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UNIFORMLY ELLIPTIC OPERATORS
ON RIEMANNIAN MANIFOLDS

LAURENT SALOFF-COSTE

Abstract

Given a Riemannian manifold (M, g), we study the solutions of heat
equations associated with second order differential operators in diver-
gence form that are uniformly elliptic with respect to g . Typical exam-
ples of such operators are the Laplace operators of Riemannian struc-
tures which are quasi-isometric to g . We first prove some Poincare and
Sobolev inequalities on geodesic balls. Then we use Moser's iteration to
obtain Harnack inequalities. Gaussian estimates, uniqueness theorems,
and other applications are also discussed. These results involve local or
global lower bound hypotheses on the Ricci curvature of g. Some of
them are new even when applied to the Laplace operator of (M, g).

1. Introduction

Let (M, g) be a complete Riemannian manifold. In this paper, we
study some second-order differential operators which are to g what uni-
formly elliptic operators in divergence form are to the Euclidean metric on
Rn . The simplest example of such an operator is the Laplace-Beltrami op-
erator Δ associated with g. Under lower bound hypotheses on the Ricci
curvature, Li and Yau have obtained definitive results concerning Δ and
the corresponding heat equation. By rather elementary means, they proved
in [28] a remarkable gradient estimate which implies parabolic Harnack
inequalities as well as upper and lower Gaussian bounds for the kernel
of the heat flow semigroup e~tA . In fact, the parabolic gradient estimate
of Li-Yau is a generalization of previous elliptic results by Yau [43] and
Cheng-Yau [10]. One important aspect of these works is that they give
global estimates when the Ricci curvature is nonnegative on M. This is
well illustrated by a well-known result of Yau who proved in [43] that any
manifold (M, g) with nonnegative Ricci curvature has the strong Liou-
ville property (i.e., any positive harmonic function on (M, g) is constant).

Let us now introduce a typical example of the operators studied in this
paper. Let Δ be the Laplacian associated with another metric g on M
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such that, for some a > 1,

ot~lg < g <ag.

The point is that we want to study Δ under lower bound hypotheses on the
Ricci curvature of the fixed metric g. This means that we have no control
on the Ricci curvature of g, and consequently, that the methods of [28] do
not apply. However, we are going to prove parabolic Harnack inequalities
for the solutions of the heat equation (dt+A)u = 0 and Gaussian estimates

for the kernel of the semigroup e~tA . These results are global when the
Ricci curvature of g is nonnegative on M. For instance, we prove that
(M, g) has the strong Liouville property for any g as above whenever g
has nonnegative Ricci curvature. This extends Yau's result. It is known
that, in general, the (strong) Liouville property is not stable under such
quasi-isometric changes of metrics (see [30]).

The point of view adopted in this paper is to consider Δ as a uniformly
elliptic, divergence form operator with respect to g. In Rn , a divergence
form operator L (of the simplest kind) is a second order differential op-
erator of the type

and it is uniformly elliptic if the matrix-valued function (aέ At, x)) sat-

isfies for some a > 1 and for all x £ Rn , ξ eRn, teR,

The study of the parabolic equation (dt + L)u = 0 has a long history
marked by works of Nash [34], Moser [31]—[33], Aronson [4], and others.
The Liouville property is proved in [31], the parabolic Harnack inequality
in [32], [33], and Gaussian bounds in [4]. The pioneering work of Nash
[34] contains ideas that also lead to these results (see [18]). Our approach
in this paper is to use Moser's method, which clearly extends quite gen-
erally as soon as its basic ingredients are available. These ingredients are
some precise Sobolev and Poincare inequalities on balls.

The main contribution of this paper is to remark that the gradient es-
timates of Yau and his collaborators imply some Sobolev and Poincare
inequalities on balls which are good enough to run Moser's method in an
optimal way. On the one hand, this should come as no surprise. Li-Yau's
paper [28], as well as previous works by Yau and others, have made clear
that a lower bound hypothesis on the Ricci curvature provides enough
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information to develop an analysis on (M, g). On the other hand, previ-
ous attempts to use Moser's method in this setting, as in [9] and [8], have
not yielded optimal results.

The results in [9] and [8] depend only on the part of Moser's method
that deals with upper bounds and uses the Sobolev inequality. They are not
sharp because they rest on a nonsharp Sobolev inequality which follows
from the work of Croke [11]. What seems to have been missing at that
time, and is now available thanks to the work of Varopoulos [40], is the
understanding of the links between Sobolev inequalities and semigroup
estimates. Indeed, using Varopoulos results, we show that optimal Sobolev
inequalities on balls can easily be obtained from the gradient estimate of
Cheng-Yau (which goes back to 1975).

Roughly speaking, the Poincare inequality enters Moser's method in
order to obtain lower bounds on positive solutions. When dealing with
elliptic equations, a classical Poincare inequality on balls is needed. In our
setting, such an inequality has been obtained by Buser in [7]. However, if
we insist on treating parabolic equations as well, a more involved variation
on Poincare inequality is needed (see [32]). As in [36], we show that the
relevant inequality follows from the classical one by adapting an idea of
Jerison [21].

The content of this paper can be seen from different points of view.
The Sobolev and Poincare inequalities presented in §3 and proved in §§9
and 10 are of independent interest. In §4 we introduce a natural class
of uniformly elliptic divergence form operators, and in §5 we state the
powerful Harnack-Moser inequalities which follow from the Sobolev and
Poincare inequalities and Moser iteration. §§6, 7, and 8 present applica-
tions of Harnack-Moser inequalities. Some of the results obtained in §§7
and 8 improve upon previous ones even when applied to the Laplace op-
erator Δ on (M, g). Notation is introduced in §2, where we recall some
well-known volume estimates that play a basic part in this work as well as
the gradient inequality of Cheng-Yau which is used in the proof of Sobolev
inequalities.

Some of the results presented in this paper have been announced in
[35], where a special emphasis is placed on the case when (M, g) has
nonnegative Ricci curvature.

2. Preliminaries

Here we present the notation used in this paper. Denote by V/ the gra-

dient induced by the fixed metric g on M, and set |V/|2 = g(Vf, V/).
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Let Δ be the Laplace-Beltrami operator on (AT, g) with the conven-
tion that (Δ/, /) = f\Vf\2dv, where v is the Riemannian volume,
and (/j, f2) = f f{f2dv . In other words, Δ is a positive operator on
L2(M, rfv). The operator Δ can be written as Δ/ = -div(V/) where
div(JT) is defined, for any vector field X, by / Xfdv = - ffdiv(X) dv .

Denote by Tχ the tangent space at x and by TM the tangent bundle.
We denote by End(TM) and Sym(ΓM) the bundle of endomorphisms and
the bundle of symmetric endomorphisms, respectively, over M. Also let
Ric be the Ricci curvature tensor of g.

Let p be the Riemannian distance on M. Given a ball B = B(x, r),
we denote by V(x, r) = V = υ(B) its volume, and by sB = B(x, sr) the
concentric ball with radius sr. We define K = J£(2?) = AΓ(x, r) to be the
smallest nonnegative number such that Ric > -Kg in 2B = B(x, 2r).
Note that K is a lower bound of the Ricci curvature in 2B instead of
B. However, the number 2 has been chosen for convenience and can be
replaced by any fixed number strictly greater than 1.

Among the basic tools used in this paper are classical volume estimates
which we now recall. Let Va(r) be the volume of the ball of radius r
in the simply connected space with constant sectional curvature equal to
-a/(n - 1). In the sequel a = K is a nonnegative number, and the above
space is a hyperbolic space if a > 0 and the Euclidean space if a = 0. In
any case, we have

ωns
n < Va(s) < ωns

nexv(y/(n-l)as), s>0,a>0,

where ωn is the volume of the Euclidean ball of radius one. For any ball
B = B(x, r) c M it is well known that we have (see [8])

V(x, s)/V(x, s) < Vκ(s)/Vκ(s), 0 < s < s < 2r.

From the above, we deduce

(1) V(x, s) < ωns
n exp(y/(n-ί)Ks), 0 < s < 2r,

and

(2) V(x, s) < V(x, s')(s/s')n exp(y/(n-l)Ks), 0 < s < s < 2r,

which implies, for 0 < s < s < r, y e B, and setting p(x, y) = p,

(3) V(y, s) < V(x, s')((φ + s)/s)n exp(y/(n - \)K{p + s)).

These estimates are used again and again in this paper.
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We now recall the basic gradient estimate on which this work rests. In
[43], Yau proved that any positive solution u of Au = 0 on a manifold
M with Ricci curvature bounded from below by -K satisfies

|Vln(κ)| <V{rΓ-

In [10], Cheng and Yau proved a local version which reads as follows. Fix
0 < δ < 1. There exists a constant C depending only on n and δ such
that any positive solution u of Au = 0 in IB = B(x, 2r) c M satisfies

(4) |Vln(w)| < C{r~l + y/K) in 2δB.

Integrating along minimal paths, an elliptic Harnack inequality can be
obtained. Namely, any u as above satisfies

u(z)/u(y)<eC{ι+V*r\ z,ye2δB.

In [28], Li and Yau generalized the above to the parabolic equation
(dt + δ)u = 0. However, we will only need the elliptic version.

Let Ht = e~tA be the heat flow semigroup on M, and let ht be its

kernel. We consider also the Poisson semigroup Pt = e~ι Δ which can be
obtained from Ht through the subordination formula

(5) P^^f^s-^e-Ή^ds, ί>0.

We denote the kernel of Pt by pt. The following estimates are easy
consequences of the Cheng-Yau inequality.

Lemma 2.1. For any ball B = B(x, r), the kernels pt and ht satisfy

pr(x, x), hri(x, x) < e Ύ ,

where C depends only on n.
Note that the upper bound on hri which follows from [28] reads

hri{x, x) < e κ Ύ .

In order to obtain the improved estimate stated in the lemma, we remark
that ht(x 9x) is a decreasing function of t. Hence, using (5) we have

1 /*OO

Pr(x ,x)>-7= s~l/2e~shr2, (x ,x)ds> chri(x, x),

and the upper estimate of hri follows from the upper estimate of pr. Note
that corresponding lower bounds hold as well (however, the lower bound

for hri is of the form e~
C{ι+Kr2)V~ι). Lemma 2.1 will be used in §10

where various Sobolev inequalities are proved.
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3. Sobolev and Poincare inequalities on balls

The role played by Sobolev and Poincare inequalities in analysis and

geometry is well known and a fair amount of work has been devoted to

their study. All the results in this paper rest on versions of these inequali-

ties given by Theorems 3.1 and 3.2 below. The proofs of these inequalities

are given in §§9 and 10. We start by reviewing some known inequalities

which are closely related to the ones obtained in this paper.

Given a compact manifold M it is not very difficult to see that

there exist P(M) and S(M) such that \\f - fMf2 < P(M)\\Vf\\2

2 and

11/- fM\\^dv < S{M)\\Vf\\\dv for / e &°°(M), where q = n/(n - 2)

(for simplicity we suppose here that n > 2). Note that P(M) can

always be estimated by P(M) < V(M){ι~ι/g)S(M) = V(M)~2/nS(M)

(here, V(M) denotes the volume of M). What is more difficult, but

by now well known, is that P(M) and S(M) can be estimated in terms

of the diameter d = d{M), the volume V = V(M), and a lower bound

-K (K > 0) of the Ricci curvature. Namely, it was proved by Li and

Yau in [27] that P(M) < ec»{ι+V*d)d2, and by S. Gallot in [19] that

S(M) < e

C"{ι+VKd)d2V~2/n . Apart from the dimensional constants, these
estimates are sharp.

Now, let B = B(x, r) be a ball in a complete manifold M. In view of
the above, it is natural to conjecture that

(6) ί\f- fB\2 dv < e

C"(X+VEr)r2 ί IV/l2 dv, f € W~(B),
JB JB

and

(7) ί\f-fB\29dv<eC"{i+VKr)r2V-2/" [\Vf\2dv, fe9
JB JB

where, according to our notation, K = K(B) > 0 is such that Ric > — Kg
in 2B, and V is the volume of B. Indeed, (6) has been proved by P.
Buser in [7]. In this paper, we offer a generalization (Theorem 3.2) of (6)
which plays an important role in the study of parabolic equations. We also
obtain (Theorem 3.1) a slightly weakened version of (7) which is powerful
enough for our applications. Although it does not play a role in this paper,
it would be interesting to know whether or not (7) holds in general (we are
able to prove (7) only under the strong (and unpleasant) hypothesis that
B has convex boundary; see §10). We now state the Sobolev inequality on
which most of this paper rests.
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Theorem 3.1. For n > 2, there exists C, depending only on n, such
that for all B c M we have

where q = n/(n - 2). For n < 2, the above inequality holds with n
replaced by any fixed ri > 2.

This result is weaker than (7) in two aspects. First, it does not include
any kind of Poincare inequality. Second, it involves only functions with
compact support in B. The proof and some variations on this result
(including Lp versions) are presented in §10.

We now pass to a generalization of (6). In fact, Theorem 3.1 and (6)
would be sufficient to follow the approach in [31] and study certain elliptic
differential equations on M. However, in order to study parabolic equa-
tions we need an improved version of (6) (see [32, Lemma 3, p. 120] for
a statement in Rn). Let φ be a nonincreasing function from [0, +oo[ to
[0,1] such that φ(t) = 0 for t > 1. We assume that there exists a β > 0
such that φ(t + (1 - t)/2) > βφ(t), 1/2 < t < 1, and set, for any ball
B = B{x,r), ΦB = φ{p{x, )/r).

Theorem 3.2. There exist C as above and C depending only on δ,
n, and φ such that, for any ball B c M, we have

j \f- fφ\
2Φdv < Cφe

cVKrr21 \Vf\2Φdv ,

where Φ = ΦB and fφ = / fΦdvj jΦdv .
There are also Lp versions of this result (see §9).

4. Uniformly elliptic operators in divergence form

In this section, we introduce the notation concerning the uniformly el-

liptic operators in divergence form which are studied in this paper. Let

us first consider the simplest example of these operators (besides Δ).

Namely, let Δ be the Laplace operator associated with a metric g such

that oΓXg < g < ag. Consider the section J / of Sym(ΓM) defined

by g(X, Y) = g(3?~ιX, Y). With some evident notation, we have

V = J/V , g(s/Vf, V/) = £(V/, V/), and

Δ = -div(V/) = - m " 1 div(mj/V/),

where m = VdetJ/ . Moreover, the quasi-isometry between g and g
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implies that sf and m satisfy a~ι\X\2 < g(sfX,X) < a\X\2 and

We generalize these considerations as follows. Let sft be a measurable
section of End(ΓM) depending on the parameter t. In other words, for
t eR and x 6 M , stft χ is an endomorphism of Tχ, and the function
(£, x) —• (JC, srft χ) e End(ΓM) is measurable. Let m be a positive mea-
surable function on M. We consider the operator L — L^ m defined
by

(8) Lu = -m~l diγ(msfVu).

We make the quantitative assumption that there exist a, μ > 1 such that

(9) μ~l<m(x)<μ, xeM,

and

(10)
a ι\X\2<g(j*t9XX,X)9 \AftχX\<a\X\ Vt eR, x e M, X e Tχ.

Note that, in general, we do not assume that s/ is symmetric. However,
in the case when si is symmetric and independent of t, we will consider
the metric g defined by g(X, Y) = g(s/~xX, Y) and the associated
distance function p.

Finally, we also consider operators of the form 2? = L+ lower order
terms. Let %?t and J^ be two vector fields on M such that the func-
tions (t, x) -> (x,^tfX) and (ί, x) -+ (x, J^ χ ) are measurable, and let
&(ί, x) be a measurable function on E x ¥ . We define 3* by

= -m~x diγ(m(s/Vu

On 3?, ^ and 6 we make the assumption that there exists β > 0 such
that

(11)

Under the uniform ellipticity hypotheses (9), (10), (11), we study the equa-
tion

(12) (dt+5?)u = 0.

We will refer to s/ , 8?, y, b and m as the coefficients of the above
equation (or of the operator J ? ) . It is one of the important features of
the results of this paper to hold for operators with measurable coefficients
satisfying the above uniform ellipticity hypotheses. When studying the so-
lutions of (12) in this generality, it is necessary to specify what "solution"



UNIFORMLY ELLIPTIC OPERATORS ON RIEMANNIAN MANIFOLDS 425

means. The natural notion of weak solution is spelled out in [33] and [5],
and it is well known that the study of (12) in the above genrality can be
reduced to the case when additional qualitative smoothness assumptions
are made on the coefficients of 2? . Hence, we do assume in all the proofs
given in this paper that m,s/ ,8?\y , and b are smooth, and that solu-
tion means classical solution. We say that u is a subsolution of (12) when
(βt +<S?)u < 0, and that u is a supersolution if — u is a subsolution.

5. Harnack-Moser inequalities

We now follow the method introduced in [32] and [33] by J. Moser, and
state some Harnack inequalities for the solutions of the parabolic equation
(12). The proofs will be omitted. Note that, by following [33], one avoids
using the John-Nirenberg type lemma which is one of the difficult points
in [32]. Moser's iteration has two steps. In the first step, mean value type
inequalities are obtained by an iterative argument. The main ingredient
is the Sobolev inequality of Theorem 3.1. Theorem 5.1 below is the basic
result of this first step: it is a powerful tool which yields the Gaussian upper
bounds of §6 and all the results discussed in §8. It will be convenient to
fix a parameter 0 < δ < 1, and to associate with any ball B and any real
s the sets

Q=]s-r\s[xB, Qδ=]s-δr\s[xδB, Q'δ =]s-r2, s-(l-δ)r2[xδB,

and, for 0 < ε <η <δ < 1 ,

β _ = [s - δr2 ,s - ηr2] xδB, Q+ = [s- εr2, s[xδB.

We also set ||κ|| Q = (//Q \u(t, x)\p dtdv)^p for a function u defined in

Theorem 5.1. Given 0 < p < +oo, any nonnegative subsolution u of
(12) in Q satisfies

sup{t/} < C'(l -δyi2+n\l +βr2γecVΈVv)-l\\u\\p

ptQ

for 0 < δ < 1, where C, γ > 0 depend only on n and p, whereas
C' depends also on a and μ. Moreover, when 0 < p < 2, we can take
γ = 1 + n/2, and C depends only on n (when n < 2, n has to be replaced
by any fixed n > 2).

The second step in Moser's method is more technical. Different mean
value inequalities are put together to finally obtain the Harnack inequality
of Theorem 5.3 below. Here, the basic ingredient is the Poincare inequality
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of Theorem 3.2, together with Theorem 5.1 and a variant of it which deals
with supersolutions. An intermediate result worth noting reads as follows.

Theorem 5.2. Let 0 < p0 < 1 + n/2 be fixed. Then any nonnegative
supersolution u of (12) in Q satisfies

where F(r) = (1 + βr2γ{ι+n/2)eCy/Kr, and C depends only on n, whereas
CQ depends on n, a, μ, ε, η, δ, and p0.

From the above two results and some classical chaining arguments, we
obtain

Theorem 5.3. Any nonnegative solution u of {\2) in Q satisfies

r l ^ C(l+βr2+Kr2) . Γf Ί

sup{w} < e v μ } mί{u},

with C depending only on n, δ, ε, η, a, and μ.
Corollary 5.4. If u is a positive solution of (12) in ]0, T[xB, then it

satisfies

for 0 < tf < t < T and y, y e δB, where p = p(y, y) and C depends
only on n, δ, a and μ.

Corollary 5.5. There exist 0 < γ < 1 and C, depending only on
n, α, μ, and δ, such that, for any solution u of (12) in Q, we have

\u{t', / ) - u(t,y)\ < C(l + VβTKrΫfjp/rΫWuW^Q,

where ~ρ = max{yj\t- t'\, p(y,y')} and (t,y), (t',/) e (^ .
One of the advantages of Moser's approach is that it applies to a wide

range of equations and the above results are by no means the most general
that can be obtained. For instance, nonhomogeneous terms can be added,
and the coefficients of the lower order terms can be taken to belong to some
Lp'q classes instead of being bounded. Examples of statements of this
kind are given below. As a motivation, we mention that we will encounter
nonhomogeneous equations when studying space derivatives of the heat
kernel (see Theorem 6.5 below). We follow closely Aronson-Serrin's paper
[5] to which we refer the reader for proofs that can be adapted to our
setting.
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F o r ( u 9 t 9 ( x 9 X ) ) e R χ l x Γ M , l e t A { u 9 t 9 x 9 X ) e Tχ a n d
B(w 9t9x9X)eR be such that

(u, t,x,X)^B

are measurable functions. We consider the equation

dtu(t, x ) = -mdiv{mA(u(t9x)9t9x9 Vu(t, x))}

(13) + B(u(t,x),t,x,Vu(t,x)),

where m is as before. On A and B we make the hypotheses that

g(X, A(u9t9x9X))> a~l\X\2 - a\u - a\ ,

|A(κ , t, x, X)\ < a\X\ + α3 |κ| + α 4 ,

where a > 1 is a constant, and the α. 's and b. 's are nonnegative functions
of (t, x) that belong to some classes L^c

g(R x M) with

p > 2/(1-0) and n/2p + l/q <(1-θ)/2 for them's,

p > 1/(1-0) and n/2p + l/q < (I - θ) for the δ.'s

for some fixed 0 < θ < 1 (here, as before, p corresponds to the space
variable x and q to the time variable t). When studying the solution of
(13) in a given Q=]s-r2, s[xB we simply denote by Ĥ H and \\b.\\ the
norms of the at 's and bx 's in their respective spaces Lp>q(Q). We also
set

^ = ̂ f l = KH + KII + ll*2ll
which corresponds to the nonhomogeneous terms in (13).

Theorem 5.6. (i) Any nonnegative subsolution u of (13) in Q =

]s - r2, s[xB satisfies

sup{w} < C'eCVΈr{(r2V)~l\\u\\2M + rθN)

for 0 < δ < 1, where C depends only on n, but C1 depends on n, a, μ, δ,
θ, HflJI, ||fl3 | |, | | α 5 | | , H6JI, and r. Moreover, we have

| | V M | | 2 β ί < C e r ( | |« | | 2 > e + r V N).

(ii) Any nonnegative solution u o/(13) in Q satisfies

sup{u} < C'ecVKr inf{« + r V } ,
Q_ Q+
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where C and C' are as above, but C' depends also on the parameters ε
and η which enter the definition of Q_ and β + .

Note that Holder regularity estimates can be obtained and that the other
results given in [5] can also be adapted to our setting.

6. Fundamental solutions

The preceding results can be applied to the study of fundamental solu-
tions of (12). More precisely, let qQ(t, y, t', y1), t' < t, y, y € Ω, be
the minimal fundamental solution of (12) in R x Ω, where Ω is an open
set in M. It is the only nonnegative continuous function such that, for
any / > 0 in ^°°(Ω), the function

is a solution of (12) in ]/', +oo[xΩ which tends to f(y) as t tends to

t' and satisfies Q Ω t,f < u in ]t', t"[ for any nonnegative solution u

of (12) in [*', t"[xtl such that / < u{tf, •) in Ω. For y, y e M and

t, C, r > 0 we set

E(C9t9y9y) = V(y, y/i)'ι/2V(yf

 9 Vt)'ι/2enp(-Cp2{y9y)/t).

In this section, we prove some Gaussian estimates for the above funda-
mental solutions. Typically, these estimates involve quantities like E. We
start with our most general result.

Theorem 6.1. Let 0 < δ < 1 be fixed and suppose that B c Ω. Then
for all y, y e SB and t' < t < tf + r2 we have

e-C'{l+{β+K]τ)E(C2,τ,y,y')<qΩ(t,y,t',y')

where τ = t - t'. Moreover, for all Bt = B(y.9 r.) c M, i = 1, 2, and all

t1 < t, we have

qΩ(t,y{,t',y2) < F - ^ V ^

where τ = t-t', τi = inf{τ, r]}, Vi = V{yi, ^/τp, p = p{yχ, y2), and the
constants C5 and C6 depend only on n, a, and μ > whereas Cχ, , C4

depend also on δ.
Remark that, by applying Corollary 5.5, the above can be complemented

with Holder regularity estimates. The lower bound is a straightforward
consequence of the Harnack inequality of Theorem 5.3. The upper bound
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is more involved. It follows from adapting the arguments of the proof of
Theorem 6.3 below. When (M, g) has nonnegative Ricci curvature, and
3* = L has no lower order terms (i.e., β = 0), we obtain the following
global two-sided estimate of qM in terms of E.

Corollary 6.2. Suppose that (M, g) has nonnegative Ricci curvature
and that β = 0. Then, for all t' < t, τ = t - t', and all y, y e M, we
have

C;lE(C2,τ,y,y')<qM(t,y,t',/) < C3£(C4"
1, τ, y , / ) ,

where the constants Cχ, , C4 depend only on n, a, and μ.
Note that under the hypotheses of this corollary, and if sf is indepen-

dent of t, the above implies the two-sided estimate
1 f+°° i /*+

C W V(x,Vt) ldt<GL(x,y)<C
Jp2 Jp2

P

for the Green function GL of L on M (when it exists) (see [28]).
We pause here to discuss a typical probabilistic application of the Gaus-

sian upper bound given by Theorem 6.1. For the purpose of this illustra-
tion, assume that there exists K > 0 such that Ric > -Kg on M. Also
assume that the coefficients of L are time independent, and that 3? = 0
and b = 0. Under these hypotheses, we can consider the diffusion process
Xt governed by 2?, and the corresponding family of probability measures
{Px, x e M} on the set of continuous paths in M. Of course, we have

\{Xt eU) = I qM(t,x,0, y)m(y)dv(y)

(it will be shown in the next section that qM has total mass one under the
above hypotheses). Fix x e M and r > 0, and consider the first time
τ(x9r) at which the process Xt, starting at x at t = 0, exists from the
ball B(x, r). With this notation, we have

Pχ{τ(x ,r)<t)< exp(CVX(r + y/i) - r2/C't), x e M, r, t > 0.

To obtain this result we can argue as in [36, Lemma 3] and reduce the
proof to the estimate

qM(t, x, 0, y)m{y) dv(y) < exp(C^(r + Vt) - r2/C't),
{p{x,y)>r}

which is a consequence of the Gaussian upper bound of Theorem 6.1 and
of the volume estimate (3).

The Gaussian upper bounds given by Theorem 6.1 can be improved
under some additional hypotheses. Namely, let us assume that Sf = L
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has no lower order terms, and that sf 6 Sym(ΓM) and is independent
of t. In this case, we consider the minimal symmetric submarkovian
semigroup e~tL associated with the Dirichlet form

We fix Ω, and denote by qt(y, y) the kernel of e~tL on L 2(Ω, mdv).
Of course, with our previous notation, we have qt(y, y) = qΩ(t , y , 0 , / ) .
We consider the distance p induced by the metric

Also denote by

is = inf{(Lf,fm)/(f,fm),fe%

the bottom of the spectrum of L on L 2(Ω, mdv). Our next result im-
proves upon the upper bound given by Theorem 6.1 by taking into account
the roles of v and p. Moreover, using the L analyticity oϊ e~ι , we
extend our estimate to time derivatives of the kernel.

Theorem 6.3. Let k e N be fixed. Then there exist a constant C
depending only on n, and a constant Ck depending only on n, a, μ, and
k, such that, for all t > 0 and B{ = B(yt, r.) c Ω, / = 1, 2, we have

tfqfri > Vi)\ < Ck(l + v{tχ + t2

x Γ*(l + p2/t)n/2(l +vt + p2/tf exp(-W - p2/4t),

where t. = inf{ί, r)}, ^. = F ( J Λ 9 y / η ) , a n d p = p{yx, j>2).

Once more, Holder regularity estimates for dt qt can be deduced from
Corollary 5.5. Remark also that, when k = 0, the restriction Bi c Ω can
be removed since qΩ is an increasing function of Ω. In another direction,
we note that the above also holds for the kernel corresponding to Neumann
boundary conditions on Ω. In this case, the condition B. c Ω is essential
even when k = 0. The above proof uses an idea of Davies [12] (which has
been used extensively by many authors) together with the Harnack-Moser
inequality of Theorem 5.1. This technique is a variation on an approach
used by Varopoulos in [41].

Proof. Fix λ € R and a bounded function ψ satisfying \Vψ\2 =
g{srfVψ, V^) < 1. For any nice (complex) function / , we set fz(y) =
eλψ{y)e~Lz(e~λψf)(y) for z = seiθ e C, s > 0, |0| < \ε, where 0 < e <
1 is a small fixed parameter. We have
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ds\\fz\\l = - 2Re (e

= - 2Re (eiβ J{g(^Vfz, V/z) -

< - 2(cos θ - sin θ) ί g(s/Vfz, Vjz)m dv

+ 2Λ.2(cos0 + sin0) ί \ffmdv

From this, we deduce

j 2 < e 2 ( λ 2 ( 1 + ε ) - " ( 1 - ε ) ) Ί ι / ι ι 2

2 .
Applying the Cauchy formula to fz (with a circle of radius εt/10 and
center t > 0), we obtain

We now introduce the function

u(t, y) =

where f £ L is now a real function. The function w is a solution of (dt +

L - I / ( 1 - C ) ) M = 0, and we apply Theorem 5.1 on ]t-ηt{, t[χB(y{,

where tt = inf{ί, r̂ 2} and 0 < η < 1. This yields

t-ηtι

Introducing eλψ{y^, we get

,y{)\2 <A(k9 t, ε) Wχ(ηY

where we have set A(k, t, ε) = Co k\(εt)~ , and



432 LAURENT SALOFF-COSTE

2Taking the supremum over all / e L2(B(y2, y/ηϊ^) with | | / | | 2 = 1, we
obtain

[
B{y2,

< A(k, t, ε )

Again applying Theorem 5.1, this time on ]t - ηt2, t[xB(y2, yfηt^), we
get

< A(k, t, e)Wχ(ηW2(η)eW^{^^)+λ2^^

We now choose λ = p(yχ, y2)/2(\ + ε)t = p/4(l + ε)t, and ψ such that
ψ(y\) ~ Ψ(yi) = P'» which is compatible with the condition |V^| < 1.
Then we have

ktfff,(y,, V2)\ <A(k,t,

We choose η = (10(1 + p2/t))~ι, and get

|0*0 (θΊ , y2)\ <A(k,t, ε)W(Bι, p, t)W(B2,p,

where we have set

W(B,R, t) = (l+vτf+n)/4eC{l+VJΓτ)V(x, Jτ/(l +R2/ή)~l/2

for B = B(x, r), R > 1, and τ = inf{t, r2}. If k = 0, we can take
ε = 0, and obtain

Qt(yx, y2) < ^ ( 5 i > P» 0 ̂ ( 5 2 ' ^ ' 0 eχp(-*^ - / °

x (1 + y92/0M/2 exp(-i/ί -

Also, if ι/ = 0, we take ε = (10(1 + ρ2/t))~{ and get

,p, t)W(B2,p, t)Γk(l+p2/t)kεxp(-p2/4t).

In any case, we end the proof of Theorem 6.3 by taking ε =
(1 + vt + p2/t)~ι . It is v
negative Ricci curvature.
(1 + vt + p jt) ι . It is worth specializing this result to the case of non-



UNIFORMLY ELLIPTIC OPERATORS ON RIEMANNIAN MANIFOLDS 433

Corollary 6.4. Assume that Ω = M and that g has nonnegative Ricci
curvature. Then we have

/ I \-V2 / I N

\d,q,(x, y)\ <CkV[x, φ/(l+p2/tή V (y, ψ/(l+p2/t)j

p2/t)kexp(-p2/4t)

where Ck depends on n, a, μ, and k.
The estimates given in Theorem 6.3 and Corollary 6.4 have to be com-

pared to the upper bounds given in [28], [13], [14], [15], and [41] for the
case where L = A. Even in this case, the above has only improved slightly
upon previously known results.

As far as space regularity is concerned, it is well known that Holder
regularity is the best that can be expected without quantitative smoothness
assumptions on si and m. When L = A however, the Li-Yau gradient
estimate gives a bound on the first space derivatives of the heat kernel.
Indeed, let Ω c M be a fixed open set, and denote by ht = hQ t the heat
kernel associated with Δ and the Dirichlet boundary condition on Ω. If
B c Ω, we have on \B

|VΛ,|2 < C{fx + r" 2 + K)h) + \dtht\ht

(see [28]), and a Gaussian estimate for the gradient of ht follows readily
from the preceding results. The best known estimates for higher space
derivatives of the kernel ht were obtained in [9]. The authors of that paper
remark that, if \Dk f\ is the norm of the /cth covariant derivative of / ,
then \Dkht\ satisfies a parabolic inequality. Using Theorems 5.6 and 6.3
and the ideas of [9], we obtain the following result which improves upon
[9, Theorem 7, p. 1059]. Let B{ = B(x(, r.), / = 1, 2, be two balls in M.
Recall that K. is the smallest nonnegative number such that Ric > -Ktg
on 2Bi. We define K}t ., j > 0, i = 1, 2, to be a bound on the 7th
covariant derivatives of the curvature tensor on the ball 2Bt.

Theorem 6.5. Let kv kv leN be fixed, and assume that Bi = B(yi,ri)
C Ω, i = 1, 2. Then there exists C dependingon n9v09kl9k2,l,rl9r2,
K{,K2, KiX with 0 < / < kχ- 1, and Kj2 with 0 < j < k2 - 1 such
that for all t>0 we have

Uή-'φlh,^, y2)\ <
x{\+vot + p2/t)'exρ(-iy - ρ2/4t),
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where tx = inf{t, ή}, Vχ = V{y. 9y/fy, p = p(yx, y2), and

v0 = inf{(Δ/, f)/\\f\\l fe « Π

Moreover, when fcf. = 0, 1 we can replace C by

where C' depends only on n, but Ck depends on n and k.
The same technique yields similar results for the kernels corresponding

to Neumann boundary conditions.

7. Uniqueness results and Liouville type theorems

Uniqueness questions for the heat equation {βt +Δ)w = 0 on complete
Riemannian manifolds are by now quite well understood. Uniqueness
on Lp with 1 < p < +oo holds without any curvature assumption (see
[38] and [24]). Uniqueness for the positive or l) Cauchy problem holds
under the assumption that the Ricci curvature has a negative quadratic
lower bound. By this we mean that there exists x0 e M and C > 0
such that Ricx > - C 0 ( l + ρ(x0, x)fgx for all x e M (see [28] and [24],
and also [6] for a counterexample showing the sharpness of the curvature
condition). Using the Harnack-Moser inequalities of §5 we are going to
show that these results hold as well for equation (12). We start with a very
general result that may be known since its proof follows the same line as
its classical Euclidean counterpart.

Theorem 7.1. Assume that u is a nonnegative subsolution of (12) on
]s, s + T[xM which satisfies

/

S+T /• 2 2

/ e γp \u(t, x)\2dtdv <+oc and ]im\\e~γp u(t, )| |2 = 0
for some γ > 0, where p(x) = p(xQ,x) for some fixed xQ. Then,
u(t,x) = 0 for all (t ,x)e]s,s + T[xM.

We refer the reader to [3] and [4] where earlier references are also given.
It is worth noticing with [3] that if J?7 has no lower order terms and
si G Sym(ΓΛ/), then the above holds even without the ellipticity hypoth-
esis g(s/X, X) > a~x\xγ . What is needed is only sf nonnegative and
bounded. Using Theorems 7.1, 5.1, and 5.3, as well as (3), we easily obtain

Theorem 7.2. Suppose that the Ricci curvature has a negative quadratic
lower bound on M.
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(i) If u is a nonnegative solution of (12) in ]s, s + T[xM such that
,_^ u(x, t) = 0, then u = 0 in ]s, s + Γ[xM.

(ii) Lei 0 < p < 1. If u is a nonnegative subsolution of (12) in
]s,s + T[xM such that

rs+T

/

s+i p

I \u(t,x)\pdtdv<+oo

and H m ^ 5 \\u(t, >)\\p = 0, then u = 0 in ]s, s + T[xM.
From the above theorem, and the general Widder's theorem in [2], we

obtain
Theorem 7.3. Suppose that the Ricci curvature of g has a negative

quadratic lower bound on M. Let u be a nonnegative solution of (12) in
]s, s + T[xM. Then there exists a unique nonnegative Borel measure ξ
such that u = QM sξ.

We refer the reader to [2] for results on uniqueness of isolated singular-
ities. Other results in [4] can be adapted to our setting. As an application
of Theorem 7.2, we also obtain that, under the current curvature hypoth-
esis, and if 8? = 0 and b = 0, then fM qM(t, x, s, y) dυ(y) = 1 for all
t > s and x e M. When the coefficients of S? are independent of t and
the Ricci curvature is bounded below on M, we can apply the method of
[22] to obtain another proof of the uniqueness of the nonnegative Cauchy
problem. Moreover, in this case we obtain that the minimal nonnegative
solutions u of (12) in ] - oo, T[xM are of the form u = eλtw , where w
is a minimal nonnegative solution of Jϊfw = λw (see [22]).

Another question of interest is whether or not QM S(WQ(M)) c &Q(M),
where &Q(M) is the class of continuous functions that tend to 0 at infinity
(see [45], [6], [25]). It follows from Corollary 5.5, Theorem 6.1, and the
volume estimate (3) that we have QM S(&Q(M)) C W0(M), when the Ricci
curvature of g admits a negative quadratic lower bound on M.

We now pass to Liouville type properties. We consider an operator L
defined by (8) (i.e., with no lower order terms), where si is independent
of t, and m and s/ satisfy the ellipticity hypotheses (10) and (9). We
say that u is L-harmonic when Lu = 0. An immediate consequence of
Theorem 5.3 and Corollary 5.4 is the following generalization of a theorem
ofYau(see[43]).

Theorem 7.4. Assume that (M, g) has nonnegative Ricci curvature.
Then, any L-harmonic function which is bounded below is constant. More-
over, there exists a constant γ, 0 < γ < 1, depending only on n, a, and μ,
such that any L-harmonic function satisfying \imr_^0(r~γ s\xρB{x r){|w|}) =
0 for some fixed x0, is constant.
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In [30], Lyons gave examples showing that, in general, Liouville's prop-
erties are not stable under quasi-isometric changes of metrics. However,
the above theorem, as well as the rest of this paper, shows that many results
are stable under such changes of metric when we start out with a lower
bound hypothesis on the Ricci curvature.

We conclude this section by noting that the work [26] of Li and Schoen,
where they study the triviality of the nonnegative L-subharmonic func-
tions which belong to if for some 0 < p < +oo, can be extended to
the present setting. For instance, following [24] and [26], one can show
that any nonnegative L-subharmonic function that belongs to L1 is con-
stant under the hypothesis that the Ricci curvature of g admits a negative
quadratic lower bound. In [17], it is shown that the space of bounded
(Δ-) harmonic functions is of finite dimension when (M, g) has nonneg-
ative Ricci curvature outside a compact set. It seems safe to conjecture that
this result is also stable and holds for L-harmonic functions. Moreover,
the dimension of the space of bounded L-harmonic functions should not
depend on L. However, we have not been able to answer these questions.

8. Functions of the Laplace operator

In [8] and [39] the finite propagation speed for the wave equation

(df + Δ)w = 0 is used to obtain estimates on the kernel of some func-

tions of the Laplace operator. One of the other tools used in these papers

is Moser's iteration. Following the arguments in [8] and [39], and using

Theorem 5.1, we obtain some new results that improve upon or comple-

ment those of [8] and [39].

Consider an operator L = L^ m as in (8), where srf and m satisfy

the usual uniform ellipticity hypotheses (9) and (10). Moreover, assume

that sf e Sym(rM) and is independent of t. Denote by B(x, r) the ball

corresponding to the distance p associated with the metric g{stf~1-, •)

(see §4). Also, let v = inf{(Lw, um)/(u, urn), u e %°°(M)} be the

bottom of the spectrum of L on L2(M, mdv). All the Lp-norms in this

section are taken with respect to the measure m dv (note that it is of very

little importance since m and m~ι are bounded). Given a bounded real

function, denote by kj the kernel of the operator F = f{\JL - v) which

is defi
write
is defined on L2(M, mdv) by spectral theory. When / is even, we can

1 Z + OO

F = —== I f(s) cos(sy/L - v) ds,
V2π J-oo
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where / is the Fourier transform of / . Hence, using the finite propaga-
tion speed property of the equation (df + L)u = 0, for any function u
with support in Ω{ c M, and any Ω2 c M such that p(Ω{, Ω2) = R
(see [8, Corollary 1.2]), we have

\\(J^^yγΊ7(T ,,V«fll ^ V I I * , I I I \ Λ ι κ + M ι ί

Following [8] and [39], we now introduce the class &~(φ, b, β) of even
functions / such that

\f{k\s)\<C(k/b)kφ(\s\), k>0,\s\>β,

where b e]0, +oo[, β e [0, +oo[, and the integrable function 9?: [0, +oo[
—• [0, +oo[ are fixed. We set ψ(r) = /r°° φ(s)ds. Arguing as in [8], we
obtain (compare to §2 and Theorem 3.1 of [8])

Theorem 8.1. Fix 0 < δ < 1 and f e &(φ,b9β). Let B{ =

B(χ., r ), i = 1, 2, be two balls with ri < a~ιb and R = p(B{, B2) > β.

Then the kernel k^ satisfies

\kf{yγ, y2)\ < C(K{, v, rχ)C(K2, 1/, r2)V-ιl2V2

ι/2ψ{R), yf € ^ . .

Moreover, there exists γ, 0 < γ < 1,

, z 2)/r 2}, y., zf G ίΛ,..
For instance, the above theorem yields rather sharp estimates on the

— t L σ

kernels qσ t of the semigroup Qσ t — e , where σ = 1, 2, is

a fixed integer. Indeed, set fσ(λ) = exp(-λ 2 σ), λ e R. Then, thereexist two positive constants a and b such that fσ £ ^{φσ, b, 0), where

φσ(s) = exv(-as2σ/{2σ~ι)) (see [20, Chapter 4]). Hence, we obtain
Corollary 8.2. Assume that (M, g) has nonnegative Ricci curvature,

— tLσ

and fix an integer σ = 1, 2, . Then the kernel qσ t of e satisfies

for all x, y e M, t > 0, and any fixed k = 0, 1, , where, Ck and

C'k are constants which depend only on n, a, μ, σ, and k. In particular,

we have \\dkqσ t(x, )\\{ < CΓk for t > 0 and x € M, which shows

that the semigroup e~tL is a bounded analytic semigroup on Lp for all
p e [ l , + o o [ .
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We now turn to some results concerning the Lp -continuity of F and the
iΛspectrum of L under a global curvature hypotheses on M. Namely,
we assume that -K is a lower bound for the Ricci curvature of g on M
(K > 0). Moreover, we introduce the parameter λ, associated with s/ ,
and defined as the smallest nonnegative number such that

( 1 4 ) V^(x, r)/V^(x, r) < C(r/r')γeλr, 0<r<r,xeM,

for some C, γ > 0, where V^(x,r) = υ(B(x,r)). The parameter
λ plays an important role in what follows. Remark that, if we denote
λ0 to be the parameter associated with sf = Id, the ellipticity of $f
implies a~ιλ0 < λ < aλ0. Moreover, the volume estimate (2) shows

that λ0 < yj{n - 1 ) ^ . In other words, (14) is always satisfied for some

λ < cty/(n — \)K. We also notice, as in [39], that λ is related to the bot-

tom of the spectrum of L by the inequality v < λ2/4 which is obtained

by considering the test functions e~^p with β / λ/2. Following [39],

we introduce the classes of functions S^f, — \Jb>0^(e~w\ b, 0) and

?w c <5?w which is the set of even smooth functions / on {|Im(z)| <

W} cC, holomorphic in {|Im(z) < W], and satisfying \f(z)\ < ce~blz]

on {|Im(z)| < W] for some c, b > 0 (see [39, Lemma 5.5]).
Theorem 8.3. Suppose that the Ricci curvature is bounded below on

(i) If feS^ with W>λ/2, then F = f(y/L=T) is bounded on Lp

for 1 < p < +oo.

(ii) If f e S?w > then F is bounded on Lp provided that W >
\\/p- l/2|λ and 1 <p < +oo.

Corollary 8.4. Suppose that the Ricci curvature is bounded below on
(M, g). Then, the Lp-spectrum of L satisfies

speC/7(L) c {y = v-z\ |Re(z)| < l/p- l/2|A}Π{Re(y) > 4u(p- \)p~2}.

In particular, if (M, g) has subexponentional volume growth and satisfies
infM{F(x, 1)} > 0, or if (M, g) has nonnegative Ricci curvature, then
spec p (L)c[0, +oc[.

Part (ii) of the above theorem follows from (i) by complex interpola-
tion (see [39, Proposition 5.6]). To prove (i) we show that the kernel kf

satisfies \\kf(x, -)\\{ = \\kf( , x)\\{ < C. This can be deduced from the
volume hypothesis (14), Theorem 5.1, and the argument in [39, p. 777],
and the corollary can readily follow (see Lemma 5.7 and Theorem 5.8 in
[39]). We refer the reader to [16] and [39] and the references given there
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for examples involving hyperbolic spaces and their quotients which show
the sharpness of Corollary 8.4.

9. Poincare inequalities

In this section, we discuss the proof of Theorem 3.2 as well as some
related results. We start by recalling the following simple result which is
proved in [26].

Theorem 9.1. Given 1 < p < +oo, there exists C, depending only on
n and p, such that for any ball B satisfying B Φ M, we have

When p = 2, the above can be viewed as a lower bound for the first
eigenvalue of the Laplacian with Dirichlet boundary condition in the ball
B.

We now describe some of the results obtained by Buser in [7], which
yield a lower bound for the first nonzero eigenvalue of the Laplacian with
Neumann boundary condition instead. Consider the Cheeger constant
h(B) = mΐ{vn_ι(dΩ n B)/υ(Ω)} , where Ω runs over the open subset of
B such that υ(Ω) < v(B)/2. It is proved in [7] that there exists a constant
C, depending only of n , such that, for all B e M,

(15) h{B) > r

The classical Cheeger inequality can be rephrased, in this setting, as

f \f - fB\2 dυ < 4h(B)~2 f |V/|2 dv, fe &°°(B),
JB JB

which, together with (15), gives (6). More generally, it is well known that

/ 1/ - / / dv < 2pph(B)-p ί |V/f dv
JB JB

for all 1 < p < +oo. A weaker version of (6) (which suffices for the
purpose of this paper) can be obtained by using two-sided estimates on
the heat kernel with Neumann boundary condition on balls and the idea
of Kusuoka-Stroock [23, p. 435]. As explained before, we need to prove
a weighted version of the Buser inequality. Fix a nonincreasing function
φ: [0, +oo[-> [0,1] such that φ(t) = 0 for t > 1, and which satisfies

for some β > 0. Also, we set ΦB = φ(p(x, -)/r) for B = B(x, r).
Examples of functions φ satisfying the above conditions are φ = 1 on
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[ 0 , 1 ] , or φ = 1 o n [0,δ], φ(t) = ( 1 - 0 / 0 - δ) on ]δ,l], as well as
φy, where φ satisfies t h e above c o n d i t i o n s a n d γ > 0 .

Theorem 9.2. Given 1 < p < +oo, there exist C, depending only on
n, and Cp , depending on n, p, and φ, such that, for any ball B e M,
we have

(/1/ - fφfΦdv} Φ < Cpy
cVKrr (J iVffΦdv^ " ' , / € 9°°(B).

It turns out that Theorem 9.2 can be deduced from (15) by adapting an
argument from [21] which uses a Witney covering of B. The details are
spelled out in [36] in a different setting, and we refer the reader to these
two papers for the proof.

We end this section with the discussion of yet another kind of Poincare
inequality. Although the result obtained below is not used at all in this
paper, it can be of some independent interest. In view of the preceding,
it is tempting to ask for which nice, nonnegative, integrable function ψ
does Cψ exist such that

(16)
f\f-fψ\

2ψdv<CψJ\Vf\2ψdv,

fe&°°{M)nL2(M, ψdυ),

where / = / fψdv/ J ψ dυ . One way to study this question is to set

w = /V1 / 2 a n d remark that

where b = ̂ |Vln ψ\2 - ^Δln ψ . The transformation Uf = u is an isom-
etry from L2(M, ψdv) to L2(M, dv). Hence, the symmetric, nonneg-
ative operator Δ + b admits 0 as an eigenvalue with eigenfunction ψλ/1.
If we assume that the support of ψ is connected, 0 is a simple eigen-
value and our concern is now to prove that there is a gap in the spec-
trum of Δ + b . A way to do this is to obtain a positive lower bound for
the essential spectrum of δ + b. By classical arguments (involving some
local Sobolev inequalities), if we assume that b satisfies b e L^ and
b_ = max{-£, 0} € Lp + L°° for some p > n/2, then

ess spec(Δ + b) = sup{inf{((Δ + b)u, u)/\\u\\2

2, u e %°°(M\N)}},

where the sup is taken over all compacts N c M (see [1]).
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We give some specific examples of interest. Let ψ = e~ω<"p), where ω
is a smooth function from [0, +oo[ to R, and p = p(xQ9 •) for some
fixed xoe M. In this case, we have

b = \ω(p)\2/4 + (ω"(p) + ω(p)Ap)/2.

If we define K(p) to be such that Ric > -K(p)g on B(x0, p), and

suppose that ω(p) is nonnegative for p large enough, then by a well-

known comparison inequality we obtain

b > \ω(p)\2/4 + (ω"(/>) - (n - \){p~X + (y/K)ω(p))/2, p » 1.

Thus the above arguments lead to
Theorem 9.3. Fix xQe M and suppose that there exist k, β > 0 such

Ric>-k(l+ p)2βg
that

on M. Let a > 0 and γ > 1 be such that either γ > β + 1 and a> 0, or
γ = β +1 α«d α > \/{n — \)k. Then, there exists a constant C, depending
on (M, g), x 0 , a, and γ, such that

ί \f-J\2

e-
aPγ dv<C ί \Vf\2e~ap7 dv, feW°°(M)nL2(M,e~ap7 dυ),

where f=f fe~api dυ/ f e~ap7 dv .
It would be interesting to know how C depends on a and x0 , at least

when the Ricci curvature is bounded below. For instance, it should be true

that, if the Ricci curvature is nonnegative, (16) holds for ψ = e~ap , with

a constant equal to C1 a2 , where C' is independent of x0 and a. The

above also raises the following question: Does (16) hold with ψ — ht(x0, •)

(i.e., the heat kernel) for some fixed 0 < t < +oo and xQe MΊ

10. Sobolev inequalities

In this section, we prove the Sobolev inequalities on balls which are
the main ingredient for most of the results obtained in this paper. We
also discuss some related inequalities. The proofs rest mainly on the basic
kernel estimates described in §2. We also use abstract semigroup tech-
niques developed by N. Varopoulos in [40]. Namely, we use the following
proposition, which can easily be deduced from [40, Theorem 1].

Proposition 10.1. Let Tt = e~tΛ be a symmetric submarkovian semi-
group, and assume that



442 LAURENT SALOFF-COSTE 

for some rn > 2 .  Then, there exists C ,  depending only on m , such that 

Note that, in fact, Varopoulos's result is that the above two properties 
are equivalent (with different constants Co) (see [40] and [42]). We will 
also need a more general result. Let { R , ,  t €10, + m [ )  be a family of 
operators acting on the spaces LP , 1 5 p 5 +m , and consider the operator 
R defined formally b y  

< Cot"l'-m/' Proposition 10.2. Suppose that 1 1  R ,  1 1  - , O < t < + m ,  
for some $xed 0 < a < rn . 

(i) If; for all 1 < q < m / a .  there exists Cq such that llR,ll,,, 5 CqtaI2, 
0 < t < + m ,  then, for all 1 < p < rnla, there exists C ,  depending on 
a ,  rn , p , and the Cq 's such that 

(ii) If 1 1  R ,  1 1  5 Cl tal' , 0 < t < +m . then there exists C depending 
on a ,  rn , and C,  , such that 

We sketch the proof which is adapted from the arguments in [40]. We 
first prove (ii). Let f E L1 be such that 1 f 1 1 ,  = 1 , and write R f = f + fT 
with f T = ~ : ~ , f t - ' d t ,  T > O .  Then 

Given any fixed s > 0 ,  we choose T such that s /2  = CC~T-""-')~' . For 
that choice of T ,  we have 

Since 

which proves (ii). Assertion (i) is obtained by first proving the L' ver- 
sion of (ii), and then applying Marcienkiewicz's interpolation theorem (see 
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[42]). Note that Proposition 10.1 can be deduced from Proposition 10.2
by writing

f=Ttf- f'°dtTtfdt = Ttf+ f°Aί/2TtA
i/2fdt,

0 Jo ° JO

and setting Rt = tSft (t)Aι/2Tt, where ^ t {ή = 1, if 0 < t < tn, and 0

otherwise.
Proof of Theorem 3.1. Fixing a ball 5 c I , we need to prove the

inequality

if n > 2 (and with n replaced by n > 2 if n < 2). Let H^ t be the heat
flow semigroup associated with Δ and the Dirichlet boundary condition
on B, and let h^ t be its kernel. Then

<,(z, y) < ht(z, y) < h)'\z, z)h)'\y, y),

where ht is the heat kernel on M. By Lemma 2.1, and the volume esti-
mate (2), we obtain

hBtt(z9y)<e Ύ r t 0<t<r ,

which can be rephrased as

P O I - O O ^ ^ ^ ^ K - V - Γ " 7 2 , 0 < f < r\

Thus, (17) follows after applying Proposition 10.1 to HJj t (if n < 2,

note that (r/y/t)n < (r/^/t)n for any m > 2 and 0 < t < r2). We now
pass to the proof of Lp-versions of Theorem 3.1.

Theorem 10.3. If I <p<n, then there exists C, depending on n and
p, such that, for any ball B e M, we have

n-p) * eC{i+VSr)V-ι/nr(\\Vf\\p + r-l\\f\\p), f e %°°{B).\\p + r\\f\\p)

If p >n, then the above inequality holds with n replaced by any n > p.
Proof By classical arguments, it is enough to prove the above inequal-

ity for p = 1. Moreover, by the famous co-area formula

J\Vf\dv = J*°°vn_ι({\f\>s})ds,

the inequality
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follows from the apparently weaker estimate

(18) v({\f\>s}) < (Co^αiV/Hj + r - 1 | | / | | 1 ) ) n / ( n - 1 ) , fe %

Thus, we are left with the task of proving (18) with Co = e

C{ι+VKr) V~ι/nr.

To simplify notation, denote by Qt = P% t the Poisson semigroup associ-

ated with Δ and the Dirichlet boundary condition on \B (Qt is obtained

from HJj t by subordination). By the same line of reasoning that we ap-

plied above to the heat semigroup, we obtain

(19) 4t(z,y) < eC{l+VKr)V~lrnt~n, 0 < t < r,

where qt is the kernel of Q(, or equivalently

(20) IIGJIi-Kx, ̂  eCil+VWr)V~lrnΓn , 0 < t < r.

For / e %°°(B), we have / = /o

r sd?Qsfds - rdrQrf + Qrf. By interpo-
lation, from (20) we deduce that

C(\\^flCr\ \ln 1
II /-V /Ml ^ t^lTVΛfJyr 11 II 1 Λ ^

ιιy//ιii_^ /(-\) ̂  £ ^ Y* j u < ί < r,

and, by holomorphy of the submarkovian semigroup Qt on Ln'^n~x> (see
[37]), we also have

l̂l̂ /β/lli_> /( —i) — € V rt , 0 < t < T.

Let χ be the characteristic function of the ball B . The above inequality
reduces the proof of (18) to the study of the operator / defined by

/o

More precisely, we need to prove

v({| Λ/Ί > ̂ }) < (^ F

Remark that

\Jf\=χ tQ£fdt< / Λ,|V/|- =
Jo Jo ι

where we have set

and Rt = 0 otherwise. Using Cheng-Yau's estimate (4), we obtain

χ(z)\Vyqt(z, y)\χ(y) < C(Γl + VK)qt(z, y),
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and therefore

which together with (19) implies

\\Rt\\^oo<eC(X+VRr)V-\ntl-\ 0<t<+oo.

The last two estimates allow us to use Proposition 10.2 to get

v({R\Vf\ > s}) <

This is the desired example, and ends the proof of Theorem 10.3. q.e.d.
With the help of the relevant Poincare estimates from §9, the above

theorem yields
Theorem 10.4. If 1 < p < n, then there exists C, depending only on

n and p, such that, for 0 < δ < 1 and any ball B e M, we have

aKsB p B , feW°°(B),

where q = np/(n - p). When B Φ M, we also have

<eC{l+VΉr)V-l/"r\\Vf\\p, fe9

If p > n, then the above inequality holds with n replaced by any fixed
n>p.

Note that, when p = 1, the inequalities of Theorems 10.3 and 10.4
are equivalent to some isoperimetric inequalities. These results can be
complemented when p > n . We introduce the notation

AγB(f) = sup{|/(x) - f(y)\/p(x9 y)y, x, y e B}9 Aγ = Λ y M .

Theorem 10.5. Let p > n and set γ = 1 - n/p. Then there exists C,
depending on n and p, such that, for all B c M, we have

\(f) < eC(X+VRr)V-i/prn/p(\\V/||p

For 0 < δ < 1, we also have

and ifBψM, then

Λγ(f)<eC{ι+VEr)V-1/prn/p\\Vf\\p, feWQ°°{\B).

Proof. Fix B = B{x,r) c M &nά f & W0°°(B). We are going to
estimate Λ if) by ||V/|| and | |/ | | p for a fixed p > n and γ = 1 -n/p .
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Using the notation of the proof of Theorem 10.3, we write for y, z e B
and 0 < t < r,

\f(z) - f(y)\ < 2 f Wd&fW^ Bds + \Qtf{z) - Qtf(y)\.
Jo

The first term of the right-hand side of the above inequality can be esti-
mated as follows:

I I W I U * ^ ίWdsQsf\\oo,Bd" + I I W H o o . ϋ ' o<s<r.
Js

By the arguments of the preceding proof, we obtain

lld/β/Uoo,* < ^II^IV/IIU. j , < C(K, r)1/ps-1-φ

where C(K, r) - ^ C + ^ ^ K ' V . We also have

and therefore

/l loo,i»^ ^ C ( ^ ' rγlp{tχ-nlp\\Vf\\p + t r - χ - n

p

We now look at \Qtf{z) - Q,f(y)\, and set B1 = \B c \B and p =

p(z, y). Since z, y € B, we have

and

Vβ,/ = Γ(5 - ήdjVQJds + (t- r)drVQrf + VQrf.
Jt

Repeatedly using Cheng-Yau's estimate (4) yields

l^iV 2 ί i(*i, x2)\ < C(s~l + VK)2qs(Xι, x2)

and
I^V^^Xj, x 2) | < C(s~l + V T ) 2 ? , ^ , * 2 )

for 0 < 5 < r and Xj, x2 e Bf. To see this, we apply (4) to show that
there exists C for which

w(s,ξ) = dsqs{ξ, .) + C(T~1 + VK)gs(ξ, .)

is a positive solution of (-d* + A)w = 0 in ]τ/2, 3τ/2[x ^ 5 , 0 < τ < r,
and apply (4) again. This proves the second of the above estimates, and
the first can be obtained by a similar argument. Following the arguments
of the proof of Theorem 10.3 again, we write

*i > x2),Vf(x2))dv(x2),



UNIFORMLY ELLIPTIC OPERATORS ON RIEMANNIAN MANIFOLDS 447

so that

IIVQ/IL,^ < c(κ, r)ι/p(Γn/p\\vf\\p + rι-n/p\\f\\p).

Summing up the above estimates, we get

\f(z)-f(y)\ < C(K, r)l/p((tl-n/p + pΓn/p)\\Vf\\p + (t + p)r-l-n/ι'\\f\\p),

which yields \f(z) - f(y)\ < pι-"/pC(K, rγ/p(\\Vf\\p + rι\\f\\p) for t =
p < r. With the help of the relevant Poincare inequalities, we end the
proof of Theorem 10.5.

Finally, in the limit case p = n, arguments similar to the above ones
allow us to deduce the following result from an abstract semigroup theorem
of Lohouέ (see [29], Theorem 1]).

Theorem 10.6. There exist two constants C and Cr, depending only
on n, such that, for all B c M and all open Ω c B, we have

- \}dv <C'υ(Ω), f£%°

where β = eL{l+VKr) V~ι/nr. Moreover, for 0 < δ < 1, we have

LJδB

If B Φ M, then, for all open

vπ/(π-l)

h - \}dv <C'«(Ω),

When M is compact, or when M is noncompact, but / is compactly
supported in a ball B, Theorems 10.4, 10.5, and 10.6 give rather sharp
results. In constrast, the statements obtained for functions which are not
supported in B are not as sharp; they involve the parameter δ and the
smaller ball δB. As indicated in §3, the correct result should be the in-
equality (7) and, more generally, for 1 < p < n ,

(21) \\f-fB\\npl(n-p),B <eC{X+VEr)V-l/nr\\Vf\\p,B, feW°°{B),

as well as similar statements corresponding to Theorems 10.5 and 10.6. It
is worth noticing that, by Proposition 10.1 and the remark following it,
(7) is equivalent to the kernel estimate

n f N ii ^ C'(\+y/Kr)Ύ,-\ n -n ^

Wht,B\\B,oo^e Ύ r- t 9 0 < ί < + o o ,

where h% t is the kernel associated with Neumann boundary condition

on B. In general, the available estimates on hB t are interior estimates
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and hold only inside δB for fixed δ < 1. Hence, these estimates are
not strong enough to prove (7) or (21). However, under the additional
hypothesis that B has convex boundary, the gradient estimate of Li and
Yau extends up to the boundary (see [28, Theorem 1.4]). It follows that,
under this convexity hypothesis, the inequalities (7) and (21) hold, and the
corresponding statements in Theorems 10.5 and 10.6 can be sharpened as
well.
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