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THE INTEGRAL OF THE SCALAR CURVATURE
OF COMPLETE MANIFOLDS

WITHOUT CONJUGATE POINTS

FLORENCIO F. GUIMARAES

Abstract

We prove that the integral of the scalar curvature of a complete manifold
M without conjugate points is nonpositive and vanishes only if M is
flat, provided that the Ricci curvature on the unit tangent bundle SM
has an integrable positive or negative part.

Introduction

A complete Riemannian manifold M is said to be without conjugate
points if the geodesies of M contain no pair of conjugate points, equiv-
alently, if any two distinct points of its universal covering, endowed with
the induced metric, are joined by a unique geodesic. If the sectional cur-
vature of M is nonpositive, then M has no conjugate points. However,
there exist compact and complete noncompact manifolds without conju-
gate points and with sectional curvature of both signs (see [2] or [7] for
examples).

The object of this paper is to prove the following result.
Theorem A. Let M be a complete manifold without conjugate points.

Suppose that the Ricci curvature on the unit tangent bundle SM has an
integrable positive or negative part. Then the integral of the scalar curvature
of M is nonpositive and vanishes only if M is flat.

Theorem A generalizes results of several authors. The inequality is due
to Cohn-Vossen [4] when M is two-dimensional and simply connected.
The result was obtained by E. Hopf [8] for surfaces with finite volume and
Gaussian curvature bounded from below. In [6] Green extended the result
of E. Hopf for complete ^-dimensional manifolds with finite volume and
sectional curvature bounded from below. Finally, in [9] Innami proved
the theorem for complete ^-dimensional manifolds with the additional
hypotheses that the integral of the Ricci curvature is finite, and the non-
wandering set of SM decomposes into at most countably many invariant
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sets each of which has finite volume. In particular, he obtained the result
for manifolds with finite volume and for simply connected manifolds.

Examples. In general, the integral of the Ricci curvature of a manifold
without conjugate points may not exist. Let M be a compact manifold
without conjugate points and sectional curvature of both signs, and let M
be its universal covering with the induced metric. Then both positive and
negative parts of the Ricci curvature of M are not integrable, because
there are infinitely many disjoint fundamental domains in M.

Gulliver [7, Theorem 3] has proved that if (M, g) has sectional curva-
ture K < 0 and if K = -c2 , c > 0, on a normal ball B, centered in p ,
then there is a metric g without conjugate points on M such that g = g
except on a compact subset of B, and the sectional curvatures of g are
constant and positive on a neighborhood of p. Gulliver also observes
that one can construct g by modifying the metric g in a disjoint family
of balls, each of which has constant negative sectional curvature. Taking
(M, g) as the hyperbolic space we can obtain a manifold without con-
jugate points which does not cover any compact manifold and such that
both positive and negative parts of the Ricci curvature are not integrable.

On the other hand, some examples may have infinite volume and fi-
nite total Ricci curvature (hence nonpositive by Theorem A). To see this,
take a convex curve C on the cz-plane of a Euclidean 3-space i?3 such
that C is the tractrix z(x) = f~lnx \J\ - e~2t dt for all 0 < x < \ and
z(x) is constant for all x > 1. Let (S, g') be the surface of revolution
obtained by rotation of C about the z-axis. Then every local perturba-
tion of (S, g), following Gulliver, has infinite volume and negative total
Gaussian curvature.

We can easily see that the proof of Theorem A yields the following more
general result.

Theorem B. Let M be a complete manifold and let Z c SM be a set
invariant under the geodesic flow such that all geodesies γv , with υ e Z,
contain no pair of conjugate points. Suppose that the Ricci curvature on Z
has an integrable positive or negative part. Then

L Ricdμ < 0,
z

where the equality holds only if the curvature tensor of M is identically
zero on Z.

This paper is organized as follows. In §1 we state the maximal er-
godic theorem and describe the so-called E. HopΓs decomposition of SM.
These are the basic tools of our proof of Theorem A. In §2 we introduce
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a measure on the space of orbits on SM. It will allow us to decompose
the Liouville measure of SM on its dissipative and conservative parts.
§3 contains a description of the self adjoint Riccati tensor along geodesies
with no conjugate points, constructed by Green. In particular, we obtain
simple proofs of two results of Ambrose [1] and of Chicone and Ehrlich
[3] about the integral of the Ricci curvature along such geodesies. In §4
we prove Theorem A.

This paper is part of the author's doctoral thesis at the Instituto de
Matematica Pura e Aplicada, Brazil. He would like to thank M. do Carmo
for his orientation.

1. Preliminaries

Let M be a complete Riemannian manifold with dimension n, and
let SM be its unit tangent bundle. Denote by Tt: SM -> SM, t e R,
the geodesic flow of M, that is, Tt(υ) = γυ(t), where γυ is the geodesic
determined by v . Let μ be the Liouville measure defined on the Borel
sets of SM. It is known that the geodesic flow preserves the measure μ
which is σ-finite.

In what follows we refer to [10] as a basic reference.
1.1. Maximal Ergodic Theorem. Let f be an integrable function on

SM and let D c SM be a Tt-invariant Borel set. Define

E(f) = {veD; sup Γ f(Tt(v))dt > θ) .

Then fE{f)fdμ > 0. Also, if we set T = Tχ, and if A is a T-invariant
Borel set and

E[f]=<veA;

then

ί fdμ>0.
JEW

1.2. The decomposition of E. Hopf of SM. Let f0 be an integrable
function on SM. Then the Borel sets

D+ = ίυ e SM; J°° fQ(Tt(v))dt < ooj , C+ = SM\D+

are Tt-invariant; they are independent of f0 in the following sense: if
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/j > 0 is another integrable function, then the set

E = LeSM; f°°fι(Tt(υ)

has measure zero. To see this, we note that E is a 7]-invariant set. By
the Maximal Ergodic Theorem 1.1, we conclude that SE{afx - fo)dμ>O
for every a > 0. Letting a -+ 0, we get fEfodμ = O. Since f0 > 0,
μ(E) = 0, as we wished to show. Now, if fχ > 0, interchanging f0 and
/ j , we obtain the independence of D+ , up to a subset of measure zero.

The decomposition SM = D+ UC+ is called E. Hopf s decomposition
of SM associated to the geodesic flow (Tt)teR. The components D+ and
C+ are called, respectively, the dissipative and the conservative parts of
the decomposition. Denote by SM = D~~ u C~ the decomposition of E.
Hopf of SM associated to the inverse flow {T_t)teR. Then

D- = L e SM; f_J^Tt{v))dt < ooI.

From what we have seen above, it follows that if D = D+ Γ\D~ , then for
every integrable function / on SM, the Lebesgue integral

(1.2.1) Γ f{Tt{v))dt
J—oo

exists for almost all v e D. Also, if ^ 0 > 0 is integrable, then the T-
invariant sets

D(T) = Le SM;JTgo(TJ(v)) < ocl , C(T) = SM\D(T)

are independent of # 0 , up to a subset of measure zero. Moreover, if g > 0
is integrable, then

oo

(1.2.2) Σ S(τJ(v)) < °° f o r almost all υ e D(T).

The following lemma establishes a connection between the sets D and
D(T).

1.2.3. Lemma. If g>0 is integrable on SM, then E Γ ^ g{T\v)) <
oo for almost all v e D.

Proof. Set go(x) = /„' fo(Tt(x))dt,x€SM. Then ^0 > 0 and

/ godμ= ί ί fo(Tt(x))dtdμ= f fodμ.
JSM JSMJO JSM
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Thus g0 is integrable and by (1.2.1) we have

Σ,go(τJ(v))= fo(Tt(v))dt< 00
- 0 0 J-°°

for every v e D. If we choose this g0 in the definition of D(T), then
D c f l ( Γ ) . In view of (1.2.2), this completes the proof.

2. A measure on the space of orbits

Let ~ be the equivalence relation in SM defined by: v ~ w if and

only if there exists j eZ such that TJ(υ) = w . Let SM/ ~ be the space

of orbits, and denote by π: SM -» SM/ ~ the natural projection π(υ) =

[v]. Consider in SM/ ~ the σ-algebra β induced by π. Then π(E) is

measurable for every Borel set E, because π~ι(π(E)) = U^oo Tj{E). A

Borel set E is called a wandering set if Tj(E) ΠE = φ for every j > 1.

For each E e β , let

μ(E) = sup{μ(E) E c π~ ( £ ) , £" a wandering set}.

2.1. Lemma, μ is a measure on SM/~ with the property that μ(π(E))
= μ(E) for every wandering set E.

Proof. Let En, n e N, be measurable and disjoint sets in β . We will
first show that

Let F c π ι ( |JΓ ^ Λ ) b e a wandering set. Then the sets F Π π l{En),

n e N, are disjoint wandering sets, so μ(En) > μ(F n π " 1 ^ ) ) for every
AZ > 1. Therefore

This implies that μ

To show the other inequality, we may suppose that μ(En) <oo for all

n. Now let ε > 0. Then for every n e N there exists a wandering set

Fn c π~'(£ n ) such that

μ(En)<μ(Fn) + ε/2n.
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Thus (JΓ Fncπ~l (UΓ &n) i s a wandering set and

Letting ε ^ O w e obtain (2.2).
Now let £ bea wandering set. It is clear that μ(E) < μ(π(E)). If

B c π~ι{π(E)) is a wandering set, then

μ(B) = μ (B Π ( j Γ 7 ( £ ) ) = // ( ( j 5 Π Γ;(J?)

Π E)

(

V-oo

—oo

(= μ(\JT-j(B)nEj<μ(E).

This shows that μ(π(E)) = μ(E), as we wished to prove, q.e.d.
Given a function / integrable on SM, then by (1.2.1)

χ *~* ίToofiT^xyjdt, x G D, defines a measurable function on the
Borel sets of D. Furthermore, it is constant in each orbit on D. Thus
[x] ι-> fToofiTtix^dt, [x] e π(D), defines a //-measurable function on

2.3. Proposition. If f is an integrable function on SM, then

f fdμ= f Γ f(Tt(v))dtdμ.
JD Jπ(D) J-oo

Proof Taking ~g(x) = fof(Tt(x))dt and using (1.2.1) we obtain

Σ_oo S ( Γ > ) ) = Π o / ( W ) ^ ' f o r a l m ° s t BΆveD. Since JDgdμ =

SD /O f(τt(χ))dtdμ = fDfdμ, it suffices to show that

(2.4) ί gdμ= f f^g{Tj(v))dμ,
JD Jπ(D) T^o

for every integrable function g on SM. For this, it suffices to show (2.4)
for g = χE, where E c D and μ(E) < oo. The general case follows by
linearity and by applying the dominated convergence theorem.

If E is a wandering set, then Σ ! ° O O Z £ ( ^ ( ^ ) ) = 1 or 0 according as
π(x) € π(E) or π(x) £ π(E), respectively. Therefore
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for every x e SM. Since E c D,

= ( χEdμ.
π(D) ~ JD

Now, if E c D is an arbitrary Borel set with μ{E) < oo, then by

Lemma 1.2.3, Σ Γ o o ^ ί ^ W ) < °° f ° Γ almost all x eD. Therefore, if

EQ is the set of the elements x e E such that Tj(x) e E for infinitely

many integers j > 0, then μ(E0) = 0. Set F = £ \ £ 0 and Fn = i 7 n

^Γ""( JF)\ U/>,,+i T~J(F)) 5

 w > 0 T h e n t h e ^ ' s a r e disjoint wandering

sets and F = {J™ Fn. Hence

; = — o o

oo

which completes the proof of Proposition 2.3 .

3. The selfadjoint Riccati tensor

Let M be a complete Riemannian manifold. Let Z c SM be a Tt-
invariant set of vectors υ e SM such that the geodesic γv has no pair of
conjugate points. One can construct (see [6]) a tensor U defined on Z ,
such that for every υ € Z , Uv = U(υ) is a selfadjoint linear operator on
{w e SM, (w , υ) = 0} and U satisfies the Riccati equation

(3.1) U + U2 + R = 0.

Here, the derivative is defined by (UυMs)),y{s)) = &(UυWs)),y(s))

for every pair of parallel fields x{s), y(s) along γv , where vs = Ts(v).

The tensor R = Rv is the curvature tensor given by Rv{w) = R(v, w)υ .

In fact, if γυ has no points conjugate to y(0) on (0, oo), then Uv is

defined for all s e (0, oo) (see [5, Proposition 3]).

Taking the trace of (3.1) and integrating, we obtain

υ tτUυ
s '

tτUυ -tτUυ + / trtf dλ+ [ tτR
J Jλ
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Write u(s) = trUv. Since (trt/) 2 < (n - l)tr(C/2) it follows that, for

every ε > 0,

(3.2) u(s)-u(t) + -^—r Γu2(λ)dλ+ f {(l-ε)trU2 + tτR){vλ)dλ<0.
n-lJt Jt

The following result is crucial to the proof of Theorem A.
3.3. Proposition. Let u: [0, oo) —> R and v: (-oo, oo) —• R be con-

tinuous functions. Then, for every a > 0:

(i) lim sup5_^+oo (u(s) + a /0

5 u2(t) dt) > 0 where the equality holds only

if u is identically zero.

(ii) Iimsup5_++oo (v(s) - v{-s) + a j^_s v2(t) dt) > 0 where the equality

holds only if v is identically zero.
Proof (i) Taking u = af, we may assume that a = 1. Suppose that

lim sup (u{s) + / u2{t)dt] < -δ < 0.
s—» +oo \ Jo )

Then there exists s0 > 0 such that

(3.4) M(J)+ / u2(t)dt<-δ
Jo

for every s >sQ. Set

g(s) = exp (- I f I u2(λ)dλj dt\ , 5 > 0.

Then #'Cs) = -g(s) Cf w2(ί)rf/ < 0 and

g"(s) = [J u2(t) dt + M(j)] [ £ W

2 (0 dί - «(j)] g(s).

From (3.4) it follows that -u{s) > δ on [s0, oo), so /J w2(ί) ί/ί - u{s) >
δ. Hence

g"(s) < -δ g(s) < 0 for every s £ [s0, oo).

But this is a contradiction, because g is positive and nonincreasing. Hence
we have proved that

limsup (u(s) + a / u2(t)dt)>0.
S-++00 \ Jo )
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Furthermore,

lim sup ( u(s) + a u2(t) dt J
S-K+OC \ JO )

§ I*u(t)dt\ + % Γu
Z Jo / I Jo

f § % {t)dt
s-*+oo \ Z J / I J

Γ
h

u2(t)dt>0.

Now, if Iimsup 5^+ o o (u{s) + a /* u2(t) dή = 0, then /0°° u2(ή dt = O and

so u is identically zero.
In order to prove (ii), we note that for every s e R

Γ υ2(t)dt= (\v2(t) + v2{-t))dt>\ (\v(t)-v{-t)fdt.
J-s JO l Jθ

Then by item (i) we have

lim sup (υ(s) -v(-s) + a / v2(t)dt\
s->+oo \ J-s )

5)-ϊ;(-5) + % ί (v{t)-v(-t))2dt] > 0.
I Jo )

Now, if Iimsup5_>+oo (v(s) - v(-s) + a f_sv
2{t)dt\ = 0, then, by item

(i), v(s) - v(-s) = 0 identically. Thus, f™oov
2(ήdt = 0 and so v = 0.

q.e.d.
The following result due to Ambrose [1] follows from (3.2) by taking

t = to>O and applying Proposition 3.3(i).
3.5. Corollary. If Iim5_^+oo /J Ric(γ(ή) dt = +oo, then γ(s) is conju-

gate to γ(0) for some s > 0.
The following result is an improvement of Theorem 1.2 of Chicone and

Ehrlich [3], and is an immediate consequence of (3.2) and Proposition

3.6. Corollary. If γ: (-00, 00) —> M has no pair of conjugate points,

then

lim sup /
s—>+oo J-

where the equality holds only if the curvature tensor Rf is identically zero

along γ.
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4. Proof of Theorem A

If M has no conjugate points, then U is defined in all of SM. We
will show that

(4.1) / trRdμ<-[ tτU2dμ.
JSM JSM
/ [
SM JSM

Theorem A will follow from (4.1). To see this, let S be the scalar curvature
of M, let ojnX = vol(5rΠ~ ), and let m be the Lebesgue measure on M.
Then by Fubini's theorem, we obtain

/ Sdm = —!— ί trRdμ < — / XτU2dμ < 0.
JM ωn-\ JSM ωn-\ JSM

Furthermore, if fMSdm = 0, then U2 is identically zero and so R = 0
on SM.

To prove (4.1), let r+ = (tri?)+ and r~ = (tτR)~ be the positive
and the negative parts of tri?, respectively. If fSMr~ dμ - +oo, then
JSMtτRdμ = -ex), because in this case j S M r+ dμ < oo. So (4.1) holds.
Hence we may suppose fSM r~ dμ < oo. Let ε > 0 and let / be an
integrable function on SM such that

0 < / < ( l - ε ) t r ( 7 2 + Λ

Thus it suffices to show that

(4.2) / fdμ< f r'dμ.
JSM JSM

Indeed, from this, we have

f ((l-ε)trU2 + r+)dμ< f r'dμ,
JSM JSM

and (4.1) by letting ε —• 0.
To prove (4.2) we will verify that the integral of (/- r~) is nonpositive

in each one of the sets D, C+ , and C~\C* . Note that SM is the disjoint
union SM = D U C+ U {C~\C+). From inequality (3.2) it follows that

(4.3) iι(5) - iι(0 + - 5 - r Γ u{λ) dλ + ί\f - r"){Tλ{υ)) dλ<0
n A Jt Jt

for every υ e SM and s, t e R. By Proposition 3.3(ii) we obtain imme-
diately

ΓOO(f-r-)(Tt(v))dt<0
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for almost all v e D. So, by Proposition 2.3 we conclude that

f(f-r~)dμ= ί Γ(f-r-)(Tt(v))dtdμ<0.
JD Jπ{D)J-oo

In order to compute fc+(f - r~)dμ, let δ > 0 and let f0 > 0 be

integrable on SM. Define g = f - r~ - δf0 . From (4.3) we have

* Γ /o( W ) dt - M(0) + u(*) + - ? - Γ ι/2(ί) Λ + Γ s( W ) Λ < 0
JO n ~ * JO Jθ

for every Ϊ; e SM and s G R. If v € C+, using Proposition 3.3(i)
we conclude that l iminf^^ /* ^ ( Γ ^ Ϊ ; ) ) dt = -oo. Then by the Maximal
Ergodic Theorem 1.1 we obtain

ί (f-r~-δfo)dμ= ί gdμ<0
Jc+ Jc+

and therefore

/ (f-r~)dμ<0,
Jc+

by letting δ —• 0. In order to compute fc+\C- {f-r~)dμ we derive from
(4.3) that

ί fQ(Tt(v))dt + u(O)-u(-s)
J -s

for every υ e SM and s € R. Hence

δ [' fo(T_t(υ))dt + u(O)-u(-s)
(4 4) e r 2 r

+ 7Γ-J «(-t)dt+ g(T_t(v))dt<0.
n — w o JO

If υ e C~ , then Iiminf5^+oo /J ^ ( ^ ( v ) ) rfί = -oo by (4.4) and Propo-
sition 3.3(i). Thus using the Maximal Ergodic Theorem 1.1 we obtain

/ (f-r-δfo)dμ= ί gdμ<0.
Jc~\c+ Jc~\c+

Hence letting δ —> 0 leads to

f {f-Γ)dμ<0,
Jc~\c+

which completes the proof of Theorem A.
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