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NODAL SETS OF EIGENFUNCTIONS
ON RIEMANN SURFACES

RUI-TAO DONG

Abstract

On an ^-dimensional smooth Riemannian manifold, the nodal set of
an eigenfunction is its zero set. It has been a longstanding problem to
estimate the (n - 1 )-dimensional Hausdorff measure of the nodal set in
terms of the corresponding eigenvalue and the geometry of the manifold.
In this paper, we give an upper bound on the length of the nodal set on
a Riemann surface.

Defining the vanishing order of an eigenfunction at a point to be the
order of the first nonzero term in its Taylor expansion at that point, we
also give an upper bound on the sum of the vanishing orders over the
points on the Riemann surface, where the eigenfunction and its gradi-
ent both vanish. This result sharpens a similar result by Donnelley and
Fefferman.

1. Introduction

Let (Mn, g) be a connected, smooth, compact Riemannian manifold
without boundary. Suppose that Δ is the Laplace-Beltrami operator on
(Mn, g), and u is a real eigenfunction with corresponding eigenvalue λ,
i.e., Δw = -λu. The nodal set JV of u is defined to be the set of points
x eM where u(x) = 0.

Denote D to be the diameter of the manifold, and H to be the upper
bound of the absolute value of the sectional curvature.

It is clear that outside of the singular set S? = {x\ u(x) = 0, Vu(x) =
0} , Jf is a regular (n - 1)-dimensional submanifold of M.

Yau conjectured in Problem 73 of [14] that

and that the constants cχ and c2 depend only on the geometry of the

manifold. Here %?n~x{JV) is the (n- l)-dimensional Hausdorff measure

of jr.
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In this paper, we will first prove an integral formula for the (n - 1)-
dimensional Hausdorff measure of the nodal set on an n-dimensional man-
ifold.

Theorem 2.1. Let q = |Vw|2 + λu2/n. Then

IM V<*

When M is a Riemann surface, i.e., n = 2, we can prove the following
interesting results.

Theorem 4.2. Suppose BR is a geodesic ball of radius R in M. Then

•F1 {jr n BR) < RVλ(c3 + c4R
2Vλ),

where the constants c3 and c4 depend only upon H and D.

The optimal lower bound %fx{j¥) > c5y/λ was obtained a while ago by
Briining in [3] and also by Yau.

A byproduct of this estimate is
Corollary 4.4. \lnq\BMO < c6λ

3/4.

The singular set 5? consists of only isolated points. We have
Theorem 3.4. Suppose that S? = {pt} and that u vanishes to order

nt + 1 at p(. Then,

where cΊ and c8 depend only upon H and D.
The global version of this is more interesting.
Corollary 3.6. Using the same notation as above, we obtain

Σni<j~ [λvol(M) -2 ί min{K, 0)1 ,
π L JM J

where K is the Gaussian curvature of the surface.
These results generalize and improve similar results in [8] by Donnelly

and Fefferman.
For general n-dimensional manifolds, Hardt and Simon proved the fol-

lowing.
Theorem [12, Theorem 5.3]. For any n-dimensional smooth manifold,

one has, for large λ,

where the constant c9 depends upon H and D.
When (M, g) is real analytic, Donnelly and Fefferman proved
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Theorem [7, Theorem 1.2]. cχo^/λ < ^n~x{JV) <cnVλ.
However due to the nature of the proof, these constants are not con-

trolled by the geometry of the manifold.
We used a rather different approach to the problem. Most of the meth-

ods used here can be applied with little modification to manifolds with
boundary.

I would like to thank C. Evans, C. Fefferman, F.-H. Lin, N. Trudinger,
and S.-T. Yau, as well as many of my other colleagues for advice and
encouragement. I am very grateful to the Mathematical Sciences Research
Institute and its staff for support and hospitality.

2. Integral formula

In [1], Alt, Caffarelli, and Friedman proved certain regularity theorems
for a free boundary problem. Inspired by their idea, we are going to write
the Haussdorff measure of JV in a singular integral.

Theorem 2.1. Define q = |Vw|2 + λu2/n and let Ω c l be a domain
with smooth boundary. Then

(i) x"-

Remark. 1. The integral on the right-hand side should be understood
as

t. 1 f Δ\u\+λ\u\
l im- / ' ' ,
ε^o 2 y Ω _ ^ y/q

where ^ is a tubular neighborhood of the singular set 5? = {x | u(x) = 0,
Vw = 0} in Ω. Because l/y/q is a regular function on Ω - ^ , it makes
sense to integrate the distribution (Δ|κ| + λ\u\)/y/q over Ω - ^ .

2. λ/n can be replaced by any constant which is bounded from below
by cχλ. We chose the constant for the sake of the differential inequality
which we will show later.

Proof Theorem 1.7(ii) of [12] implies that d i m ^ ( ^ ) < n - 2 . If we
can show

2 Ja-s

then (1) follows.
Denoting v to be the outward unit normal vector on ^ , by definition
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we get
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a-s-e VQ Ja- r, L \VQJ VV\

M / i \ d ( l \i

Noticing that Δ|u| + λ|w| = 0 on {|M| >δ}-^ and using the Green's
identity, we obtain

Δ|w|+λ|w| ,. f . . Γ. / 1 \ A 1
- lim / u Δ ( — ) + - =

s^oJ{M>δ}_<?-[ '[ \y/qj Jq\

= hm

_, l

+
. d ( 1 \1

a

The last equality is due to the fact that \Vu\/^/q -> 1 on {\u\ - δ} -^ as
δ —> 0 and the fact that JVΓ\Ω-^ is an (n- l)-dimensional submanifold
in Ω, so that

Formally, we have

|M| = δ} - ^ ) = Π Ω -

V|M|

+

1

s/λfn

(3) < \ ϊ IV In q\ + Vnλ vol(Ω) + vc

The last step is due to Kato's inequality | V | M | | < | V M | <

+ vol(^Ω)
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We still need to justify the first equality (2). Integration by parts gives

I A|«| + A|«|= f ±d]u\+ί L v i φ v f J Λ + W

f Δ.M
+

The first integral on the right-hand side is

(4) < f ^M < f u/"-'

The definition of the Minkowski content - # and Theorem 3.2.39 in [10]
show that

(5)

Since β?n 2+δ(S^) = 0 for any δ > 0, the vanishing of the last limit in

(5) implies the existence of a sequence {εj —• 0 as i —> oo, such that

β?n~\d£Γε) ^ 0 as i -• oo. Letting e = e. -> 0 in (4), we conclude that

(2) is true, q.e.d.
We have thus established our main estimate of this section:
Theorem 2.2. For any domain Ω c M which has a smooth boundary,

we have

<lr ί
2
 ./Ω

3. Vanishing order estimates

The goal of this section is to prove various vanishing order estimates in
preparation for the next section. Some of the estimates are of independent
interest. We assume λ to be large, as we can always change the constants
in the estimates to make them true for smaller λ.

Donnelly and Fefferman proved the following vanishing order estimate.
The same estimate was obtained later by Lin in [13] via a different ap-
proach.

Theorem [7, Theorem 4.2]. There exists an Ro > 0 such that for any
x e M and R < Ro, one has

max \u\ < eCχ A max | t/ | ,
B2R(x) BR(x)
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where Ro depends only upon H, and the constants c0 and cχ depend only
upon H and D.

The same type of estimate holds for q.
Lemma 3.1. There exists an Ro = R0(H) > 0 such that for any x e M

and R<R0,

max q < e2 max q,
B2R(X) BR(X)

where the constants cχ and c2 depend only upon H and D.
In order to prove the lemma, we need to define the second-order fre-

quency N2 for a harmonic function and establish some of its properties.
Suppose h is a harmonic function. We define N2(R) of h to be

(6) N2(R) = R [ \V2h\2 / ί |VΛ|2.
JBR I JdBR

Theorem 3.2. There is a positive constant K such that eKRN2(R) is a
monotone nondecreasing function of R.

Proof For simplicity, we only carry out the calculation on the Eu-
clidean space, and without loss of generality assume that the ball is cen-
tered at the origin. In this case, we can choose K = 0:

R in |V2A|2 LR \Vh\2

JBR i I JdBR i I

The following are some Rellich type identities for harmonic functions:

Putting together all of the above, we have
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By elementary methods it can be shown that

2\2

Hence,

-j— In N2(R) > 0. q.e.d.

If we note that

d Γ 1

~dRXn[R^

then N2(R) < N implies

(7) max|Vλ|2<<
B2R nR

9 9 9 9

We define a new metric ds = dr + r ds on (0, oo) x M. Let ύ =
rau(x), where

4λ + ( Λ - l ) 2 - ( / ι - l ) ] .

Under the new metric, it is easy to check that Aύ = 0.
Let the ball be centered on (0, p) for some p e M. Hence, B2 =

(0, 2) x M. Direct calculation shows that

, -£,2 = ^2α-2/.yM|2 + ^ 2 .

and
, £ i 2 A | 2 2 α - 4 r l r _ 2 ,2 ^ A , - , i \ 2 l r 7 ,2 2 , 2 o , ^ Λ 2Ί

|V u\ = r [|V u| + lauAu 4- 2(α — 1) |VM| + Q: (α — 2α + 2)w J.
Substituting these into (6) and using the fact that Au = -λu, we have

N2(2)<c4y/λ.

Arguments similar to those in [13] yield that N2(R) < c5Vλ for any

ball with center in Bχ and radius less than 1.
From (7) it follows that

max |Vώ| 2 </ 6 Λ / ϊ max |Vώ| 2 ,

where B stands for the corresponding ball in (0, oo) x M.
Getting rid of the hats, we get
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We have thus finished the proof of Lemma 3.1. q.e.d.
For the remainder of this section, we assume that (M2, g) is a smooth

two-dimensional manifold (unless otherwise indicated) and K is its Gaus-
sian curvature. It was proved in [5] that the singular set S? consists of
finitely many isolated points. Let S? = {px, p2, , p j and let fc be
the vanishing order of u at p.. We are going to prove that the following
inequality holds in the sense of distribution.

Theorem 3.3. Using the notation defined above, we obtain

(8) Δln# > -λ + 2min(ί:, 0) + 4n^(ki ~ λ)δ

P. >

where δp is the Dirac function centered at p{.

Proof. We are first going to prove by direct calculation that at the point
where q Φ 0, we have

Δln? > -λ + 2mm(K, 0).

The standard Bochner formula gives

Δtf
Q q

[2|V2w|2 + 2(Vw, VΔw) + (2K + λ)\Vu\2 - λ2u2]

-- ί |2(V 2 w, Vu)+λuVu\2

Q

= -[2|V2w|2 - λ2u2 + (2K - λ)\Vu\2]

-\\2(V2u,Vu)+λuVu\2,
Q

where V2u denotes the Hessian of u. Choose a suitable orthogonal co-
ordinate system at the point, such that

u22

The equation ΔM = -λu implies that uχχ + u22 = -λu. Substituting
-un —u22 for λu and denoting
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we have

Δln 9 - i[2(M;, + 4 ) " ("π + U2if + (2K ~ ^)|V«|2]

_l|[Mll-«22 ° I K ]
βΊL o u22-un\[u2\

= \[q{uu - u22)
2 + q(2K - λ)\Vu\2 - («„ - M22)

2|V«|2]

= λ(uu-u22)
2

 + _ |Vκl2

Noticing that the first term in (9) is nonnegative and that \Vu\2/q < 1,
we finally get

(10) Δln^ > -λ + 2min{K, 0).

The next step is to deal with the singular set S?. Let p be a point
in S?, and k be the vanishing order of w at p. Given a nonnegative
test function φ e C™(U), where [/ is a neighborhood of p in M which
intersects S? only at /?, we need to show that

(11) ί φA\nq> ( φ[-λ + 2mm{K,ΰ)] +4π(k-
Ju Ju

Without loss of generality, we assume p = 0. We may choose polar
coordinates (r, θ), under which u has the following expansions:

Vu = V(ark coskθ) + O(rk),

V2w = V2{ark coskθ) + Oίr*"1).

Elementary calculation yields

q = |Vw|2 + λu/2 = k2r2k~2 + O(r2k"1),

(12) lntf = lnλ:2 + (2fc - 2)lnr + O{r),

(13) Vine = (2fc-2)/r +0(1).

We are now ready to prove (11). At first we compute:

/ φAlnq= / Δ01n<z = lim/ Aφlnq
Ju Ju ε^°Ju-Be{0)

= lim / ^-Inq- φ—\nq+ φAlnql
ε^° [JdBe(0) ό v JdBe(0) ό v Ju-Be(0) J
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By (12) and (13) we obtain, respectively,

f dφ
(15) lim/, = lim / T-2-

ε->0 ε^°JdB (0) ^

lim 72 = lim / φ— In #

( 1 6 ) - o ^ o ^ ( O ) v

= 2π(2k - 2)0(0)lime - + 0(1) = 4π(k - 1)0(0).
ε-*0 [6 J

(10) together with that q Φ 0 on C/ - 2?e(0) implies

(17) L= [ φAlnq> ί φ[-λ + 2min{K, 0)].
Ju-Be(0) JU-Bε(0)

We conclude the proof of the theorem by combining (15), (16), and (17).
Theorem 3.4. Suppose that S? = {/?.} and that u vanishes to order

n. + 1 at p,. Then

where c9 and cl0 depend only upon D and H.
Proof. Normalize q so that maxΛ q = \. Suppose that for some

p e BR(x), Inq achieves its maximum in BR(x), i.e.,

In q(p) = max In q > —cλ λ Vλ.
BR(x)

We have used Proposition 3.1 twice to get the last inequality. Define r to
be the geodesic distance from p, and k(r) to be an auxiliary function on
B3R(P)CB4R(X):

Lemma 3.5. For R < C(H), k(r) satisfies:
(1) k(r) > 0 on B3R(p) and k(3R) = 0,

(2) k(r) >cl2>0 on B2R(p) D BR(x), / ^ ( p ) k(r) < cnR
2 < oo,

(3) k\r) < 0 on B3R(p) and k'(3R) = 0,
(4) Ak(r)>-δp.
Proof. (1), (2), and (3) are trivial.
Remembering that K > —H, we use the comparison theorem for Laplace

operators to obtain Δr < AHr in the sense of distribution, where Δ^ de-
notes the Laplacian on the hyperbolic space form with constant curvature



NODAL SETS OF EIGENFUNCTIONS ON RIEMANN SURFACES 503

-H. From (3) it follows that

Δfc(r) > AHk(r)

= j -δB + y/H[ — r—~ - τr— ) cotanh (y/Hr) + - ^ .
ISπR2 p \18πi?2 2πr/ V / 2πr2

Choosing a small R, (4) becomes obvious, q.e.d.
Multiplying k{r) on both sides of (8) and using the Green's identity,

we get

lnqAk(r)

(18) JBuSP) Γ

By noticing that \nq < 0 on B3R(p) c B4R(x), the left-hand side of (18)
can be estimated by

(19) < I -lnqδp < -lnq(p) < c^Vλ.

The right-hand side of (18) is

(20) >-c l s(λ-

Comparing (19) with (20) and remembering that ni = kt-\ complete the
proof of Theorem 3.4. q.e.d.

It is actually easier to get the global version of this theorem. Integrating
both sides of (8), we get the following.

Corollary 3.6. On any Riemann surface,

, 0)] .

4. Nodal length estimate

The present section is devoted to a local estimate on the nodal length.
In §1, we demonstrated that the nodal length within a geodesic ball BR(x)
can be bounded by

c{ ί \VInq\ + c2JλRn~\
JBR(X)

We are going to estimate the first term as follows.
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Lemma 4.1. Suppose that on B4R(x), / is nonnegative and

(22) Δ/ < h.

Then

(23) R-1 f |V/| < c3MB(x)f + c4R\\h\\L2(B M).
JBR

Proof. This is the weak Harnack type inequality (8.76) in [11] with
q = 4. For an alternative proof see [6]. q.e.d.

We have shown in §2 that on a two-dimensional manifold,

(24) Alnq > -λ + 2min(Λ:, 0) + 4π(fcI - l)δp.

Normalize q so that maxΛ q = \ and let f = -Inq. Then we have

/ > 0 on B4R(x) and inf^ ( χ ) / < c5Vλ. When A is large, h = c6A will

satisfy (22). Substituting / and Λ in (23) and multiplying the resulting

equation by R, we obtain

(25)

We have thus proved
Theorem 4.2. Suppose BR is any geodesic ball of radius R in M.

(26) J^\yKnBR)< RVλ((c9 + c l o i

where the constants c9 and cl0 depend only upon H and D.
We need the following lemma to extend (26) to a global estimate.
Lemma 4.3. Any geodesic ball B of radius p can be covered by

c{lp/R2 many balls of smaller radius R, with the constant depending only
upon H and D.

Proof Denote by SB a maximum collection of disjoint balls in Bp

with radius R/2. It is easy to see that {BR(x) \ BR,2(x) e 38} covers B .
We want to count the number of balls in SB . Suppose BR,2(x) has the
smallest volume among all elements of SB . Let VH(r) be the volume of a
ball with radius r in hyperbolic space form with constant curvature -H.
Then by the Bishop-Gromov volume comparison theorem,

where cn depends only upon H and D. q.e.d.
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Multiplying (25) by cnp/R2 , we get

JBP

We have the freedom to choose R, and the optimal choice is R = λ~ι/Λ :

I,
Hence we have proved the following corollary.

Corollary 4.4. |ln<?|B M O < cl6λ
3/A .

Remark. Following the steps by Chanillo and Muckenhoupt in [4], we
were able to prove a BMO bound for In q which is similar to theirs on
^-dimensional manifolds. But this two-dimensional bound is sharper.

Taking p to be the diameter of the manifold, we obtain Bp = M.
Hence we have our final theorem.

Theorem 4.5. Let (M2, g) be a smooth Riemann surface, and u an
eigenfunction with corresponding eigenvalue λ. Then

where the constant depends only upon D and H.
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