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QUATERNIONIC KAHLER 8-MANIFOLDS
WITH POSITIVE SCALAR CURVATURE

Y. S. POON & S. M. SALAMON

1. Introduction

Consider the subgroup of SO(4n) consisting of unit quaternions acting
on HΛ = R4n by right multiplication. We denote the normalizer of this
subgroup by Sp(n)Sp(l), which is a maximal subgroup of SO(4n) for
n > 2. A quaternionic Kahler manifold M is a manifold of dimension
An, n > 2, with a Riemannian metric whose linear holonomy group is
contained in Sp(n)Sp(l). It is well known that any quaternionic Kahler
manifold is Einstein, so there is a trichotomy according as the constant
scalar curvature t of M is positive, negative, or zero. In the latter case
M is hyper-Kahler in the sense that it is rendered Kahler by a family of
complex structures parameterized by the 2-sphere S2. However in all
three cases there exists a bundle over M with fiber S2 whose total space
Z is a complex manifold. For t > 0, Z has a canonical Kahler structure,
though in general M will not itself be a complex Kahler manifold.

Wolf [25] showed that each compact simple centerless Lie group G is
the isometry group of a quaternionic Kahler symmetric space, equal to the
conjugacy class of a three-dimensional subgroup of G determined by a
highest root of its Lie algebra. These "Wolf spaces" constitute the only
known complete examples for t > 0, and the present work is devoted to
a proof that there are no others when n = 2:

Theorem 1.1. A complete connected quaternionic Kahler eight-manifold
with t > 0 is isometric to the quaternionic projective plane HP 2 , the com-
plex Grassmannian Gr2(C4), or the exceptional space G2/SO(4).

In §2 we summarize known facts regarding a quaternionic Kahler eight-
manifold M with positive scalar curvature, and the complex Kahler man-
ifold Z . The latter is known as the twistor space of M, because of sim-
ilarities with four dimensions. Indeed, our approach parallels Hitchin's
classification [10] of Kahler twistor spaces of self-dual Riemannian
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four-manifolds, although the details work out rather differently. A key
feature special to our Einstein situation is the identification of Lie algebra
g of Killing vector fields on M with a real form of space of holomorphic
sections of a positive line bundle F that arises from a contact structure
on Z (Theorem 2.2).

We explain that the twistor space Z is a Fano five-fold of coindex 3
for which F defines a morphism Φ: Z —• C P 7 " 1 , where / = dimRg.
Index calculations determine the dimension of the space of holomorphic
sections of any power Fn in terms of / , which was shown to equal at least
6 in [22]. We are able to increase this lower bound to 8, with the help of
results of Fujita [5], [6], and topological inconsistencies. Observing that
G has rank no more than 3 then enables us to apply a combination of
local and global techniques, including some case by case arguments using
representations of various Lie algebras. The main result (Theorem 3.5)
of §3 asserts that the complete linear system of divisors associated to F
has empty base locus, i.e., that Φ is regular. In §4 we go on to show that
Φ must be an embedding; this is carried out independently of results on
Fano λi-folds announced by Mukai [18]. The proof of Theorem 1.1 is
then completed by showing that the action of the group G forces the only
remaining candidates for Z to be singular.

Some remarks place this paper in the context of other recent work. The
total space of the C*-bundle associated to F is the symplectification of
the complex contact manifold Z , and its study extends the more familiar
geometry of Z itself. Swann [23] has shown that this symplectification
admits a hyper-Kahler metric, thereby relating quaternionic Kahler man-
ifolds with / > 0 to hyper-Kahler ones admitting an action of the group
of nonzero quaternions. In particular, he has identified the singular mod-
els that appear at the end of our paper as arising from complex nilpotent
coadjoint orbits, which themselves possess a hyper-Kahler structure exhib-
ited by Kronheimer [15] using Yang-Mills theory. The mapping Φ can
then be interpreted as the projectivization of a hyper-Kahler moment map-
ping, and this point of view is likely to have important consequences for
the description of quaternionic Kahler spaces with isometries in higher
dimensions.

The moment mapping approach was used by Galicki and Lawson [9] to
describe a quaternionic Kahler reduction, whose explicit use may provide
short cuts to some of our intermediate results. Their techniques, and also
those of LeBrun [16], indicate that there is no analogue of Theorem 1.1
for negative scalar curvature. Alekseevskii [3] found examples with t < 0,
and dimension 16 or more, that are homogeneous but not symmetric.
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2. Quaternionic Kahler eight-folds and Fano five-folds

The underlying hypothesis of this paper is that M denotes a complete
connected eight-dimensional quaternionic Kahler manifold with scalar cur-
vature t > 0. Associated to the action of Sp{\) is the adjoint bundle V
with fiber sp{\)x = ImH over x e M. If / , / , K is an orthonormal
basis of sp(l) x , then {al + bJ + cK: a2 + b2 + c2 = 1} consists of al-
most complex structures on Tχ M. The union Z of these structures over
all x E M is a complex manifold called the twistor space, described by
both the second author [22, Theorem 4.1] and Berard Bergery [4, Theo-
rem 14.6]. Each fiber Zχ = π~\x) = S2 Ξ CP1 of the sphere bundle
π: Z —• M is a complex submanifold of Z . Reversing the sign of an
almost complex structure induces an antilinear involution σ on Z which
preserves the fibers, which we shall refer to as the real lines.

The complex manifold Z possesses a contact structure consisting of a
holomorphic 1-form β with values in a holomorphic line bundle F . In
fact β corresponds to projection of tangent vectors to the fiber directions,
and ker β constitutes the bundle of holomorphic horizontal vectors. Be-
cause M is a complete manifold with positive Ricci tensor, Myer's The-
orem tells us that it (and therefore Z ) is necessarily compact. Further
properties that will be exploited in the sequel are gathered in the next
three theorems; we refer the reader to [22] for more details.

Theorem 2.1. Z is a simply connected Kahler manifold, and F is a
positive holomorphic line bundle such that

(i) F is real in the sense that σ*F = F, and F3 is isomorphic to the

anticanonical bundle (Λ5'°Z)*
(ii) the restriction of F to a real line Zχ = CP1 is isomorphic to the

square 0(2) of the Hopf bundle;

(iii) F has a global square root if and only if Z is biholomorphically

equivalent to CP5 and M is isometric to HP 2 .

The positivity of F is a direct consequence of our assumption that the
scalar curvature is positive. Kodaira's Embedding Theorem implies that
sufficiently high powers of F give projective embeddings of Z . In modern
terminology, F is an ample line bundle, and Z is a Fano manifold [11].
The largest integer r for which there exists an rth root of the anticanonical
line bundle is called the index of the Fano manifold Z , and dim c Z +
1 - r is the coindex. For example CP5 has index r = 6 and coindex
0. In view of Theorem 2.1 (iii), this is the only twistor space of index
6, so from now on we shall suppose that M is not isometric to HP 2 , or
equivalently that r = 3 and Z has coindex 3 . The cube root F is called
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the fundamental line bundle, and we denote the associated complete linear
system of divisors by | - \K\.

Let G denote the identity component of all isometry group of M,
and Q its Lie algebra consisting of Killing vector fields. If x e M, the
isotropy subgroup Gx corresponds to the subalgebra gχ of those Killing
fields that vanish at x. Any such field is completely determined by the
value of the covariant derivative (V^)^ . In fact, for any A eg, Kostant's
Theorem implies that (V^)^ belongs to the holonomy algebra (see [14,
Theorem 3.3]; [2]). Therefore

(2.1) QX c {(VA)χ: Ae2}Q {Bp{2)+Bp(l))x c EndTχM,

and the isotropy representation is constituted from the two homomor-
phisms

(2.2) P2 0x^*PMx> PI BX^*PMX

Since Z is defined in terms of the holonomy structure, it follows that
any Killing field A eg lifts to a vector field on Z , and an element g e G
acts on Z by sending an almost complex structure / to g(I) = g+Ig'1.
Then g ° σ = σ o g, g* β = β, and there is a commutative diagram
g o π = π o g . In the sequel, Hr(Z, F) will denote Cech cohomology on
Z of the sheaf &(F) of germs of local holomorphic sections of F, and

c

Theorem 2.2. (i) The correspondence g <-• g realizes G as a real form
of the identity component Gc of holomorphic automorphisms of the contact
structure on Z.

(ii) The space H°(Z, F) of holomorphic sections of F is isomorphic to

the complexification $c of Q, and has dimension I = h°(Z, F) equal to

(iii) h°(Z , Fn) = ^(n + \){n + 2)(2n + 3)[n(n + 3)(7 - 5) + 20].
Part (i) has been proved by Nitta and Takeuchi [20]. Part (ii) includes

the corresponding infinitesimal statement, which may be established inde-
pendently as follows. If A e Q , the component of {VA)χ in the subspace
sp(l)χ = span{7, / , K} (see (2.1)) determines a section sA of the adjoint
bundle V. It is well known that sA satisfies a certain first order differen-
tial equation, and completely determines A [22, Lemma 6.4] (this fact is
the basis of the quaternionic Kahler reduction of [9]). On the other hand,
there is a natural isomorphism of sp(l, C)x with the space H°(Zχ, <f{2))
of homogeneous quadratic polynomials. Moreover with the aid of Theo-
rem 2.1 (ii), a smooth section 5 of F gives rise to a holomorphic section
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of F if and only if s = sA for some A eg [22, Lemma 6.5]. The required
isomorphism then associates this section with A .

Corollary 2.3. The restriction ι*: H°(Z, F) -> H°(Zχ, 0(2)) can be
identified with the linear mapping A »-*• sA(x), A e Q, and P{{QX) C

Equality (iii) of Theorem 2.2 results from verification of the following
facts. By the Riemann-Roch-Hirzebruch Theorem, the Euler character-
istic χ(n) = χ(Z, Fn) is a polynomial in n of degree no more than
5. By Kodaira vanishing and Serre duality we have χ(n) = h°(Z, Fn)
for all n > 0, and χ{-\) = 0 = χ{-2). Then χ(n) is completely
determined by the Todd genus χ(0) = 1 = - / ( - 3 ) and the definition
^(1) = / = _ χ ( _ 4 ) . An explicit computation of these indices yields the
equality Λ°(Z, F) = \{cγ{F)γ[Z} + 5 .

/ = dim g 10 11

h°(Z,F2) 21 28 35 42 49 56

[21] [28] [36] [45] [55] [66]

h°(Z,F3
57 84 111 138 165 192

[56] [84] [120] [165] [220] [286]

h°(Z,F4)

[dim(S4

2)]

132 209 286 363 440 517

[126] [210] [330] [495] [715] [1001]

TABLE 1

Some hint of the possibilities for Z is already apparent in Table 1,
which compares values of h°(Z, Fn) with the dimensions of the symmet-
ric powers SnH°(Z, F). Further vanishing theorems on Z were used in
[22] to prove

Theorem 2.4. M has Betti numbers b{ = 0 = b3, b4 = b2 + 1. More-
over the Kάhler manifold Z has hp'q = 0 whenever p φ q, and its Euler
characteristic is χ(Z) - 2χ(M) = 6(b2 + 1).
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The vanishing of h0'ι and A0'2 (valid on any Fano manifold, by Serre

duality) implies that a holomorphic line bundle L on Z is uniquely de-

termined by its first Chern class in H2(Z, Z), which is torsion-free. By

the Leray-Hirsch Theorem, cx(L) = ncχ(F) + π*ω, where n e R and

ω e H2(M, R). If σ*cx(L) = -Cj(L), we deduce that ω = 0 and n is

an integer. Thus,

Corollary 2.5. Any real holomorphic line bundle L on Z is isomorphic

to Fn for some neZ.

The departure of the quaternionic Kahler manifold M from being a

symmetric space is measured by the covariant derivative Vi? of its curva-

ture tensor. To describe this, it is convenient to express the complexified

cotangent space Γ* as the tensor product E ® H of the basic Sp{2)-

module E Ξ C4 with the basic Sp{\)-module H = C 2 , as in [22]. For

example, an isotropy subalgebra gχ acts on £ and H via the represen-

tations p2 and /?j of (2.2). Alekseevskii [1] was the first to show that the

curvature tensor of M has the form R = tRQ + Rι, where RQ is a covari-

ant constant tensor representing the curvature of HP 2 , and Rχ belongs

to the irreducible 5'p(2)-submodule of Λ2Γ* ®Λ 2Γ* isomorphic to the

fourth symmetric power S4E. This fact is generalized in the proof of the

next result.

Theorem 2.6. If M has a point x for which P2{$x) has real dimension

at least 6, then M is isometric to HP 2 .

Proof Because of the holonomy reduction, the λ -fold covariant deriva-

tive V(/c)i?j takes values at each point in the space (®* T*)®S4E let Ck

be its component in the irreducible Sp(2)Sp(l)-submodule S E®S H

of highest weight. We shall first prove by induction that

(2.3*) V{k)R{=Ck + fk(R, VΛ, VVi?, . ,V ( / c"2 )Λ), k>0,

where fk denotes some universal polynomial followed by a contraction.
The second Bianchi identity implies that VR = VRχ lies at each point in
the kernel of the appropriate mapping

b: Γ * ® S 4 J w Λ V ® Λ 2 Γ * .

Using the fact that

E®SkE = Sk+lE ΘVk® Sk~lE

is the direct sum of three irreducible sp(2)-modules, it is easy to see that

kerb is isomorphic t

(2.3j) are validated.
kerb is isomorphic to S5E®H. Thus C{ = Vi?, fχ = 0, and (2.30),
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More generally, assume (2.3A:_1) and (2.3^). Since Ck is one of the
components of VCA:_1, the irreducible constituents of VVQ_ 1 include
all those of VCk , which belongs to the space

Γ* ® Sk+4E <g> SkH S (Sk+5E Θ Vk+4 0 S*+ 3£) (8) ( S ^ 1 / / Θ Sk~lH).

This decomposition may be used to verify that the submodule S E <g>

Sk+ιH is the kernel of the composition

Γ* ® Sk+*E ® S*JJ ^ f 0 Γ * 0 S*+ 3£ ®Sk~lH

sitting VCΛ inside WCk_{, and then mapping to the skew-symmetriza-

tion VVCμj, which by the Ricci identity is some contraction of R®Ck_{.

The component of VCk in this kernel is exactly Ck+ι. The remaining

components of VCk can then be expressed in terms of VVCA:_1 and

the covariant derivatives of components of VC f c - 1 orthogonal to Ck.

It follows that all the components of V{Ic+ι)R other than Ck+ι can be

expressed in terms of R ® Ck_{ and V{fk{R, VR, , V(/c~2)i?)), and

(2.3Λ+1) is established.

The values (V^Λ)^ and (C^)|χ have to be invariant by 0χ for all k >
0. By hypothesis, gχ contains a subalgebra isomorphic to sp(l) +sp( l ) ,
the restriction of p2 to which is injective. If V and PΓ denote the basic
2-dimensional modules of these two sp(l) 's, then E = V ®W, and the
isotropy subgroup has no invariants in Sk+4E ® Sfe//", /c > 0, and so
Q = 0. Every term of fk(R, VR, ••• , V(fc"2)i?) involves R{ or one
of its covariant derivatives as a factor, so (V^R)\χ must vanish for all
k > 1. Because M is Einstein, its metric is real analytic in suitable
coordinates, whence R = tRQ at all points of M (cf. [4, Theorem 5.26]),
and the result follows, q.e.d.

Consider any point x e M. If the orbit G/Gχ has real dimension 8,
then M = G/Gχ is homogeneous, and must also be symmetric by a theo-
rem of Alekseevskii [2]. We may therefore assume that d = dimR(G/Gχ) <
1. An inspection of possible isotropy representations then reveals that p2

can only have rank less than 6 if d + dimTO G < 11.
Corollary 2.7. If I > 12, then M is symmetric.

3. The fundamental system and its base locus

For M not isometric to HP 2 , the fundamental line bundle F of the
Fano five-fold Z is the cube root of the anticanonical bundle. We shall
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study Z by means of the meromorphic mapping

Φ: Z -> P(77°(Z , F)*) = P(β*) = C P 7 " 1 - 5 ,

associated to the complete linear system \-\K\. The poles of Φ constitute
the base locus B, the set of common zeros of all holomorphic sections of
F the aim of this section is to prove that B is empty. Given a polarized
variety, i.e., a pair (Z, F) consisting of an algebraic variety Z and an
ample line bundle F , Fujita [5], [7] considers

(i) the genus g(Z , F) = \{c{{F))m[Z] + 1,

(ii) the total deficiency Δ(Z , F) = m + (c{(F))m[Z] - h°(Z , F),

where m = dim c Z , and proves the inequality

dimcB<A{Z,F).

In our case, Theorem 2.2(ii) yields

(3.1) g(Z,F) = I-4, A(Z,F) = I-5.

Lemma 3.1. The base locus B of \ - \K\ has complex dimension
d i m c £ <min{3, 7 - 6 } .

Proof. It remains to show that B has no fixed component. The normal
bundle of any real line Zχ in the complex manifold Z is isomorphic
to (9{\) ® C4 (cf. Theorem 2.1(ii)). The argument of [21, Lemma 2.1]
generalizes to show that if D is an effective divisor in Z , then D Zχ > 0
for any x . Since | - \K\ is real, its base locus B is a real subvariety of
Z . If B were to contain an effective divisor of Z , it would contain a
real effective divisor D, giving D - Zχ>2 = -\K - Zχ. This would force
the variable part of any element of | - \K\ to have zero intersection with
every real line, which is impossible, q.e.d.

The restriction on dim c B enables one to handle situations when Z
has small total deficiency.

Proposition 3.2. The case 7 = 6 does not arise.
Proof. When 7 = 6, the polarized variety Z has total deficiency Δ =

1, and Fujita [6, Theorem 2.5] proves that Z is a double-covering of CP5

branched along a smooth divisor Y of degree 2g + 2 in CP 5 , i.e., a sextic.
It follows that

χ{Z) = 2*(CP5) - χ(Y) = 12-2610 = -2598,

contradicting the positivity of χ(Z) in Theorem 2.4.
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Proposition 3.3. The case 1 = 1 does not arise.
Proof. Given that / = 7, it follows from [7, Theorem 4.1] that a

generic element D in the fundamental system is nonsingular irreducible.
Applying the same theorem on D, one can find a nonsingular irreducible
real V as the intersection of two generic elements in the fundamental
system | - \K\. Then V is a Fano three-fold, with anticanonical bundle
F\v and g = 3 (see forward to Lemma 4.2).

The base locus B on Z lies in the base locus of F\v, which can be
nonempty only if V is the blow-up of a Fano three-fold W of index 2
along an elliptic curve C, the complete intersection of two elements of
the fundamental system of W. The exceptional divisor A is a product
CP1 x C, and the base locus B equals CP1 x {c} for some point c e C
[12, Chapter I, Theorem 6.3], [17, §2]. As V is a Fano manifold, an
anticanonical divisor -Kv satisfies -Kv B > 0. From Corollary 2.5,
the conjugate divisor σ(A) to A satisfies

(3.2) A + σ(A) = -nKv

for some positive integer n . Since B is real, AB = σ(A) B = j(-nKv

B) > 0. But A is the divisor of a line bundle, whose restriction to the
blow-up B of c is the tautological bundle, so A B = -1, which is a
contradiction.

With B = 0 , Z is either a nonsingular quartic hypersurface in CP 6 ,
or a double cover of a smooth hyperquadric in CP6 with branch the inter-
section of this quadric and a smooth hyperquartic [8, §0.6]. Both models
have negative Euler characteristic, both equal in fact to -540. q.e.d.

We may now assume that 8 < / < 11. These remaining cases share the
property of being distinguished by a quadratic condition in Table 1.

Proposition 3.4. The isometry group G has rank less than or equal to
3, so that g is isomorphic to one of (i) su(3), (ii) sp(2), (iii) su(2) +
su(2) + su(2), (iv) su(3)+«u(2), (v) βu(3) + u(l), or (vi) sp(2)+ u(l).

Proof Recall that G is the real form of a group G£ of holomorphic
transformations of Z . Since Z is a Fano manifold, there is an embedding
Z -+ P(//°(Z , Fnγ) = CP^ for some n and TV. This map realizes Z as
an algebraic sub variety of CP^ invariant by a subgroup G of projective
transformations. In these circumstances any maximal torus T of G has
a fixed point z on Z (cf. [13, Chapter III, §9]). If x = π(z), T is
contained in the isotropy subgroup Gχ , which by (2.1) is itself a subgroup
of Sp(2)Sp(l). The list follows from the classification of Lie algebras.

Theorem 3.5. The base locus B of the fundamental system | - %K\ is
empty.
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Proof. Let z e B with x = π(z), so that π(B) contains the orbit
G/Gχ , whose tangent space may be identified with Q/QX . We first show
that B cannot contain the real line Zχ. If it did, Corollary 2.3 would
imply that gx c sp(2) and

dimR Q - dimR %χ < dimR B - 2.

Lemma 3.1 and Proposition 3.4 then imply that dim R 0 x > 6, which is
impossible in view of Theorem 2.6.

We may now assume that the real line Zχ intersects B in two points
z and σ(z), and that the restriction ιχ of Corollary 2.3 has a one-
dimensional image. It follows that Φ(Zχ) = [λ], where λ Φ 0 is a vector
in the real subspace g* c g*c . Consider the G-equivariant map

(3.4) s2: 520C = S2H°(Z , F) -> # ° ( Z , ,F2)

if we regard v e g c as a holomorphic section of F , J2(υ ® υ) = υ 2 . By
definition of Φ, λ <g> λ belongs to the annihilator of ker.s2. To prove the
theorem, it will suffice to exhibit an irreducible G-submodule V c kers2 c
S2gc for which (λ <g> λ)\v Φ 0. We follow the cases of Proposition 3.4.

(i), (ii): g simple. There is a well-known decomposition

(3.5) S2sl(3, C) = V[2Ί] Θ Vm Θ C,

where V[k] denotes an irreducible A:-dimensional 5X(3, C)-module. The
highest weight summand V contains some simple products v <g> v for
v G sl(3, C) clearly v Φ 0 implies s2(v®v) Φ 0, so by Schur's Lemma s2

restricts to an isomorphism on V[27]. On the other hand, Table 1 implies
that at least one of V[S] or C lies in k e r ^ , and the one-dimensional
summand is spanned by the Killing form, which certainly has nonzero
contraction with λ ® λ. But it is also true that

(3.6)

this follows from a computation in which the real element λ belongs to
the dual of a fixed Cartan subalgebra of su(3).

Case (ii) proceeds in the same way from the decomposition

(3.7) S2sp(2, C) = S2so(5, C) = W[35] θ Wll4] ® W[5] © C,

familiar from the study of the Riemann curvature tensor ( W[35] is the

complexified space of Weyl tensors on a five-manifold, and coincides with

the space S4E of tensors R{ of Theorem 2.6). This time kers2 must

contain at least one of the irreducible components W[l4] or C, and (3.6)

is valid with each of these in place of F [ 8 ] .
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(iii), (iv): g semisirnple, but not simple. In addition to (3.5), there is
the decomposition

(3.8) S2sl(29C) = X[5]ΘC.

For (iv), the irreducible submodules V[2Ί], sl(3, C) ® βl(2, C), and X[5]

of 52(sί(3, C)+sl(2, C)) all contain simple tensor products, so s2 injects

then into the 56-dimensional space H°(Z, F2). Hence s2 is surjective,

and kers2 contains the nondegenerate Killing form, which has nonzero

contraction with λ<g>λ. Case (iii), in which h°(Z, JF 2) = 42, is analogous.

(v), (vi): 0 not semisimple. The summands V[2Ί], sl(3, C)®gl(l, C)

and S V ( 1 , C) = C of S2(sl(3, C)+fll(l, C)) all contain simple products,

so s2 injects them into the 42-dimensional space H°(Z, F2). Hence the

submodule Kt8] of S2sl(3, C) lies in kers 2 . If λ does not annihilate

sl(3, C), then (3.6) holds and the proof is complete. Otherwise π~ι(x)

lies in the enlarged base locus B1 of the real subsystem of \-\K\ generated

by s((3, C), and the arguments that led to Lemma 3.1 and (3.3) then

imply that d i m R 5 ' < 6 and Q/QX = su(3)/u(2). The latter (with u(2)

acting via the adjoint representation) is tangent to π(B'), and must be a

submodule of TχM (with u(2) acting via p2), but these descriptions are

incompatible. Case (vi) is similar.

4. Projective embedding of the twistor space

As the fundamental system | - \K\ on the Fano five-fold Z has no base

points, the associated map Φ: Z -> ¥{H°{Z, F)) = C P 7 " 1 , 8 < / < 11,

is holomorphic. We wish to apply Bertini's Theorems [24]:

(1) The generic member of a complete linear system with no fixed com-

ponent on a projective manifold Y with dimΦ(y) > 2 is an irreducible

subvariety of multiplicity one.

(2) A generic element of a complete linear system on Y cannot have

singular points that are not base points of the system.

If Zχ is a real line, the image of the restriction ιχ in Corollary 2.3 has to

have dimension at least 2, for otherwise \-\K\ has a base point on Zχ . It

follows that Φ(Zχ) is either a line or a plane conic. Now if dimΦ(Z) < 1,

then Φ(Z) = Φ{Zχ) is contained in a plane. But by definition, Φ(Z) is

full in C P 7 " 1 - 7 , so dimΦ(Z) > 2. Bertini's Theorems now imply that

a generic element of | - ^K\ is irreducible and nonsingular. Pick such a

D e I - \K\ that is also real; its canonical divisor is determined by the
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adjunction formula:

(4.1) KD = K\D-\K\D or -\K\D = -\KD

The exact sequence

0 -+ & _+ 0{JF) _> 0D(F) -> 0

and the vanishing of A0'1 (Theorem 2.4) show that every section of F
over D extends to a section of F over Z . Consequently, the base locus
of I - \KD\ on D coincides with the base locus of | - \K\ on Z , and is
therefore empty.

Lemma 4.1. D is a Fano four-fold of index 2 with fundamental line
bundle F\D. Moreover Pic(D) = Pic(Z), b2(D) = b2{Z), and the polar-
ized variety (D, F\D) has the same invariants (3.1) as (Z, F).

Proof Since D is a divisor of the positive line bundle F on Z , Lef-
schetz's Hyperplane Theorem implies that the second integral cohomology
groups of D and Z are isomorphic. In fact the isomorphism is equivari-
ant with respect to the Hodge decomposition, so the Picard groups of D
and Z are isomorphic. Then F restricts to a fundamental line bundle
on D, which is therefore a Fano four-fold of index 2. The computation
of g{D, F\D) and A(D, F\D) is straightforward. q.e.d.

Now the real nonsingular irreducible element D of \-%K\ must contain
at least one real line Zχ. If not, the equality D Zχ = -\K Zχ = 2
would imply that every real line intersects D transversely at a conjugate
pair of points. Then the twistor ήbration would exhibit D as a double-
covering of M, which contradicts the fact that M is simply connected
[22, Theorem 6.6].

The associated map of | - \KD\ is the restriction of Φ to D, and
hence dimΦ(D) > 2. As | - \KD\ is base-point free, Bertini's Theorems
imply that a generic element V is irreducible nonsingular. The adjunction
formula gives

κ v = KD\V ~ ΊKD\V O Γ ~ΊKD\V = ~κv >

and we may repeat our previous argument and Lemma 4.1 to conclude.
Lemma 4.2. V is a Fano three-fold of index 1 with fundamental line

bundle F\v. Moreover Pic(F) = Pic(Z), b2(V) = b2{Z), and (V, F\v)
has the same invariants (3.1) as (Z, F).

Proposition 4.3. The restriction of Φ to the Fano three-fold V is an
embedding.

Proof Our assumptions imply that | — Kv\ has no base locus, and
g(V, F\v) > 4. In the terminology of Iskovskikh, Φ can fail to embed
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V only if V is hyperelliptic with b2{V) > 2 (see [11, Theorem 7.2(iii)],
[12, Chapter II, Theorem 2.2], [17, p. 105]), and

(i) Φ exhibits V as a double covering of a Veronese three-fold CP1 x
CP2 in CP 5 , branched along a divisor of bidegree (2, 4), or

(ii) V is the blow-up of a Fano three-fold W of index 2 along an
elliptic curve C, equal to the complete intersection of two elements of its
fundamental system, or

(iii) V = CP1 x S, where S is a del Pezzo surface obtained by blowing
up CP2 at seven points in general position.

The genus of V in these examples equals 4 , 5 , and 7 respectively;
we explain that they are all incompatible with the real structure of Z . In
(i), if Lp>q denotes the pullback to V of the line bundle on CP1 x CP2

of bidegree (p, g) 9 then F\v = L 1 ' 1 , and the ramification locus is a
divisor of L 1 ' 2 . The latter is real, since if dΦ degenerates at z, it also
degenerates at σ(z). These conclusions contradict Corollary 2.5.

In case (ii), {-\KWΫ = 2 which implies that the degree of the normal
bundle of C in W equals 4. Some general theory (as used in [17, §4])
then shows that the exceptional divisor A satisfies

(4.2) A3 = - 4 , A2 (-Kv) = 0, A- {-Kvf = (~KW) C = 4.

If σ(A) denotes the divisor conjugate to A, (3.2) gives 2A (-Kv)
2 =

n(-Kvγ = $n, with n = 1. Therefore

which is incompatible with (4.2).
In (iii), pick a divisor A on V which is the product of the factor

CP1 and an exceptional divisor of the blow-up on S. The line bundle L
associated to A has bidegree (0,-1) on A9 and it follows from (3.2)
that cr*L is nontrivial on A. Therefore A and σ(A) intersect in a real
curve C, with positive bidegree on A, and

C>0,1A- C =

which is a contradiction
Proposition 4.4.

are all surjective for

The

V

V
II

V
n >

(A + σ(A))-C

natural maps

SnH°(Z,F)->

SnH°(D,F)^

SnH°(V,F)^

1.

= -nK

H°

H°

H°

(Z,

(D,

(V,

v '

F

F

F
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Proof. The surjectivity of sn follows, e.g., from [19, §1.16]. Suppose
inductively that sn_γ is surjective (n = 2 is trivial). If t is a section of
F\D defining the generic V, then

induces the exact top row of the commutative diagram:

H°(D,Fn~ι) —ί—> H°{D,Fn) -^—> H°(V,Fn)

Sn~lH°(D,F) —*—> SnH°(D,F) — ^ SnH°{V,F)

From (4.1), the positivity of F\D, and Kodaira's Vanishing Theorem,
Hι{D, Fn~x) £ / / 3 ( £ , f - " - 1 ) * = 0 for « > 0. This implies that r11

and rn are surjective, and to prove that s'n is surjective is now just a
matter of diagram chasing. The same argument may be repeated replacing
D by Z and V by D. q.e.d.

Because F is positive, the associated map of Fn is embedding when
n is sufficiently large. This embedding factors through Φ since by the
previous lemma, sections of Fn are generated by those of F. Thus Φ
is itself an embedding (cf. [18, Proposition 1]), and we shall finish the
proof of Theorem 1.1 by rejecting all its possible images. Now Φ is G-
equivariant relative to the G-action on Z and the coadjoint action in β£ .
The latter must be faithful because Φ is an embedding, so the compact
Lie algebra g is centerless and a direct sum of simple Lie algebras. Only
the cases (i), (ii), (iii), (iv) of Proposition 3.4 remain.

(i) 7 = 8, β = su(3). From Table 1 and Proposition 4.4, the ker-
nel of $2 (3.4) has dimension 1, and must be spanned by the Killing
form, which is the sole invariant in 52(su(3)). Similarly, the kernel of
s3: S3H°(Z, F) -• H°{Z, F3) has dimension 9, and must contain the
unique invariant in S (su(3)). Hence Φ(Z) lies in the intersection of the
corresponding invariant quadric Q and cubic C on CP 7 , and it would
follow that Φ(Z) = QnC. However the intersection has singular locus
consisting of nonprincipal nilpotent elements.

(ii) / = 10, 9 = sp(2). The kernel of s2 is spanned by the Killing

form together with the submodule W[5] of (3.7). Under the identification

sp(2, C) £ 5o(5, C) s Λ 2 C 5 , we have W[5] Ξ Λ 4 C 5 . Thus the locus of

points v e Λ2C5 for which s2{v®υ) has no component in W[5] defines
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the Plϋcker embedding of the Grassmannian Gr2(C5) in CP 9 . Therefore

Φ(Z) lies in the intersection of Gr2(C5) with a particular hyperquadric

Q in CP 9 , and has singular locus

{[υ] eCΨ9:v®υe W[35]} = CP3,

consisting of totally isotropic 2-planes in C 5 .
(iii) 1 = 9, 2 = su(2) + su(2) + su(2). Table 1 shows that Φ(Z) is

contained in the singular intersection

of three quadrics, each defined by the Killing form of the respective su(2).
(iv) 7 = 1 1 , g = su(3) + βu(2). The kernel of s2 has dimension 10,

and is spanned by the submodule V[8] of (3.5) and the Killing forms of
su(3) and su(2). The locus of points υ e $1(3, C) for which s2(v ® υ) G
V^11^ defines a three-dimensional flag manifold F in CP , corresponding
to the fundamental embedding of the twistor space of CP2 . The locus of
points v £ sί(2, C) for which s2(v®υ) € X[5] (cf. (3.8)) defines a quadric
Q in CP2. Thus Φ(Z) is contained in

{[A, μ] E P(sl(3, C)* Θ«I(2, C)*) = CP 1 0 : [λ, 0 ] € f , [0, μ]eQ}9

but if R = CP9 is a generic real hyperplane in CP 1 0 , then Φ(Z) Π R is
singular, which contradicts Lemma 4.1.

A description of the singular quaternionic Kahler eight-folds whose
twistor spaces are the above models is implicit in [23]. Cases (i), (ii)
and (iii) correspond to quotients of G2/SO{4), Gr 2(C 4), and HP2 by the
finite groups Z 3 , Z 2 , and Z2 x Z2 respectively. On the other hand, (iv)
defines the twistor space of what is locally a quaternionic cone over the
self-dual Einstein four-manifold CP 2 , and the corresponding quaternionic
Kahler metric is not locally symmetric. We expect these models to possess
deformations that are twistor spaces of quaternionic non-Kahler mani-
folds, analogous to the self-dual conformal structures on the connected
sum CP3 #CP 2 discovered by the first author [21].
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