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DISCRETE PARABOLIC GROUPS

B. H. BOWDITCH

0. Introduction

Let I be a complete simply connected Riemannian manifold of
pinched negative curvature (i.e., all the sectional curvatures lie between
two negative constants). The main aim of this paper is to show that any
discrete group of isometries of X fixing some ideal points is finitely gener-
ated (Theorem 4.1). The only interesting case is that of a discrete parabolic
group (preserving setwise some horosphere in X). In this case, by apply-
ing the Margulis Lemma (2.3), it follows that a discrete parabolic group
contains a nilpotent subgroup of finite index. We may identify this sub-
group as the group generated by those elements having "small rotational
part". In fact, the notion of the rotational part of a parabolic isometry will
be one of the main ingredients of the proof of the main theorem (see §3).

Conversely, it is well known that any (virtually) nilpotent discrete group
of isometries must be "elementary". In particular, some finite-index sub-
group must fix an ideal point. Thus, all discrete nilpotent groups are finitely
generated. This rules out the possibility of groups such as the rational num-
bers occurring as discrete groups. (Note that there is no purely topological
obstruction to this—see the end of §4.)

I suspect that one should be able to strengthen the conclusion of the
main theorem, to show that the quotient space of a discrete parabolic
group is always topologically finite, i.e., homeomorphic (or diffeomorphic)
to the interior of a compact orbifold. However, I do not have a proof of
this.

The case where X has constant negative curvature is a consequence
of the Bieberbach Theorem (§1). Proofs of the Bieberbach theorem usu-
ally proceed by an induction on dimension, and so an argument along
these lines would make essential use of the existence of totally geodesic
subspaces. Thus, for the variable curvature case, we will need another
approach.
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It turns out that both the upper and lower curvature bounds are essential
for the main theorem. In fact, it is possible for a noncyclic free group to
act as a discrete parabolic group in cases where we have an upper bound
on curvature (away from 0), but no lower bound (away from -oo), or
vice versa. Examples are due to G. Mess, and recent work of Abresch and
Schroeder, as we describe in §6.

The main result of this paper represents a step towards defining a nota-
tion of "geometrical finiteness" for manifolds of pinched negative curva-
ture, as I have described in another paper [3]. The concept of geometrical
finiteness first arose in the context of hyperbolic 3-manifolds, and readily
generalizes to hyperbolic orbifolds of any dimension (see [4] for an ex-
position of this). More recently, some interest in the variable curvature
case has arisen, particularly from the study of the symmetric spaces. A
consequence of our main theorem here is that a geometrically finite group
is finitely generated.

A brief summary of this paper is as follows. § 1 reviews the case of con-
stant curvature (i.e., hyperbolic space). §2 is a survey of simply connected
manifolds of pinched negative curvature. In §3, we define the notion of
the "rotational part" of a parabolic isometry. In §4, we reduce the main
theorem to the case of abelian parabolic groups. We complete the proof
in §5. Finally in §6, we describe counterexamples when there are no strict
curvature bounds.

Notation. Let Y be a Riemannian manifold. We shall write Isom Y
for the group of isometries of Y . Given x e 7 , w e write TχY for the
tangent space at x. Thus, TY = \JxeY TχY is the total tangent space. If
γ € Isom Y, then γ^ is the induced map on TY.

Suppose that Y is complete and simply connected, and has nonpositive
curvature. Then, any two points x, y e Y are joined by a unique geodesic
[x, y]. More generally, if x0,xγ, . . . , xm e Y, we write [x0, xv ...,xm]
for the piecewise geodesic path [x0, xχ] U [x{, x2] U U [xm_x, xm].
We write P(y, x): TχY —• TyY for parallel transport along the geodesic
[x, y]. We set

In other words, P{xm , xm_χ, , x0) is parallel transport along the path
[*0, xχ, , xm].

We shall use En to denote a Euclidean ^z-space, thought of as a Rie-
mannian manifold (without any preferred coordinate system). On the
other hand, R" will be thought of as an inner-product space over the real
numbers, R.
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1. The case of constant curvature

In order to give the heuristics of the proof of the main theorem, it will
be useful to refer to the case of constant curvature. In this section, we
give a brief survey of this case. Only the notation introduced in the next
paragraph will be directly relevant to the rest of this paper.

Let ( , •) be the standard inner-product on Rn , i.e., (ζ, ζ) = Σ"=ι £,-£,-

where ξ = {ζχ9 ••• , ξn) and ζ = (ζl9 . . . , ζn). Let S*' 1 be the unit

sphere {ξ e Rn\(ξ,ξ) = 1}. Given ξ, ζ G Sn~ι, we write Z(£, ζ) =

cos" ι(ζ9 ζ) e [0, π] for the angle between ζ and ζ. This gives the stan-

dard Riemannian metric on Sn~ι, so that Isom^"" 1 is the orthogonal

group O(n). Given A G O(ή), write

\A\=max{Z(ξ,Aξ)\ξeSn-1}.

Thus, for any A, B G O(n), we have

\A\ = \A~l\, \AB\ < \A\ + \B\, \BAB~l\ = \A\.

Given any θ > 0, write

Uθ = {AeO(n)\\A\<θ}.

Thus, as θ —> 0, the sets Uθ form a base of closed neighborhoods of the

identity in O(n).

Let En be an ^-dimensional Euclidean space. By a trivialization of

the tangent bundle, we mean a map φ: En x R" -> ΓEW such that, for

each x G E π , the map 0^ = </>(x, •): Rn -» 7^En is a linear isometry,

which sends the standard inner-product on R" to the Riemannian inner-

product on TχE
n . A trivialization is standard if, for all x, y G En ,

the map ΦyΦ~l: 7̂ .EW ~> Γ^E" is just parallel transport, P(y, x), along

the geodesic [x, y] . Clearly, there is precisely an 0{n) worth of such

standard trivializations. So, given a fixed trivialization, φ, we may define

the rotational part, θφ(γ), of any isometry γ e IsomE" according to

This gives a homomorphism

θφ: IsomE" ^O(n).

Given any θ > 0, and a subgroup Γ of Isom En, we let Γ^ be the
subgroup of Γ generated by those elements whose rotational parts lie in
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Uθ. (We may write Γθ = (γ e Γ| |θ^(y)| < θ).) Since Uθ is conjugacy
invariant, Γθ is defined independently of φ. Moreover, Γ^ is normal in
Γ, and its index is finite and depends only on θ and n (cf. Lemma 4.8).
The following result is standard (see [13], [6] or [4]).

Bieberbach Theorem (1.1). Suppose that the subgroup Γ C IsomE" is
discrete {or equivalently acts properly discontinuously on E π ) . Then, there
is a totally geodesic Γ- invariant subspace, μ,ofEn, with the quotient μ/Γ
compact. Moreover, there is some δ(n) > 0, depending only on n, such
that Γ~x is free abelian, and acts by translation on μ. Thus, μ/Γδ^ is
a compact Euclidean torus.

In particular, we see that Γ is finitely generated.
Now, let H" be an ^-dimensional hyperbolic space, and let H" be

the ideal sphere at infinity (see §2). We may represent H" as the upper
half-space R" = {ξ e Rn\ζn > 0}, with Riemannian metric \dζ\/\ξn\
where { = (ξ{, ••• 9ξn). Thus, H" is the one-point compactification,
<9R" U {oc}, of <9R" ={ξe Rn\ξn = 0} . If we put the standard Euclidean
metric in Rn , then any parabolic subgroup of Isom Hn , with ideal fixed
point oo, acts by Euclidean isometries on R" UdR" . From the Bieberbach
Theorem, we see that any discrete parabolic group acting on Hn is finitely
generated.

2. Review of negative curvature

In this section, we review some relevant results in negative curvature.
More details can be bound in [2] or [7].

Let (X, d) be a complete simply connected Riemannian manifold of
pinched negative curvature. We shall normalise the Riemannian metric so
that all sectional curvatures lie in the interval [-κ2, - 1 ] , where K > 1.
The exponential map based at any point x e X is a diffeomorphism from
the tangent space TχY onto X. Thus if X has dimension n, then it is
diffeomorphic to an open «-ball. In fact, X can be naturally compactified
by adding an ideal sphere Xf to X. Thus, X7 can be thought of as the set
of equivalent classes of (semi-infinite) geodesic rays in X, where the two
rays are regarded as equivalent if they remain a bounded distance apart
in X (and hence, in fact, converge exponentially). An element of Xj will
be called an ideal point. The set Xc = X U Xf has a natural topological
structure as a compact π-ball. By a subspace of Xc , we mean the closure,
in Xc , of a totally geodesic subspace of X.
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Now, X is a "visibility manifold". That is to say, any two distinct
points x, y e Xc may be joined by a unique geodesic, which we shall
write [x,y]. We shall call [x, y] a geodesic segment if both x and y
lie in Z , a geodesic ray tending to y if x e X and y e XI, or a W-
infinite geodesic if x , y e X 7 . We shall always assume that geodesies
are parametrized by the arc length. If xQ, xγ, , xm e Xc , we write
[x0, Xj, , xm] for the piecewise geodesic path [x0, x j u •U[jtw_1#/J .

For each x i n ί , the Riemannian metric gives an inner-product ( , ) χ

on the tangent space TχX. We call υ e TχX a unit vector if (v, υ)x = 1,

and write T^X for the unit tangent space {υ e TxX\(v , v)χ = 1} . Given

t>, w € 7^X, we write Δ(v, it;) = c o s " 1 ^ , w)x e [0, π] for the angle

between v and it;. Clearly, Δ(v, tu) + Z(-v, w) = π. If 5 : TχX -»> Γ^X

is a linear isometry, then we write |5 | = max{Z(ϊ;, Sv)\υ e TχX} .
If x, y G X , then parallel transport along the geodesic [x, y] gives us

an isometry

P(y,x):TχX^TyX.

More generally, if x0, Xj, , xm e X, we write

in other words, ^ ( x m , x m - 1 , , x0) is parallel transport along [xQ, xχ,

• '^mi-
Given x e X and y e Xc \ {x} , write xy for the unit tangent vector

at x in the direction of y. If y € Λf, then clearly P(y, x)3cy = -yx.
If y , z G ί c \ {x} , we write yxz = Δ(xy, xz) , i.e., the angle between
[x, y] and [x, z].

Lemma 2.1. For all κ>\, there is some K = K(κ) such that if x, y

and z are any three points of X, then

\P{x, z, y, x)\ < Kmm{d{x, y), d(y, z), d(z,

Without loss of generality, d(y, z) < min(rf(x, y), rf(x, z)).
Note that the triangle [x,y, z,x] spans a (ruled) surface, S = \J{[x, w] |
^ € [y, z]} , of area at most d(y, z ) . The total angular displacement of a
unit vector transported around the boundary of a surface S is at most the
area of S times the norm of the Riemann curvature tensor. This norm is,
in turn, bounded in terms of the pinching constants (cf. [5, Lemmas 6.2.1
and 6.7]). q.e.d.

We shall also need the following weak form of Toponogov's comparison
theorem [2].
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Proposition 2.2. Let (X, d) be as above, and suppose that xχ, x2, x3 e

X. Let x[, xf

2, x'3 be points in the Euclidean plane, (E 2 , deuc), such that

d(xt, xi+ι) = d?euc(* , x + 1 ) , for each i (taking subscripts mod 3). Then,

for each i, we have
XiXi+\Xi+2 - XiXi+\Xi+2 '

where of course -X X + ^ +2 mec*>ns the Euclidean angle between the seg-
ments [x'i+ι, x[] and [xM , xM].

In fact, we could replace the Euclidean plane by the hyperbolic plane in
the above theorem.

Suppose y e Xj . The set of all bi-infinite geodesies with an endpoint at
y gives a 1-dimensional foliation & , of X. This foliation is orthogonally
integrable—there is a codimension 1 foliation S? of X such that each leaf
S? meets each leaf of & orthogonally in a single point. Each leaf of S?

is a properly embedded C2-submanifold of X, and is C2-diffeomorphic
to R"" 1 . Such a leaf is called a horosphere about y.

Suppose a, β: [0, oo] —• Xc are geodesic rays tending to y, such
that α(0) and β(0) lie in the same horosphere. Then, for any given
t e [0, oo), the points a(t) and β(t) lie in the same horosphere. From
standard comparison theorems, one may deduce that d(a(t), β(t)) tends
monotonically to 0 as t —> oo. Moreover, there is some constant C > 0,
such that d(a(t), β(ή) < Ce~ι for all t. This expresses the "exponential
convergence" of geodesic rays referred to earlier.

Now, each isometry, g e Isom X, extends to homeomorphism of Xc ,
also denoted by g. We write fix g for the set of fixed points of g in Xc .
Any such g is one of the following mutually exclusive types:

(0) g is the identity.
(1) g is elliptic, i.e., g is not the identity, and X Π fix g Φ 0 . In this

case, fix g is a nonempty subspace of Xc .
(2) g is parabolic, i.e., fixg is a single point of Xj. In this case, g

preserves setwise each horosphere about y.
(3) g is loxodromic, i.e., fix# consists of two distinct points x, y e

Xj . It thus preserves setwise the loxodromic axis [x, y].
We may regard Isom X as a closed subgroup of the group of all dif-

feomorphisms of X in the C1-topology. Given the subspace topology,
IsomΛf is a locally compact topological group. A subgroup, Γ, of IsomX
is discrete if and only if it acts properly discontinuously on X. In such
a case, the torsion elements of Γ are precisely the elliptic ones. We write
fix Γ = Γl̂ eΓ fiχ 8 f°Γ ^ e s e t °f fiχec* P ° i n t s of Γ in Xc . If Γ is finite,
then fix Γ is a nonempty subspace of Xc .
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Given p e. Xι, we write

Isom^ X — {g e lsomX\gp = p}.

If Γ c Isom X is discrete, then it is one of the following three types:
(1) Γ is finite.
(2) Γ contains a loxodromic element g, and preserves setwise the axis

of g.
(3) Γ is infinite, and preserves setwise each horosphere about p .
In case (2), Γ is, group-theoretically, a semidirect product of an infinite

cyclic group, and a finite subgroup of O(n - 1). In particular, Γ is finitely
generated.

Definition. A discrete subgroup Γ of Isom^ X is said to be parabolic
if it is infinite, and preserves some (and hence every) horosphere about p .

We shall show that every discrete parabolic group is finitely generated.
It then follows from the discussion above that any discrete subgroup of
Isom X is finitely generated.

We demanded, in the definition, that a parabolic group be infinite so
as to accord with the usual notion. In fact, we shall make no use of this
hypothesis anywhere in this paper. It is a consequence of the arguments
presented in this paper (cf. the discussion following the proof of Lemma
4.9) that an (infinite) parabolic group necessarily contains a parabolic ele-
ment.

The following result will be central to the proof. It is a slight rephrasing
of [2, Theorem 9.5].

Margulis Lemma (2.3). There is some universal ω > 0, and for all
n e N and K > 0, there exists ε = ε(n, K) such that the following holds.

Suppose that (X, d) is a complete simply connected Riemannian n-
manifold, all of whose sectional curvatures lie in [-κ2, 0]. Suppose that
Γ is a discrete subgroup of Isom X, and that x is any point of X. Let
Γ(x) be the subgroup of Γ generated by all those γ e Γ which satisfy
d(x9 γx) < ε and have Δ(v, P(x, yx) o γ^v) < ω for all unit tangent
vectors v e Tι X. Then, Γ(x) is nilpotent

3. Trivializations of the tangent bundle

Given an ideal point / ? e l / 5 w e shall describe a preferred family of
trivializations of the tangent bundle TX, indexed by the orthogonal group
O(n). This will allow us to define the "rotational part" of an isometry
fixing p.
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In § 1 we defined the norm \A\ of an element AeO(n) as min{/.(ζ, Aξ)\
ξ eSn~1} . Then, the map [(A, B) \-+\A~ιB\] gives a bi-invariant metric
on O(n). Thus, to show that a sequence A. converges, it is enough that
l ^ " 1 ^ ! can be made arbitrarily small for sufficiently large / and j . A
similar discussion applies to automorphisms of the tangent space TχX, at
any x e X, preserving the inner product ( , )χ .

Given xQ, xχ, , xm e X, we have defined P{xm, xm_χ, , x0) :
T X —• T X as parallel transport along the piecewise geodesic path
[x0, xχ, , xm]. Note that for any sequence of points yQ, yχ, 9yr

in X,

\ P { y o , - , y r , χ m , ' , χ o , y r , - , y o ) \ = \ P ( y r , χ m , ••• >χo>yr)\

Also, given x, y, z e l , w e have

Lemma 2.1 tells us that \P(x, z, y, x)\ < Kd(x, z). Note also that if
x, y, z all lie along some geodesic in Z , then P(z, y, x) = P(z, JC) .
In particular, of course, P(x, y, x) = P(x, x) is the identity on Γ χ X.

Our next aim is to define P(y, p, x): TχX —• T X for x , y e X, and

Lemma 3.1. Suppose x, y e X and p e Xj. Let {wt)i&^ be any se-
quence of points in X tending to p. Then, the sequence of maps
P{y, w., x): TχX -+ TyX converges.

Proof From the remarks above, it is enough to show that
\P[y, Wj, x)~xP(y, wi, x)\ = \P(x 9w.,y9 wi, x)\ can b e m a d e arbitrar-
ily small for all sufficiently large i and j .

Suppose δ > 0. Since the geodesic rays [x, p] and [y, p] converge, as
we move towards p, we can find points a e [x, p] and b e [y, p], and
d(a, b) < δ . As / —• oo, the geodesies [x, wt] and [y, w j converge on
[x, p] and [y, p] respectively. Thus, there is some N e N such that for
any i > N, we have d(a, [x, u>J) < δ and d(Z?, [y, IUJ) < <J. In other
words, we can find at € [x, IUJ and 6J. G [y, wt] such that d(a, at) < δ
and d(b, bt) < δ (see Figure 1).

Suppose that /, j > N. Then, the piecewise geodesic path [x, wi;, y,
iί;y, x] is spanned by the six triangles [at, wi, έ , a(], [Z?z ,y,bj, bt],
[bj9wj9aj9bj]9 [aj9x9ai9(ij]9 [a^a^b^a^ a n d [bj9bi9aj9bj\.
Moreover, each of these six triangles has at least one side of length at
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most 3δ . Applying Lemma 2.1, we conclude that

\P(x,Wj,y, wnx)\ < 6K(3δ) = ISKδ,

which is arbitrarily small, q.e.d.
Since the sequence (w^ was chosen arbitrarily, the limit of the maps

P(y, wi, x) is well defined; we shall write it as P(y, p, x). The map
P(y ,w,x) depends continuously on w , as w varies in Xc . This may
be seen by allowing the wt to be the ideal points in the above proof, and
using Lemma 3.2(1) below.

Lemma 3.2. Suppose that x, y, z e X and p e Xι. Then the follow-
ing hold'.

(1) \P(x,y)oP(y,p,χ)\<Kd{x,y),
(2) P(z,p,y)^P(yLp,x) = P(z9p9x),
(3) P(y,p,x)xp=ypf

(4) if x, y and p all lie on some geodesic in X, then P(y, p, x) =

P(y,χ).
Proof Let w —• p , with wte X.
(1) By Lemma 2.1, we have \P(x, y, wi9 x)\ < Kd(x, y) for each /.

(2) For each /, P(z ,w^y, w(, x) = P(z, w(, x).

(3) If wi $ {x,y}, then Z(P(y, wt, x)xwt, yΰf.) = xwty. As / -+

CXD , we have xw\ —• xp, yw^i -> yp and xwy —• 0 (Proposition 2.2).

(4) We can choose each wi £ [x, p]. Then P(y, IÛ  , x) = P(y, x) for
all i.

Examples. Let X = Hn be an ^-dimensional hyperbolic space. Sup-
pose p e Xr Any horosphere S about p is an (« - l)-dimensional
Euclidean plane in the induced Riemannian metric. Suppose that x e S,
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and that υ e Tx

χX is a unit vector, tangent to S, so that Z(v , xp) = π/2.
Then, as y varies over S, the vectors P(y, p, JC)V define a Euclidean-
parallel vector field on S.

More generally, suppose that X is one of the negatively curved sym-
metric spaces. Then, any horosphere S has the structure of a nilpotent
Lie group with a left-invariant metric [8]. Let x, v be as above. Then,
{P(y, /?, x)υ\y e S} is a left-invariant vector field on S.

We can now define our standard trivialization of the tangent bundle of
X. By a trivialization of the tangent bundle, we mean a bundle isomor-
phism

φ:XxRn ->TX,

which respects the inner products on each of the fibers. For x e l , w e
define

φχ:R
n^TχX

by Φx(ζ) = Φ(x 9 ί ) Then φχ is a linear isometry.
Given x, y e X, we define D^y, JC) e O(n) by

Now, fix p e Xj.
Definition. A trivialization 0: X —> R" —• ΓX is standard (with re-

spect to /?) if

for all x, y G X .
Now if <̂> is standard, from Lemma 3.2(1) it follows that \Dφ(y, x)\ <

Kd(x, y) for all x, y e l . Also, if y e [x, p], then D^(y, x) is the
identity in O(n) (Lemma 3.2(4)). In fact, it is not hard to see that φ is
standard precisely if these two conditions hold.

From Lemma 3.2(2), it is clear that for any p e Xj, standard trivial-
izations must exist. Moreover, if φ is standard, and T is any element
of O(n), then φo(lχ, T) is also standard. Conversely, suppose that φ
and ψ are both standard (with respect to p). Then, for all x, y € X,
we have P(y, p, x) = φyφ~ι = V^v"1. Thus, 0 j V * = ^"V^ , and so
ψχ = φχ o T for some fixed T e O(n). In other words ψ = φo(lχ9 T).
The rotation Γ is clearly unique for given φ and ψ .

We have defined Isomp X earlier to be the subgroup of isometries of X
fixing the point p . We are now in a position to define the rotational part
of an element of Isom^ X. Each γ G Isomp X induces a map γ^: TX ->

. If 0 is a standard trivialization, then clearly y+°φo{y~ , 1R*) is also.
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Thus, there is a unique T = O(n) such that γ^φo(γ~ι, lR n) = φo(lχ, T).

We write θφ{γ) = T so that we have

Definition. Given γ e Isom^X, we call θφ(γ) the rotational part of
γ (with respect to φ).

From the formula defining θφ(γ) it is clear that this gives a homomor-
phism

θφ: Isomp X^O(n).

If we were to replace φ by a different standard trivialization, we would
get another homomorphism, conjugate in O(ή) to θ , . Thus, the norm
|θ,(y) | is defined independently of the choice of φ. It therefore makes
sense to speak of an element of Isomp X having "small rotational part".

The following statement is just a matter of unraveling the various defi-
nitions.

Lemma 3.3. Suppose p e Xι, and φ as a standard trivialization with
respect to p. Suppose that γ e Isomp X, and x e X and ξ e Rn. Let
υ = φχξeTχX. Then

Δ{v , P(x, γx) o γmv) = l{Dφ{yx, χ)ξ, θφ(γ)ξ).

Proof. We have

P(x, γx) oγ^oφχ = φχo Dφ(x, γx) o θφ{γ).

Thus,

Δ{φχξ, P(x, γx) o γ^(φχξ)) = Z(ξ, Dφ(x, γx) o θφ(γ)ξ)

= Z(Dφ(γx,x)ξ,θφ(γ)ξ).

Remark. Using Lemma 3.2(3), we could restrict attention to standard
trivializations φ having the property that φx(0, 0, ••• , 0, 1) = xp for
some (and hence all) x e X. This reduces the rotational part of an element
of Isom^X to O(n - 1). However, we shall have no need to insist on
this.

4. Reduction to the abelian case

Let p e Xj. We have defined Isom X as the subgroup of isometries
of X fixing p . The main result of this paper is the following.

Theorem 4.1. Any discrete subgroup of Isom^ X is finitely generated.



570 B. H. BOWDITCH

We showed in §2 that the only interesting case is that where this sub-
group, Γ, is a discrete parabolic group. It is the aim of this section to
reduce further to the case where Γ is abelian, in fact, isomorphic to a
subgroup of Qn . The proof of Theorem 4.1 will be completed in §5.

We first recall some basic facts about nilpotent groups.
A group N is said to be nilpotent if, for some m, all ra-fold commu-

tators in N are trivial. The smallest such m is called the class of N. We
define normal subgroups, Z{, of TV inductively as follows.

ZM = {ye N\xyx~ιy~ι e Z. for all x e N}.

This gives the upper central series

where m = class N. It is easy to see that any subgroup or quotient of a
nilpotent group is nilpotent.

We quote the following results.
Proposition 4.2 [12]. Suppose that N is nilpotent. If x, y e N both

have finite order, then xy also has finite order.
Thus, T(N) = {x € N\xr = 1 for some r} is a normal subgroup of N.
Proposition 4.3. Suppose that T is a finitely generated nilpotent torsion

group (every element has finite order). Then T is finite.
Proof. We can assume, by induction on the class of T, that the com-

mutator subgroup [Γ, T] is finite. The quotient T/[T, T] is a finitely
generated abelian torsion group, and hence also finite.

Proposition 4.4 [12]. Let N be a countable nilpotent group with upper
central series (Z.)^ . If the centre Zχ is free abelian, then Z./Zi_ι is free
abelian for all i e {2, 3, , m}.

In such a case, we define

m

rank N = ]Γ rank^./Z,., {).

Clearly, class N < rank N. Moreover, rank N is finite if and only if N
is finitely generated.

The following is a theorem of Mal'cev.
Proposition 4.5 [10] or [5]. Let N be a finitely generated torsion-free

nilpotent group. Then N may be embedded as a discrete cocompact sub-
group of a torsion-free nilpotent Lie group, G, of dimension r = rankiV.
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Proposition 4.6 [9]. Let G be a torsion-free nilpotent Lie group. Then,
the exponential map at the identity is a diffeomorphism of the Lie algebra
onto G.

(In fact the construction in [5] gives an explicit diffeomorphism of G
with R r.) In particular, G is contractible. Propositions 4.5 and 4.6 to-
gether tell us that rank N is equal to the cohomological dimension of N.
We deduce

Proposition 4.7. Suppose that the nilpotent group N has free-abelian
centre and acts properly discontinuously on some contractible n-manifold,
then rank N < n.

Proof We need only check that rank N is finite, or equivalently that
N is finitely generated. However this is clear, since otherwise N would
contain subgroups of arbitrarily large finite rank, q.e.d.

We now return to our manifold X. We want to define a subset of
Isomp X consisting of those elements of small rotational part.

Given any θ > 0, we write

jrp(θ) = {γelsompX\\θφ(γ)\<θ},

where θ ^ is the rotational part homomorphism defined in §3. As re-
marked in §3, J^iθ) is defined independently of our choice of trivializa-
tions φ.

Given any subset, Q, of a group G, we shall use the notation (Q) to
denote the subgroup of G generated by Q.

Lemma 4.8. For all n e N and θ > 0, there is v = v(n, θ) e N such
that if G is any subgroup of Isomp X, then (GnJ^iθ)) has index at most
v in G.

Proof This is just group theory, so the argument is standard.
We have a homomorphism θ : G —• H, where H is a compact group,

in this case O(n). Now, G1 = (G n J^(0)) = (g e G\θ(g) e U), where
U = Uθ = {A e O(n)\ \A\ <θ} is a neighborhood of the identity in H.

Let V be another neighborhood of the identity in H with V~ι V c U
(for example, take V = Uθ/2) There is an upper bound v on the number
of right translates of V that can be packed disjointly into H. The number
v depends on U and H, and thus on θ and n . It is independent of G.

Now let r e N be maximal such that we can find gλ, g2, , gr e
G with the translates K(θ(^)) disjoint for / e {1, 2, , r}. Clearly
r < v. Now let g be any element of G. By maximality, V{θ(g))
must intersect ^(©(g^)) for some / e {1, 2, ••• , k}. It follows that
θ(gg~l) e V~ιV c U. Thus gg~ι e Gf and so g e G'gr We have
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shown that {Gg^l < i < r} is a complete set of cosets for Gf in G.

Thus [G : G1] < r < v . q.e.d.
Now, let θ0 = ω/2, where ω is the constant in the Margulis Lemma

(2.3). Thus θ0 depends only on n and K . In view of Lemma 4.8, in
order to prove the main theorem (4.1), we can restrict attention to discrete
parabolic groups, Γ, which are generated by the subset Γ n J^(0 O ) . We
aim to show that such a group is finitely generated and nilpotent. We begin
with the following.

Lemma 4.9. If Γ is a discrete parabolic subgroup of ~^(0O) > w ^
Γ = ( Γ π J ^ ( θ 0 ) ) , then Γ is locally nilpotent, i.e., every finitely generated
subgroup of Γ is nilpotent.

Proof Let {yχ, γ2, , γr} be a finite subset of Γ n J^(0 O ) . Choose
any y e X. The geodesies y\y, p], i e {1, 2, , r}, and [y, p] itself,
all converge exponentially. Thus, we can find some x E[y, p] such that,
for all /, we have d(x, γtx) < min(ε, Θo/K), where ε = ε(n) comes
from the Margulis Lemma (2.3) and K comes from Lemma 3.2(1).

Now, choose any ξ e Rn, and set υ = φxξ. By Lemma 3.3, for each

i,

Δ{v , P(χ, γtχ) o γ.mυ) = Δ{Dφ{ytx, x)ζ, β^ξ).

But 10^(^)1 < ^o' a n ( ^ ^y hypothesis and Lemma 3.2(1) we have

\Dφ(7ix, JC)| < Kd(x, ytx) < K(θo/K) = θ0.

Thus

φ φ

It follows that {γχ, γ2, , γr) is a subgroup of the nilpotent group Γ(x)
as defined in the Margulis Lemma. Thus, (γ{, γ2, , yr) is nilpotent.

Now, any finitely generated subgroup of Γ lies inside some subgroup of
the form (γ{, γ2, , γr) for some r, and is thus itself nilpotent. q.e.d.

The next step will be to reduce to the case where Γ is torsion-free.
Let T be the set of elements of finite order in Γ. Let x and y be any

elements of Γ. Then (x, y) is nilpotent. By Proposition 4.2, xy~ι has
finite order. We deduce that T is a subgroup of Γ. Clearly, T is normal.

In summary, we know that T is a discrete torsion group in which every
finitely generated subgroup is nilpotent. This implies that T is finite, as
follows. Clearly T is countable, so we may write T = ( J ^ o

 Tr» w h e r e

each Tr is a finitely generated subgroup of T, and Tr c Ts for r < s.
By Proposition 4.3, each Tr is, in fact, finite. Thus, its set of fixed points,
fix Tr, meets X in some nonempty totally geodesic subspace. Clearly, if
r < s, then fix Ts C fix Tr. Thus, the dimension of fix Tr must stabilize,
and so fix T = f|~0 fix Tr must meet X. It follows that T is finite.
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Now, (j = I n f i x Γ is a totally geodesic subspace of X. Since T is
a well-defined subgroup of Γ, we see that σ is Γ-invariant. Moreover, it
is easily checked that T is precisely the pointwise stabilizer of σ . Thus,
Γ/T acts freely and properly discontinuously on σ. Clearly, the notion
of a horosphere is preserved by taking subspaces, and so we see that Γ/T
acts intrinsically as a discrete parabolic group on σ. Thus, replacing Γ
by Γ/T, and X by a, we are reduced to the case where Γ acts freely on
X, i.e., Γ is torsion free.

As before, let n be the dimension of X. Now, any set of n elements
γ{, γ2, , γn of Γ generate a torsion-free nilpotent group. By Proposi-
tion 4.7, this group has rank at most n. It follows that any w-fold com-
mutator in the y{ is trivial. Since these elements were chosen arbitrarily,
we see that Γ is nilpotent.

We want to show that Γ is finitely generated. By Propositions 4.4
and 4.7, it is enough to show that Γ has free-abelian centre. We are thus
reduced to considering torsion-free abelian groups. In fact, we may reduce
Γ to a subgroup of the additive group Qn as follows.

Let G be a torsion-free abelian group. Then, the tensor product G ® Q
over the integers is also torsion-free. In fact, G 0 Q has naturally the
structure of a vector space over Q. We may identify G with its image
G <g> Q under the injection [g *-+ g<8>l]. Under this identification, G ® Q
is spanned as a vector space by the elements of G. Thus, we may find a
basis of G <g> Q consisting entirely of elements of G. The subgroup H of
G generated by all the elements in one such basis will be a free abelian
group of rank equal to dimQ(G <8> Q). Moreover, G/H will be a torsion
group.

Suppose now that G acts freely and properly discontinuously on a
contractable n-manifold. Then, from Proposition 4.7 we deduce that
dimQ(G <g> Q) < n . Thus, we may regard G as a subgroup of Qn .

In §5, we shall show that a discrete abelian parabolic group, G, is nec-
essarily free abelian. However, if n = dim X < 3, a simple topological
argument will suffice.

If dim X = 2, then clearly the quotient of any horosphere must be a
topological circle, and so G is infinite cyclic. Suppose that dimX = 3,
and let S be some horosphere about p. Thus, S is homeomorphic to
R 2 . We see that F = S/Γ is a surface with πχF = G. However, sur-
faces with abelian fundamental groups are easily classified, and they are
each topologically finite, i.e., homeomorphic to the interior of a compact
manifold with boundary. (The essential point is that any surface admits
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a compact exhaustion by subsurfaces, F., whose fundamental groups in-

ject. Thus each πχFi is abelian. Now any compact surface with abelian

fundamental group is one of just a few possibilities, and so it is readily

seen that the homeomorphism types of the Ft must stabilize.)

However, we cannot hope for a purely topological argument in higher

dimensions. For example, we describe below a free, properly discontinuous

action of the diadic rationals, Ί\\\ = {h/2k\h ,keZ},on R 3 . This type

of example is well known.

Let N = S1 x D2 be a solid torus, and let i: N -+ S3 be a standard

embedding of N in the 3-sphere. Thus the closure of S3\N is also a solid

torus. Let f:N->N be an embedding of N in itself, so that fN is the

tubular neighborhood of a 2-strand closed braid, with one half-twist. Thus

f+πχN has index 2 in πχN 9 and ifN is unknotted in S3. Let M = S3\

(XLo ιfrN I* * s easily seen that πχM = Z[j]. Moreover one can check

that the universal cover M of M has the engulfing property, i.e., every

compact set lies inside some 3-ball. Thus using the 3- dimensional annulus

theorem, and the fact that an orientation-preserving diffeomorphism of the

2-sphere is isotopic to the identity, we see that M is homeomorphic to R .

Now Z[j] acts on M = R3 by covering translations. It is an interesting

exercise to give an explicit description of this action on R .

5. Abelian parabolic groups

The aim of this section is to complete the proof of the main theorem
(4.1) by showing that every discrete abelian parabolic group is finitely gen-
erated. We begin with a discussion of abelian subgroups of O{n).

We write ( , •) for the standard inner product on Rn , so that (ξ, ζ) =
cosZ((^, ζ) for all unit vectors ξ, ζ e Sn~ι C RΛ . Complexifying, we
can extend this to the standard Hermitian form on C n , i.e., {z,w) =
zxwι + z2v>2 + ~- + znwn.

Suppose G is an abelian subgroup of O(ή). Then G acts on Cn

preserving the Hermitian form. Now, Cn can be split as a direct sum,
Cn = φ ί = 0 ^ > °f c o m m o n eigenspaces of the elements of G. If we take
the number, k, of common eigenspaces to be minimal, then this splitting
is canonical (up to permutation of factors). In this case the eigenspaces
are mutually orthogonal, and are paired under complex conjugation. An
eigenspace is paired with itself if and only if all its eigenvalues (as g ranges
over G) are equal to ± 1. We shall assume that Wo is the eigenspace
{z e Cn\gz = z for all g e G}, even though this may be trivial (all
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the other eigenspaces are assumed nontrivial). We can also assume that
the set {WQ, Wχ, , Wq} contains precisely one eigenspace from each
pair. For i e {0, 1, ••• , q}, let Vi be the subspace of Rπ given by
V. = {z + Ί\z e Wt}. We may check the following.

Lemma 5.1. The spaces V. for 0 < i < q give a G-invariant splitting
of Rn (gV. = Vi for all geG). We have Vo = {ξ e Rn\gξ = ξ for all
geG}. Moreover, given i e {0, 1, , q}, and ξ, ζ e V.Π Sn~ι, we
have l(ξ, gξ) = Z(C, gζ) for all geG.

We extract the geometric information which we need from this result
in the following lemma.

Lemma 5.2. For any given abelian subgroup, G of O{n), there exists
some finite subset {g{, g2, , gq} of elements of G with the following

property. Given any ε > 0, there is some η > 0 such that if ξ e Sn~ι

satisfies Z(ξ, g.ξ) < η for each i e {1, 2, , q}, then Z(ξ, gξ) < ε for

all geG.

Proof Let Rn = Vo Θ Vx Θ Θ Vq be the splitting given by Lemma 5.1.

Then, given any / e {1, 2, , q}, there is some gt e G with gfi Φ ξ

for some (and hence all) ξ e Vχ Π Sn~ι. Set k. = l-(ξ, g£). Thus,

k{ > 0 , and is defined independently of the choice of ξ e V.;Π Sn~ι. Let

k = min{fc.|l < i <q} .

Suppose we are given an arbitrary ξ e Sn~ι. We want to show that if
{ξ, g.ξ) is close to 1 for all i e {1, 2, , q}, then (ξ, gξ) is close to 1
for all geG. So suppose ( £ , $ £ ) > l-μ for all i € { l , 2 , ••• , q}.

Write ξ = Σq

i=0 aiξi, where a{ e R and ξt e Vi for all i. Since

ξ e Sn~ , we have

z=0

Now, if i > 1, then

y=0

Thus αf < Aί/fc, < μ/fc for all / > 1.
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Now, given any g e G,

i = 0

i=\ i=l

> 1 - 2qμ/k.

Given any ε > 0, define μ > 0 by cosε = 1 - 2qμ/k. Then η > 0 is
given by cos η = 1 - μ. Hence the lemma follows, q.e.d.

We shall use Lemma 5.2 in the following form.
Lemma 5.3. Let T be a subgroup of Qm, which spans Qm as a vector

space. Suppose that Ψ: T -> O(n) is any homomorphism. Then, we can
find ex, e2, , em e Γ which form a vector space basis for Q m and have
the following property. Given any ε > 0, there is some δ > 0 such that for
any ξ e S " " 1 with Δ{ξ, Ψ(ez)£) < δ for all i e {1, 2, , m}, we have
Δ(ξ,Ψ(g)ξ)<εforallgeΓ.

Proof. Let G = Ψ(Γ) be the image of Γ in O(n). We can find
U P ? 2 , , ^ } c Γ s o that {Ψ{gχ)9 Ψ(g2), • • , Ψ(^)} c 0(n) has
the property expressed in Lemma 5.2. Now, {g{, g2, '- , 8q) is free
abelian. Let {eχ, e2, , ed] be a free set of generators for this subgroup
of Γ. Let N be the maximal word length of any of the g. expressed in
terms of {eχ, e2, , ed}. Now, given any ε > 0, let η > 0 be as in
Lemma 5.2, and let δ = η/N. Suppose we are given ξ e Sn~ι such that,
for each / e {1, 2, ••• , rf},

then for each ; e { l , 2 , , #} , we have

Thus, by Lemma 5.2,

for each g e Γ.
Now, £j, £ 2 , , ed are linearly independent over Q, so we may ex-

tend arbitrarily to a basis {eχ, e2, , em} C Γ of Q w . q.e.d.
We stated at the beginning that the aim of this section is to show that

discrete torsion-free abelian parabolic groups are finitely generated. In
order to give the idea of the proof, we begin by considering a discrete
abelian group, Γ, acting freely on En . We want to show that Γ is free
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abelian. Of course, this is an immediate consequence of the Bieberbach
Theorem (1.1). However, a proof along these lines would make essential
use of the existence of totally geodesic subspaces of En . Below, we give a
proof that avoids this, and can be generalized to an argument for variable
curvature.

As described in §4, we can regard Γ as a subgroup of Q m , with Q m

generated as a vector space by the elements of Γ. We shall, however,
continue to use multiplicative notation for the group operations in Γ.

Let φ be a standard trivialization of the tangent bundle of E" , and let
θ = θ , : IsomE" -» O(n) be the corresponding rotational part homomor-
phism (see §1).

Let {ex, e2, , em} be as in Lemma 5.3 (with Ψ = θ ) . Let H be the
subgroup of Γ generated by {e{, e2, , em} .. Thus, Γ/H is a torsion
group. Our aim is to show that Γ/H is finite.

Take ε = π/8, and let δ > 0 be as in Lemma 5.3. Choose any point
J C G E " , and let

λ = max{d(x, epc)\ 1 < i < m}.

Let /0 = |λcosec((5/8), so that in any triangle, abc, with d(a, b) >
| / 0 , d(a, c) > | / 0 and d(b, c) < λ, we have bάc < δ/4. Let / =
max(4mλ, / 0 ) .

We claim that, for any g e Γ, we have

In other words, each coset, gH, of H contains some element, h, with
d{x, hx) < I. Since Γ acts properly discontinuously, it will follow that
there are only finitely many such cosets.

So, suppose, for contradiction, that there is some goeΓ with g0Hx Π
N^x) = 0 . Let G be the subgroup of Γ generated by H U {#0} . Thus
G/H is finite cyclic.

Let r = max{rf(x, gHx)\g e G}. Then r > I. Choose k e G such

that d{x, kHx) = r. We must have d(x, k2Hx) < r, and so there is

some hoe H with d{x, k2h0x) < r.

Let H' = {h2\h e H}. Then Hf is a subgroup of index 2m in H.
Since d{x, etx) < λ for each i e {1, 2, , m} , every point in the orbit
Hx lies within a distance mλ of the orbit Hfχ . In particular, we can find
h e H so that d(hox, h2x) < mλ, and d(k2h0x, k2h2x) < mλ. Thus,
d(x, γ2x) <r + mλ<r+t = lr, where γ = kh e G. Since γ e kH,
d(x ,yx)>r.
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FIGURE 2

Now fix, for the moment, / e {1, 2, , m}, and consider the four
points x, y = γx, χ. = e{x and y. = yepc = etyx. Then we have

and

Thus, rf(x, y.) > r - λ > r - ^ = \r. We chose / large in relation to λ,
so that we must have yxyt < δ/4 and xyixi < δ/4 (see Figure 2).

Let v — xy, so that e^v =xy~r Let vt be the parallel transport of v
to the point x(. Then, from the definition of rotational part, we have

where ξ = φ~ιv = φ~xvi e Sn~ι. But Z(υ.9eiitιυ) < yxyt + xy.χ. <
δ/4 + δ/4 = δ/2<δ.

We have shown that

Δ(ξ,θ(ei)ξ)<δ

for each i e {1, 2, . . . , m) . Applying Lemma 5.3, we get that Δ{ξ, ®(g)ξ)
< ε = π/8 for all g e Γ. In particular, Δ(ξ, θ(γ)ξ) < π/8 .

Now, let z = γ x, so that γ^v =yz. The element γ was chosen so that

d(x9 z)<\r. Let v = φy(ξ) e T*En , i.e., υ is the parallel transport of

υ = xy to y. From the definition of rotational part, we see that

Z(-y*, yί) = Z(v', γφv) = Δ{ξ, θ(γ)ξ) < π/8.

Thus xyz = π - Z(-}^3c, yz) > π - | > \π.
In summary, we have deduced that rf(x, y) = rf(y, z) > r, rf(x, z) <

| r and xyz > \π . Simple trigonometry shows that this is impossible.
We have contradicted the existence of # 0 e Γ with d(x, g0Hx) > I.

This concludes the proof that Γ is free abelian.
The idea now is to give a similar argument in the case where Γ is

a discrete abelian parabolic group acting freely on X. Let us consider
the ingredients of the proof which we have just given. We have used an
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identification of the tangent spaces at different points, as well as the notion
of the rotational part of an isometry. There are already provided for in
X (§3). Our use of trigonometry allowed for some margin of error, and
thus could be made to work in some perturbation of the metric. The idea
therefore will be to carry out the argument in a small neighborhood of a
suitably chosen point of X, where the metric can be assumed to be almost
Euclidean.

Proposition 5.4. Let Γ be a subgroup of Q m (with multiplicative nota-
tion). IfT acts as a discrete parabolic group on X, then Γ is free abelian.

Proof Let φ: X x Rn —> TX be a standard trivialization of the tangent
bundle of X with respect to the fixed point p. Let θ = θ ^ : Γ -* O(n)
be the rotational part homomorphism.

We can assume that Q w is generated as a vector space by Γ. Let
{eχ, e2, . . . , em} be as in Lemma 5.3 (with Ψ = θ ) . Let H — (eχ, e2,
. . . , ί m ) c Γ . Thus T/H is torsion, and we want to show that it is finite.

Let K be the constant of Lemmas 2.1 and 3.2(1), so that \Dφ(y, x)\ <

Kd(x9y) for all x,y e X. Let / = \π/K. Take β = π/8, and let

δ > 0 be as in Lemma 5.3. Let η0 = \l sin(<5/8), so that in any Euclidean

triangle abc with d(a, b) > \l, d(a, c) > \l and d(b, c) < η0, we have

bάc < δ/4. Let η = min(>/0, \l/m, \δ/K).
From the exponential convergence of geodesic rays, it is clear that we

can find a point a e X with d(a, eμ) < η for each i e {1, 2, , ra} .
We claim that gHa Π N^a) φ® for all g e Γ. By discreteness, this will
prove that T/H is finite.

Let β: [0, oo] -> Xc be the geodesic [a, p], parametrized by arc-
length. Thus, β(0) = a, and /?(oo) = /?. For any g € Γ, rf(j»(i), #£(0)
tends monotonically to 0 as t tends to oo. Given any subset Δ of Γ,
and / e [0, oo), define

M(A,t)-=d(β(t),Aβ(t))

= mm{d(β(t),gβ(t))\geA}.

This minimum is attained since Γ acts properly discontinuously. Clearly,
M(Δ, t) tends monotonically to 0 as t —• oo. Moreover M(Δ, t) is con-
tinuous in t. To see this, fix t0 > 0, and note that if |ί - to\ < 1, then any
g e A which minimizes d(β(t), gβ(t)) must satisfy d(β(to)9 gβ(t0)) <
AΓ(Δ, ί0) + 2. There are only finitely many such g, and for each, we have
that d{β{t), gβ(t)) is continuous in t.

We want to show that gHa meets Nj(a) for each g eΓ. So suppose,
for contradiction, that there is some goeΓ with g0Ha Π N^ά) = 0, i.e,
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M(g0H, 0) > /. Let G be the subgroup of Γ generated by H U {gQ}, so
that G/H is finite cyclic.

Now, L(t) = max{M(gi/, t)\g e G} is continuous and tends mono-

tonically to 0 as t —• oo. Thus, there is some t0 e [0, oo) with L(t0) =

/. Let b = β(tQ). Choose k e G such that d(b,kHb) = I. Now,

d(b, gHb) < I for all # e G. In particular d(b, A:2//6) < /, and so

there is some hoe H with d(b, /:2Λ0fe) < /.

We chose a e X so that d(α, eta) < η for each / e {1, 2, , m} .

Since * 6 [α, p ] , we have also d{b, etb) < η. Let H' = {h2\h e H}, so

that Hf is a subgroup of index 2m in H. Clearly, each point of the orbit

Hb lies within a distance mη of the orbit i/'Z?. In particular, there is

some h e H with d(hQb, h2b) < mη, and so d(k2h0b, k2h2b) < mη.

Setting γ = kh, we see that rf(fc, γ2b) < I + m^ < / + \ = f/. Now,
andd(b,kHb) = l. Thus d(b,γb)>l.

Since d(β{t),yβ(t)) and d{β(t), γ2β(ή) both tend monotonically to

0, we may find x e [6, /?] with rf(x, yjc) = / and d(x, y2x) < | / .
Let us fix, for the moment, / e { l , 2 , ,m} and consider the four

points x, y = yx, x7 = ezx and y. = yepc = etyx (see Figure 3). We
have

and

Thus d{x, y.) > / - η > I - ^ > \l. We chose */ < ι;0 = \ sin(5/8),
and so, applying the comparison theorem ( Proposition 2.2) to the triangle
yxyt, we find that yxy < 5/4. Similarly, xyixi < δ/4.

Consider now the four unit vectors xy, xft, P(x, y •, JC ĴcJy) and

P(x, χ.)x y\9 based at x. We have Z(3cj;,3c>^) = yxyi < δ/4 and
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/.(x)?i9 P(x9yn χ.)xϊ)fy = JC^.^. < δ/4. From Lemma 2.1 it follows
that \P{xi,x,yi9 xt)\ < Kd(x, x.) <Kη< K(δ/4K) = δ/4. Thus

Let v = xy, so that 3c^ = e.j) . Let ζ = φχ

 ιv e Sn ι . Lemma 3.3

Z(P(x, y., *, .)*$, P(x, ^ ) ^ ) = ^{x^i, ^ ( ^ , * , ^ , ^ )^K) < δ/4,

and therefore Z(xy, P(x, χ.)χ.y\) < 3δ/4.

Let v =
tells us that

Z(D,(xf., x)ξ, θ ( ^ ) ί ) = Z(u , P(x, xz.) o e

From Lemma 3.2(1), we have that

\Dφ(xt, x)\ < Kd(x, x.) <Kη< K(δ/4K) = δ/4.

Thus, Δ(ξ, Dφ(x(, x){) < (5/4, and so

Since this is true for each / e {1, 2, , m}, applying Lemma 5.3, we
get that Z(ί, θ(s)<£) < ε = f for all g e Γ. In particular, Δ(ξ, θ(γ)ξ) <
π
ϊ

From Lemma 3.2(1) it follows that

so that Δ{ξ9 Dφ(y,x)ξ) < f . Thus l(Dφ(y,x)ζ, θ(γ)ξ) < | + | = },
together with Lemma 3.3 means that

We defined v = xy, and so γ^v = fz where z = γ2x. Thus

Δ(-yx, yz) = Δ{P{y, x)xj;, yz) = Z(v , P(χ, y) o y#t;) < | ,

and so

xyz = π- l{-yx, yz) > π - - = - π .

However, we have rf(x, y) = rf(y, z) = / and ύf(x, z) < | / . Applying
the comparison theorem (Proposition 2.2), we find that

xyz < 2 sin"1 (5/8) < - π .

Since we have contradicted the existence of g0 e Γ with d{a, g0Ha) >
I, gHa meets N^ά) for all g e Γ, as claimed.
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6. Counterexamples

In this section, we describe examples of complete simply connected
negatively curved riemannian manifolds which admit nonfinitely generated
discrete parabolic group actions. In fact, one can arrange that the curvature
be bounded either above (away from 0) or below (away from —oo). The
former case is due to G. Mess, and the latter case is related to recent work
of Abresch and Schroeder [1]. I am indebted to V. Schroeder for bringing
their paper to my attention.

Let H 2 be the hyperbolic plane, with infinitesimal distance dx. We
put a Riemannian metric on I = H 2 x R so that the infinitesimal distance
ds at the point (x, t) is given by ds2 = f{tf dx2 + dt2 , where / : R ->
(0, oo) is smooth. One may verify that all the sectional curvatures at the
point (x, t) lie between

1 d2f ™Λ A I 1 . / "->
— -z—=- a n a =• 1 + I -Γ-

Thus, X is negatively curved, provided / is convex. If / is bounded as
t —> oo, then the set of geodesic rays of the form [t H+ (X , t)]: [0, oo) ->
X defines an ideal point p oϊ X. Now, X is foliated by horospheres
about p of the form H 2 x {t} for t e R. Any isometry, γ, of H 2

induces an isometry [(JC , t) *-> (γx, t)] of X, preserving setwise each
such horosphere. Thus, any infinite discrete group action on H 2 gives us
a discrete parabolic subgroup of Isom X. There are plenty of noncyclic
free subgroups, and hence also nonfinitely generated examples of such.

Note that if we set f(i) = e~ι, then all sectional curvatures lie in the
interval (-oo, - 1 ] . If we set f(t) - 1 + e~ι, then they lie in the interval
( - 1 , 0 ) .

We also remark that, by taking a surface group acting on H 2 , we can
arrange that the quotient of a horosphere be compact, and so the quotient
of a horoball is a "parabolic cusp", whose fundamental group is not vir-
tually nilpotent. In the case of an upper curvature bound, such a cusp
automatically has finite volume. In the case of a lower curvature bound
the volume is infinite. However, one can construct examples in dimension
4 which have finite volume. The idea is to take a product with a circle,
whose diameter tends to 0 as we move out the cusp. This construction
is closely related to that described in [1], where examples are given of
complete finite-volume negatively curved Riemannian 4-manifolds, with a
lower bound on curvature, and whose ends are foliated by compact graph
manifolds. The fundamental groups of such ends are not parabolic, but
contain noncyclic free subgroups which are.
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