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ESTIMATE OF THE SINGULAR SET
OF THE EVOLUTION PROBLEM
FOR HARMONIC MAPS

XIAOXI CHENG

1. Introduction

Let ./ ,.#/ be Riemannian manifolds of dimensions m,n (m > 2)
with metrics y, g respectively. We consider the evolution of harmonic
maps [3, (1.4)], [15(1.6), (1.7)]:

(1.1) ou—-A,u+T ,(u)(Vu,Vu) , =0, Ul,_o = Uy

M. Struwe proved the following theorem.
[3, Theorem 6.1]. . Suppose u: R™ xR + — W isthelimit of a sequence
u, of regular solutions to (1.1), with finite energy

E(u (1) <E;<oo, VkeNandt>0

in the sense that E(u(t)) < E, almost everywhere and that Vu, — Vu
weakly in L2(Q) for any compact Q C R™ x R, . Then u solves (1.1) in
the classical sense and is regular on a dense open subset of R™ x R . Whose
complement X has locally finite m-dimensional Hausdorff measure (with
respect to the parabolic metric).

Here we give a better estimate on the singular set X.

Theorem. If t, >0, then TN(R™ x{t,}) has finite (m—2)-dimensional
Hausdorff measure.

Remarks. In [1], with a general m-dimensional Riemannian manifold
A rteplacing R™, Y. Chen and M. Struwe proved the existence of a solu-
tion to (1.1), which satisfies all the above conditions of [3, Theorem 6.1].
Here E, is the energy of the initial map u(-, 0).

In the case m = 2, M. Struwe [2] proved that X consists of at most
finitely many points of .# xR_ .
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2. Notation

We follow Struwe’s notation. Let z = (x, t) denote points in R™ x
R, . For a distinguished point z, = (x;, %), R > 0, let Bg(x,) =
{x:|x = xy| < R} be a Euclidean ball centered at x,. Also let Tx(¢,) =
{z=(x,0)|ty— 4R* <t < t,— R’} and Sy(ty) = {z(x, t): |t = t, — R*}.
Define the fundamental solution

2
lx_Xol) i<ty

- (4n(t, — ))™? P (_ 4(ty— 1)

In [3], Struwe proved that

= ﬂ{zoeRme+
R>0

G, (2)

lim inf |Vuk|2Gz dxdt>e, ¢,
k—o0 Th(tp) 0
where ¢, is the constant determined in Theorem 5.1 of [3]. Moreover, X

is a closed set by Theorem 6.1 of [3].
Let

liminf | |Vu['G,, . dxdi> 60} :

k—oo TR(ty)

Z;g= {xoeRm

and let % = .o Zg; then = = |J, ,,X°. For the theorem we will
actually show that
H"%(2°) < C(t,),

where C(t,) is a finite number depending only on the time ¢, (as well as
the target manifold .#”, the dimension m, and the energy bound E,).

3. Proof of Theorem
Lemma 1 [3, (54') and (54")]. For € > 0, one has on Tg(t,) the
estimate
R™ Sor all x,
G, (¥ 1)< { €G X, 1) if]x—x)>K(€)R,

where K(¢) depends only on € and m.
Proof. Forany (x,t) in Tg(¢,),

zo+(o,R2)(

1 Ix = x| 1
G, =— _exp| -2 | < =5
o (4r(ty - 1)"? p( 4(to—t)) R™
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In the case |x — x,| > K(€)R, we can estimate

G, _(to—t+R2)m/2ex( e = x,? |x—xo|2>
4(

G,r0.8) (-t t,—t+RY) At -1)

R2 _ 2
<5 exp [ - |x ;‘o|
4(t,—t+ R°)(t,— 1)

2 4

for a suitable K(€).

Lemma 2 [3, Lemma 3.2]. Let u: R" x [0, T] — A be a regular
solution to (1.1) with |Vu(x, t)| < ¢ < oo uniformly. Then for any z, =
(X, o) €ER™ x (0, T) the function

T 2
CDZO(R, u) = ER 5. |V Gzc dx

is nondecreasing in R for 0 < R< Ry = ,/%;.
Lemma 3 [3, Proposition 3.3]. Let u be as in Lemma 2. Then the
Sfunction

¥, (R,u)=/ \Vu’G, dxdt
0 TR(IO) 0

is nondecreasing in R for 0 < R<R,.
Note that Lemma 3 implies that 1f R, <R,, then Z"’ cxy.

For the proofs of Lemmas 2 and 3, see [3, Lemma 3. 2'and Pzroposmon
3.3].
Proof of the Theorem. By Lemma 1 we obtain

2 =R’ -m 2
/ Vu,°G, dxdtg/ / R"|Vu, dxdt
Ti(to) 0 L~ By r(%o)
t,—R
+e/ / |[Vu | G 2, dxdt
ty |x—x0|>K(e k 7+, RY)

< R_'"/ / \Vu,|* dx dt
1,—4R* /B

kr(%0)

+e/ Vi, PG, - dxdt.
Toty) k z,+(0, R%)
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Now applying Lemma 2 to the last term yields

2
€ |Vu, |°G 2 dx dt
/TR(to) k z,+(0, R%)

t,—R
=e/t° AR +1, =070, o oy (VB + 19— 1, ) d

,—4R?
t,—R?
S€/° 22(R2+t0—t)“¢zo+(o o /t0+R2, u,)dt
t,—4R ,
—R
e(z0+R2)""‘/2{/ \Vu,[* dx|,_ 0}/" (B4, di
4R
<e(ty+R) "?E, log5/2 < ety "’E, < %60

for € sufficiently small depending on E,, m, and f,. So we have
/ Vi ’G, dxdi < leo +R / / \Vu, > dxdt.
Tx(ty) —4R* JB, 4 (x,)
Now K dependson ¢,, E,, m, ./, and {,.
If X, € }:§g , then

€ < likminf/ Vu[’G, dxdt

51 hmmfR / / |Vuk|2dxdt,
270 —4R?

By r(Xo)

and therefore

R" < 2 liminf [ / Vu, | dx dt.
'4R By r(xo)

60 k—oo

Observe that the family & = {B,(x,)|(x, € Z'Rf’} covers ng N F for
compact F C R™, so there is a finite subfamily & = {By,(x;)} such

that any two balls in # are disjoint and that {Bgr(x j)} covers z’,g NnF.
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Thus,
Z,(5KR)" = (5K)"Z,R"

< (5K)" z hmmf / |V, 2dx dt
to—4R? IBya(x,)

< C(5K)"liminf %, / Vu, | dx dt
k— —4R2

By (%))

< C(SK)'"liminf / \Vu,|* dx dt

k—oo Jy —aR?
m t°_R m 2
< C(5K) / Eydi < C(5K)"E, - 3R,
t,—4R

and therefore
Y (5KR)"* < C(5K)"’E,
J
Hence,

H" "N F)
. =, (diam 4,\"?
= P_{% {mf{wm_zg ( > )
oo
c|J4;, diam 4, < r}}

i=1
. -2
<limw, , Y (KR < C(y),
J

shnF

where C(t)) = ,_,C(5K)"’E,, and w, _, is the volume of the unit
ball in R™ 2.
Since F is arbitrary, we obtain the desired result:
H" (%) < C(1,). q.e.d.
Examining the specific dependence of C(¢,) on ¢, as wellas /", m,
and E,, we see that

C(ty) < C,(C, —logt,) ™ P72,
where C, and C, are positive constants depending only on .#°, m, and
E, . Struwe [3] has observed that T is actually empty for ty > T, where
T, is a positive constant depending only on .#", m, and E,.
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As in [1], the above estimate continues to hold. We then conclude:

For any smooth u,: # — /W, there exists a global weak solution u:
M xR, — N of the evolution problem for harmonic maps (1.1). u is
regular off a singular closed set * C # xR, and TN (A x {t,}) has finite
(m — 2)-dimensional Hausdorff measure.
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