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ASYMPTOTIC PROPERTIES OF
DEPTH ONE FOLIATIONS

IN HYPERBOLIC 3-MANIFOLDS

SERGIO R. FENLEY

Abstract

Let M be a closed hyperbolic 3-manifold with a Reebless depth one
foliation & such that no compact leaf is a fiber of M over S . Assume
the monodromies associated to the depth one leaves are irreducible. We
show that a compact leaf is associated to a quasi-Fuchsian group, so its
limit set is a Jordan curve. For a depth one leaf T embedded with a
fixed hyperbolic metric, we show that the embedding of T = H —• H
between universal covers extends continuously to the circle at infinity.
The image of this circle at infinity has measure 0 and is a Sierpinski
curve. The foliation naturally produces a "distance" function which is
quasi-isometric to the hyperbolic metric in the universal cover. This is
the essential tool used in the study of the limit sets of leaves.

1. Introduction

Reebless foliations have been extensively used to study the topology of
3-manifolds. For example, Novikov [15] showed that when M is closed
the existence of a Reebless, codimension one foliation implies that π2(M)
is trivial, the fundamental group is infinite, leaves are incompressible sur-
faces, and transversals are nontrivial in homotopy. These results can be
interpreted as a kind of topological rigidity for foliations.

The purpose of this article is to show that under certain conditions the
foliation and a geometric structure are also strongly related. One impor-
tant problem is to determine how efficient the foliation is in measuring
distances between points in a fixed homotopy class, which amounts to
asking how tight the foliation is.

We restrict to M3 connected, closed, hyperbolic. This is a large class,
especially important in terms of this question because they share many
properties with manifolds that admit Reebless foliations and they exhibit
a rich geometric behavior. Since the problem is about homotopy classes
we lift to the universal cover, which will then be foliated by topological
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planes. We analyze the asymptotic behavior of leaves in the standard
compactification of H with the sphere at infinity, S^ . In many cases a
given leaf has an induced metric which is quasiconformal to a hyperbolic
metric. Therefore one can think of its universal cover as H 2 , which also
can be canonically compactified with a circle at infinity. This situation
was analyzed by Cannon and Thurston [2] when the foliation is a fibration
over the circle. Their study depends on properties of pseudo-Anosov maps
of surfaces because the monodromy of the fibration is of this type. It
is an easy fact that in the universal cover the leaves cannot be quasi-
isometrically embedded, but they show that the inclusion maps H —• H
extend continuously to the circle at infinity, which have sphere filling curves
as images.

In this article we study the case of Reebless, depth one foliations. Intu-
itively they are fibrations over the circle in the complement of the compact
leaves (the compact leaves are the depth 0 leaves). Noncompact leaves have
infinite genus surfaces and are the depth one leaves, their only limit points
in M are in compact leaves. We can assume no compact leaf is a fiber of
M over Sι, for in that case the analysis reduces to [2]. Our main result
is, given a leaf T, the embedding of f into H 3 extends continuously to
the circle at infinity, as long as some technical conditions on the foliation
are satisfied. Here again the extension will not in general be an embedding
of the closed disk into the closed 3-ball. For a depth one leaf, the image
of the circle at infinity will be the complement of a dense, countable union
of open disks, that is, a Sierpinski curve.

The extension result for the compact leaves follows from a general the-
orem of Thurston, about surfaces in hyperbolic 3-manifolds. On the other
hand, the analysis of the depth one leaves depends strongly on the struc-
ture of the foliation. The basic idea is to again reduce the study of 3-
dimensional geometry to 2-dimensional geometry plus an analysis of its
homeomorphisms. The monodromy of the fibration in a component (N)
of the complement of the compact leaves is an end periodic map: it is a
homeomorphism of an infinite genus surface which is topologically triv-
ial everywhere but in a compact subsurface. These maps were studied by
Handel and Miller [10] and are similar to maps of finite genus surfaces be-
cause of the property above. Up to isotopy of the map there are invariant
transverse geodesic laminations and transverse measures.

One difference from the finite genus case is that M hyperbolic does
not at all imply the homeomorphism is irreducible [4] and irreducibility
is a hypothesis in our work. Furthermore even in the irreducible case it
is not always true that the transversal measures have full support [5]. As
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a matter of fact the full support case, also called pseudo-Anosov, is the
nongeneric case. To circumvent this we construct projectively invariant
transverse measures whose support strictly contains the stable and unstable
laminations.

The transversal measures produce a degenerate metric in N (called a
semimetric), which after adjustments in neighborhoods of lifts of compact
leaves will be quasi-isometric to the hyperbolic metric. A pseudo-Anosov
homeomorphism of a compact surface controls, up to a bounded distor-
tion, the geometry of the universal cover of the circle bundle associated to
it. This important consequence of the pseudo-Anosov theory carries over
to our case because of the essential finiteness of the end periodic maps and
a weak pseudo-Anosov like property in the irreducible case.

This implies that the foliation is only flexible up to a certain extent and
it controls the geometry of the universal cover up to a bounded distor-
tion. This is a form of geometrical rigidity associated to the foliation and
for many applications in hyperbolic manifolds this property is as good as
having no distortion. The theorem about limit sets of foliations can be
thought of as its first consequence.

A recurring problem here is that the distance function constructed is
not a metric; for example, minimal paths are not unique (even locally)
and they may have infinite hyperbolic length. This will introduce some
technicalities.

The idea in constructing the extension is to use the foliations and lam-
inations to produce a neighborhood basis of an ideal point in H 3 asso-
ciated to an ideal direction in the leaf. The continuity is proved by ε, δ
arguments and also depends strongly on properties of the foliation.

We state these results formally. Let p be a fixed representation of
πχ(M) into PSL2(C). Let T be a leaf of the foliation & and put a
hyperbolic structure on T which is quasiconformal to jthe path metric
induced from the inclusion in M. Lift & to a foliation & by topological
planes of M = H 3 . Let φψ be the map from H 2 to H 3 associated to a
lift T of T.

Theorem 1.1. Let & be a codimension one, Reebless, transversely ori-
entable, depth one foliation on a closed hyperbolic 3-manifold M. Suppose
that no compact leaf is a fiber of a fibration of M over Sι. Assume the

monodromies associated to the infinite genus leaves are irreducible. Then:

(a) If T is any leaf of &, φ~\ H 2 —> H 3

circle at infinity for any lift f of T to the un

gives a parametrization of the limit set of T.

g

(a) If T is any leaf of &, φ~\ H 2 —> H 3 extends continuously to the

circle at infinity for any lift f of T to the universal cover of M, so p~Li
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(b) If S is a compact leaf then p(πχ{S)) is a quasi-Fuchsian group and
so has a quasi-circle as a limit set.

(c) If T is a depth one leaf then its limit set is a Sierpinski curve of
measure 0, therefore not a Jordan curve nor the whole sphere.

The paper is organized as follows: in the next section basic definitions
are given and the result about the compact leaves is proved. §3 is a review
on end periodic homeomorphisms, where the technical hypothesis for the
depth one leaves are explained. In §4 the problem for the noncompact
leaves is reduced to a standard case and the idea of the proof for these
leaves is given. The next 2 sections contain the needed technical results:
in §5 we introduce the semimetric in a component of the complement
of the compact leaves and show it is quasi-isometric to the hyperbolic
metric in the corresponding universal cover. We also extend the semimet-
ric to the whole manifold and again show quasicomparability. In §6 we
show that some naturally defined 2-dimensional submanifolds are quasi-
geodesic. They will be the key ingredient to produce a neighborhood basis
of the desired ideal points. Finally, §7 we show the extension theorem for
the infinite genus leaves.

2. Definitions and the compact leaf case

Any closed 3-manifold has a codimension one foliation (see [13], [15]),
but these easily constructed foliations are not incompressible. This prop-
erty which is essential in the theory of foliations means that the funda-
mental group of a given leaf injects into πx(M). The classical theorem of
Novikov [15] states that every codimension one foliation of a 3-manifold
with a compressible leaf has a Reeb component.

The existence of incompressible foliations was proved constructively by
Gabai [6], [7] whenever H2(M) Φ 0. These are taut, that is, through
every leaf passes a closed transversal, a fact stronger than having no Reeb
components. Furthermore some of these foliations are of finite depth,
which we describe now. A leaf is proper if it does not limit on itself, and a
foliation is totally proper (or more simply, proper) if all leaves are proper.
The compact leaves are the depth 0 leaves and, inductively, a leaf is at
depth k if all its limit points belong to leaves at depth < k and there are
limit points at depth k — 1. A proper foliation has finite depth k if all
leaves have finite depth and k is the maximum of the depths.

We will deal with depth one foliations in 3-manifolds. They are quite
common: if AT is a knot in S3 which either has a presentation with < 10
crossings or is alternating, then S3 - N(K) has a taut foliation transverse
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to the boundary of depth < 1 (and many of them are not fibrations) (see

[7]).
A codimension one foliation is transversally orientable if there is a con-

tinuous choice of a transversal vector field. This generates the transversal
flow. There is always a covering space of M of order < 4 which is ori-
entable and where the lifted foliation is transversally orientable. Since we
want to study properties in the universal cover we assume from now on
that both these properties hold.

A hyperbolic 3-manifold is a Riemannian manifold with constant sec-
tional curvature — 1. Its universal cover is isometric to a subset of H .
References for hyperbolic geometry and hyperbolic 3-manifolds are [1],
[14], [17], [18].

In this article limit point is used with two different meanings: (1) in
M corresponding to a limit point of a leaf of the foliation and (2) in M
corresponding to an ideal limit point in S2^ of the lift of a leaf or of any
given set. The context will make clear which sense we are referring to.

Definition. A semimetric on ¥ is a function d: M x M —• R satis-
fying: there exists a θ > 0 so that for any x, y, z, e M

(i) d{x,y)>0, d(x,x) = 0,
(ii) d(x,y) = d(y,x),
(iii) d(x,y)<d(x,z) + d(z,y) + θ.

Definition. A quasi-isometry is an injective map /: (M, d) —• (Mf, d')
between semimetric spaces such that there are K, k > 1 satisfying:

Vx, y e M, max(/(/(x), i(y)), d(x9 y)) > K

^^d(x,y)< d\i{x), iiy)) < kd(x, y).

This is equivalent to finding k, K > 0 so that, for any x, y e M,
d'{i(x), i(y)) < kd{x, y) + K and d(x, y) < kd'(i(x), i(y)) + K. Two
semimetrics in a space M are said to be quasi-isometric if the identity
map id: (Af, d) —• (M, d') is a quasi-isometry.

Let d be a Riemannian metric on a space X and γ a rectifiable curve
i n X. T h e n γ i s a n ( r , u) quasigeodesic curve (r,u>0) i f i t sat i s f ies
the following property: given a subarc y of y with endpoints p, q, if
its length is > w then /(y;) < rd(/?, q). The intuitive idea is that these
paths are efficient up to a bounded distortion to measure distance in the
metric space. The specification (r, ύ) will be omitted when not strictly
necessary.

If S is an embedded surface in M and p(πx(S)) is a quasi-Fuchsian
group [17] then once a hyperbolic structure on S is fixed, any given lift
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φ: S = H 2 —• H 3 is a quasi-isometry [17]. This implies that geodesies
in S are mapped into (r, u) quasigeodesics in H 3 for fixed (r9u) [17,
Chapter 8]. It also implies [17, Chapter 11] that the limit set of φ(S) is a
Jordan curve and the extension of φ to H 2 U S^ is continuous.

A quasigeodesic set in a Riemannian manifold X is a set E c X satis-
fying: there is μ > 0 so that for any p, q e E there is a minimal length
geodesic connecting them which is at most a distance μ from E. An
example is the set φ(S) c H 3 , where S corresponds to a quasi-Fuchsian
group. The context will make clear whether we are referring to quasi-
geodesic curves or sets.

If a leaf F of & lifts to a fiber of a fibration over S in a finite cover of
M, then by classical 3-manifold topology [11], [12], [19] either M fibers
over the circle with fiber F or M is the union of two twisted / bundles
over F glued along the common boundary F. The second possibility
does not occur because & is a transversely orientable foliation.

If / : S —• M is an immersion, injective on π p and M is a closed
hyperbolic 3-manifold, then, by [17, Chapters 8, 9] and the proof of the
hyperbolization theorem for Haken manifolds [14], either p(f*{π{(S))) is
a quasi-Fuchsian subgroup of p(πχ(M)) or S lifts to a fiber in some finite
cover of M.

Let S be a compact leaf of &. Since & is Reebless, Novikov's theo-
rem [15] implies that S is incompressible. Then as M is hyperbolic and
closed, χ(S) < 0 (by [8] this implies that the foliation is taut also) so S
admits a hyperbolic metric. Fix one such metric. The following result is
not immediate. Notice it does not require that M does not fiber over Sι.

Corollary 2.1. Let & be a codimension one, Reebless, depth 1, trans-
versely orientable foliation in a closed hyperbolic 3-manifold which does not
have a compact leaf which is a fiber over Sι. Then any compact leaf S
corresponds to a quasi-Fuchsian subgroup of p(πχ(M)). In particular, any
lift φ: S = H 2 —• H 3 is a quasidisk, so it extends continuously to a map
φ: H 2 U 5 ^ H 3 U S ^ and φ(Sι) is a Jordan curve in S^ , which is a
quasicircle.

3. End periodic homeomorphisms

In this section we describe the main results of the end periodic theory
according to [10]. An end periodic surface is a noncompact surface T
with finitely many ends so that there is a homeomorphism of / of T
satisfying: if e is an end of T there is a neighborhood U of it so that
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FIGURE 1. AN END PERIODIC SURFACE WITH AN END

PERIODIC MAP.

f(Ue) c Ue (or Ue c f(Ue))9 a strict inclusion. Furthermore for any
neighborhood Ue, the fn{Ue)9 n > 0 (Λ < 0), form a neighborhood
basis of this end which will then be an attracting (repelling) end. The map
/ is called an end periodic homeomorphism. Figure 1 shows an example
of such a map. The surface is the bi-infinite stack of (2-dimensional torus
- 2 disks) glued consecutively. The ends correspond to A and B. The
homeomorphism depicted is / = d3d1dιsD, where sD is the shift of one
block to the right and di is the Dehn twist around curve i.

Give D c T, D Φ T, dD denotes the relative boundary of D in
T, namely the closure of the set of boundary points of D which are not
boundary points of T. In general there is an open neighborhood Ue of
e so that dUe is a separating simple closed curve or disjoint union of
properly embedded arcs so that f{βϋe) c Ue (or f~\dUe) c Ue).

If T is topologically hyperbolic, fix one hyperbolic structure on T with
geodesic boundary, for which / is an isometry on the ends. In fact it
suffices to have one which is quasiconformal to this one, for the only
problematic behavior occurs when the metric blows up deep in the ends.

A closed reducing curve is a nonperipheral closed curve γ so that for
some n, m e Z , fn(γ) c an attracting end and fm(γ) c a repelling
end (obviously m < ή). We call such a curve escaping because its iterates
move from -oo to +oo. After cut and paste operations, such a curve
produces a simple closed curve which is disjoint from all its translates
and satisfies the property above. One can then cut along the orbit of the
curve to obtain a simpler end periodic surface and an induced end periodic
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homeomorphism. This is a reduction. A reducing arc is a nonperipheral,
embedded, infinite proper arc, with one end in a repelling end the other in
an attracting one, which is periodic up to a proper homotopy (preserving
deepness in the ends). A periodic curve is a nonperipheral, closed curve
periodic up to homotopy under / . The homeomorphism is irreducible if
there are no closed reducing curves or reducing arcs or periodic curves and
the ends are not simply connected.

Consider now an irreducible homeomorphism / o n T, an end periodic
surface with geodesic boundary. For each end e choose Ue open, so that
dUe is geodesic and f(ΘUe) c Ue (f~l(Ue) c Ue). Let t/+ (U_) =
\J Ue, where e runs through the attracting (repelling) ends. Let C =
T - (U_ U U+), which is a finite genus surface called the core of T. For
simplicity we assume here that C is compact. The set C/ ([/_) is the
positive (negative) ladder. The positive (negative) juncture is dU+ (dU_).
The same notation is used for the lifts to f. Set d+C = dU+, d_C =
d U_ . Given a curve γ let γ* be the geodesic arc homotopic to it and if
γ is closed let γ* be the closed geodesic which is freely homotopic to it.

Theorem 3.1 [10]. Let f: T —• T be an irreducible end periodic home-
omorphism in an end periodic surface with geodesic boundary. Then f is
isotopic to g, end periodic so that:

(i) gn(d+C) = (f"(d+C))*, V/i G Z, and similarly for d_C.
(ii) g preserves transverse geodesic laminations Γ" (unstable) and Γ*

(stable) so that Γu c C U U+ and Γ c C U U_ .
(iii) (ΓM U Γ*) Π C weakly binds C in the sense that complementary

regions have compact closure and those which are not peripheral
are simply connected.

The laminations are obtained as follows: The set d_C is a 1-manifold
disjoint from all its images by / . It is called a juncture. Therefore yn -
(fn(d_C)Y , n e Z, is a finite union of disjoint simple geodesies and arcs.
If some γn is contained in U+ the map is just a shift because fn(d_C) is
separating. Otherwise for n > 0 this set always intersects C . Then Γ" is
the geometric limit of this sequence as n —• +oo . Let ^ + = \JneZ(gn(U+))
and similarly define ^_ . These sets are open and as d+C (d_C) are

separating curves and g~l(d_C) c U_ it follows that Γ" = d%_ and

similarly Γ = d^_.

Let W+ = \JneZ(gn(d_C)*), V+ = TU\JW+ and similarly define W_,
V_ , all geodesic laminations. Then the connected components of (V+-V_)
and (V_-V+) are bounded length intervals. The construction of g is done
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FIGURE 2. THE INVARIANT LAMINATIONS.

so that (gn(d_C)Y = gn(d_C) which implies Γ" = limn^+oo gn(d_C)
and V+ is invariant under g. Furthermore if / is a component of (V+ -
V_) then the closure of / is taken to its image by g so that distances are
expanded (or contracted) uniformly. Similar statements hold for V_ .

As the {fn{d_C)Y are disjoint geodesies and C is compact it follows
that (gn{d_C)) Π C, n > 0, is a union of compact arcs which are isotopic
rel d+C to a finite number of simple, properly embedded arcs of C with
boundary in d+C. Therefore the same holds for V+Γ\ C. Analogous
results hold for V_ . The components of T - (V_ U V+) have compact
closure and are either simply connected or peripheral.

Let AQ = U_ - (g~l{U_)). Since U_ is a union of neighborhoods

of finitely many ends, AQ is a finite genus surface. If A. = g~ι(A0)

then A = U_ = U ^ o ^ H ^ o ) = U;>oΛ a n d Ai intersects A.+ι only in
the boundary (which are iterates of junctures). Similarly for the positive
ladder U+ = B = [j^QBr

Intuitively one expects that every point x not in either lamination is
an escaping point, so that there are n, m e Z with gn(x) e U_ and
gm(x) € C/+ . It turns out that this is not true in general. A set in T is an
immersed cusp if it is a hyperbolic geodesic triangle with one ideal vertex.
A quadrilateral component of T - (V_UV+) is a quadrilateral with two
opposite sides in V+ and the other two in V_ .

Proposition 3.2 [10]. Consider Dχ, , Dm, the components of T -

(V_ U V+) contained in the core, which are not quadrilaterals and are disjoint

from &_ and %+. Then each Dt is a finite sided polygon with alternating

sides in V+, V_ . Furthermore, T-(ΓuU%f_) = Δ+ = Δ[u UΔ^ (disjoint

union), where Di c Δ^ and Δ^ - Z>. is a finite union of immersed cusps.
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Each Δ* is an ideal geodesic polygon, embedded in T. Finally there is

an iterate of g which sends Zλ to itself and pointwise fixes the vertices of

Di (and therefore fixes Δt). Similar statements holds for T-(ΓsU%ί+) =

The points in Δ+ U Γu (Δ u Γ ) are those trapped in C under back-
wards (forwards) iteration. Note that dA+ c ΓM, <9Δ~ c Γ* and that
Δ~ , Δ+ are open subsets of T. It is not a priori true that the cusps of Δ~
are disjoint from those of Δ+ .

4. The noncompact leaves

In this section we analyze the structure of a noncompact leaf of ^ and
of the set of such leaves and then reduce the problem to a canonical case.
In the end of the section we sketch the proof of the extension theorem for
these leaves.

A noncompact leaf limits on compact leaves as follows [3]: Let T be
a depth one leaf limiting on a compact leaf S, say on the positive side.
Let W(S) be a tubular neighborhood of S on the positive side. Then,
if W(S) is small enough, D = T n W(S) covers S infinite-to-one and
the set of covering translations is a semigroup isomorphic to N . There
is a simple closed curve or disjoint union of properly embedded disjoint
arcs δ c S called juncture so that D = \Ji>0D. and D. is homeomorphic
to the closure of S - δ. The lifts of δ to D are also called junctures.
Consecutive Dt 's intersect along junctures.

Notice that once a leaf Tf enters W(S) it is forced to spiral towards
S. Then except for a compact subsurface T consists only of spiralling
pieces. Unroll the spiralling to discover that T is an end periodic surface.

rί^r\

FIGURE 3. How T SPIRALS TOWARDS A COMPACT LEAF.
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By the spiralling description it is easy to see that one can isotope the
foliation (moving the points an arbitrarily small distance) to one which
has smooth leaves and a smooth transversal vector field. This does not
change limit point behavior.

If there are infinitely many compact leaves let Sn be a sequence of
distinct leaves. They limit on So which by [9] is a compact leaf. The
Reeb stability theorem implies that Sn is isotopic to So if it is close
enough to it. This shows there are only finitely many isotopy classes of
compact leaves of y .

Define the equivalence relation x ~ y if x, y belong to the same leaf
of !F. Branching occurs when there are z n , z, wn, w with zn -> z,
wM —• w , zn~ wn, but w <* z.

Let ? be the union of the compact leaves of ^ and (9 a component
of M - <g. Let T be a leaf contained in (9 so that T spirals t o . S c ?
on the positive side of S. By the description above there is W(S) where
the spiralling T —• S is occurring and every leaf intersecting W(S) is not
compact, therefore (W(S) - S) c (9. The spiralling description implies
that the set of leaves intersecting W{S) is topologically Sι . Since W(S)
is open, the union of these leaves, (91, is open in M. Let xn e #' 9

xn —> x . Assume x φ %> so the leaf through JC spirals towards a compact
leaf 5 ; and let 0" be the corresponding circle of leaves spiralling towards
Sf. Since xn —• x , ^ ' n < "̂ ^ 0 and is certainly an open set in (91 and
^ ; / . If it is not closed then there is branching between the leaves of (91

and (9N and this produces an infinite transversal segment in (9" Π &'. As
M is compact this can be easily perturbed to a closed transversal in the
intersection, which implies that (9n = (91. As a result, x € (9' so (91 is
also closed in (9. This shows:

Lemma 4.1. If (9 is a component of' M'-& then the foliation restricted
to (9 is a fibration over S .

Fix a component (9 of M - <g and T a leaf of & in (9. The
transversal flow induces a first return map in T which is defined at least
on the spiraling part of T. Let / be this map.

Lemma 4.2. The transversal map is defined in all of T.
Proof Let X G Γ S O that the flow line through x never hits T again

in positive time. The component (9 has compact closure and the flow line
through x does not exit this component, therefore this flow line limits on
y G ^ . By a small perturbations of this flow segment a closed curve γ c &
is produced, which is a transversal to & and does not intersect T. This
is impossible because ^\ff is a fibration with fiber T. q.e.d.



280 SERGIO R. FENLEY

Concluding, the local description shows that T is an end periodic
surface and the above lemma shows that / is an end periodic homeo-
morphism.

We must first consider product components of M - %?. Let E be
a component of M - ? so that dE = Sχ U S2, two isotopic compact
leaves. Then E is homeomorphic to Sχ x I. Let δ be the juncture
in Sχ. Consider D = δ x I, an annulus embedded in Έ. Using the
techniques of Gabai [7, Theorem 7.10] one can isotope D rel 3D to get
an annulus which is transverse to & except for saddle type tangencies.
As χ{D) — 0, there are no tangencies. Since δ is the juncture in Sx, the
induced foliation in D is a foliation by circles near δ x {0} and since there
is no holonomy restricted to the depth on leaves this is a foliation by circles
in D. Cut E along D. The induced foliation has no holonomy near Sχ.
Again by Reeb stability the cut up foliation is a product foliation and the
original foliation is obtained by glueing δx{t} in a copy of D in the cut up
manifold to δx{h(t)} in the other copy, where h is a homeomorphism in
/ fixing the endpoints and strictly monotone in the interior. In this case T
is just a bi-infinite stack of S - δ glued consecutively along junctures and
the transversal map is just a shift by one in this stack. This is disallowed by
the hypothesis because all monodromies of & in M - Ή are irreducible
and consequently there are no product components.

We should mention that product components even though producing
reducible monodromies would not present difficulties in terms of under-
standing the limit sets of the leaves. This occurs because in the universal
cover T is isotopic to Sχ by a bounded distortion isotopy and therefore
will have the same limit set as Sx, which is a Jordan curve.

Before attacking the extension problem we derive some properties of
the limit sets of the depth one leaves. Let Y be a depth one leaf in a
component Q of M - ? . The set dQ is a finite union of closed leaves
all of which are quasi-Fuchsian. Let Q = Y x R, a universal cover of Q
in M, so that & corresponds to the product foliation in Ϋ x R. Denote
by Lγ c S^ the limit set of Ϋ x {0} .Let Yz = Ϋ x {z} .

We first claim that Lγφ S^. To see this, let S c dQ and L~ be the

Jordan curve in S2^ which is the limit set of S. Its complement in 5 ^

is a union of two open disks Dχ, D2. Since S separates H 3 and Yo is

contained in one component of the complement, L~ c Di for some i.

Furthermore L~ has empty interior. Let V be an open set in S2^.

Since L , ( Λ / ) ) = S^ (because M is closed), there is a e nχ(M) so that

E = (p(a)(L~)) intersects V . As before L~ is contained in the closure of
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one of the complementary components of E (a Jordan curve) and cannot
contain V.

On the other hand, as Q is not a product, there are infinitely many
boundary components of Q, each generating a different quasicircle as
limit set. The next result shows that Lγ contains all of these curves and
therefore cannot be a Jordan curve.

Lemma 4.3. Lγ D L~ for any S c dQ.
Proof. First notice that Lγ = Lz for any leaf Z of the product fo-

liation of Q because any two leaves are a bounded distance apart. This
happens because any point in Yo is connected to a point in Y{ by a
transversal flow segment of bounded length. This is the key property used
here.

Let S c dQ and φ be the extension of φ: S = H 2 -+ H 3 to H 2 U S ^ .

Let x e L~ and y e S1^ with ψ(y) = x, and let V be a neighborhood of

y in H2u5r

(Jo . We show that LγΠψ(V) Φ 0 . Consider an oriented closed
geodesic a in S with basepoint b. By taking the inverse if necessary a
has algebraic intersection number in > 0 with δ , where δ is the juncture
on S. Choose a lift r c S of a so that its positive limit points is in V .
This is possible because S is a closed hyperbolic surface and has S^ as
its limit set in H 2 U S ^ . Fix z eφ(r) cS. Move z along the transversal
flow to a nearby Yn for n big. As in > 0 we can move ψ(r) to a ray
in Yn, which is asymptotic to it if in > 0, otherwise being a bounded
distance from it. As r is a geodesic ray on S, its image in ψ(S) has
a unique limit point x e ψ(V), for p(πx(S)) is quasi-Fuchsian. The
corresponding ray in Yn is either asymptotic to the first one or at most
a bounded distance from it so it converges to x'. Then x1 e Lγ = Lγ .
Therefore L y is dense in L~ and being closed, contains it. q.e.d.

Some of these results could also be obtained more directly by nonele-
mentary methods. Let Qχ be the covering space of M associated to nχ(Q)
and let Q be embedded in it. Since dQ is quasi-Fuchsian, Q{ is geomet-
rically finite [17, Chapter 8] and by Thurston [17, Theorem 8.12.4], LQ

has measure 0 or 1. Since πχ(Y) is normal in π{(Q), Lγ = LQ = LQ

and as Lγ Φ S^ then its measure is zero. This also shows that Lγ is the

complement of a dense, countable union of open disks in S^ (because

LQ is) and therefore it is a Sierpinski curve. An open disk in question in

one of the complementary components of L-, where S c dQ.
Each component of dQ is a closed surface which implies that the cor-

responding juncture can and is from now on chosen to be a simple closed
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FIGURE 4. THE FOLIATION IN THE SPIRAL.
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curve. The boundary of Q consists of two sets d+Q and d_Q, where
the transversal vector field is outgoing and incoming respectively. At this
point we can "forget" the rest of the manifold M because the boundary
Q consists of quasidisks andjhe limit point behavior in Q is not affected
by the rest of the manifold M.

Let Q = QUdQ. Consider S a component of dQ and a fixed tubular
neighborhood Sx(0, f i ) of S where the depth one leaves are spiralling
towards S. Let δ be the juncture in S and G be a small annulus in S
with boundary δ \Jδ', where the spiralling direction is δ' —> δ . δ, δ' also
denote the lifts to T. Parametrize S x [0, ε] so that & is tangent to
Sx{z} outside of G x [0, ε] and in this set & is obtained by connecting
δ x {z} to δ x {h(z)} , where A is the germ of a homeomorphism of the
interval, with h(z) > z Vz Φ 0 (see Figure 4). We choose the neighbor-
hood S x ( 0 , β ) to be of this type to start with. The set S x ( 0 , δ ) = s/^
is the s/?/rα/ associated to S. The union of the spiralling sets in the spiral
(= jp) of Q. The complement is the core of (?. Notice that the core is
compact and disjoint from dQ.

We will need the fact that Q is convex later on. Since Qx is geomet-
rically finite, its convex hull is compact [17] and is isotopic to the closure
of Q. Isotope Q to N, which contains the convex hull of Qx . Isotope
the foliation producing a foliation in N with corresponding core, spirals
and ladders. The new foliation will be denoted by & also. We may
also assume core(TV) c convex hull(β 1). The isotopy moves every point
a bounded distance so limit point behavior is not affected. We denote
the core of TV (N) by C(N) , (C(N)). The lift of the spiral to N is
also called the spiral. The only compact leaves of & are the boundary
leaves which correspond to quasi-Fuchsian groups and & is a fibration
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in the interior. The monodromy associated to the depth one leaves is an
irreducible end periodic map. The junctures are simple closed curves in
dN. The boundary of the core of N is dN x {ε} . Let π: N -» N be the
covering map. This induces a covering map π: T x {0} —• T.

The limit set of T is independent of the leaf T in the interior of N.
From now on fix one such leaf T. We usually identify Γ to Γ x {0} c N.
The core of T is the closure C of the intersection of T and the interior
ofthecoreof TV. Then dC is a union of junctures. The positive ladder of
T is denoted by B, the negative by A . The monodromy of the fibration
is / . First imbed T with a hyperbolic metric. As opposed to the case
for compact leaves, not all hyperbolic metrics are quasiconformal. It is
natural to find one which is quasiconformal with the induced metric from
N. Fix a hyperbolic structure on dN for which the junctures are geodesic
in the respective components. Lift these structures to the ladder part of T
by the pullback of the projection (using the transversal flow). Choose any
hyperbolic structure on the core of T which matches the lengths of the
junctures in dC. In the ladder, / is an isometry. We fix this hyperbolic
structure on T once and for all, and denote it by dτ either in T or in
T. Then T is isometric to H 2 and it has a well-defined circle at infinity,
S1^ . The circle at infinity is an invariant of the quasi-isometry type of the
metric on T and therefore depends only on the metric on TV.

Let φ: T —• N be the embedding of T into N and choose a lift
φψ\ T = H 2 -+ ΛΓ c H 3 . We want to extend ψj to S1^ continuously. The
first observation is that φψ cannot be a quasi-isometry, for then L~ would
be a Jordan curve, a contradiction. If there is a continuous extension, there
will be pinching: a geodesic in f which is mapped to a curve in H 3 with
both limit points identified.

The general idea of the proof is the following: Let Γ* and ΓM be
the invariant laminations provided by the end periodic theory. In the
hyperbolic metric on T let p be an ideal point and r a geodesic ray
defining it. If r keeps crossing Γ* U Γ" then these leaves bound sets which
form a neighborhood basis for p in H (see Figure 5(a), next page).
Otherwise r will be contained in the ladder so φψ(r) projects to dN and
will have a well-defined limit point (because dN is quasi-Fuchsian).

In the first case the strategy is to produce a neighborhood basis in the

closure N* of N in H U S^ for the eventual limit point of φψ(r) in

S2^. In N = f x R consider the laminations Γ x R and Γ x R . Any

leaf of one of these laminations separates N and after they are "capped

off' they will separate H 3 . This operation is explained in the last section.
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FIGURE 5. (a) NEIGHBORHOOD BASIS; (b) BENT LEAF.

Then they will bound a neighborhood basis of a point in S^ defining
the limit point of φψ(r). This idea is an extension of the technique used
by Cannon and Thurston [2] in the case of a fibration. To achieve this
the sets L x R, where L is a leaf of one of the laminations, have to be
essentially geodesic—otherwise they may not define a neighborhood basis
as indicated in Figure 5(b). The property needed is that L x R is uniformly
quasigeodesic in H 3 . Then hyperbolic geodesies in H 3 connecting points
in this set do not stray very far from it, which will imply that as the LnxR
move to infinity they will "shrink" and satisfy the property required.

The biggest difficulty is to understand the geometry of L x R in the
hyperbolic metric. The solution will be to construct a "distance" func-
tion where we understand that distances as related to the foliation and
the properties of L x R are clearer, while at the same time it is not too
distorted with respect to the hyperbolice metric, that is, quasi-isometric to
it. Irreducibility of the monodromy will be essential to show this fact.

5. Quasi-isometry of semimetrics

As the end periodic monodromy / : T —> T is irreducible is isotopic
to a map g, given by the end periodic theory, which satisfies the prop-
erties described in §3. This induces a new transversal flow in N called
the g-flow. The original flow in TV, which (in our case) comes from a
flow in M, is the /-flow. Notice N is an open manifold and N is its
compactification.

We first install projectively invariant transverse measures to the invari-
ant laminations in T. Let ηn 1 < / < n , be the nonescaping arcs
associated to Γ", η. c C and dr\i c d+C. Then £(ι/ ) intersects C in
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finitely many arcs isotopic to η.. Let p.. be the number of components
of g(ηj)Γ\C isotopic rel d+C to η.. This produces an intersection ma-
trix P = (p..). When there is a positive eigenvector to this matrix the
transverse measure produced will have full support. Given this hypothesis
we proved the extension theorem in [4]. Unfortunately, as shown in [5],
this is note always the case, and as a matter of fact the existence of such
measures in the nongeneric case. The reason for this is that the invariant
laminations for the end periodic homeomorphism are produced through a
nonmixing process, that is, as the limit of a sequence of disjoint geodesic
simple closed curves or arcs as opposed to the finite genus case. It is our
feeling that the construction described below and not the one associated to
the full support case is the most natural for depth one foliations because
of the nonmixing property. Let

Fix n0 > 0 so that Vw > nQ , gn(d_C)ΠC only consists of arcs isotopic

rel d+C to the η.. Let m be the maximum in / and n, 1 < n < nQ,

of the number of strands of gn(d_C) Π C isotopic to η. rel<9+C. Let

λ = 2m'H.
Put the atomic measure λ~n across gn(d_C). As gn(d_C) -> Γ" and

all atomic measures are nonzero, the support of the final measure is V+ .
Proposition 5.1. The measure above defines a transverse measure to V+ .
Proof. We have to show it does not blow up, that is, measures of finite

transverse arcs are finite. Since gn(d_C) only accumulates in ΓM, we
only have to prove the measure does not blow up in Γ" . This is done by
showing that the transverse measures to all the bands of arcs isotopic to
ηt rel c?+C are finite. Let Ft 1 < i <ri , be these bands.

Since there are at most m strands of gn(d_C) Π C isotopic to any r\t,
the transverse measure to Fi obtained from g(d_C)ΠC is < 1/2. The

measure in Fi coming from g {d_C) Π C is smaller than

, 1 1 1
m 2 ^ Ϊ J 2 < 4

By induction the measure in F. coming from gn(d_C)nC is < 1/2" for
n <n0. Then in step n0 + 1 the measure added across F( is
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where m is the measure in Fj coming from g"°(d_C)Γ\C. Since m} <

1/2"° foraU j :

H

The measure in F arising from gn°+2(d_C) Π C comes from one it-

eration of gn°+\d_C) Π C and so this added measure is < l/2"0 + 2 . By

induction the total measure across the band is < 1.
This shows the measure does not blow up in Γ " ί l C . Given any other

point y e Γu , let x eTu DC be a point in the same leaf. As gn(d_C) is
geodesic, it is very near x if and only if it is very near y. Therefore the
transverse measure to a small transverse arc at y is finite, q.e.d.

We denote this transverse measure by dy. It is projectively invariant
under g with factor λ. The difference from the full support ("pseudo-
Anosov") case is that the support of the measure in that case is ΓM while
here it is V+ = Γ" U W^ . Furthermore, if there is a projectively invariant
transverse measure with expansion factor λ' and support contained in Γ"
then λ' < λ, so the eigenvalues of P give the smallest expansion factors.
In the full support case the eigenvalue produced is the best possible. All
of this shows some important differences between irreducible end periodic
homeomorphisms and irreducible or pseudo-Anosov homeomorphisms of
finite genus surfaces.

Do the same construction for Vs = Hmn__oog
n{d+C) yielding the

transverse measure dx to V_ . Then dx + dy produces a path semi-
metric in T for which the distance between two points is the minimum
of the lengths of paths connecting them, where the length of a path γ is
fγ dx + dy.

We will call dx + dy an infinitesimal semimetric. Notice that infinites-
imal here is interpreted in a generalized sense: there are atomic measures
across some leaves and if a path crosses such a leaf it carries the full atomic
measure no matter how small it is. However if it has an endpoint in such
a leaf it does not carry any of the atomic measure. This convention will
be used throughout the rest of the article.

The distance function defined in T is obviously not a metric because
any two points in a component of T- (Γu UΓ*) are joined by a zero length
path. The atoms of dx or dy keep this from even being a pseudometric:
it would not satisfy the triangle inequality d(x, y) < d(x, z) + d(z, y)
when z is in an atomic leaf, because that atomic measure is not present in
the right side of the inequality. We will use a modified version of d where
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the atomic measures are bounded. Take θ > maximum of atomic mea-

sures. Then for any x,y, z, d(x, y) < d(x, z) + d(z ,y) + θ. Therefore

d is a semimetric. ^

We identify TV to f x R, where T x {•} is a leaf of the foliation &
in TV and {•} x R is a g-flow line. We may assume the expansion and
contraction factors of dx and dy, respectively, are the same by choosing
the biggest of them in both constructions. Lift dx, dy to f x {0} , also
denoted by dx, dy. Install the infinitesimal semimetric ds0 in TV:

where t is the vertical coordinate in f x R. By the projective invariance
of dx and dy, ds0 is invariant under covering translations of TV and
induces an infinitesimal semimetric in TV.

Let dH be the hyperbolic metric in TV or TV. Our goal is to show that
the two semimetrics are quasi-isometric in TV. This is not possible yet
because of two reasons:

First problem. The dt factor is a big distortion of the hyperbolic length
near dN. Take a small transverse segment to & with one endpoint in
d+N. It has a finite hyperbolic length but it will cross T infinitely (since
T limits on dN) and will therefore have infinite ^-length. In fact any
point in dN required infinite rf-length to be achieved as opposed to finite
hyperbolic length. Let h+ (h_) be the function in TV which is 0 in the
positive (negative) spiral and 1 everywhere else. The same notation will
be used for the lifts to TV. Change the factor \dt\ in TV to h_h+\dt\.

Second problem. The part of ds tangent to & is not good near d TV
either. Here the opposite behavior from the first problem occurs: the
hyperbolic length might be very big and the semimetric length quite small.
Let a c T be a closed geodesic contained in (say) the positive ladder. Let
pr+ be the projection to d+TV. If a is very near 9+TV, lH(a) is very near
lH(pτ+(a)) and in fact lH(gn(a)) stabilizes as n -> oo (see description
below). On the other hand, a does not cross Vs (as α is contained in the
positive ladder) and a contained in a leaf of & implies that I (a) comes
only from the integral of the dy measure and so l(gn(a)) < λ~n(l(a)).
By taking m big enough, lH(gn(am)) is comparable to mlH(a) which is
very big but the d-length being < λ~n(l(am)) can be very small if n > m ,
contradicting quasicomparability.

The key to solve this is to destroy the exponential collapsing near d TV.
Let dss be the infinitesimal semimetric induced by ds0 in <9TV x {ε}.
Induce an infinitesimal semimetric in <9+TV x (0, ε] by the pullback of
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dss under the projection to d+N x {ε} along g-flow lines. This will be

denoted by dss either in N or N. Do the same for d_N. Define the

infinitesimal semimetric ds in TV:

ds = h+λιdx + h_λ~(dy + A+*_|έ/ί| + (1 - A+AJ έfas.

As before ds is invariant under covering translations so it defines an
infinitesimal semimetric in TV. Let d be the path integral of ds in N or
N and / the length function associated to it. Notice that all h+λ* dx does
is to eliminate the blow up on positive iterates of the positive juncture and
therefore the atomic measures are bounded. Therefore (V_ , h+dx) is a
measured lamination in T.

By multiplying the original measures dx, dy by a constant smaller than
1 we can assume all atomic measures of V+, V_ are bounded above by
b = 1/2. As before d is a semimetric, where we can take 0 = 1/2.

The map which fixes the core of N and in the spiral projects a point
along its g-flow line (in the positive direction if the point is in the negative
spiral and negative if on the other spiral) to the first intersection with
dN x {ε} is the push off map and is denoted by pχ. It moves points in
N away from dN. It is obviously a continuous map. Its lift to TV is also
called push off and also denoted by pχ.

Proposition 5.2. The push off map is a d-distance decreasing retraction

Proof Let γ be a path in N and γ a component of its intersection
with the spiral, say in S x (0, ε). Then pχ(γ) c S x {ε} and by the
definition of the semimetric d, / rfj5 = l(pχ(γ)). But /(y) > / d^ so

/(?) > /(Pi(y))- The components of / Π C(iV) are kept fixed and so
have length preserved by pχ . Since d is a path semimetric the result
follows, q.e.d.

There are a couple of subtle points associated to the new flow in N.
The map / is an isometry (in the hyperbolic metric) in the ladders of T
but, as the next result shows, in general g cannot satisfy this property.
On the other hand, g preserves the geodesic laminations Γ", Γ*, V_, V+

and / does not.
Every leaf of Γ" intersects Γ* transversely. An escaping ray of Γu is

an infinite component of Γ" - Γ*. In [5] we show that an escaping ray is
periodic under g . Furthermore there are only finitely many escaping rays.
Every other component of Γ" - Γ* is a finite segment with both endpoints
in Γ\

Proposition 5.3 [5]. Let S be a component of d+N. The lamination

Γ" I Sε - π (Γ" x R) Π Sε in Sε has finitely many closed leaves, each of
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which corresponds to an escaping ray of Γ" in T. The other leaves {if
any) are grouped into finitely many bands of isotopic leaves which jointly
spiral towards closed leaves in both directions. In general this lamination is
not geodesic. When g {or f for that matter) is irreducible and dT = 0
this lamination fills Sε {in the sense that complementary regions are sim-
ply connected) except for possible annuli in between isotopic closed leaves.
Similar results hold for Γ , V_ , V+ .

In general the bands above from a Cantor set of leaves (see [4]). The
arguments in [5] show that the spiralling of /' to / in Sε corresponds in
T to the boundary of the lift of /' to T (a finite segment with endpoints
in Vs). It is opposite to the escaping direction of the lift of / to T which
goes deeper and deeper into the ladder.

An atomic leaf / of Γ* u ΓM cannot limit in C, therefore it contains
two escaping rays and is periodic. As a result there are at most finitely
many atomic leaves.

Another important question in our analysis is what happens near dN.
The g-flow, unlike the /-flow, is only defined in TV and there are obstruc-
tions to extending it to a semiflow in N.

Proposition 5.4 [5]. There is a map g given by the end periodic theory
satisfying the following: Let S be a component of d+N. If x e Sε then the
g-flow line through x converges in positive time to a point φ+{x) in S.
The hyperbolic length of the g-flow ray between x and φ+{x) has bounded
length and the function φ+: Sε —> S is continuous. Obviously there is also
a g-flow projection Sx {ε} —• S for ε < ε. This projection gets uniformly
close to the f-flow projection when ε —• 0.

This is not true for all g preserving the laminations because g was
only determined in V+ U V~ and there is freedom in the complementary
regions. A map g satisfying the above properties is called a tight repre-
sentative. From now on fix one tight g, which we can assume was the
original one.

The extended flow segment through x e Sε is transverse to d+N. Un-
fortunately the projection φ is not a homeomorphism because in general
infinitely many flow segments will collapse to a single point in d+N (see
[5]). Therefore the g-Άow cannot extend to a semiflow in Ίf. Let Λ" be
the geodesic lamination in Sε homotopic to ΓM | Sε (induce a hyperbolic
metric in Sε by the pullback of the projection to S under the /-flow).

Proposition 5.5 [5]. The projection Γu j S of Γu [ Sε to S under the
g-flow is a geodesic lamination equal to the projection of Au to S under
the f-flow. It has finitely many leaves and if g is irreducible and dT = 0
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then it fills S. Isotopic leaves of Tu [ Sε are identified under the projection
and all identifications are a result of the collapsing of isotopic leaves.

Given S c dN let δs be the corresponding juncture, and Gs the
corresponding juncture annulus where Sε is not tangent to the foliation.
Notice \dt\ in Sε is nonzero exactly in Gs . Furthermore, any transversal
segment to Gs has |rfί|-length > 1. This happens because across Gs we
move one step down (or up) in the ladder. The set Js = (p{)~ (Gs) is
a solid torus in N. This set is called a juncture barrier as is the union
of these over all S c dN. There are finitely many of these solid tori in
N and they are disjoint. A lift of one of the barriers to TV is an infinite
thickened band with the lower boundary in dN the upper boundary in
C(N) and lateral boundaries consisting of #-flow segments. It is also
called a juncture barrier. The dss part of the measures associated to \dt\
occur exactly in the juncture barriers because Gs x {ε} is exactly where
Sε is not tangent to the foliation producing |ί/ί|-length. They are called
the juncture measures.

We proceed to show that d and dH are quasi-isometric on N. The
first step is to show that the induced semimetrics are quasicomparable in
the leaves. Proving the result for the leaf T implies the result for all
leaves. Let d! be the semimetric d restricted to T or f.

Theorem 5.6. The semimetric d! and the hyperbolic metric dτ are

quasi-isometric in f.
Proof First we show that there is τ > 0 satisfying: if a is a hyperbolic

geodesic segment in T of length 1, then I (a) < τ . If a is contained in the
core then this is true because the measures are finite for each arc and C is
compact. This can be extended to any compact subsurface of T because
the added transversal measures to V_ , V+9 and the juncture annuli are all
finite.

It remains to see what happens when a is deep in the ladder. By
Proposition 5.4 such a segment projects to a segment in dN by the g-
flow which is very close to being geodesic and has length approximated by
1. Therefore it has a bounded measure in S (the measure induced by the
projection of the g-Άow). This measure is < twice the dss-length of a
so the result follows.

Let now p, q be any two points in f and join them by a hyperbolic
geodesic arc γ broken into γ0, , γm, where lT(yt) = 1, I < i < m
and 0 < lτ{γ0) < 1. Then l(y.) < τ . There might be atoms in between
so l(γ) < (m + l)τ + mb = m(b + τ) + b . But m < lτ{γ) = dτ(p, q) so
d\p, q) < l{y) < dτ{p, q)(b + τ) + τ . The other required inequality for
quasicomparability is harder to prove and needs a preliminary result.
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Proposition 5.7. Let R be a compact hyperbolic surface either closed
or with geodesic boundary and let Γχ, Γ2 be properly embedded transverse
geodesic laminations with transverse measures of full support. Suppose that
their union binds R, meaning that complementary regions of Γχ u Γ2 have
compact closure and are simply connected. Then the hyperbolic metric on
R is quasi-isometric to the semimetric coming from integration of the trans-
verse measures.

Proof Let dh be the hyperbolic metric in R or R, and d the path
semimetric. As shown above there are b{, b2 > 0 so that d(p, q) <
b{ dh(p ,q) + b2 for any p, q e R.

Claim 1. There are μ > 0, v > 1, { > 0 so that any hyperbolic
segment of length > v crosses at least one of the laminations at an angle
> ζ > 0. Furthermore there is a subsegment of length > μ where such a
crossing occurs in midpoint.

Suppose there is a sequence of geodesic arcs of length > n, n e N ,
crossing the laminations, if at all, only at angles < \jn. Project to R.
Take a limit point in R of the midpoints of the arcs and a limiting direc-
tion of the arcs. It follows that the geodesic through this point with this
direction does not cross either lamination, contradicting the fact that they
bind R. This shows there are μ, ξ > 0 so that each geodesic arc of length
at least μ crosses at least one of the laminations at an angle > ξ. Take
v = 3μ.

Claim 2. There is μ > 0 so that segments as above have measure at
least μ .

Since any such segment crosses Γχ UΓ2 it has a positive measure. If the
claim is not true find a sequence of arcs γn of length = μ crossing, say, Γχ

in the midpoint. Project to R. Take a subsequence where the midpoints
and directions converge. The limit point is in Γ{ (a closed subset of R)
and the limit segment γ makes an angle > ξ with Γ{ and therefore its
middle half has measure z > 0. Any sufficiently close segment will have
to transversally intersect at least these leaves, so the claim follows.

By Claim 2 there are μ , v > 0 so that any hyperbolic segment of length

> v has at least measure μ . Take K' = 2v and kf = Ivjμ . Let γ be

the hyperbolic geodesic segment in R connecting p, q with dh -length /

and let r be its total transverse measure. If / > K1 then

Ijv >//i/- 1 > 1/K'.

There are at least Ijv - 1 subsegments of dh-length > v , each with mea-

sure at least μ , so the total measure of the segment is
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Since dh(p, q) = /, it follows that dh(p, q) < k'r. The laminations
being geodesic imply that the most efficient paths in terms of the transver-
sal measures are the hyperbolic geodesic ones, so r = d(p, q). Therefore
dh(p, q) < k'd(p, q) + Kf and quasicomparability follows, q.e.d.

Continuation of the proof of Theorem 5.6. The original projectively in-
variant transverse measure dy to the lamination π(F + xR) is eliminated
in the negative ladder by h_ . Then dss is added in d_Nx(0, ε) and this
is constant across δ x (0, ε], where δ is the union of the negative junc-
tures. This produces a transverse measure to τr(F+xR) with full support,

which is constant in the negative spiral and changes by λ~At everywhere
else. It is called the basic measure and it does not include the dss factor
transverse to V+xR in the positive spiral or the \dt\ factor. These factors
are called the remaining dss factors. The same applies to dx.

Claim. There is c > 0 so that for any p, q e f, d'(p, q) < 1 =•
dτ{p ,q)<c.

Note this is not the same as the previous proposition because T is an
infinite genus surface. Choose a path γ connecting p, q with l(y) <
1.2. Then it crosses less than three juncture annuli. We will again use
Proposition 5.4: even though g is not an isometry it is uniformly near
an isometry deep in the ladders. The #-flow lines stabilize uniformly near
dN 9 therefore given τχ > 0 we can find τ2 > 0 so that

dH{x, dN) <τ2^ dH(f~ngn(x),x) <τχ Vn>0,xeT.

Choose n big enough so that every point in ^.^(B.uA.) is τ 2 near

ON and choose c which satisfies the claim for

fn'+2 \
R = Cu\\J(BiUAn)\ .

This is possible because {V+uV_)nR is a union of transverse geodesic
laminations which bind R and the basic transverse measures to these
laminations have full support, so we can apply the previous proposition.

When γ n (C U (U"=o Ai u Bi)) Φ 0 t h e a b o γ e proof works. Otherwise
y is deep in one of the ladders, say B. Flow y backwards by some
iterate of g~ι, say g~s, sending it to (Bn, UBn,+ι VBn,+2). The /-length
of g~s(y) (equal to its rf-length) is < 21 (γ) < 4 because ^-length is
bounded by twice the rf^-length in the spiral. Therefore by the result for
R there is cχ > 0 fixed so that the endpoints of g~s(y) are connected by a
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hyperbolic geodesic arc γ of length < cχ. The remark above implies that
the hyperbolic geodesic arc homotopic to gs{y) (which is also homotopic
to y) has length < cχ + 2τχ and the claim follows.

Given any two points p, q e f choose a path γ connecting them with
l{γ) < d'{p, q) + 1/2. Break it into at most 2(d'(p, q) + 1) subpaths
γt satisfying 1/2 < l(γ.) < 1, which is possible since the maximum of
the atomic measures is = 1/2. Choose the endpoints p., q{ to be outside
V+UV_ . By the above claim dT(pi, q.) < c so dτ(p, q) < 2c(d'(p, q)+l),
which completes the proof.

Theorem 5.8. d and dH are quasi-isometric in N.

Proof, d on N satisfies the following conditions:

(i) d is /?(π1(Λ/r))-invariant;
(ii) d is a path semimetric;

(iii) N has finite d-diameter;
(iv) any set of finite rf^-diameter in N has finite d-diameter; and

(iv) any set of finite ^-diameter in N has finite d^-diameter.

Given these properties the theorem is proved in [2] for the fibering case.
It is immediate to generalize their proof to our situation.

We proceded to check properties (i)-(v). Only properties (iii)-(v) need
checking. Let x e N in the spiral and y = px (x). Since the g-flow
segment between x and y is contained in the spiral, d(x, y) = 0. On
the core dt is quasiconformal with hyperbolic length along g-flow lines
and the transverse laminations π ( F + x R ) Π C(N) and n(V_ x R) Π C(N)
are compact sets. Therefore N has finite rf-diameter.

Let U c N be a set of finite hyperbolic diameter. Then it is contained
in a union of finitely many translates of a fixed fundamental domain for
N in N, each of which has finite rf-diameter, so (iv) follows.

The hard property to prove is (v). Let U be a set in JV" of ^-diameter
e. Since d is ^(π^iV^-invariant and TV has bounded d-diameter, we
may assume there is x e U Π(f x {0}) Π C(N). If U does not have fi-
nite hyperbolic diameter there are xn e U with dH(xn, x) -> +oo but
d(xn,x) < e. If xn e spiral then yn = px(xn) is in the core and
d(yn, xn) = 0 so d(yn, x) < e — no atoms need to be crossed. By
Proposition 5.4 the hyperbolic distance between yn and xn is bounded
and therefore dH(yn,x) -• +oo. Let yn = (zn,tn), where zn e T,

Claim. \tn\ < e. Let γn be a path connecting x and yn of ^-length

< e. Then γn = Px{y'n) C C(N) and l(γn) < e. Recall that in the core
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h+ , h_ = 1 SO

e > ί ds> ί\h+h_)\dt\= f \dt\>\tn\.
Jyn hn hn

Let yn = (zn , 0) be the projection of yn to Tx {0} along #-flow lines.

Since tn is bounded and hyperbolic length along flow lines is bounded by

a multiple of ^-length, y'n is at a bounded hyperbolic distance from yn

and therefore dH(x, j / ) -• -f oo. Since they are on the same g-flow lines,

^O^i ' y'n) - I*J * s bounded by e, therefore d{yn, x) is bounded.

Project yn to j?π c f x {0} along #-flow lines. The fact that \t\ <

e uniformly in γn implies βn c R for all n, where R is the surface

CU(U/ΐoel+1 (^i u 5 /)) τ h i s i s because a point in the core of T can move at
most one step into the ladder by g. Consider the basic stable and unstable
lengths of γn (not including the remaining dss factors). These lengths are
uniformly bounded. Since every point in γn is moved at most c units in
the t direction these lengths are perturbed by at most a factor of λc, so the
final basic transverse measures of βn are bounded. Now R is a compact
hyperbolic surface with geodesic boundary and (V+ U V_) Π R is a union
of transverse geodesic laminations which bind R and the basic transverse
measures have full support. Proposition 5.7 shows that the hyperbolic
metric and the transverse measure semimetric are quasicomparable in R
and therefore the d?Γ-length of βn is bounded. As a result, so is the length
induced from T x {0} c H 3 . This implies that the hyperbolic distance
from x to yn is bounded, a contradiction.

This completes the proof of the quasi-isometry theorem, q.e.d.
Notice that the remaining dss part of the semimetric was not used in

this last part of the quasicomparability result because the union of the
laminations V+, and V binds a bigger subsurface of T which is still
compact. The essential use of the dss part is in the fact that the push off
map is distance decreasing as a consequence the analysis can be restricted
to the core which is compact. Without the push off property it would be
easy to produce counterexamples to quasicomparability by paths starting in
the core going deep in the spiral, winding around a lot near dN producing
no rf-length, and then returning to the core.

It is in fact true that foliation produces a semimetric in the original
manifold M which is quasi-isometric to the hyperbolic metric in the uni-
versal cover. In order to show this we consider the original components Q
of M - & in Q of ¥ - ? instead of the enlarged ones (N). Obviously
there is a semimetric d{ in Q" naturally associated to the semimetric d
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in N and it satisfies the quasicomparability property in Q.
Introduce the semimetric dx on the finitely many components of this

set. Given a compact leaf S let Q be a component of M — ff on the neg-
ative side of S. Put an atomic measure across S of atom μs < 1/2. In
Q the transverse measure to π(V+ xR) induces a generalized transverse
measure to V+ j Sε in Se. The g-flow then induces a generalized trans-
verse measure to V+ I S, the geodesic lamination induced in S. Add this
measure to S and do the same for the positive side. Also add the juncture
measures.

Theorem 5.9. Under the conditions of the main theorem the semimetrics
dχ and dH are quasi-isometric in M = H 3 .

Proof. Apply the same strategy as in Theorem 5.8. Everything goes
through immediately except for (iii) and (v) of the claim. Let §? =
π~ι(W). To show (iii) move boundedly in Ψ to a point not in the
projection of the invariant laminations or juncture annuli. Then use the
well-defined projection of the g-flow to move out of ^ . To show (v) let
p, q e M with dx(p, q) < e. By moving them a little assume p, q φ W
(by assuming dχ(p, q) < e + k = e , where A: is a fixed constant). Take
a path γ connecting them with l{(γ) < e . Since in the spirals lχ-length
is < 2tita5-length we can change the path so that lx(y) < 2e but γ is
transverse to §*. Since l{(γ) < 2e it intersects Ψ in a bounded number
of points pχ, , pn . Let Po= P and pn+x = q . The quasicomparabil-
ity theorem then shows that dH{pi, Pi+X) is bounded and therefore so is
dH{p, q). This completes the proof.

6. Flat walls

In this section we study 2-dimensional submanifolds of iV (or N) which
will be the key ingredient in the analysis of the asymptotic behavior of the
leaves of the foliation. They will be quasigeodesic, a property more visible
in the semimetric d which will then be interpreted in the hyperbolic metric
using the quasi-isometry relation between them.

A set D in a space E with a path semimetric e is flat if for any two
points p, q e D and any path γ c E connecting them there is also
a path γ c D connecting them with le(γ) < le(yf). This is the natural
generalization of totally geodesic in Riemannian manifolds. But in general
there is no uniqueness of minimal paths because e is only a semimetric.

Let L be a leaf of Vs UΓM . We identify L t o a lift L in f and also to
its image in f x {0} . The saturation of L in N by the g-flow (L x R) is
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called a wall. Our aim is to prove that a wall is flat in the d semimetric.
This would easily work if d only had the pseudo-Anosov factors, but the
existence of the dss factors complicate the analysis. We will show that the
part of the wall in the core is flat, which will be enough for our purposes.

The description of a typical wall is as follows: Let L c Γ . The induced
metric (from H 3) in Lx{0} identifies it to the real numbers. Parametrize
L x R by (w, t), where ( , t) is in a g-flow line and w is given by the
above identification. Consider t' = λt, which identifies L x R with the
upper half plane in R2 . Again vertical lines are flow lines, and horizontal
ones are components of wall n &. Locally Γ" intersects L in an isolated
point or a Cantor set. This intersection is invariant under the g-flow. Let
c be a complementary region of Γ" in L with c Π^_ = 0 (here L is

a subset of T). In T, any point w in c satisfies: gι(w) £ negative

ladder V/ΈZ. Since c c Γ , gι(w) £ positive ladder either, therefore

c x R c C(N). If c is a complementary region with c Π %ί_ Φ 0 then

c c %_ (see [5]) and for any wee, 3i < 0 with gι{w) e ladder, so

the flow line through (w , 0) eventually enters in the spiral in the negative

direction and it will limit on d_N. The boundary between the core and

spiral regions in c x R is a curve η contained in d_N x {ε} . Recall that
this curve is tangent to the foliation outside a neighborhood of the juncture,
which accounts for the horizontal pieces of the curve. The thickness of
the spiral in the hyperbolic metric is bounded by the maximum length of
a g-flow segment from d_N x {ε} to d_N. An infinite complementary
interval e occurs when L has an escaping ray. Except for a finite length,
e is entirely contained in the ladder and the same holds for gι(e), Vi e Z .
Notice that the wall is not a complete submanifold because it has boundary
in dN corresponding to segments in Ln%f_ .

The upper half plane model of L x R is roughly reminiscent of the same
model of H 2 . To see the suppose for a moment there is no dss factor
(or h+,h_) in the semimetric and collapse the 0 ^/-distant points to get
a metric space (usually complete, unless there is an escaping ray in L).
Then the metric is ds = (\dy\ + \dt'\/logλ)/tf which is quasiconformal
to the hyperbolic metric (ds2 = (dy2 + dtf2)/dt'2). Up to a bounded
distortion, minimal arcs would behave as geodesies in H 2 . The dss part
of d distorts this analogy to a certain extent, but not significantly because
the spiral has bounded thickness in the flow direction.

Our objective is to produce a distance decreasing retraction from N
to L x R . Suppose again for a moment that there is no dss factor and
that h+, h_ = 0. Define the retraction r : f -• L as follows: if Lf e V+
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FIGURE 6. A TYPICAL WALL IN N.

d-N

intersects L project Lf to LnLf. Project a complementary component D
of the union of these L1 continuously to DnL so as to be continuous, to
agree with the projection defined on the boundary, and to fix the intersec-
tion with L. Extend this to N by r(w, t) = (r'(w), t). This retraction
would preserve the dt factor, eliminate the dx factor (no measure across
V_xR since image is contained in this set), and more importantly would
preserve or decrease the dy factor. This last fact occurs because the image
will only be transverse to V+ x R in L x R, when the domain itself is and
since t is preserved the corresponding dy factor does not increase. So
the retraction would be distance decreasing. This is the basic construction,
which will have to be adjusted to take into account the dss factor and that

First project N to C(N) using the push of map p{, which is distance
decreasing. We define a projection p2: N —• L x R which is distance de-
creasing in the core. The projection described above presents two potential
problems:

(i) Points in the spiral (where h+h_\dt\ = 0) are projected to the core
(where h+h_\dt\ = \dt\) introducing dMength. This is why the distance
decreasing property of the projection works only in the core. There is no
good way to make this hold everywhere while still preserving the height t.

(ii) Core points (where ( l-h + h_)ds s = 0) are projected to spiral parts
(where (1 - h+h_)dss = dss Φ 0) and create dss-length.
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The solution to problem (ii) is as follows: Let / = (U L') > where the
union is on Lf e Γu so that ll Π L Φ 0 . Project / x R -+ L x R as
described above. For any / e W+ with /' Π L ψ 0 project /' x R ->
(/' Π L) x R as above, unless /' Π L is in an escaping ray of L. Let c
be a component of L - Tu and Dc the complementary region of / in
T satisfying c = DCΠL. If c Π 2<_ = 0 then ( c x R ) c core and no
^55 measure is created by any projection to c x R, so project Dc xR
continuously to this set preserving t and so that it is coherent with the
previously defined projection on (V+ΠDc)xR. If c is an escaping ray with
boundary point e eΓu define the projection in c x R b y (w, t) —• (e, t).

Finally let c c ^ _ be a component of L-Tu which is not escaping.
Then the elements of ds in c x R are the following:

(1) the vertical factor \dt\ in the core,
(2) X~ι dy measure across W+ x R in the core which is kept fixed in

the spiral, and
(3) measure induced from \dt\ in the negative spiral.
We define a retraction p2: Dc xR —• cxR which has the form p2(z, t) =

(p(z), t), where p: Dc^> c is a retraction.
Let dc = aUb both in ΓM . Recall η is the boundary of the core part

in c x R . The intersections of negative juncture barriers with c x R are
quadrilaterals with one bent side. The upper boundary is contained in
η and is not in a leaf of the foliation, the lower boundary c d_N, and
the laterals are g-flow segments (see Figure 7(a)). There are countably
many of these corresponding to each "step" in η. Let ai, βt be these
intersections of juncture barriers with c x R (one sequence for each side
of η). The g-flow saturation of a. (β.) intersects L x {0} in at {bt),
which are segments. The only limit point of α. is a and similarly for
bi (see Figure 7(a)). If there were any other limit points then different
junctures would accumulate in TV, a contradiction.

Recall that the juncture barriers are the only places where segments
contained in a leaf of & have rf-length coming from \dt\. Consider
the juncture barrier Ht which intersects c x R in a(. The intersection
of the £-flow saturation of H. with f x {0} is denoted by α*. Then
da* = φ{ Uφ2 , both projecting to TV as closed curves, where φ{ is geodesic
and corresponds to a g-flow translate of the negative juncture (that is, φχ e
W+) and φ2 is a g-flow translate of δ', the other boundary component of
the juncture annulus. Notice that if r e W+ then r x R can only intersect
a juncture barrier in one of its lateral boundaries.

We already projected φ{ x R to ( ^ n fl.) x R by (JC , t) ->
{(φιnai), t) when considering W+nDc. Do the same for φ2xR. Project
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FIGURE 7. THE WALL AND THE SPIRAL.

H{ continuously to a. preserving the juncture measure and t, and so as
to agree with projection already defined in da* x R. The upper boundary
of 7/. is an infinite band which should be projected to η Π H . Finally
project (α* x R) - H. continuously to (a. x R) - a( so as to preserve t
and agree with projection already defined on the boundary. Do this for all
at and β..

Let now E be a component of Dc - (U, €#(α/ u A*)) P r o J e c t E xR
to ( £ ί l c ) x R preserving t and coherently with the projection already
defined on the boundary. Do this for all such complementary regions c
producing p2: N —• L x R.

Proposition 6.1. The projection p2: N —> L x R is distance decreasing
in the core.

Proof. This function is continuous by construction. By definition p2

preserves t, therefore it can only decrease \dt\ when restricted to the core.
The transverse measure to V+ x R is also preserved or decreased because
leaves of V+ intersecting L are projected to the intersection and comple-
mentary regions are taken to complementary regions and t is preserved.
This is even true for W+ x R, at lest in the core. Notice the stabilization of
the measure in the spiral does not destroy this property because gn(d_C)
will intersect the negative ladder if and only if it is contained in it. There-
fore the distortion in the transverse measure is the same for all points at
a given height t.

The only problem may occur when part of an arc is projected transver-
sally to one of the corresponding α or βt. By construction this only
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happens when the original arc was already transverse to the correspond-
ing juncture barrier and its measure is the same as that of the projection.
Therefore now new juncture measure is created. This completes the proof
of the proposition, q.e.d.

Notice that, if L has no escaping rays, p2 fixes L x R. Otherwise
p2 fixes (L - e) xR, where e is the union of escaping rays. Sometimes
there can be two such rays in a leaf, as shown in [4]. If L does not
contain an escaping ray let CL = (L x R) Π C(N). Otherwise let CL =
((L - e) xR)Γ\ C(N), where e is the union of the escaping rays of L.

Theorem 6.2. For any L G Γ U Γ " , CL is flat in the semimetric d.
Proof. Let pr = pxp2px By Propositions 5.2 and 6.1, pr is distance

decreasing. Furthermore, pχ and p2 fix CL. As d is a path semimetric
the result follows.

Lemma 6.3. Given L e Γ M u Γ and p, q eCL there is a path γ c CL

connecting them with l(γ) = d(p, q).
Proof. This is not immediate because d is not even a metric. In fact

the proof is constructive and these paths will be used later. Assume L e
Γ*. To find candidates for minimal paths we may assume y C CL by the
previous theorem, therefore only \dt\ and λ~ι dy are present.

Parametrize a path γ c CL connecting p, q by γ(s) = (w(s), t(s)),
ί G [ 0 , l ] . Let e = max5€[0 {]t(s). Let γ be a path starting at 7(0),
moving vertically (that is, along a #-flow line) to (w(0)9 e), then hori-
zontally (along the foliation) to (w(l), e), and finally vertically down to
(lί ( l ) , t{\)) = q (see Figure 8). The path / is always above γ in the

FIGURE 8. How TO DECREASE LENGTHS OF PATHS.
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sense that for every (w, t') e y there is (w, t) € y with t < t'. This
implies that / c CL and furthermore, by construction fγ, \dt\ < J \dt\.
Since the dy factor decreases exponentially under the positive direction
of the #-flow the dy part of the length of γ is bounded by that of y.
Consequently /(/) < /(y).

Let c = min{t \ (w(0), w(l)) x {t} c core(JV)}. For any c > c'
there is a path yc c CL connecting p, q of the form: vertically from
(w(0),t(0)) to (w(0), c), horizontally from (ω(0),c) to (ω(l),c) and
finally vertically to (τi ( l ) , ί ( l )) . The length l(γc) is a continuous function
of c. This function is a convex function and therefore assumes a unique
minimum at some c > c . Then y(p 9 q) = yc is a path satisfying the
requirements of the lemma, q.e.d.

There is no uniqueness of minimal length paths, because for instance
γ may move more horizontally, without crossing ΓM x R, which does not
increase its d-length. The path γ(p, q) described above is called a good
minimal path. The notation γ(p, q) is reserved for these paths.

It is an interesting fact that the metric ds = (\dy\ + \dt'\/logλ)/ dt' in
the upper half plane produces minimal paths as described above and all
but a bounded length is traversed vertically. Notice that these paths are
always a bounded distance from the hyperbolic geodesic ones.

Lemma 6.4. There are v, μ > 0 so that for any L e Γu U Vs and any
two points p,qeCL, lH{γ(p, q)) < vd{p 9q) + μ.

Proof. Let yx be the horizontal part of the path y{p, q), and γ2 its
vertical part. In the core, \dt\ is quasiconformal with hyperbolic length
along #-flow lines, so there is v > 0 with lH(γ2) < vKy-ι) This v is
independent ofp,q, and even L.

We claim that lH{y{) is bounded by some μ > 0. Otherwise there is

y\ with lH{y\) > i. But y\ c f x {t(i)}. By compactness of the core

we can assume t(i) -> t0 and that y\ -+ γ0. Then γ0 is infinite, but

γ0 x {ί0} c (Γ* x R) Π C(N) and there are no infinite horizontal arcs of

Vs x R in the core because projection to T x {[tQ] + 1} would produce an

infinite arc of Vs c C(T). But Γ* intersects the core in a finite union of

bands of isotopic finite arcs, so this is impossible. Then

IH(7(P,Q)) = lH{V\) + lH^i) ^ ^l(72) + β< "d(p,q) + μ.

Proposition 6.5. There are r,u>0 so that: / / L G Γ U Γ " , then any

good minimal path in CL is as (r,u) quasigeodesic curve in the hyperbolic

metric for N.
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Proof. Given any two points p, q e CL they are in the core of N,
therefore in its convex hull. The hyperbolic geodesic connecting them is
contained in N and then obviously it is the minimal path in the hyper-
bolic metric on N. This is the reason why in §4 we modified the original
manifold Q to obtain N containing its convex hull and whose core is
contained in the convex hull. Let k, K be constants satisfying the quasi-
comparability inequalities between dH and d. Take v and μ given by
Lemma 6.4. Let u = Kv + μ. Let γ be a good minimal path in CL and
a any subpath with hyperbolic length > u and endpoints p, q . Notice
that any subpath of a a good minimal path is itself also a path of the same
type, so I (a) — d(p, q). If d(p, q) < K, then since a is a ^-minimal
path, Lemma 6.4 implies that lH{a) < Kv + μ = w, a contradiction. Fur-
thermore the same lemma implies

lH{μ)<b'd{p9q)9

where 6' = v 4- ///AT (because K < d(p, #)).
By quasicomparability d(p, q) < 2kdH(p, q). As a result

lH(a)<kb'dH(p,q).

Take r = ί//c. Note r and w are independent of p, q, and L. q.e.d.
Thurston [17] showed that an (r, w) quasigeodesic curve in H 3 is at

a bounded distance from the hyperbolic geodesic arc connecting the end-
points. This shows:

Theorem 6.6. C L c H 3 , where L e Γu UΓ*, is uniformly quasigeodesic
in the hyperbolic metric.

Remark. Consider the annuli G which are the #-flow saturations in

N of the junctures. We conjecture that lifts of these to iV are also uni-
formly quasigeodesic. If this is true it simplifies considerably the proof
of the continuous extension of i. Unfortunately the corresponding pro-
jection p2 is not distance decreasing in the core. The problem is that
measure across F + x R , VxR may increase, even multiplied by an enor-
mous factor, under the projection p2 to L x R , with LeW_\JW+.

Lemma 6.7. Any point in LxR is at a bounded d (and dH ) distance
from CL in LxR.

Proof. If L does not contain an escaping ray, then any point in L x R
is either in CL or in the spiral. The spiral has zero rf-thickness in the
#-flow direction. By Proposition 5.4 the hyperbolic length of these flow
segments in the spiral is bounded so the result holds for these types of
leaves. If e is the union of the escaping rays, the same argument will
work for (L - e) x R. Let β = d(e x R) be a flow line contained in
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CL . Any point (x, t) in C(N) Π (e x R) is at a bounded hyperbolic and
therefore also rf-distance from β by a horizontal segment. Any other
point is in the spiral and the argument above applies.

Corollary 6.8. L x R , where L e Γ u Γ , is uniformly quasigeodesic
in H 3 .

Proof. Let p, q e L x R. Let */ > 0 be the hyperbolic bound given
by the previous lemma. There are p , q e CL so that dH(p , p) <v and
similarly for q, q'. Let γ, /? be the hyperbolic geodesic arcs connecting
p, q and p , </ respectively. Since the endpoints of β are at most v
distant from those of γ it follows from hyperbolic geometry that β is
entirely contained in the ^-neighborhood of γ. The previous theorem
implies that every point of β is at most τ + v distant from CL , where τ
is a constant.

7. Existence and continuity

We now address the main theorem: there is a continuous extension of
φ~\ H 2 -> H 3 to H 2 U S ^ . Both the existence and the continuity will use
in an essential manner the quasigeodesic property of the walls. Recall that
under the homeomorphism N = f x R, φj(f) is associated to f x {0} .

Lemma 7.1. Let r be an infinite ray in T - (Γ* u Γ"). Except for a
finite length, r is contained in one of the ladders.

Proof Suppose r keeps returning to the core. If it self-intersects it
defines a homotopically nontrivial closed curve which is disjoint from the
laminations, a contradiction to irreducibility. In the other case, r limits
on w e C. If ω £ Vs u Γ" so does a small neighborhood U of w and
we can connect a big enough subarc of r with endpoints in U to again
produce a closed curve as above.

Otherwise w e Γ" , say, and let / be the leaf of Γ" through w . Then
/ intersects Γ* in at least a leaf /'. Since r limits on w but r does not
intersect /, the tangent to r also limits on the tangent direction of / at
w . This implies that r will also intersect /', a contradiction.

Theorem 7.2. There is a natural extension ψ~ of φ~\ f — H —> H

to S1^ with image in S^.

Proof. Recall that the hyperbolic metric in f is induced from one in
T and / is an isometry in the ladders. The map g on the other hand is
not an isometry in the ladders but it preserves the invariant laminations.
Let P € S1^ be an ideal point of f and r a geodesic ray in T with
this ideal point. We are going to show that φψ{r) has a well defined limit
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point in S'* . This is independent of the particular ray chosen, for any
oo

other ray is asymptotic to r, and since the hyperbolic structure in φ~(T)

is quasiconformal to the induced metric in φγ{T) c H 3 their images will

be asymptotic in H 3 . There are two cases:
(I) Type 1. The ray r eventually stops intersecting Γ u f . Assume

then that r does not intersect either of these laminations by elminating
that r is contained in the ladder except perhaps for a finite length sub-
segment, so assume it is entirely contained in the ladder. Projection along
the original flow (/-flow) to the component of dN associated to the part
of the spiral containing φψ{r) produces a ray which is a finite hyperbolic
distance (bounded by the thickness of the ladder under the /-flow) from
the original ray. In the intrinsic hyperbolic metric of this component the
projection is a geodesic (because / is an isometry in the ladders) and as
dN is quasi-Fuchsian this ray will have as image a quasigeodesic in H 3

which has a well-defined limit point. This is ~φj{p).

(II) Type 2. The ray r keeps intersecting the laminations. This is the
hard case. If the intersection is not transversal then r c ΓM U Γ 5, say ΓM .
If r eventually stops intersecting Vs transversally then r is eventually
contained in an escaping ray of Γ", which is contained in the ladder and
we reduce to case I. Else r keeps intersecting Vs transversally. Assume
then r keeps intersecting Vs (say) transversally.

Let z be the starting point of r. By taking another asymptotic ray if

necessary we may assume z is in the core. Let Ln e Γ* so that Ln -> oo in

T and Ln intersects r transversally. Let rn be the subray of r between

Ln and p . Let y = φγ(z). In f, lim r t^+ o o dτ(z, Ln) = +oo .
Lemma 7.3. l i m ^ ^ dH(y, Ln x R) = +oo.
Proof. Otherwise up to subsequence there is μ > 0 and yn e LnxR,

with dH(yn, y) < μ. If yn £ spiral it flows back to C(N) under a

bounded hyperbolic length g-flow segment, so assume yn e C(N). By

Theorem 5.8, d(yn, y) < v for some fixed v > 0. Choose yn c C{N)

connecting y and yn and l(γn) < v . As in the proof of the same theorem

t is uniformly bounded in γn . Therefore the basic measure length of the

projection yn of γn to f x {0} along the g-flow is also bounded. No-

tice y e Ϋ x {0} . By Proposition 5.7 the endpoints of y'n are a bounded

distance apart in the intrinsic hyperbolic metric of f x {0} . But one of

them is y and the other is in Ln x {0} so dτ(Ln, z) -^ +oo, a contra-

diction, q.e.d.

Consider the unit disk model for H 3 with classical compactification

BR = H 3 U S^ , the closed unit ball in R 3 . The visual distance in BR is
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FIGURE 9. BOUNDARY OF WALLS IN H

the induced metric from the inclusion in R with the euclidean metric.
The same is done for the unit disk model of H 2 . The term visual will
always refer to this model. Let vd be the visual diameter of a set and υ
the visual distance.

Notice Ln xR has infinite hyperbolic diameter. As the walls are go-
ing to infinity in H 3 and they are uniformly quasigeodesic they satisfy
vd(LnxR)^0.

We are almost done except for the fact that the walls do not separate
H . This happens because TV is not a complete submanifold of H .
Ln x R has boundary in copies of lifts of dN, corresponding to flow lines
which hit d_N in backward time, as in Figure 9.

To fix this adjoin half disks in d_N to Ln x R. Let w' c %ί_ be a
complementary segment of Γ" in Ln . Then w , the projection of w' to
d_N (using the g-flow), defines a curve which, by Proposition 5.5, is a
geodesic w* in the intrinsic hyperbolic metric of this set. Therefore it
is a quasigeodesic in H . Be aware that wf is not at a finite hyperbolic
distance from w because the distance goes to infinity near the boundary
of w'.

Let Sw be the component of d_N which contains w . Then w sepa-
rates it into two disk components Ww and Uw . The curve w has small
visual diameter because it is on the boundary of the wall, which has this
property. The next result shows that small visual curves in quasi-disks
bound visually small half disks.

Lemma 7.4. At least one of the components Ww , Uw has small visual
diameter.

Proof. Else there is μ > 0 and a sequence w'n e Ln of complementary
segments so that vd{wn) —• 0 but vd(Ww ), vd(Uw ) > μ. Yn = closure
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F I G U R E 10. B I G QUASI-DISKS WITH SMALL QUASIGEODESICS

IN THE MIDDLE.

of Ww in BR and similarly Xn for U . Since they are contained in
n n

the closure of uniform quasidisks and are bounded in H 3 by the quasi-

geodesic wn, if υd(dYn) —> 0 then ^(1^) —> 0 and similarly for Xn.

Therefore for n big enough choose points ynedYn so that υ(yn, wn) > v

for fixed v > 0 and similarly x G 9 1 . In the hyperbolic structure in S
n

consider the hyperbolic geodesic y * connecting the limit points associated

to xn and yn, and γn its image in H 3 (see Figure 10). Let βn be the

hyperbolic geodesic in H 3 with the same endpoints.

Let an be the geodesic in H defined by the endpoints of wn . Since
vd(wn) —• 0 and wn are uniform quasigeodesics then vd(an) —• 0. As the
endpoints of an and βn are at least v visually apart and vd(an) —> 0,
then the numbers en = min{dH(x,x) \ x e an, x e βn] satisfy
en -> +oo . Since βn is a bounded distance from γn , as is an from wn ,
the minimum distance between them (dH{γn, wn)) converges to +oo,
contradicting the fact that they intersect in H (because y* and ω* in-
tersect in the intrinsic hyperbolic structure of S ).

n

Conclusion of the proof of existence. Cap off Ln x R with the small
quasi-disks given by the lemma to produce Pn . Then Pn is topologically
a 2-dimensional disk and has visual diameter converging to 0.

It also separates H 3 and the small component of H 3 - Pn contains
ψf{rn). Let En be the closure (in BR) of this component. Since rn

defines p and the visual diameter of En converges to 0, the intersection
of the En defines a single point in S^ which is the limit point of φ~(r).
This is Ίpψ(p). q.e.d.
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We need a couple of preliminary results before addressing the continu-
ity of ψψ. The region between any two asymptotic rays of the geodesic
laminations is called a wedge.

Lemma 7.5. Consider a ray r in T which does not intersect Tu u Γ*
transversally. Then r is asymptotic to an escaping ray of Tu {or Vs).

Proof. Assume the initial point of r £ Γ" U Γ . If r n (Γ" U Vs) φ 0
then r c (Γ" U Vs), say r c Γ*. As r does not intersect Γ* transversally,
r is contained in an escaping of Γ" .

Otherwise by Lemma 7.1 there is a subray r contained in one of the
ladders, say the positive one. Then the embedding of r in T is proper,
for otherwise it would limit in a point in T and again the homeomorphism
would be reducible.

There is then a subray s which is very near a component S of d+N.
Project s to S using the g-flow, producing a ray s j S. By Proposition
5.4 this ray is almost geodesic and furthermore it does not intersect Γ" { S
transversally. Since this lamination fills S, the description of Propositions
5.3 and 5.5 implies that s j S is either asymptotic to a closed leaf or
contained in a closed leaf. But the asymptotic spiralling to a closed leaf
in Γ" I S corresponds to going out of the ladder and into the core, which
is opposite to the direction of the ray r. Therefore r projects to a closed
leaf. By Proposition 5.5 there should be two escaping rays r{, r2 of ΓM

(they may be the same), so that r j Sε is contained in the annulus bounded
by r{ i Sε and r2 j Sε. Therefore r is asymptotic to r{ and r2.

Lemma 7.6. There is n0 > 0 satisfying: Let I a geodesic ray in T

starting in Bn, n > n0. Let lb = component of I Π B containing the

starting point of I, and lc {which might be empty) be the component of

I Π C containing the endpoint of lb . Then there are the following three

possibilities:

(i) lb intersects Γ" transversally.
(ii) lc = 0 and I is asymptotic to an escaping ray of Γu.

(iii) f intersects Γ" U Γ* transversally.

Proof. If 1° = 0 and lb does not intersect Γ" transversally then /
does not intersect Γ" UΓ* transversally and it is asymptotic to an escaping
ray of Γ" by Lemma 7.5.

Suppose the lemma is false. Then there are ln with starting point in

Bn with lc

n ψ 0 (implying ln not asymptotic to an escaping ray of Γ")

and lb U lc

n not intersecting Γ* U Γ" transversally.

By Proposition 5.7, ζ is a bounded length segment. Let en e dC be

the endpoint of lc

n which is not contained in ln . By taking a convergent
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subsequence we may assume en converges to e and the direction of ln at
en also converges. Then lb

n u lc

n (finite geodesic segments) converge to a
geodesic ray / starting in e which does not intersect Γ ' Ί J Γ 5 transversally.
By the previous lemma / is asymptotic to an escaping ray of Γ" and
projects to a closed leaf of Γ" j S. Therefore / is eventually contained
in the closure of a wedge W. If / c ΓM we are done, for lc would have
to intersect Γ* transversally. Else we can assume there is no leaf of Γ"
in the wedge, for such a leaf would have to be escaping and there are
finitely many of those. If Wn&_ φ 0 then W c%S_ because Γu = d^_
and ΓM Π W = 0 . Therefore the gn{d_C) have to limit on dW c Tu

from the interior of the wedge as well. But since the geodesic rays in dW
are asymptotic and gn{d_C) is geodesic and closed this is impossible.
Therefore W c T- (Γ" u ^ J , so W c A+ for some i. Since W cB,
it follows that W is contained in a cusp. Recall that any geodesic ray in
the cusp has to intersect Γ* in the opposite direction, which implies that
f intersects Γ* transversally, a contradiction.

Theorem 7.7. The map ψ~: f = H 2 u 5 ^ -> H 3 U S^ is continuous.

Proof. Case I. Every ray defining p keeps intersecting Γ^uΓ* transver-
sally.

The Ln described in the existence theorem form a neighborhood base
of p and the corresponding En form a neighborhood base of ψψ(p) in

the limit set of N. Let In be the component of H 2 - Ln containing p .
If y is any point in H 2 U S1^ near enough p then y e In for n big and
its image is contained in En , which has small visual diameter, therefore
is near ψγ(p).

Case 2. There is a ray r defining r defining p which does not intersect
r " u r * transversally.

By Lemma 7.5, r is asymptotic to an escaping ray so we can choose r
to be an escaping ray of Γ" U Vs. Suppose it is contained in the positive
ladder, so r c Γ " . There might be other escaping rays of Γ" asymptotic
to r but there are only finitely many (see [5]). Choose r{, r2 outermost
ones. If they are different there is a wedge W between them. Notice no
leaf of Γ" outside W has limit point p. Since they are asymptotic the
whole wedge has image converging to ψψ(p). We show continuity on the
outer side of rχ. Assume r = rχ and let z be its starting point, chosen to
be in Bn, n > nQ.

We foliate a neighborhood U of that side of r by geodesic rays, as
follows. Let τ be a transverse segment to r on the side considered. If τ
intersects Γ" in points other than z choose a subsegment of it with an
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FIGURE 11. THE LOCAL PICTURE NEAR ESCAPING RAYS.

endpoint in ΓM. This always happens when r is not isolated in Γ" on
that side. Then let r be a geodesic ray in Γ" starting in this endpoint.
When r is isolated choose r to be a geodesic ray with ideal point close
but different from p. Let U be the set of H 2 bounded by r, r , and τ .
Foliate U with geodesic rays s starting in τ so that if the starting point
is in τ Π Γw then the corresponding ray is contained in Γ" . We do this to
insure that the nearby rays do not intersect Γ" Π Γ* transversally near z
(see Figure 11 (a)). For any ideal point q near p there is a leaf s of this
foliation converging to it.

The rays s can only intersect Γ u Γ transversally in leaves that are
far away from z in T (not only the intersection point is far away but so
is the whole leaf). This is true for Γ" by construction and because no ray
of Γ" Π U can be asymptotic to r. As for Γ* note that a nearby ray s
stays near r for a long time and can't intersect Vs for a long time and
also rays of Γ* cannot have p as ideal point. The nearer s is to r, the
farther is any leaf of Γ" n Γ* which intersects it transversally.

Let φs(S) be the component of d+N to which x = ψψ(z) projects
by the g (or /) flow. Given σ > 0 let sσ be the complement in s of
its starting segment of length σ . We will show that given ξ > 0 there is
σ > 0 so that, for any near enough ray s to r, ψψ{sσ) is ξ visually near
~ψf{p) > which implies continuity at p .

Lemma 7.8. Let ξ > 0. There is σ < 0 so that if the ray s is in the
ladder and close enough to r then ψψ(sσ) will be ξ close to ψψ(p).

Proof. Here we use the original /-flow instead of the g-flow because

/ is an isometry in the ladders. The nearby arc ψγ(s) will project by the

original flow to the component ψs(S) of dN because its starting point

does. The hyperbolic thickness of the spiral in N is bounded by b' > 0.
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Therefore ψγ(r) and ψγ(s) are moved at most a distance b' by this

projection. Now choose c > b' so that any segment of H 3 of length < b'

which is farther than c from ψψ{z) has visual diameter <ξ/4. Let e > 0

so that if x e f satisfies dτ(x, z) > e then dH(ψψ(x), ψψ(z)) > 2c.

This is possible because ψψ(f) is properly embedded in H3-otherwise

there would be null homotopic closed transversals to &.

Let fs be the projection of the " S " ladder of T to S using the map

/ . This is an isometry in the intrinsic hyperbolic metrics, so fs(r) and

fs(s) are geodesies in S. Their images in H will be quasigeodesics. If

the starting points and directions of fs{r) and fs(s) (as seen in S) are

close enough they will be visually close in S = H including endpoints

and because p(nx(S)) is quasi-Fuchsian their images in H 3 will be ξ/4

visually close.
Consider ψψ(se) and ~cpj(re). These rays are moved < b' hyperboli-

cally to ψs(S), therefore by the above they move < ξ/4 visually (since
dH{ψτ(rσ), ψτ{z)) > 2c). If 51 is close enough to r then their images
are ξ/4 visually close in ψs(S). As ψj(r) converges to ψψ(p) choose a
subray rσ of r, σ > e, so that Ψψ(rσ) is ξ/4 close to ψψ(p). The total
distance from ψγ{p) to the corresponding subarc ψγ{sσ) of ψψ{s) is less
than

ξ/4 from φ~{p) to ψγ{rσ),

+ί/4 from φγ{rσ) to φs(fs(rσ)) along the /-flow,

H/4 from φs(fs(rσ)) to φs(fs(sσ)) in φs(S),

+ξ/4 from φs(fs(sσ)) to ^ ? ( ^ σ ) along the /-flow,

which sums to ξ. q.e.d.
If s is not contained in the ladder it must intersect Γ^UΓ* transversally.

Take /' to be the leaf of ΓM U Γ* containing the first such intersection and
s0 the subsegment of s between its starting point and /'. Then dτ(l', z)
is very big, assumed to be bigger than σ from the previous lemma, so the
visual diameter of the corresponding disc E associated to /' can be made
very small if s is sufficiently near r. If sQ is contained in the ladder
the proof of the previous lemma shows that if s is near enough r then
Ίp~(s0Γ)sσ) is ξ/2 near ~φψ(p). Furthermore, since ψψ(sΠlf) is ξ/2 near
ψf(p) 9 ψj{s - s0) can also be made ξ near φγ(p) (if vd(E) < ξ/2).

Otherwise let s'o be the connected component of s0 n B intersecting τ .
By Lemma 7.6 w = s0 — s'Q is connected, contained in the core, and has
bounded length.
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The argument now goes as follows: by the previous lemma if s is near
enough r then ψψ{sσ Π s'o) is visually near ψψ(p). Since w is far from
z, ψψ{w) has small visual diameter and so ~ψj:(w) is still visually near
ψψ{p). As before the capped off disk associated to /' has small visual
diameter which shows that the subarc sσ of s also has image near ~φ~{p).

This completes the proof of the continuity of the extension map Ίpψ: H 2

q.e.d.
We have some final comments about the structure of the foliation and

the limit sets of the leaves.
Even though the g-flow in N is the appropriate tool to study the limit

sets of leaves, it collapses points in dN, so obviously does not extend to
a flow in the original manifold (where we modify back to Q and carry
back the flow). To get a good flow on M put the original /-flow in the
spiral, the new g-flow in the core, and a smooth transition in between.
This preserves the product picture in the closure of the spiral, but still
has the good dynamical properties in the core, where the invariant set
π((Γ" x R ) n ( Γ x R)) is.

Flow lines starting in d_Q will either eventually hit d+Q or be entirely
contained in Q, in which case they are contained in the core except for a
bounded initial segment. As they are g-flow lines they will be flat in the
d semimetric and therefore quasigeodesics in H 3 having a well-defined
limit point in S^ in the positive direction. In the same say flow lines
entirely contained in Q are full quasigeodesics in H having two distinct
limit points.

The foliation in Q is a product foliation but there is branching in dQ
which accounts for the infinitely many components in dQ (see Figure 12).
The limit set of T is Q is pervasive in the sense that it fills all the cracks

JC€Δ4

FIGURE 12. Q AND ITS BOUNDARY.
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in the limit set of Q, in particular containing the limit sets of all S cdQ.
For this it is essential that ^ is a fibration in Q.

The transverse laminations Γ M xR and Γ x R are quasigeodesic in H
so they appear to be quasidisks. Unfortunately they are not complete: a
wall / x R, / e Γ*, is complete in the positive direction but not in the
negative one. In any way they product barriers in Q and the capped off
walls separate H 3 . It is not clear priori whether the capped off walls are
quasigeodesic in H 3 but in any case most of them will have small visual
diameter.

The walls show that while the leaf T is not quasigeodesic — there are
geodesies in T with endpoints identified — the limit behavior of T is
still good locally.
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