will be given for a point z e S to be a
fixed point of g in the case where g does not rotate the direction from
z. This criterion can also be used for determining the periodic points of

g.
Finally, the above results will be applied for constructing algorithms for

determining g(z), g*(z), and the fixed points of g and g*.

1. Partition of Φ^

Some of the results in this section have appeared in [7].
Let S be a smooth oriented compact surface of genus p {p > 1), and

g a pseudo-Anosov diffeomorphism of S. Consider Φ = (Φ^, Φs), the
pair of transverse measured foliations associated with g, which increases
lengths along Φ^ and decreases them along Φs by the same factor. Let
U, the unit disk, be the universal covering space of S. Consider g*, a
lift of g to U. Then Φ^ and Φs may be lifted to a pair of transverse
measured foliations in U, for which we will keep the same notation. Bers
[1] made an observation that Φ can be viewed as the union of the hori-
zontal and vertical geodesies associated with a quadratic differential on a
conformal structure on S. Thus we can apply the results from [5] to study
the boundary behavior of leaves of Φ . We recall, now, some properties
of the leaves of Φ^ in U (see Marden and Strebel [5]).

(a) Every leaf γ of Φ^ from a point in U tends to its endpoint γe , a
uniquely determined point on d U.

(b) Let yχ, γ2 be two leaves of Φ^ from the same point in U. Then
7j, γ2 have different endpoints on d U.

(c) Divergence principle for the endpoints. If a is a closed segment
on a leaf of Φ^ , and βχ, β2 are the leaves of Φs stemming from the
endpoints of a, then βχ and β2 converge neither inside U nor on its
boundary.

A leaf which passes through a singularity of g* is said to be critical.
Let z € U. Then n(z) denotes the number of leaves of Φ^ from z .

Definition. z 0 e U is called a nice point if it is either a singularity of
Φ or it does not lie on any critical leaf of Φ^ or Φs .
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FIGURE 1

We now show how to make a partition of Φ^ into an infinite countable
number of layers (see Figure 1). This partition is uniquely determined by
an arbitrary nice point zQ e U. The collection of finitely many leaves
of Φ^ from z0 form Φ o , the zero layer of Φv with respect to z0.
Then there exist n(z0) leaves of Φs from z 0 : βχ, β2, , β, >. The
collection of all leaves of Φ ^ Φ Q through the points on β{, β2, , βn{z }

form Φ j , the first layer of Φv with respect to z0. Consider γ e Φ{.
Then there are two possibilities: either γ is not a critical leaf or there is
a singular point z which lies on γ. In the latter case there are n(z) - 1
leaves of Φ^ from z which do not intersect any of β{, β2, , β,z *.
They comprise n(z) - 2 sectors around z. No point inside these sectors
belongs to any leaf from Φ{. In each of these sectors we consider the
leaves of Φ^ of the first layer with respect to z. We repeat the same
procedure at each singular point of Φ j . The collection of all leaves of
Φ^ obtained in this manner form Φ 2 . When we iterate the process we
obtain Φ 3 , Φ 4 , , Φn, . On each step of iteration Φn (n > 0) is
composed of leaves of the first layer with respect to singular points of

Theorem 1.1 (Slutskin [6]). Φ o , Φχ, , Φn, form a partition of
Φv, i.e., Φu = UΦ n and Φt ΠΦ = 0 , where i, j = 0, 1, 2, , and

Let z be a singular point of Φ n (n > 0).. Consider the sectors

Sx, S2, , Sn,z)_2 around z, which do not have inside leaves of Φn .

We call B(z) = S{ U S2 U U Sn{z)_2 the bud centered at z of order n

(with respect to z0).
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Lemma 1.1. Let B(z) be the bud centered at z of order n (n > 0).
Then there exists a uniquely determined descending sequence of n buds:
B(zx) D D B(zn_x) D B(z), where B{zt), 0 < i < n is a bud of order
i.

Proof. The existence follows from the definition of the partition. The
uniqueness is implied by the fact that two different buds of the same order
do not intersect, q.e.d.

We say that x e d U is an inaccessible point for Φv if it is not the
endpoint of any leaf of Φ ^ . Let Ein denote the set of inaccessible points
for Φ ^ . ThenE = dU — Ein is the set of the endpoints of leaves of Φ^ .

Lemma 1.2. The endpoint of any leaf of Φs is an inaccessible point for

<v
Proof Let x e d U be the endpoint of a leaf β e Φs. If β is a critical

leaf, then we consider the partition of Φ^ with respect to the singularity
on β . Otherwise, we consider the partition of Φ^ with respect to a point
on β, which does not lie on a critical leaf of Φ^ . In either case it follows
from the construction of the partition that x is an inaccessible point for
Φ ^ . q.e.d.

We need the following well-known fact from the theory of discrete
groups (see Ford [4]).

Let G = G(S) be a Fuchsian group corresponding to S in U. If A c
dU is invariant under G (G(A) = A), then A is everywhere dense in
dU.

Corollary. E and Ein are everywhere dense subsets of dU.
Theorem 1.2 (a criterion for a point on d U to be an inaccessible point).

x e dU is an inaccessible point for Φv iff either x is the endpoint of leaf
of Φs from z0 or the endpoint of a critical leaf of Φs, or there exists an
infinite descending sequence of buds with respect to z0:

(1.1) B{yx)DB(y2)D.:DB{n)D:-

where B(yn) is a bud of order n, such that x = Γ\B(yn). In this case the
sequence (1.1) is uniquely determined by x.

Proof 1. Let xdU be an inaccessible point for Φ^ . We showed in
[6] that in this case, either x is the end point of a critical leaf from z0

or x is inside a bud of the first order. By continuing in the same manner
we either find the critical leaf with x as its end point or there exists an
infinite descending sequence of buds B(yx) D B(y2) 2 2 B(yn) D ,
such that x enB(yn).

2. Let x € Γ\B(yn). Since B(yn+ι) nΦn = 0 , it follows from Theorem
1.1 that (Γ\B(yn)) Π U = 0 , or the same, f]B(yn) c dU. First we prove
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that f]B(yn) may contain only inaccessible points for Φh. Indeed, let
us assume that x e f\B(yn) is the end point of a horizontal leaf γ.
Thenγ e B(yn)9 n = 1, 2, ••• . It implies that γ e f\B(yn) and this
contradicts the fact that Γ\B(yn) c dU.

Now, we show that f)B(yn) is a point on d U. J5Cvn) Π d U is a closed
arc for any n > 0. It follows that Γl^O^) i s either an arc or a point on
dU. If Π^O^) is a n a r c> then it contains, by Lemma 1.2, the points of
£ , a contradiction.

The unique representation of x by a sequence of type (1.1) follows
from the fact that two buds of the same order do not intersect, q.e.d.

"Either" and "or" in the statement of the theorem are not mutually
exclusive. As it can be seen from the proof, only the end points of the
leaves of Φs which stem from z 0 and from the centers of the buds and
inside them cannot be represented as descending sequences of buds of type
(1.1).

Corollary 1. Let x e dU not be the common point of a sequence of
buds of type (1.1). Then x is the end point, either of a leaf of Φv or of a
critical leaf of Φs which is inside the bud centered at its singularity.

Corollary 2. With the exception of a countable subset of dU each in-
accessible point is the common point of a descending sequence of buds of
type(lΛ).

Let En = En(z0) (n > 0) be the locus of the end points of the leaves
of Φ n . It follows that E = |J En . The isolated points of En are the end
points of those critical leaves of Φn which are inside the buds of order
n . Let E'n = En\{its isolated points} . Take Fn = Ex U U En_χ U E'n .
It follows that Fn c Fn+ι. Consider Tn. Ύn is obtained from Fn by
adding the end points of the leaves of Φs which stem from z 0 and from
the centers of the buds of the first n -1 orders and inside them. It follows
that ~Fn\Fn is, at most, a countable set, and it implies that E = \jTn\A,
where A9 A c \j7n, is a countable subset of dU. From Corollary 1
to Theorem 1.2 we can conclude that x e dU may be represented as a
sequence of buds of type (1.1) iff x e d U\ (J Fn .

Theorem 1.3. Tn is a Cantor subset of dU.

Proof. Since ~?n\A c E, it follows that Tn is totally disconnected.
Now let us show that Fn does not contain isolated points. Let x e dU
be an isolated point of Ei9 i <n . It implies that x is the end point of a
critical leaf from the singularity which is the center of a bud of order i.
Then x is an accumulation point of Ei+ι. q.e.d.

Consider the Riemannian metric on S given by the formula ds2 =
dx2 + dy2, where dx, dy are the linear elements determined by the
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dU

FIGURE 2

transverse measures on Φs and Φ ^ , respectively. For this reason, we
will call leaves and segments of Φ^ horizontal and those of Φs vertical.
We keep the same notation ds for the lift of ds to U. Let x, y e S.
Then there exists a unique ate-geodesic on S which connects x and y
(see Strebel [8]).

Theorem 1.4. E has a zero measure on dU.
Proof. It is enough to prove the theorem for the end points of the leaves

of Φ^ passing through a rectangle Π which does not contain singularities
inside it. When we move along the leaves transverse to the vertical sides of
Π towards dU (Figure 2), the total sum of segments transverse to them
remains unchanged in the ds-metήc and equal to the length of β, the
vertical side of Π. It follows that their total Euclidean length approaches
zero uniformly.

Corollary. Tn has a zero measure on dU for any n>0.

2. Regular step lines

In order to understand how a lift of a pseudo-Anosov diffeomorphism
acts on 17, we have to introduce a notion of a regular step line from a
nice point z0.

Definition 1. A curve in U consisting of a vertical and a horizontal
segments which intersect at their end points is called a step. We always
assume, if it is not said otherwise, that the vertical segment comes first.

Definition 2. A connected subset in U composed of a finite sequence
of steps is called a (finite) regular step line from z0 (without remainder) if
the following three conditions are satisfied:

(i) the first step begins at zQ

(ii) each step ends at a singularity;
(iii) (the angle condition) the angle between the horizontal segment of the

preceding step and the vertical segment of the succeeding step is greater
than π/n(z), where z is the joint singular point, i.e., the vertical segment
of the succeeding step does not belong to any of two sectors formed by the



TRANSVERSE MEASURED FOLIATIONS 365

FIGURE 3. The angle condition

horizontal segment of the preceding step and by the adjacent to it critical
horizontal segment from the joint point of the preceding and succeeding
steps. See Figure 3.

Definition. The curve on S satisfying conditions (i)-(iii) is called a
regular step curve on S.

It follows that the projection of a regular step line on the underlying
surface S is a regular step curve.

If we allow the number of steps to be infinite we obtain an infinite
regular step line from z0. Let L be a regular step line. Then ord(L)
denotes the number of steps of L. It follows from how we defined the
partition of Φ^ with respect to zQ that a regular step line of order n
from z 0 determines in a unique way a descending sequence of n buds
of type (1.1), such that the end of each step is the center of a bud in the
sequence. When L is an infinite regular step line, then by Theorem 1.2, L
approaches an inaccessible point on d U which is the point of intersection
of the corresponding infinite descending sequence of buds. Hence we have
the following lemma.

Lemma 2.1. (a) Let zQ be a nice point of U and z, z eΦn, a singular
point of Φ. Then there exists a unique regular step line L from z0 to z
such that ord(L) = n.

(b) There is the one-to-one correspondence between infinite regular step
lines from zQ and descending sequences of buds of type (1.1) in U, such
that if x edU is the common point of a descending sequence of buds, then
the corresponding infinite regular step line approaches x.

Corollary 1. An infinite regular step line approaches an inaccessible
point of dU.

Corollary 2. Any inaccessible point of dU, except a countable number
of them, is uniquely determined by the infinite regular step line approaching
it.

Definition. Let L be a regular step line from z 0 to zχ. l! = LUR
is called a regular step line (with remainder) if R c B(z{) (the remainder)
is one of the following:
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(i) a horizontal segment or leaf from zχ

(ii) a vertical segment or leaf from zχ

(iii) a union of a vertical segment from zχ and a horizontal noncritical
segment or a leaf from the other end point of the vertical segment.

The following theorem follows from Theorem 1.1, Corollary 1 to The-
orem 1.2, and Lemma 2.1.

Theorem 2.1. Let z 0 be a nice point of U.
1. Let z e U. Then there exists a unique regular step line L from zQ

to z, and L has a remainder iff z is a regular point of Φ.
2. Suppose that z e dU and z is not the common point of a sequence

of buds of type (1.1). Then there exists a unique regular step line with
remainder from zQ to z.

3. Suppose that z e dU and z can be represented as the common
point of a sequence of buds of type (1.1). Then there exists a unique infinite
regular step line from z0 to z.

If we consider the projection of the regular step line from z0 to z not
S, we obtain the following corollary.

Corollary. Let zQ be a nice point on S, z e S, and a a path from
zQ to z. Then there exists a unique regular step curve {with or without
remainder) leading from z0 to z and homotopic to a.

Lemma 2.2. (a) Let L be α regular step line from z0. Then g*(L) is
a regular step line from g*(z0) of the same order.

(b) Let L be a regular step line with remainder. Then g*(L) is a regular
step line with a remainder of the same type as L.

Proof, g* leaves invariant Φ^ and Φs and interchanges the singu-
larities of Φ. The angle condition is, obviously, satisfied.

Corollary 1. Let ze Φn(z0). Then g\z) e Φn(g*(z0)).
Corollary 2. Let g*(z0) = z 0 . Then g* leaves invariant the layers of

Corollary 3. Let g*(zQ) = zQ. Then g\En) = En and g*{Fn) = Fn .

Theorem 2.2. Let g*(zQ) = zQ. Then there exists an ascending se-

quence of Cantor sets of measure zero on dU invariant under g*: Fχ c

F2 "' - Fn Q - - > such that E = \jTn\A, where A is a countable set.
Proof. It follows from Theorems 1.3, 1.4, and Corollary 3 to Lemma

2.2. q.e.d. _
We show, now, how to parameterize points in U by using regular step

lines from zQ. First of all, we number the angles about z0 by integers
from 1 to n(zQ) moving in the positive direction. Let z be a singular
point of Φ different from z 0 . Then we number all angles about z, except
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n(z)-2

the two adjacent to the last horizontal segment of the regular step line /
from z 0 to z , by integers from 1 to n(z) - 2, moving in the positive
direction. See Figure 4.

Let yQ, y χ, 9yn, where y0 = z0 and yn = z, be the set of singulari-
ties of Φ on /. Let Sk9 0 < k < n , be a step of / from yk_χ to yk . Then
/ and z are both uniquely determined by a sequence of w 4-tuples of
r e a l n u m b e r s : [il9sl91?1

9/x]9 [i2,s2, /2~\ /2], •• , [in, sn, l~s», / £ ] ,
where for any /c, 0 < k < n, ik is the number assigned to the an-
gle about yk_ι which contains the vertical segment of Sk, sk is equal
to 1 or - 1 , depending on whether the horizontal segment of Sk is to
the left or to the right from its vertical one. Finally, lk and fk are the
lengths of the vertical and the horizontal segments of Sk respectively.
In the same manner an infinite sequence of 4-tuples: [iχ, s{, /|~S|, /{],

[i2 9 s2, l2

Sl, 419 '" > [in'
 sn' ^nS"' ^ 1 ' ' " c a n ^ e a s s i g n e d t 0 the limit

point of an infinite regular step line on d U.
Now, let z e U be such that the regular step line / from z 0 to z

has a remainder R. Let z 0 , yχ, , yn be the set of singularities of Φ
on /. If R is a horizontal segment or leaf from yn , then we assign a
4-tuple (/, 2, 0, / ) to i?, where / is the number assigned to the angle
about yn which is to the right from R (i = 0, when R is to the right
from the first angle about yn), and / is the length of R (when R is a
leaf / = oo). Let R be a vertical segment or leaf from yn . Then the
4-tuple (/', 0, /, 0) is assigned to R, where / is the number assigned to
the angle about yn which contains R, and / is the length of R (when R
is a leaf / = oo). Finally, let R be a union of a vertical segment /? from
yn and a horizontal noncritical segment or a leaf α. Then R is param-
eterized by the 4-tuple (/, s, Γs, / ) , where / is the number assigned
to the angle about yn which contains R, s is equal 1 or - 1 according
as a is to the left or to the right from β, / is the length of β , and /
is the length of a (when a is a leaf / = oo). We have obtained a sequence
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assigned to z , where ([i\ , sχ, l~*1

9/x]9[i29s29 l2

h, 41 > * * * >Un,sn> I?* >
/])7 is the sequence of n 4-tuples assigned to v , and [a, b, c, d] is
the 4-tuple assigned to R. Thus we have obtained a parameterization of
U. We can consider the lexicographical order on points of U induced by
this parameterization. The following theorem is self-evident.

Theorem 2.3. The lexicographical order on points of dU coincides with
their natural order moving in the counterclockwise direction within each
sector about z 0 .

Let 3(z 0), 3(g*(z0)) be parameterization of V corresponding to z0

and g*(zQ)9 respectively, and let Ai be an angle about z 0 in 3(z 0 ).
Then we define g*(i) as the number assigned to g*(At) in 3(g*(z0)).
When g*(z0) = z 0 and g* preserves directions from z 0 , it implies that
g*(i) = i. Since /k is uniquely determined by ik9 sk and lk, we can
omit it, i.e., [ι., sk, lk

h] = [ik, sk, l~h ,/k]. __

Theorem 2.4 (Computational formulas for g*(z)). Let z e U.
1. Suppose that z eU is a singularity ofΦ. Let

z = ([/' , s*, l7Sι], [L, 5 9 , /-Γ1*2], , [/„, sn, /Γ 5 / I ]) r .

Then

2. Suppose that z e U, such that the regular step line from z0 to z has
a remainder. Let

z = ( [ i , , *,, / - * ' ] , [i2, s2, l~s>], • • • , [in, sn, / ; ' • ] , [ a , b , c , d])Zo.

(a)Ifabcd = 0, then

8*(z) = ( l / ( / i ) , «,, ( A " ' / , ) " ' 1 ] , [i2,s2, {λ-ιl2)~h], ••• ,

{b)Ifαbcd^0, then

g * { z ) = ( [ / ( / , ) , * , , ( λ ' 1 ! ^ ] , [ i 2 , s 2 , ( λ ' l l 2 ) ' S 2 ] , ••• ,

3. Suppose that z edU is the limit point of an infinite regular step line.
Let

^ = ( [ / , , s x , /"*• ] , [ i 2 , s 2 , q h ] , • • •, [ i n , s n , ι ; s " ] , - • • ) , .
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Then

g\z) = ([g\iι),sι, (A"1/,)"'1], [ί2, s2, (λ-Ί2Γ% - ,

Let z t be a singular point of Φ different from z 0 . Consider
/, the regular step line from z 0 to zχ. Then g* preserves the angles
and orientations between corresponding segments of / and g*(l). At the
same time g* increases the lengths of horizontal segments and decreases
the lengths of vertical ones in λ times. It implies 1 and 3. Since g*
preserves a type of remainder, we have 2.

3. Computational formulas for the fixed point of g*

Φ defines a structure of a Riemann surface on S in the following way.
The open rectangles with the horizontal sides on leaves of Φ ^ , and the
vertical sides on leaves of Φs, which do not have inside singularities of
Φ, define local coordinates on S outside critical points. If we add to them
the interiors of the unions of the closed rectangles around singular points,
we obtain a Riemann surface X. Now, we define a quadratic differential q
on X. q = dz1 in any rectangle which does not contain a singular point,
and q = [l/4(n + 2)2]zn dz2 in a neighborhood of a singular point, where
n + 2 is equal to the number of the leaves of Φ ^ Φ ^ ) stemming from
the singular point. It follows that the horizontal and vertical geodesies of
q coincide with the leaves of Φ^ and Φs, respectively. We call q a
quadratic differential associated with Φ on S. We notice that ds = \y/q\.

Let γ be a curve on S which connects z 0 with z . Then / Φ ^ , / Φ s

denote the total variations of the second and first coordinates along γ,
respectively. Thus for a regular step line L, fL Φv = Σbt and fL Φs =
Σat, where Σat, Σb. are the sums of the lengths of horizontal and vertical
segments of L, respectively.

Theorem 3.1. / Φ^, fγ Φs attain their minimum on the regular step
line L from z 0 to z among all curves on S in the same homotopy class
as L with fixed z 0 and z .

Proof. It is enough to prove the theorem for fL Φv .
Lemma. Let zχ e U be a singularity of Φ which does not lie on V,

where V is a regular step line in U, which is projected on L. Then at
most one horizontal leave from zχ may intersect L* with the intersection
being a single point.
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FIGURE 5

Proof. It follows from how we defined the partition of Φ that all hori-
zontal leaves from zχ belong to the layer of the same order, say Φn . Since
different steps of L belong to different layers, the horizontal leaves from
zχ may intersect L only at inner points of one of its vertical segments,
say β. Thus no two horizontal leaves from zχ may intersect β, as it
would contradict the divergence principle, q.e.d.

Let γ be a curve in U between z 0 and z. We can assume that γ is a
simple curve. We show that fL Φu < f Φv . By substituting, if necessary,
a step line (not regular) for γ, with the same total sum of the lengths
of vertical segments, we can achieve that L would break into a finite
number of pieces, each one having only its end points common with γ.
Let Lr be such a piece and γ a piece of γ which connects the endpoints
of l!. Let Γ be the Jordan domain bounded by / and L1. We can
assume that there are no singularities inside Γ. Indeed, let zχ be such
a singularity. Consider y p y 2 , , yn the first points of intersection of
horizontal leaves from zχ with dΓ. We have obtained n Jordan domains
bounded by pieces of / , l! and horizontal segments from zχ. It follows
from the lemma that each of them has on its boundary a piece of γ . Thus
it is enough to give a proof for each domain separately, as the horizontal
segments from zχ do not affect the total sum of the lengths of vertical
segments of / . In this manner we get rid of all singularities inside Γ.
See Figure 5.

Now, we draw the a, the horizontal leaf from each singularity y of ll,
except z 0 , which is adjacent to the horizontal segment of L1 leading to y
and inside Γ. It may be shown, in the same way as we did it in the lemma,
that a does not intersect Lr, but at y. Again, we have a subdivision of
Γ into a finite number of Jordan domains with the unchanged total sum
of the lengths of vertical segments of / . Thus it is enough to prove the
theorem for the case where Lf is a step, y/q maps Γ conformally onto
a Jordan domain in the complex plane, with L1 mapped onto a right
angle, q.e.d.

In the rest of the section we obtain formulas for determining the fixed
points of both g* and g in U and S, respectively. Let z 0 e U be the
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fixed point of g*. We can assume that g* does not rotate stable (unstable)
directions from z 0 . Otherwise we consider / = (g*)n for some n > 1.
It follows from Thurston's theorem (see §4) that z0 is the fixed point of
g* iff z0 is the fixed point of / .

Lemma 3.1. Let zQ be the fixed point of g* in U, such that g* does
not rotate stable {unstable) leaves from z0, and let L be the regular step
line from a nice point zχ G Φ ^ Z Q ) to g*(zχ). Let d, d1 be, respectively,
the lengths of β and aχ, the vertical and horizontal segments of the regular
step from z0 to zχ, respectively. Then

(31) d-^L d>-^n-^i
(J.i) a~ λ-V a ~ λ-l '
where Σbt is the total sum of vertical segments of L, Σai is the total sum
of horizontal segments of L, and an is the length of the horizontal segment
of the last step of L.

All singularities of L belong to Φχ (z 0 ). They are all in the same sector
about z0 as zχ and on the same side of β as zχ. Let z2, , zn be
the singularities of L moving from zχ to g*{zχ). Then the correspond-
ing points of intersection of the horizontal leaves aχ, a2, , an from
zχ, z2, '- , zn with β monotonically approach z 0 . The horizontal seg-
ment of each step of L, except the last one, is on the same side of its vertical
segment as the horizontal leaf from the beginning of the step which intersects
β. For each i, I <i <n, a( composes the angle equal to 2π/n(z) with
the corresponding horizontal segment of L, and π/n(z) with the vertical
one.

Proof. We will actually construct L. Let c be the length of the vertical
segment on β between the points of intersection β with aχ and c/,the
horizontal leaf from g*(zχ). Now, we draw βχ, a vertical leaf from zχ

in the sector which borders aχ and contains z 0 . βχ either intersects a
or a bud of the first order with respect to z 0 . Indeed, otherwise, there are
points on βχ at the distance more than c from zχ which belong to leaves
of Φx. Then the points of intersection of the horizontal leaves from them
with β are closer to z0 than g*(zχ), contradiction.

Let βx intersect a . Then L consists of one vertical segment on βχ

and one horizontal segment on a . Assume that β\ does not intersect a .
Then βx intersects a bud of the first order with respect to z 0 . Let B(z2)
be the first bud that βχ intersects, and yx is the point of intersection
of βx with a horizontal leaf from yχ. Then the first step of L begins
at zχ, ends at z 2 , and consists of the vertical segment on βχ and the
horizontal segment between yχ and z 2 . Let aχ, bx be the lengths of
the corresponding horizontal and the vertical segments. It follows that the
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length of α 2 is equal to d' - aχ9 and the length of the vertical segment
on β between aχ and a2 is equal bx. Indeed, look at Π, the five-
sided polygon composed, successively, of the segments on aχ, βχ, the
horizontal segment between yχ and z 2 , the horizontal segment from z 2 ,
and the segment on β. Π does not contain any singularity within it, since
the horizontal leaves from such a singularity might intersect Π only at zχ

or z 2 , which is impossible, y/q maps Π onto a rectangle in the complex
plane (see Figure 6).

We continue, now, the same procedure from z 2 . In this way we get
singularities of Φχ: z 2 , , z{, , all at distance less than d' along
horizontal leaves to the intersection with β. It follows that there is only
a finite number of them, so that we have constructed a regular step line
L from zχ to g*(zχ). Then ord(L) = n, and therefore the length of the
horizontal segment from the juncture point of the last segment of L to β
is equal to d! -aχ-a2 an_x. From the other side the same distance

is equal to λd' - aa . Thus we have obtained the first formula in (3.1). By
the same token the length of the vertical segment on β between aχ and
a is bχ + b2 + + bn . From the other side it is d{\ - λ~ι). It yields
the second formula in (3.1). The description of L in the lemma follows
from Figure 6. q.e.d.

Consider {g*)~ι. Then Φ^ becomes Φ 5 and vice versa. Let Φ[(zχ)
denote the first layer of Φ' = (Φs, Φv) with respect to zx. Consider a
nice point z e U. It follows that z1 e Φ\(zχ), iff zχ e Φx{z). Let A
be the step from zχ to z in Φ\(zx). Thus z is uniquely determined
by the following four parameters: the length of the vertical segment of A,
the length of the horizontal segment of A, the side of the vertical segment
of A that its horizontal segment lies on, and the sector about zχ that A
belongs to.

Theorem 3.1 (A criterion for a point in Φ\{zχ) to be the fixed point
of g*). Let zx e U be a nice point not fixed by g*, and L the regular
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step line from zχ to g*(zχ). Then zoeΦ[(zχ) is the fixed point of g*,
such that g* does not rotate the direction from z0, iff A, the step from zχ

(first the horizontal segment aχ of length d', then the vertical segment β
of length d), such that aχ composes the angle π/n(zχ) with the vertical
segment of the first step of L and lies on the same side of it as its horizontal
segment, and β is on the same side of aχ as the vertical segment of the
first step of L, where

. 2an-Σai λΣb,

Σa is the total sum of horizontal segments of L, Σbi the total sum of
vertical segments of L, and an the length of the horizontal segment of the
last step of L, leads to z0, and the following hold:

1. Both the singularities of L and g*(zχ) belong to Φχ(zQ), and they
are in the same sector about z0 as zx and on the same side of β as zχ.

2. Let z2, - , zn be the singularities of L moving from zχ towards
g*(zχ). Then the corresponding points of intersection of the horizontal
leaves aχ, a2, , an, a = g*(aχ), from zχ, z 2 , , zn , g*(zχ) with
β monotonically approach z0.

3. The horizontal segment of each step of L, except the last one, is on
the same side of its vertical segment as the horizontal leaf from the initial
point of the step which intersects β.

Proof Necessity follows from Lemma 3.1. In order to prove sufficiency
we consider the Jordan domain D bounded by L, aχ, a , and β. D
does not contain a singularity. Indeed, let z £ D be a singularity of Φ .
α 2 , , an divide D into n Jordan domains. No horizontal leaf from
z may intersect any of aχ, a2, , an, a . It implies that at least two
of them must intersect either β or the same vertical segment of L. But
this contradicts the divergence principle.

Let d" denote the length of a . From the same argument as in Lemma
3.1 it follows that d" = d! + 2an - Σat. By (3.1), d" = λd'. Thus β is
left invariant by g*. Now, let zf = g*{z0). g*{β) is the vertical segment
of length λd between x, the point of intersection of a with β, and z .
The distance between x and z 0 is d - Σbt. By (3.1) we hence have that
z' = z0. q.e.d.

The following theorem is an analogue of Theorem 3.1 for surface S.
Theorem 3.2 (A criterion for a point of S to be a fixed point of g).

Let zχ be a nice point of S. Then z0 (Φ zx) is a fixed point of g, such that
g does not rotate the directions from zQ, iff there exists Lf a regular step
line from zχ to g{zχ), such that A, the step from zx (first the horizontal
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segment aχ of length d', in the same direction from zχ as the preimage
of the horizontal segment of the last step of L. then the vertical segment
β of length d), where aχ composes the angle π/n(z{) with the vertical
segment of the first step of L and lies on the same side of it as its horizontal
segment, and β is on the same side of aχ as the vertical segment of the
first step of L, where

f_2an-Σai λΣb,

Σa( being the total sum of horizontal segments of L, Σbi the total sum of

vertical segments of L, and an the length of the horizontal segment of the

last step of L, leads to zQ, and the following hold:

1. Let z 2 , , zn be the singularities of L moving from z{ towards

g*(zχ). Then the regular step lines from z 0 to z 2 , , zn, g(zχ) homo-

topic to the curves composed of A~ι and the parts of L from zχ to the

corresponding singularities are all the steps whose vertical segments belong

to β, and their horizontal segments are on the same side of β as aχ.

2. The juncture points of the steps in 1 from z0 to zχ, z 2 , , zn,

g(zx) on β monotonically approach z 0 .
3. The horizontal segment of each step Aχ of L, except the last one, is

on the same side of the vertical segment of Aχ as the horizontal segment of
the step from z0 to the initial point of Aχ.

Proof First, we notice that the last three conditions of the theorem
are equivalent to the corresponding conditions of Theorem 3.1. The suf-
ficiency now follows from Theorem 3.1. Since a is dense in S (see [3]
or [8]), there exists step A from zχ to z0 (first a horizontal, then a ver-
tical segment). Let ZQ be the end point of the lift of A to U. Then
π(z*) = z 0 . Consider the lift g* of g to (7, such that £*(*o) = zo
Now, we can apply Lemma 3.1 to the regular step line L from z* to

g (*i)
Corollary. The set of the endpoints of the steps from zχ satisfying con-

ditions (3.1) contains all fixed points of g.
Note. Consider gn , n > 0. gn is a pseudo-Anosov diffeomorphism of

S with a stretching factor λn , and Φ is the pair of transverse measured
foliations associated with gn . Then Theorem 3.2 implies a criterion for
z 0 € S to be a periodic point of g, if we substitute λn for λ in (3.1), as
gn leaves invariant the directions from z 0 for some n > 0. In this case
we need not assume any a priori knowledge about g, as we can choose a
singularity of g as z, and take n > (4p - 2)! (see the next section). In
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particular, Theorem 3.2 for n = (4/7 - 2)! yields, among other periodic
points of g, all its fixed points.

4. Algorithms

We assume, till the end of the section, that we "know" Φ either in U
or on S (or both). We discuss here two algorithms: the first one how to
determine g*(z)(g(z)), and the second how to find the fixed points of

g*(g)
1. An algorithm for finding g*(z),for any z e U, when g*{zχ) and

g*-image of at least one direction from zχ are known for zχ e U.
Note. We assume that zχ is a nice point, though the same construction

can be carried out for any zχ if in the definition of regular step line we
allow a critical segment, horizontal or vertical, to precede its first step.

Let L be a regular step line with or without remainder which leads
from zχ to z . Then g*(L) can be drawn from g*(zχ) by increasing
horizontal segments and decreasing vertical segments in λ times, where λ
is the stretching factor of g. We note that while constructing g*{L) we
must preserve the orientation of segments within each step and the angle
between two adjacent segments from different steps.

Now, we discuss how to construct a regular step line L from zχ to z.
(a) Let zχ e S. Then move along a vertical leaf β from zχ until we

reach a small neighborhood of z, where we can connect β with z by a
horizontal segment.

(b) Let zχ e U. Then a singularity of the first order with respect to
zχ characterized by the property that one of the horizontal leaves from it
intersects a vertical leaf from zχ. Now, moving away from z = 0, we try
all the singularities of Φχ which we come across until we find the one, say
z2, with the bud B(z2) containing z. The first step of L consists of the
vertical segment from zχ to x, the point of intersection of a vertical leaf
from zχ and a horizontal leaf from z2 , and the horizontal segment from
x to z2 . We continue the procedure in B(z2) looking for the bud of the
first order with respect to z2 which contains z. If z is a singularity, we
obtain, finally, the regular step line from zχ to z. Otherwise, we reach
the point where a horizontal leaf from z intersects a vertical leaf from the
center of the last bud in the sequence. In this case we obtain the regular
step line with remainder from zχ to z .

2. An algorithm for finding the fixed point of g* in U, when g*(zχ)
and g*-image of at least one direction from zχ are known for zχeU.



FIGURE 7

We recall Thurston's classification theorem for lifts of pseudo-Anosov
diffeomorphisms.

Theorem ([2], [9]). 1. Suppose that g* does not have fixed points in
U. Then g* has exactly two fixed points on dU; one is an attracting
fixed point, and the other is a repelling fixed point. All other points of TJ
converge to the attracting fixed point.

2. Suppose that g*(z0) = z 0 , zQe U. Then z 0 is the only fixed point
of g* in U. g* has 2n periodic points on dU which coincide with the
endpoints of the leaves of Φv and Φs from z0. g* permutes the fixed
points on dU in the same manner as g* permutes the leaves of Φv and
ΦsfromzQ.

We are going to construct an algorithm for determining if g* has the
fixed point in U and locating it when it does. First of all, we substitute
/ = (g*)(4p~2) ! , 4 / ? - 2 being the upper bound for the number of leaves
of Φ^Φ^) stemming from a point of U, for g* in order to get rid of
a possible rotation with a nonzero angle about the fixed point. It follows
from Thurston's theorem that zQ e U is the fixed point of g* iff z0 is
the fixed point of / . We recall that Φ0(z) denotes the union of leaves of
Φ^ stemming from z.

Lemma 4.1. Let f have a fixed point in U. Then f~ι(ΦQ(z)) and
/(Φ 0(z)) are in different sectors about a nice point z iff z belongs to the
layer of the first order with respect to the fixed point off.

Proof Let z0 be the fixed point of / . If z e Φ{ (z 0), then f~l{Φ0{z))
and /(Φ0(z)) are in two different sectors about z which border the hor-
izontal leaf from z which intersects a vertical leaf from z 0 . See Figure
7.

Let z e Φn{z0), n > 1. Then there exists B, the bud of the first order

with respect to z0 which contains Φ0(z). Look at f~l(B) and f{B).
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They belong to the same sector about z which contains z 0 . It follows
that f~ι(Φ0(z)) and /(Φ 0(z)) are in the same sector about z which
contains z 0 .

Lemma 4.2. Let f not have the fixed point in U. Then there exists z,
a singularity ofΦ, such that f~ι(Φ0(z)) and /(Φ 0(z)) belong to different
sectors about z.

Proof. Let z be a singularity of Φ such that the attracting and re-
pelling fixed points of / belong to different sectors about z (see [6]).
Then /(Φ 0(z)) belongs to the sector which contains the attracting fixed
point, and f~ι(Φ0(z)) belongs to the sector which contains the repelling
fixed point.

Corollary. There exists z, a singularity of Φ, such that f~ι(Φ0(z))
and /(Φ 0(z)) belong to different sectors about z. If f has the fixed point
in U, then z belongs to the layer of the first order with respect to the fixed
point of f.

(a) The unit disk U. Moving away from z = 0, we try all the singu-
larities of Φ which we come across until we find the one, say z , having
the property described in the corollary, i.e., such that /~ 1(Φ 0(z)) and
/(Φ 0(z)) belong to different sectors about z . Now, we connect z with
/(z) by the regular step line L, and, then construct a step A from z in
the manner as it was described in Theorem 3.1. Let zQ be the end point
of A. Now, we can apply the criterion of Theorem 3.1 to decide if z 0 is
the fixed point of / or not. If not, we can conclude from Lemma 4.1 and
Theorem 3.1 that / does not have fixed points inside U.

(b) The surface S. Let z € S be a nice point. First, we check all
singularities of Φ on being fixed points of g. Now, let gχ = g2. The
remaining fixed points of g are among the fixed points of g{. When we
go through all regular step lines from z to gx(z) and use the criterion of
Theorem 3.2 we obtain all fixed points of g. Let z 0 be a fixed point of
gχ. To guarantee the stability of the solution g(zQ) = zQ consider Π, a
rectangular neighborhood about z 0 . Take a rectangle Π' 3 zQ, Π ' c Π ,
such that g(Π') c Π. Then z 0 is a fixed point of g iff g(z0) c Π'.
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