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ON THE STRUCTURE OF ALMOST
NONNEGATIVELY CURVED MANIFOLDS

JYH-YANG WU

1. Introduction

In this paper we shall say that a compact Riemannian manifold M
is almost nonnegatively curved if the sectional curvature, KM, and the
diameter, d(M), of M satisfy

KMd{M)2>-ε

for some small positive number ε. In [6] and [18], Kukaya and Yamaguchi
studied the fundamental groups of almost nonnegatively curved manifolds.
Their results assert that there is a positive number εn depending only on
the dimension n such that if a closed w-manifold satisfies KM (M)2 >
-εn , then its fundamental group, nχ(M), is almost nilpotent, i.e., nχ(M)
contains a nilpotent subgroup of finite index. Moreover, M fibers over a
bχ(M)-torus, where bx(M) denotes the first Betti number of M.

It is proved in [3] that any closed ^-manifold M with nonnegative
sectional curvature is, up to a finite cover, diffeomorphic to a direct product
N x Tk, where N is a simply-connected smooth (n - /c)-manifold and
T is a A:-torus. Hence, it is natural to ask whether or not this theorem
still holds for almost nonnegatively curved manifolds. In general, this is
not true. This can be seen from the examples: almost flat ^-manifolds
with fundamental groups of polynomial growth with degree > n + 1. It is
therefore clear that one needs additional assumptions to extend Cheeger-
GromolΓs theorem to the almost nonnegatively curved manifolds.

In [15], Shen and Wei considered a lower bound on the injectivity ra-
dius, i(M), of M and obtained the following theorem:

Theorem (Shen, Wei). Given n, D > 0 and i0 > 0, there is a positive
number ε* = ε*(n, D, iQ) depending only on n, D, and i0 such that if
M is a compact Riemannian n-manifold satisfying

d(M)<D, i(M)>i0, KM>-ε\
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then M is, up to finite cover, C 1 -diffeomorphic to a direct product NxT ,
where N is a simply-connected (n - k)-manifold of class C .

Their technique is based on a recent result of Anderson and Cheeger [1]
which states that the class of closed rc-manifolds M satisfying RicM > k,
d(M) < D, and i(M) > i > 0, is Cα-precompact, where RicM is the
Ricci curvature of M.

In this note, we propose a weaker assumption on the lower bound of
the volume, υ(M), of M. Under this new circumstance, we do not have
the Cα-precompactness, and Shen-Wei's technique cannot apply to this
case. Here we shall employ some techniques in geometric topology about
the controlled maps, manifold resolutions, and thin Λ-cobordism theorem.
Our main result is

Main Theorem. Given n, D>0 and v > 0, there is a positive number
ε* such that if M is a compact Riemannian n-manifold satisfying

d{M)<D, υ(M)>υ, KM > -ε* ,

then the fundamental group of M is, up to a finite quotient, an almost
abelian group of rank k (1 < k < ή), i.e., nx{M) contains a finite normal
subgroup Φ such that πι(M)/Φ is an almost abelian group of rank k.
Moreover, if kφn-2>, then a finite covering M of M is homeomorphic
to the product space NxT, where N is a simply-connected topological
(n — k)-manifold.

Remark 1. Recall that a group is called an almost abelian group of
rank k if it contains a free abelian subgroup, say Zk, of rank k and
finite index.

Remark 2. The first part of the Main Theorem is also obtained by
Fukaya and Yamaguchi [6]. They show that πχ (M) itself is almost abelian.
However, our main interest is in the second part of the theorem, i.e., the
structure of almost nonnegatively curved manifolds.

2. Main tools

For the basic notation of manifolds and Riemannian geometry, we refer
to Cheeger and Ebin [2]; for the facts about Hausdorff distance, we refer
to Gromov [7]; and for the definitions and basic results about resolutions,
homology manifolds, and thin A-cobordisms, we refer to Davermann [4]
andQuinn[ll]-[14].

Recall that a map / from a topological manifold M to a space X is
called a resolution if it has point inverses compact, nonempty, and con-
tractible inside any neighborhood (cf. [11]-[14]). We shall say that such
a space X has a resolution.
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The following results will be used in proving the Main Theorem.
Theorem 1 (Grove, Petersen, Wu [10]). Given any sequence ofReiman-

nian n-manifolds M. satisfying

KMt>k, d(Mt)<D9 v{Mt)>v,

there is a subsequence (still denoted by M ) which converges to a metric
space (X, d) in the Hausdorff distance. Moreover, the sequence has the
following properties:

(1) X is an ENR homology n-manifold with local index 1 in the sense
ofQuinn (cf. [13], [14]); in particular, for n Φ 3, X has a resolution.

(2) M. and X are homotopy equivalent for large i.

(3) T2 x X is a topological (n + 2)-manifold.

(4) Fix a metric on T . There are homomorphisms ft:T x Λfz. —•

T2 x X with the property

\d(x,y)-d(fi(x),fi(y))\<εi

for all x,y e T2 x Mi and lime,. = 0.

Theorem 2 (Grove, Petersen, Yamaguchi [8], [18]). Let (M., g., x.) be

a sequence of pointed complete n-manifolds whose sectional curvature KM

satisfies the bound KM > -εi with limε^ = 0. Let dt denote the metric

induced by g(. Suppose (M., dt, x.) converges, in the pointed Hausdorff

metric, to a pointed metric space (X, d, x). Then (X, d) is isometric to

a metric product (V x Rk, d θ || ||) for some totally convex subset (V, d)

containing no lines, where || || is the standard flat metric of R .

Theorem 3 (Shen, Wei [15]). Let (Xχ, dλ) be a connected, locally com-

pact, complete metric space which contains no line. Let R be the Euclidean

space. Let X = Xχ x R with the metric d = dx θ || | | . Then any isom-

etry ψ of (X, d) can be written as (ψχ, ψ2), where ψx is an isometry

of (Xχ, dχ), and ψ2 is an isometry of (Rk, \\ ||) in terms of isometry

groups, Isom(jf) = Isom(X1) x Isom(R^).
Theorem 4 (Edward, Kirby [5]). The homeomorphism group Hom(M)

of a compact topological manifold M is locally contractible.
Theorem 5 (Quinn [11]—[14]). (i) Suppose two spaces X, Y have dimen-

sions > 2. Then X x Y is a manifold if and only if X and Y are ENR
homology manifolds of local index 1.

(ii) If X is a metric space of finite dimension > 4, the following are
equivalent:

(1) X has a resolution.
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(2) X xRk is a manifold for some k > 2.

(3) X x R2 is a manifold.
Theorem 6 (Siebenmann [11], [16]). If f: M -> X is a resolution and

X is a manifold, then for any ε > 0, f can be ε-approximated by a
homeomorphism.

Recall that an Λ-cobordism (W\ d0W, dχW) deformation retracts to
both dQ W and dχ W. If W -• X is a proper map to a metric space and
δ > 0, then (W\ d0W, dχW) is a (δ, Λ)-cobordism provided that the
deformations have diameter < δ in X. This means that the image of
each arc {JC} XICWXI^W-+X has diameter < δ in X.

A map W —• X is (δ, l)-connected if given a relative 2-complex
(R, S) and a commutative diagram

then there is a map R-+ M (the dotted arrow) such that the upper trian-
gular commutes and the lower one commutes within δ .

Thin Λ-cobordism theorem (Quinn [11], [12]). Suppose X is a compact
locally 1 -connected metric space. Given any ε > 0, there exists a δ =
δ{X, ε) such that if (W \ d0W, dχW) -> X is an (n + l)-dimensional, n >
4, (δ, lyconnected (δ, h)-cobordism, then W has a topological product
structure of diameter < ε.

Remark 3. Let Sι(r) be a circle with radius r in R2 and V a com-

pact locally 1-connected metric space. Consider two fe-tori Tk = Sι(l) x

Sι(l) x xSι(l) and Tk = Sx{rχ) x Sι{r2) x '-xS\rk) with ri > 1,
/ = 1, 2, , k . Then by the definition of (δ, A)-cobordism, one can see

easily that δ(V x Tk, ε) < δ(V x Ψ, ε) for all ε > 0.

3. Proof of the Main Theorem

In this section we shall prove our Main Theorem by contradiction. First,
we verify the almost abelian property of the fundamental groups of almost
nonnegatively curved manifolds. Suppose the first part of the statement
of the Main Theorem is not true. Then one can find a sequence of Rie-
mannian ^-manifolds (M , g() satisfying
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with limε. = 0, such that π^M.) is not, up to a finite quotient, an almost
abelian group.

Let di denote the metric on M induced by g.. According to The-
orem 1, by passing to a subsequence if necessary, we can assume that
(Af., rf.) converges to a compact space (X, d) in the Hausdorff metric,
and π^M.) = πχ(X) = G for some group G. To obtain a contradic-
tion, it suffices to show that there is a finite normal subgroup H of G
such that G/H is almost abelian. Let M. and X denote the universal
coverings of Mt and X, respectively. Endow M. and X with the pull-
back metrics. Then the group G acts isometrically on Mt and X as deck
transformations.

Pick points xt e M , and let π(.x ) = x.. By taking a subsequence, we
can assume that limxz = I E I . Choose a point x e X with π(jt) = x .
Hence (M^x^ converges to (X, x) in the pointed Hausdorff metric. By
the Arzela-Ascoli type theorem in the appendix of [9], the action of G on
M converges to the action of G on X.

According to Theorem 2, we have X = V x Rk where V is a totally
convex subset of X and contains no lines. X is simply connected, and so
is F .

Claim. V is compact.
Proof. If F is not compact, there exists a sequence of points pi in

V such that d(pι,pi) = I. -+ oo. Let y,: [0, /z] —• V be a sequence
of minimal geodesies from /?j to pi. Set y. = yI (/I /2) and fix a point
z 6 Rfc . Note that the points (pχ, z) and (y., z) are in X .

Since X is compact, one can find, for each i, an element hi in G so

that ^(λ C^ , z), (/?!, z)) < rf(ΛΓ). Let pχ and /?2 denote the projections

of X - V x Rfc onto the first and second factors, F and Rk, respec-
tively. Set y. = ρxhi{yi, z) . Thus, έ / ^ , Pj) < d(X). Now consider the
minimal geodesies γ. = pxhiyi in V, A subsequence of these minimal
geodesies (y , y ) converge to a line (γ, y) in V with af^ , y) < d(X).
Since K contains no lines, this leads to a contradiction. Therefore, V is
compact, q.e.d. _

Note that X is a homology n-manifold, and so is X. Therefore, F is
a homology (n - A:)-manifold. In particular, if dim F < 2, then F must
be a topological manifold (cf. [4]). Hence F cannot be one-dimensional,
since it is a simply-connected compact manifold. If dim F > 4, then F
has a resolution.

Now we are in a position to show that G is, up to a finite quotient,
almost abelian.
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The kernel of the nature projection φ: G = π{(X) c Isom(F)xIsom(Rfc)

—• Isom(R^) is finite, since Isom(F) is compact. Consider the covering

X = V x Rk -> X* = X/kerφ = F* x Rk and the corresponding isome-

try group Isom(F* x Rk) = Isom(F*) x Isom(Rfc). The projection φ*:

Isom(F*) x IsomίR^) -• IsomίR*) maps G* = G/kerφ c Isom(F* x Rk)

isomorphically into a discrete uniform subgroup of Isom(R ). Note that
V* xRk -^ Rk induces a continuous map X = X*/G* -> Rk/φ*G*, hence
Rk/φ*G* is compact. Therefore, by the Bieberbach Theorem, G* con-
tains a normal free abelian rank k subgroup Γ* of finite index, where
0*Γ* is a lattice in the subgroup T = Rk of translations in Isom(R ).
Thus, G is, up to a finite quotient, almost abelian, and this completes the
proof of the first part of the Main Theorem.

Now we continue to verify the structural part of the Main Theorem.
First we summarize what we have so far by the following diagram:

t^rί ~ v Hausdorff convergence ( ^ τ r n j t ~ N

(Mi, x.) -—> {X = V x R ,x)

•I ,i
z Άjr* *\ Hausdorff convergence , ^ * * x

{Mi , xt) 5—> {X , x )

where M* = M./keτφ, π denotes the covering map, and x* = n{xt),

x* = π(x). The group G* acts isometrically on M* and X*. Let Zk =

Ze{ Θ Ze2 Θ Θ Zek be the normal free abelian subgroup Γ*. Note

that Z can be viewed as a lattice in the subgroup T of translations on

R* = Re{ θ R e 2 Θ Θ Rek as above. Set X = X*/Zk and Λ/ = A/^/Z^ .

X and Mf. are finite coverings of M. and X, respectively, and we have

the following diagram:

-jr-τ Hausdorff convergence ^ΓF
A/ . > Λ

•1 -I
, „ Hausdorff convergence v

Mt • X,

(see also [17]).

The action of Zk on X* gives the fibration F* ^ X -> f* , where ffc

is the flat torus R^/Z^ .

This fibration is, in general, not trivial. Namely, the action of Zk on
the first factor V* of X* is, in general, not trivial.
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Note that the isometry group Isom(F*) may not be a Lie group in our
case. Hence, the argument given in [3] cannot apply here. To overcome
this difficulty, we shall investigate the fibration in a more detailed way.

Since Z is a lattice in the subgroup of translations on Rk, we can
decompose this fibration into k small fibrations:

1
rk-\ X

yk-2 yk-\ sik-\

v* - wx -> 5 } ,
where W. inherits a metric from X, and S* is the circle 19ieijZei, induced
by the action Ze. for / = 1, 2, , k.

Note that there is a canonical diffeomorphism L from the flat torus fk

to the product space S\ x s\ x x Sι

k and there is a positive constant

C > 1 depending only on the basis eχ, e2, , ̂  of the lattice Zfc

that for any x, y e Tk ,

, , v 1 < d( s ,y) < Γ

^ ; C-d(L(x),Hy)) - C '
i.e., L is a Lipschitz map with the Lipschitz constant C.

such

Let T2 bethe2-torus . In what follows, we shall show that
there are finite coverings Wχ and S\ of Wχ and S\ such that T2 x Wχ

is homeomorphic to Γ x V* x Sx with controlled maps. Multiplying the

above fibrations by the 2-torus T2 , we obtain the fibrations:

TxWLk-\ T2 xX

Tx WLk-2 TxWLk-\ sik-\

T x WΛ Γ 2 x

ίr, ύ i

Note that the spaces T2 x V*, T2 x X*, and T2 x W{ are closed topo-

logical manifolds. If the action of Zeχ on V* is trivial, then the fibration

V* -> Wχ -> S\ is trivial, and then Wχ is isometric to the metric product

K* x Sj1. However, this may not be the case. Hence, we need to deform

the action of Zeχ to a trivial action, and then this will imply that Wχ is

a, topologically, product space.
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Since the isometry group Isom(Γ2 x V*) is compact, there is, for any

εχ > 0, an integer m(εχ) such that the isometry m(ει)eι of T x V*

is εχ-close to the identity map, Id, on T2 x V*. On the other hand,

Isom(Γ2 x V*) C Hom(Γ2 x F*), and Hom(Γ2 x V*) is, by Theorem

4, locally contractible. Hence, we can choose εχ so small that there is

a path 0: [0, 1] -> Hom(Γ2 x K*) inside the βj -neighborhood of the

identity map Id of T2 x V* in Hom(Γ2 x F*) with (9(0) = m ^ ) ^ and

0(1) = Id. We now consider the m(εj)-fold coverings Wχ and s j of Wχ

and S j , respectively, and can choose m(εχ) so large that the covering s\

has length > 2π, the length of Sι(l). By using the homeomorphisms

θ(t), t e [0, 1], one can deform, with small εx-deformation, the fibration

to a trivial fibration, and the metrics on the fiber bundles T2 x Wχ and T2 x

V* x Sj over S\ are (εj-close along the fibers via a homeomorphism

between them, where T2 x V* x 5J is endowed with the product metric.

Namely, there is a bundle homeomorphism h: T2 x W{ ^ T2 x V* x s\

such that if x, y € Γ 2 x Wχ are in the same fiber, then

\d{x,y)-d(h{x),g{y))\<εχ.

By (+) > we also have that for any x, y e T2 x Wχ,

( + + ) |rf(x, y) - d(h(x), Λ(y))| < εx + 2Cd(p(x), p(y))

provided that d(p(x), p(y)) < i(fk) the injectivity radius of fk .
Now we move to the second level:

First, we take the m(εj)-fold covering W2 of W2. Thus, we have the
fibration

T2 x Wχ -» T2 x W2 -£+ SX

2 .

Once again, we can proceed with the same argument as above. Since

the isometry group Isom(Γ2 xWχ) is compact, there is, for anyε2 > 0,

an integer m(ε2) such that the isometry m(ε2)e2 of T2 x Wχ is ε2-close

to the identity isometry, Id, of T2 xWχ. Since Hom(Γ2 xWχ) is locally

contractible, we can choose ε2 so small that there is a path 0: [0, 1] -*

Hom(Γ2 x Wχ) inside the ε2-neighborhood of the identity map Id in
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Hom(Γ2 x Wχ) with (9(0) = m{ε2)e2 and (9(1) = Id. Consider the m(ε2)-

fold covering W2 (resp. s\) of W2 (resp. s\) associated to m(ε2)e2.

One can choose m(ε2) so large that the covering s\ has length > 2π.

The homeomorphisms θ(t), t e [0, 1], allow us to deform with small

ε2-deformation the fibration

T2 x Wχ -> T2 x W2 -£+ S2

to a trivial fibration, the metrics on the fiber bundles T2 xW2 and T2 x

Wχ x Sx

2 over s\ are ε2-close along the fibers via a homeomorphism, and

the property (++) still holds if one replaces εχ by ε 2 .
Now we can proceed with the same argument on the third level, then

the fourth, and so on. Finally, we shall reach the top level and obtain a
trivial fibration

where X is a (m(εχ), m(ε2), , m(εfc))-fold covering of X, and Sx

k , a

m(εk)-fo\d covering of Sι

k , has length > 2π. Furthermore, the metrics on

the fiber bundles T2 x X and T2 x Wk_χ x Sx

k over ?ι

k are εk-close along

the fibers via a homeomorphism. Therefore, we have

omeo r-,2 ΐj>

homeo
« T x V x S{ x S2 x - x Sk,

and the metrics on the fiber bundles T2 x X and T2 x V* x s\ x S2 x

• x Sι

k over s\ x §\ x x Sι

k and ε*-close along the fibers via a bundle

homeomorphism, h, where ε* = ε*(ε t, ε 2, , εk) depends on the ε 's

such that ε* —• 0 as all ειf -»• 0. Note that the space X is nothing but
X*/H, where H = (m(ει)Zeι Θ m(ε2)Ze2 θ Θ m(εk)Zek). The spaces

T2 x X and T2 x V* xT are, in general, not Hausdorff-close, where

Tk = 5j x 5 2 x x Sx

k .

Let M. = Af*///" and ffc = Rk/H. Note that the canonical diffeomor-

phism L: f ^ Tk can be lifted to a diffeomorphism from fk to Γ
with the same Lipschitz constant C as in (+). We have the fibration
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According to Theorem 1, we also have a homeomorphism g.:

(* ) T2 x M.k T2 x X « T2 x F* xTk

such that the metrics on the fiber bundles T2 x M. and T2 x F* x T* over

Γ are (2ε*)-close along the fibers via the homeomorphism φ. = h o ^ ,

for large /. Moreover, for any x, y e T2 x Mt,

( + + + ) |rf(x, y) - d(Ψi{x), φ.(y))\ < 2ε* + 2Cd(p o g.(χ), p o g i

provided that d[p o g.{χ), p o ̂ .(y)) <
In the above argument, if the space F* itself is a topological manifold,

then there is no need to multiply the spaces V*, Ύ, and Wi by the factor
Γ 2 , since in this case we can apply Theorem 4 directly to the homeomor-
phism group Hom(F*) and go through the same argument. Therefore, if
this is the case, e.g., dim V < 2, then the above argument yields

<ry homeo * -=k

M{ « V x T ,

which proves the second part of the main Theorem.
From now on, we can assume that dim V = n - k > 4. In this case,

V* has a resolution f:N-+V* for some (n - fc)-manifold N. Hence,
π(N) £ πx(V*) = kerφ. Since X x T2 is a manifold, X* x R2 is also a
manifold. According to Theorem 5(ii), X* is, for k > 2, a topological
manifold because X* x R2 = V* x Rk x R2 . In turn, X is a topological
manifold for k >2.

Our next objective is to get rid of the factor T2 in (*) and replace

the space F* by the manifold N. Once this is done, we can look at the

universal covering N of N and the (#ker0)-fold covering Λf* of Mt

associated to the subgroup kerφ. Note that N is compact and M* =

M./H. Then it is easy to see that the homeomorphism from Mi onto

N x Ύ can be lifted to a homeomorphism from M* onto N x T , and
this will complete the proof of the Main Theorem.

Choose a positive decreasing sequence δt with l im^ = 0. Since

T2 x V* x T is a compact manifold, by Theorem 6, the map ψ =

Id xf x Id: T2 x N x Tk -> T2 x V* x Tk can be ^-approximated by

a homeomorphism ψ.. Hence, the diagram
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T2χV*xTk

is δt-commutative.
Now we can use the argument in the proof of Proposition 3.2.3 in [11]

to get rid of the factor T2 (see also the proof of Theorem 3.1 in [10]).
However, it is more complicated in our case, since we do not have a fixed
controlled space. This will become clear later on. Consider the following
diagram:

RxS \\)xMi

A>s\l)xSι(l)xNx Tk

s\l)xSι(l)xV*

ϊ
V ( l ) x V* xTk

where all new maps are either lifts or projections. Choose tx so that

Fz.({0} x S\\) x Mt) Π {ί j x ̂ (1) x N x Tk = 0 , and let W c{Jϋx

S\\) xNxTk) denote the region between d0W = F.({0} x ̂ ( l ) x Mt)

and dχW = {tχ}xS\\)xNxTk in RxS\l)xNxTk . By construction,
W deformation retracts to both d0W and dχW. By the property ( + + + ) ,

the image of each arc {w} x I c W x I -> W -?U s\\) xV* xTk is

small depending only on ε* and δ.. Thus, W —A Sx{\) x V* x T is a

(δ*, l)-connected, (δ*, Λ)-cobordism and δx - δ*(ε*, δέ) —> 0 as ε* -»• 0
and ί. -» 0 (cf. [11, Proposition 3.2.3]).

Although a different choice of the number εχ, ε2, , εfc will yield a

different space T , according to Remark 3 in §2, we always have δ(Sι (1) x

V* x Tk, ε) < δ(S\l) x V* x r \ e) for any ε > 0, where Tk is the
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fc-torus Sι(l) x Sι(l) x " - x Sι(l) as defined in §2. Hence, we can choose

ex, ε2, ,εk so small that <J*(β*, £.) < ^ ( l ) xV*xTk,η) for some

A/ > 0 and for large z > ί'(ι ) . We shall choose the number // latter on. The

thin Λ-cobordism theorem implies that the cobordism W is an ^/-product

over 5 ί I ( l ) x F * x 7 , i.e., there is a homeomorphism dχ W x I —• W which

is the identity on d{ W x {1} and has diameter < A/ in Sι(l) x V* x i .

In particular, there is a homeomorphism A.: Sι (1) x Mχ; -+ S (l)xNxT
and an ^/-commutative diagram

x Mi s\l) xNxTk

S ( l ) x F* x τk

for large / > i(η).
Now consider the diagram

R x M • R x i V x

as before where all new maps are either lifts or projections. Once again,

choose t2 so that //,({()}) x M.) Π {t2} x N xψ = 0 and let We

(RxNxTk) denote the region between d0W = //,({()} x Λ?z) and ^ W =

* in RxNxTk. As before, JΓ - ^ K*xΓ f c willbea (<?*, 1)-

connected ( ^ , A)-bordism and J^ = δ*(η) -> 0 as A/ -> 0.

Now choose η so small that δ*(η) < δ(V* x Tk, I). Note that the
choices above should be made in the order η9e19e29 - ,ek. Although a

different choice of εJ. will change the controlled space V* x Ύ , however,
Remark 3 in §2 guarantees that we can choose suitable numbers η and εi

in order to apply the thin A-cobordism theorem as long as the length of
S) >2π for / = 1,2,. . ,k.
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The thin Λ-cobordism theorem again implies that W has product struc-

ture. In particular, M and N x T are homeomorphic for large i, and

this completes the proof of the Main Theorem.
Remark. Our present proof dose not yield an estimate for ε* in the

Main Theorem.
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