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A C*® SCHWARZ REFLECTION PRINCIPLE
IN ONE AND SEVERAL COMPLEX VARIABLES

STEVE BELL & LASZLO LEMPERT

1. Introduction

The classical Schwarz Reflection Principle of one complex variable is a
theorem about boundary behavior of holomorphic mappings. It is easy to
state a reasonable analogue of the reflection principle in the C* category,
and not too hard to back the statement with a proof. In this paper, we
will prove a version of a one variable C™ reflection principle in such a
way that it generalizes naturally and with very little alteration to a setting
in several complex variables.

The one variable C* reflection principle that interests us here is the
following.

Theorem 1. Suppose that y, and y, are C smooth curves in the
complex plane, and suppose there is a point z, € y, and a disc D centered
at z, such that D—y, consists of exactly two simply connected components,
which we denote by D, and D_. Suppose that there is a holomorphic
function f defined on D, which extends continuously to y, such that the
extension maps y, to y,. Then f extends C* smoothly up to y, hear
z,. Furthermore, if f is not a constant function, there is a positive integer

n such that f"(z,) #0.

In [5], Cirka proved the regularity part of this theorem and went on
to prove more general results about mappings in several variables. In
[11], Rosay extended Cirka’s results to apply to a class of nonholomorphic
mappings; Rosay’s proofs, when viewed in the context of Cirka’s original
result, are simpler and more natural.

The finite order vanishing statement in the theorem was first proved by
Alinhac, Baouendi, and Rothschild in [2].

The main result of this paper is an extension of this one variable theorem
to a theorem about boundary regularity and uniqueness of holomorphic
maps which map a hypersurface into a Levi flat hypersurface. The precise
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statement of the result is made in §3. In §4, the techniques developed for
the proof of the main theorem are used to give an alternative proof of the
combined results of Cirka, Rosay, Alinhac, Baouendi, and Rothschild.

The paper is organized so that it is a paper on one complex variable
until §3, where it becomes a paper on several complex variables. We have
done this because the one variable argument is simple and serves well to
motivate the several complex variables results which come later. In fact the
proof of the one variable results can be understood by a first year graduate
student who knows the book of Ahlfors [1].

We would like to thank M. S. Baouendi, D. Barrett, J.-P. Rosay, and X.
Saint-Raymond for helpful conversations about this work. It was Baouendi
who asked the questions about unique continuation of boundary values of
holomorphic mappings which led us to this research. (Baouendi went on
to find the answer to his own questions; the results of this paper grew out
of his questions and are of independent interest.)

2. Proof of the C™ reflection principle

In the real analytic case, the statement about finite order vanishing in
Theorem 1 is obvious because holomorphic functions are constant if and
only if all their derivatives vanish at a point. In the C™ case, this result
is not obvious. The proof we give here uses a unique continuation lemma
for a O-problem. The spirit of the proof is similar to the proof given
by Alinhac, Baouendi, and Rothschild; they use a unique continuation
principle for the Laplace operator.

As in the real analytic case, we may assume that y, is the real axis in
the complex plane, that z, = 0, and that D_ is the upper half disc U, .
(It should be noted, however, that in the C*° case, we use the Riemann
Mapping Theorem to map D_ to the upper half plane in such a way that
z, is mapped to the origin. It is well known that the Riemann Mapping
Function is a local C* diffeomorphism up to the boundary near C*
smooth boundary points.) We may also assume that f(0) = 0. The proof
of the theorem rests on the following lemmas. Lemma 1 is a folk theorem,
and Lemma 2 was proved in various forms in [2], [5], [6], [10]. We prove
these lemmas again here for completeness and because we will need to
follow our one variable proof as a model for a several variable proof later.
(Also, the proofs are very short.) We will use the shorthand notation ¢,
and ¢ to denote derivatives of ¢ with respect to z and Z, respectively.
Let U_ denote the lower half of the unit disc.
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Lemma 1. Suppose that v is a complex valued C*° function on U, ,
which extends continuously to the real axis and which is real valued on the
real axis. If v extends C™ smoothly to the real axis and vanishes to
infinite order along the real axis, then the function, which is defined to be
equal to v(z) for z in U, UR, and equal to v(Z) for z in U_, is C*
smooth on the unit disc.

Let d,(z) = Im z denote the distance from a point z in U, to y, =R,
and let d,(w) denote the distance from a point w to the curve y,. Let
U, (r) denote the upper half of the disc of radius r centered at the origin.

Lemma 2. There is a constant C > 0 and a radius r > 0 such that
d,(f(z)) < Cd,(z) for ze U_(r).

The next lemma is a unique continuation theorem and can be proved in
a standard way using Carleman estimates. We shall give a very elementary
proof below using the Cauchy integral formula.

Lemma 3. Suppose v is a C™ function on the unit disc such that
|vs| < Clv| for some positive constant C . If v vanishes to infinite order
at the origin, then v is identically zero.

Let us now show how the lemmas imply the theorem. Afterwards, we
will prove Lemmas 1-3. We require a function ® which is an almost
analytic mapping of y, into the real axis. To be precise, we need @
to be C* smooth on a neighborhood of f(z)) = O such that ®_ is
nonvanishing on 7, , such that ®_ vanishes to infinite order along 7,,
and such that @ is real valued along »,. To obtain such a function,
we shall use the Riemann Mapping Theorem to map a small one-sided
neighborhood of , near f(z,) onto the upper half plane in such a way
that 0 gets mapped to 0; call this Riemann map F. Now F is C®
smooth up to y, near 0 and therefore can be extended to be C *° smooth
in a neighborhood of 0. It is a classical theorem in conformal mapping
that F' cannot vanish along 7, - Thus, we may take @ to be equal to the
extension of F on a small neighborhood of 0.

Consider the function v = ®o f. It is defined and C™ on U . (r) for
some r > 0. For convenience, we may assume that » = 1. Note that
®o f extends continuously to the real axis and is real there. We wish to
prove that v = (@0 f)f" extends C* smoothly to the real axis so that
Lemma 1 can be applied. Because f is a bounded holomorphic function
on U, , the classical Cauchy estimates yield that | ") < ¢,(Imz)™"

near the origin. Let D™ denote the differential operator 8" /9z'6Z’ of
order m =i+ j. Since ®_ vanishes to infinite order on y,, we have an

estimate of the form |D"®_(w)| < K dz(w)N near f(0) for each positive
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integer N, where K > 0 is a constant which depends on N and m. A
typical term in a derivative of v can be written as (D’"<I>?) o f times
a product of derivatives of f and f. Hence, if we choose N in the
estimate for D"'<I>7 to be sufficiently large, we may use Lemma 2 and the
Cauchy estimates for f to deduce that all the derivatives of (®o f); tend
to zero as Imz tends to zero. Thus, (®o f); extends smoothly to the
real axis and vanishes to infinite order there. Lemma 1 yields that ®o f
extends C*° smoothly up to the real axis near the origin. Now it follows
that f extends C™ smoothly up to the real axis near the origin because
® is a local C*™ diffeomorphism near the origin.

Finally, we must prove the finite vanishing condition using Lemma 3.
Assume that f vanishes to infinite order at the origin. We know that
v = ®o f extends to be a C* function on the unit disc via reflection. We
need to see that the extension satisfies the hypotheses of Lemma 3. The
finite order vanishing of ®. along y, allows us to conclude that, for any
positive integer N, there is a positive constant C,, such that for z in U,
near 0,

lus(2)] = @) 1S (2)] < Cydy(f(2)".

Now, since ®,(0) # 0, it follows that |®(w)| > |ImP(w)| > cd,(w) for
w in a neighborhood of 0. Thus, |v(z)| > cd,(f(z)) > const|v_ z)| if
z 1is restricted to be in a small enough neighborhood of the origin. The
same inequality holds in the lower half disc by reflection (since Zv(Z) =
v-(Z)) . Hence, Lemma 3 implies that v is identically zero near the origin;
therefore f maps an open set into y, . It follows that f is constant. The
proof of Theorem 1 will be complete after we have proved the lemmas.

Proof of Lemma 1. Define a function A(z) on the unit disc to be equal
to v(z) for z € U, , equal to zero for real z, and equal to v_(Z) for z €
U_. Since v; vanishes to infinite order along the real axis, the function
A is seen to be C™ on the unit disc U. Now let u be the solution to the
d-problem u. =1 given by

All)
=5 / AL dgnd?
(see Hormander [7, Theorem 1.2.2]). The function u is C* smooth on
the unit disc and satisfies the reflection property u(Z) = u(z). Since u—v
is holomorphic on U, and real on the real axis, the classical reflection
principle implies that u — v extends holomorphically to the whole unit
disc via reflection. Hence, v extends to be C* smooth on the whole unit
disc via reflection.



A C° SCHWARZ REFLECTION PRINCIPLE 903

Proof of Lemma 2. Choose a normal direction v to the curve y, near
f(0) = 0. We wish to construct two C*° subharmonic functions p , and
p_ in a neighborhood of 0, which both vanish on p, such that dp_ /ov >
0 and 9p_/0v < 0. To construct p, , let Q be a small domain with C*
smooth boundary whose boundary coincides with y, near the origin such
that v is an outward pointing normal to  at 0. Let ¢ be a solution to
the Dirichlet problem: A¢ =1 on Q with ¢ = 0 on the boundary of Q.
Since ¢ is C* smooth up to the boundary, we may extend ¢ asa C*°
subharmonic function to a neighborhood of the origin. The classical Hopf
Lemma implies that ‘alf(z) > 0 for z € y, near 0. Thus, we may define
p, to be equal to the extension of ¢ restricted to a small neighborhood
of 0. To construct p_, we repeat the argument above using a domain Q
whose boundary agrees with y, near 0 such that v is an inward pointing
normal to the boundary of Q near 0. By shrinking the neighborhood of
0 under consideration, we may assume that the functions p 4 are nonzero
off of y, in their domain of definition. Now define p = sup{p,, p_}.
This function is subharmonic in a neighborhood of the origin, is zero on
7, and positive off of y,, and there are positive constants ¢, and ¢, such
that ¢,d,(w) < p(w) < c,d,(w) for w near 0.

We shall restrict our attention to a small enough half disc U, (r) so
that the composition p o f is defined. For convenience, we may assume
that r = 1. Note that po f is a nonnegative subharmonic function on
U, , which is continuous up to the real axis and which vanishes there. By
composing with a conformal map of the unit disc onto U, which maps
the boundary point 1 to the origin, we may reduce our task to proving the
following proposition (which seems to be well known).

Proposition. Suppose that A is a nonnegative subharmonic function on
the unit disc which is continuous up to the boundary such that A(e’e) =0
for 6 in the range —6 < 6 < & for some 6 > 0. Then there is a positive
constant C such that

MO < C1- )
Jor all { in the sector {|arg({| <d/2}.

Proof of the Proposition. Let P({, 8) denote the Poisson kernel for

the unit disc. Now, we may write

w < [P, 0)x8)de.

—n

But if |arg{| <d/2 and |6| > J , we may estimate the Poisson kernel

21—
PE. O < 2 Zom g
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If we use this inequality in the preceding inequality, we obtain the desired
estimate. The proof of Lemma 2 is now complete.

Proof of Lemma 3. Define a function 4 on the unit disc to be equal to
vz/v where v is nonzero, and equal to zero where v is zero. Note that 4
is a bounded measurable function. Define a function u on the unit disc

U via
u(z) = ! / A0) d¢ ndC.

- 57_[7 U c— V4

The function u is continuous on U and has the property that it is C™°
where v is nonzero and u; = v;/v there (see Hormander [7, Theorem
1.2.2]). Now consider the function 4 = ve™“. This function is continuous
on U and is holomorphic where it is not zero. Thus, Radd’s Theorem
implies that 4 is holomorphic on U. Now it is clear that if v vanishes
to infinite order at the origin, then 4 must be identically zero, and hence,
so must v. Lemma 3 is proved.

3. A C® reflection principle in several variables

The most naive generalization of the classical one variable reflection
principle to several variables applies to a holomorphic mapping f from
the upper half disc in the plane to C", which extends continuously up to
the real axis and which maps the real axis into the hyperplane {Imz, =
0} . Under these circumstances, one sees that the component f, extends
holomorphically past the real axis. In this section, we will generalize this
result to a C™ setting in which the hyperplane {Im z, = 0} is replaced
by a Levi flat hypersurface.

The standard example of a holomorphic mapping in several variables,
which exhibits bad boundary behavior is given by (z, w) — (z, w+h(z)),
where 4 is a holomorphic function defined on the upper half plane which
is continuous, but not C' , up to the real axis. This mapping is a biholo-
morphic map of the domain {Imz > 0} in C? onto itself which extends
continuously to the boundary, but which does not extend smoothly to the
boundary. However, the first component of such a mapping must extend
smoothly because of the reflection principle mentioned above. This will be
seen to be a general phenomenon for the complex normal component of a
holomorphic mapping which maps a hypersurface into a Levi flat hyper-
surface. Before we can state the theorem precisely, we must set up some
notation and terminology.

A C* smooth hypersurface M in C" is called Levi flat if its Levi form
vanishes identically. If M is real analytic and Levi flat, then it is possible
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to make a local biholomorphic change of variables which transforms M
into the hypersurface {Imz, = 0}. If M is C*, but not real analytic,
then the procedure which produces the biholomorphic change of variables
in the real analytic case gives only a C*° local diffeomorphism @ which
maps M into {Imz, = 0} and which is almost holomorphic on M in
the sense that 0@ ; vanishes to infinite order on M for each j. We shall
call the component function ®, a flattened complex normal coordinate for
M and we will write /" = ®, . We shall call a function flat at a point
z, if there are constants C,, such that [f(z) — f(z)| < Cylz — ZO|N for
each positive integer N .

Theorem 2. Suppose that M, and M, are C * smooth hypersurfaces
in C™ and C", respectively, and suppose there is a point zo €M, and a
ball B centered at z, such that B = M, consists of exactly two connected
components, which we denote by B . and B_. Suppose that there is a
holomorphic mapping f defined on B, which extends continuously to
M, such that the extension maps M| into M,. If M, is Levi flat, then
N o f extends C™ smoothly up to M| near z for any flattened complex
normal coordinate /¥ for M, . Furthermore, if f does not map B . into
M,, then ¥ o f cannot be flat at z,, and hence, f cannot be flat at z,, .

Proof. We claim that it is enough to prove the theorem in the simplified
case that m = 1, M, isequal to the real axis, z, =0, and B_ is the upper
half disc U, in the plane. Indeed, all constants in the estimates that we
will prove in this simplified setting can be seen to vary continuously under
continuous perturbations of the map f. Hence, in the general setting
of Theorem 2, by restricting attention to one-dimensional complex slices
which cut the hypersurface M, transversally, and by mapping these slices
to the upper half disc via the Riemann Mapping Theorem, we may deduce
that the function .# o f is smooth up to the boundary along any such slice
with estimates on derivatives which are uniform under small motions of
the slice. Since any partial derivative at a point on M, can be written
as a finite sum of derivatives along linearly independent slice directions,
it is clear that this implies that .#" o f is smooth up to M, . The finite
vanishing condition also follows by restricting to slices.

Hence, from this point forward, we will be studying a holomorphic map
f on the upper half disc U, into C", which extends continuously to the
real axis and which maps the real axis into a Levi flat hypersurface M .
The proof of the theorem rests on the following lemmas which together
yield the analogue of Lemma 2 in the many variable setting.
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Lemmad. A C® smooth Levi flat hypersurface M in C" is locally the
zero set of a C™ plurisubharmonic function p with the following properties.
(a) dp#0 on M.
(b) p is strongly plurisubharmonic off M .
(c) The sign of the normal derivative of p at a point in M can be
specified arbitrarily.

We thank David Barrett for showing us how to prove Lemma 4.

Let d,(z) = Im z denote the distance from a point z in U, to R, and
let d,(w) denote the distance from a point w in C” to the hypersurface
M . As before, let U, (r) denote the upper half of the disc of radius r
centered at the origin.

Lemma 5. There is a constant C > 0 and a radius r > 0 such that
d,(f(2)) £ Cd\(z) for ze U_(r).

We will now show how Theorem 3 follows from Lemma 5 (using the
simplified assumptions made above). Let ® be an almost analytic map-
ping which flattens M as in the definition of a flattened complex normal
coordinate, and let v = ®, o f. The Cauchy estimates for the derivatives
of the components of the mapping [, the infinite order vanishing of the
anti-holomorphic derivatives of ®, and Lemma 5, together imply that v
extends C™ smoothly to the real axis and vanishes to infinite order along
the real axis. Now Lemma 1 implies that ®, o f extends C® smoothly
to the real axis. The regularity assertion of Theorem 2 is now proved.

To finish the proof, suppose that v = ® o f is flat at 0. We may
consider v to be a C™ function defined on the unit disc by the reflection
principle of Lemma 1. Now on U, , we have

JET -
o= (i)

J=1

and we can combine the Cauchy estimates for the derivatives of each f]
with Lemma 5 and the fact that 6®, /0w vanishes to infinite order along
M to deduce that, for each positive integer N, there is an r > 0 such
that v satisfies an estimate of the form

luz(2)] < Cy dy(f(2)
for ze U, (r). But |v(z)| = |®,(f(2))| > cd,(f(z)) for z near 0. Thus
|v;| < const|v| in a sufficiently small upper half disc U _(r). The same
inequality holds on the lower half of that disc by reflection. Therefore,
Lemma 3 yields that v is zero in a neighborhood of 0. This implies that
f maps an open set into M , and therefore that .# o f is identically zero.
This completes the proof of Theorem 2. Lemma 5 follows from Lemma
4 exactly as in the proof of Lemma 2. It remains only to prove Lemma 4.

)N
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Proof of Lemma 4. We shall use the same notation that we used in the
proof of the theorem. The function y = £Im®, is an almost plurihar-
monic defining function for M in the sense that 9>y /0w, 0w ; vanishes
to infinite order along M for each i and j. Suppose that the origin is
contained in M. Let p(w) = y(w) + (1 + |’w|2)y/(w)2. This function
clearly satisfies conditions (a) and (c) of Lemma 5. We must show that
p is plurisubharmonic near the origin. We shall write O(y™) to indicate
that a term in an expression can be dominated by a constant times an
arbitrary power of |y|. For example, since |y (w)| is comparable to the
distance from w to M and y is almost pluriharmonic, it follows that
Vum, is O(y*™). Now, using the shorthand notation that a subscript i
indicates a derivative with respect to w, and a subscript j indicates a
derivative with respect to W ;» We may compute

2 2 _
Pij= 2(1+ |’I.U| )Wi'//j + Jij‘// + Z'I/U/i'//j + Zvlel//; + O(V/oo) >
where 9, i denotes the Kronecker delta function. For a = (a,,--- , q,),
we have

n
Z pija,ﬁj = 2(1 + |’LUI2) Izai%r + lalzvlz

i,j=1
+4y Re (Z ait//i) (Zﬁjwj) +lal o).
Now we may use the estimate 2| Re xy| < |x|* + ly|* to obtain
4y Re (Z al.x//l.) (Zajwj) > -2 (ll//X:ijjl2 + |Zai%|2> ,

and hence,

2

D piyad; 2 2|w|2‘2aic//i

n
i,j=1
+ <|a|2 -2 'Zajwjr) v’ +a’o(w™).

It is clear that if w is close enough to the origin, then this expression can
be made nonnegative independent of a € C"; in fact, the expression can
be made strictly positive when a # 0 and y(w) # 0. Thus, condition (b)
of Lemma 5 is verified and the proof is finished.

4. Application to the totally real case

Many authors have studied the boundary behavior of a holomorphic
mapping which maps the edge of a wedge into a maximal totally real
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submanifold of C". This is a natural and important object of study be-
cause of Webster’s version of the reflection principle which uses the edge
of the wedge theorem; a strictly pseudoconvex hypersurface is mapped
naturally into a totally real manifold in a higher dimensional space. For
example, this approach is used by Khasanov and Pincuk [10] to prove
optimal regularity results for biholomorphic mappings.

In this section, we want to indicate how the arguments in the previous
section can be modified to study the problem of the boundary behavior
of a holomorphic map which maps the edge of a wedge into a totally real
submanifold. This problem can be reduced to the study of a holomorphic
map defined on a one-dimensional half-disc; in this situation we prove the
following theorem.

Theorem 3. Suppose that T is a C™ smooth maximal totally real
submanifold of C". If f is a holomorphic mapping of the upper half disc
U, in the plane, which extends continuously to the real axis and which
maps the real axis into T, then f extends C* smoothly up to the real
axis. Also, f cannot be flat at a point on the real axis unless f is constant.

The regularity assertion in the theorem was first proved by Cirka [5] and
subsequently generalized by Rosay in [11] and by B. Coupet in his disser-
tation [6]. (Versions of the regularity theorem with somewhat stronger
hypotheses where proved in [4], [8].) The unique continuation clause in
the theorem was proved first by Alinhac, Baouendi, and Rothschild and
is one of the subjects of their paper [2]. In this section, we will give an
alternative proof of the theorem.

In some examples, Theorem 3 can be seen to be a direct consequence of
Theorem 2. This is the case whenever I' can be realized as the transverse
intersection of n Levi flat C* hypersurfaces. In §6, we will write down
an example of a C*° maximal totally real submanifold of C? which is
not contained in any Levi flat hypersurface. Hence, the proof of Theorem
3 will require some machinery beyond that used in the proof of Theorem
2.

Proof of Theorem 3. Because I' is maximal totally real, there is a map-
ping ®: C" — C", which is a local diffeomorphism and almost holomor-
phic on I', and maps T into {w € C": Imw, =0;j=1,2,---,n}.
It is well known that I' is locally the zero set of a continuous nonneg-
ative plurisubharmonic function p such that p(z) is equivalent to the
distance d.(z) from z to I'. Using this function, we may argue as in
the proof of Lemmas 2 and 5 to see that f satisfies the distance estimate
d(f(z)) < Cd(z). Let v, = @, o f. The boundary distance estimate
together with the infinite order vanishing of the Z-derivatives of the com-
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ponents of & along I'" allow us to deduce that (v, ), is C* smooth up
to the real axis and vanishes to infinite order there. Hence, Lemma 1
implies that v, extends C ° smoothly to the unit disc via reflection. It
now follows that each component of f extends C* smoothly to the real
axis because ® is a local diffeomorphism. To finish the proof, we must
prove the unique continuation statement. We will require the following
generalization of Lemma 3.

Lemma 6. Suppose v = (v,,--- ,v,) is a vector of C* functions
on the unit disc such that |v;| < Clv| for some positive constant C. If
v vanishes to infinite order at the origin, then v is identically zero in a
neighborhood of the origin.

Here, the notation vy is shorthand for the vector whose k th component
is (v,)5.

We shall now show how the lemma implies the theorem. Suppose f is
flat at z, = 0 and that f(0) is equal to the origin. Then each v, vanishes
to infinite order at the origin. Now, on U_, we may calculate

()s=>" (z;’; of) 7,

J=1

and hence, it follows (as in the proof of Theorem 1) via the infinite order
vanishing of the w-derivatives of ®, along I', the distance estimate,
and the Cauchy estimates for f]' that |(v,);] < Cdp( f(z)¥ for any
positive integer N. But |®(w)| > |Im®(w)| > cdp(w) near w = 0.
Thus, |v(z)| > cdp(f(z)) near the origin. Hence, by restricting atten-
tion to a small enough neighborhood of the origin in U, , we deduce that
|vz| < C|v| there. The same inequality holds on the lower half disc for the
reflection of v. Therefore, Lemma 6 yields that v is zero in a neighbor-
hood of the origin and this implies that f is constant on an open subset
of U, . Thus the proof of the theorem is finished.

Proof of Lemma 6. The following proof is analogous to the proof of
Lemma 3 with matrices in place of functions. Let ¢ > 0 be arbitrary
for the moment. By replacing v(z) by v(fz) for a small constant ¢, we
may assume that the constant C in the estimate |v-| < C|v| is less than
¢. This implies that there is a matrix 4 of functions on U which are
bounded in modulus by & such that v- = 4v. To be precise, let us take
A =(a;) tobe given via

=2
a;; = (v;);7,]v|

if v # 0 and a; = 0 otherwise. We now seek to construct a matrix
function B = B(z) with bounded, continuous entries such that B is a
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weak solution to the equation B = —BA, and B(z) is invertible at each
z € U. For convenience, let us write B =1+ . We want S to satisfy
—A— BA = B in the sense of distributions. Let 7 denote the operator
which maps a matrix E = (¢;;) of bounded measurable functions on the
unit disc U to a matrix T(E) = (¢;;) of functions given via

1 foe(d) -
tij(z) = m v Z—:—ZdCAdC
Note that the operator 7 maps a matrix of bounded functions to a matrix
of bounded continuous functions with an L™ estimate (see Hormander
[7, Theorem 1.2.2]). Now consider the operator A defined by A(f) =
T(—A — BA). We will be nearly finished if we show that A has a fixed
point. If & is sufficiently small, A will be a contraction mapping on
L*(U), the space of measurable matrix functions on U with bounded
entries endowed with the obvious norm. Hence, the Banach Contraction
Theorem yields that the sequence of iterates, Ak(l ), converges in L™
to the unique fixed point B, of A viewed as an operator on this space.
The entries of B, are bounded and continuous on U, and B, is a weak
solution to the equation —4 — B4 = B. By choosing ¢ to be sufficiently
small, we may also guarantee that the matrix norm |||l is less than 1/2
so that B =1 + f, is invertible.

To finish the proof of the lemma, consider the vector function Bv . This
vector of bounded, continuous functions is a weak solution to (Bv); =0.
Hence, the components of Bv are holomorphic functions. Since v is
assumed to be flat at the origin, these holomorphic functions must all
vanish in a neighborhood of the origin. Because B is invertible, this
implies that v is identically zero near the origin. Hence the proof of
Lemma 6 is finished.

5. Remarks

It is clear that the proofs of Theorems 1 and 2 can be modified to yield
C* extension results. The papers [2], [5], [6], [10] deal with optimal C k
" regularity and extension of mappings.

Theorem 2 is a result in several complex variables, whose proof is es-
sentially a one variable argument. There is another C™ version of what
most people refer to as the reflection principle in several complex variables
by Nirenberg, Webster, and Yang [9] with a genuinely multivariable proof.
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Their reflection principle applies to mappings between strictly pseudocon-
vex domains.

6. An example

We conclude this paper by giving an example of a maximal totally real
submanifol : of C*> which cannot be realized as a submanifold of a Levi
flat hypersurface, as promised in §4.

If a two-dimensional totally real C*°-manifold M c C’ is contained in
a C? Levi flat hypersurface L, then L is foliated by Riemann surfaces,
and the leaves are nowhere tangent to M . It follows that M and the leaves
intersect each other transversely in L, and therefore the intersection of
M with a leaf is a (real) curve. Hence, in order to exhibit a totally real
M not contained in any Levi flat hypersurface it suffices to construct M
such that it intersects no complex curves in a real curve. Then, in fact, no
open portion.of M will be contained in a Levi flat hypersurface.

Theorem 4. There is a totally real manifold M C c? of class C*,
dim M = 2, such that for any open set U C C? and any ( possibly singular)
complex curve C C U the set C N M is countable.

Jacobowitz, answering a problem raised by a paper of Baouendi and
Treves (see [3]), constructed a totally real M with a somewhat weaker
property (unpublished). Jacobowitz’s example M is such that for any
small ball U centered about a fixed point p € M and any complex curve
CcU, p ¢ C, the connected component of M \ C containing p is
not relatively compact in U. This example was communicated to us by
Baouendi.

In order to prove Theorem 4, we shall consider classes of nonanalytic
smooth functions. Let Q be a domain in real euclidean space R? (in
our case d willbe 1 or 2), and let {M,, :n,k=1,2,...} be adouble
sequence of positive numbers. By {M,, }(Q) we shall mean the set of
those functions f € C*(Q) for which there is a k such that for every
n=1,2,---, we have that

% f(x)
Sup | ——a—
xeg ox

<alM,,

for each multi-index a, |a| = n. For example, if M,, = k" and Q is
bounded, then {M,, }(€2) consists of functions analytic in a neighborhood
of Q. We shall always assume that the double sequence M,, has the
property that for every k there is an & such that 2M,, < M,, . In this
case {M,, }(€2) is a vector space.



912 STEVE BELL & LASZLO LEMPERT

Lemma 7. Let {M k} be a double sequence as above. Then there is
another double sequence { ) With the following properties:.

a) If fe{M,}(Q), then all partials of f arein {Mk}
(b) If fe{M k}(Q) and g isa mappmg Q' — Q whose components
arein {M,, }(Q ) then foge {M k}(
(c) If Q c R? is convex, fe{M, Q) 0f/0x;, #0 in Q, and g
is a real function defined on a neighborhood of 0 € R such that

f(g(),)=0,
then g € { (1) where I is a neighborhood of 0 € R.
The proof of this lemma is obvious. For example, in (c) one has

. af(g(), /ox,.
80 =5 e, Dox,

whence by subsequent derivations one can bound the derivatives of g in
terms of those of f.

Next we shall construct smooth functions that are very far from being
in some given space {M,, }(Q).

Lemma 8. Let ¢, be a sequence of positive numbers. Then there is a
real valued ¢ € C™(R) such that for every x € R and positive integer m
either |p*™ (x)| > ¢y 0r |92 (x)] > Coms1 -

To prove this we shall need the following.

Proposition. Let n be any positive integer and ¢, K positive numbers.
There is a real valued 2n-periodic function ¢ € C(R) such that for any
x €R, the numbers |y(x)|, W' (x)|, -, [w"(x)| are all bounded by
e, and either |y (x)| > K or " V(x)|> K.

Proof. w(x) = asin bx with suitably small a and suitably large b will
do.

Proof of Lemma 8. The function ¢ will be the sum of 2z-periodic
functions ¢, to be chosen inductively. Let ¢, = 0. If 2n-periodic
functions ¢, -, 9, _, € C”(R) have already been chosen, put ¢ =

2"’"

K=1+c,, + Coppit +maxz (‘(o(zm X I '(p 2m+” x)D .

and n =2m. Choose y as in the Proposmon above, and put ¢, =y
Having defined the sequence ¢, , let ¢ = Z _0 9, - Since
o)) (x) < 2°

m

when 2m > j,
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¢ € C*(R). Furthermore

m—1 oo
2 2 2, —k
™)1 2 1) = Y o™l - S 27K,
k=0 k=m+1

and similarly for ¢(2m+1)(x) . Hence the required property of ¢ follows.

Proof of Theorem 4. Let us choose a sequence c, going very fast to
infinity, say ¢, = (n!)z. Consider the function ¢ that satisfies Lemma
8. The function constructed there is actually periodic. By adding a linear
function we can achieve ¢'(x) >0 (x € R). This ¢ is of course no longer
periodic. However, ¢', ¢",... are all bounded functions. Therefore
there is a double sequence M,, such that ¢ € {M,, }(R). We can assume
M, > k" so that functions analytic in a neighborhood of a closed interval
I arein {M,}(I).

The sequence {M,,} determines another sequence ﬁnk > M, ac-
cording to Lemma 7. We shall iterate this “wave operation” four times to
get a sequence N,, > M,, . Define next a sequence d, by

dy = N2m,n ’ Dypsr = Nyt m>

and using Lemma 8 again, construct a real function y € C*(R) such
that for any x € R and positive integer m either ll//(zm)(x)l > d,, or
lw®"V(x)| > d,,, . We can again assume that y'(x) > 0.

Define now a surface M c C* by M = {(z,w) e Ctw = ¢(Rez) —
iy(Imz)}. Since

2%{¢(Re z)—iy(Imz)} = ¢o'(Rez)+y'(Imz) >0,

M is indeed totally real. Consider next a complex curve C in some open
set U C C*. We shall prove that C N M is countable. C has a countable
set of singular points; by discarding them from U we may as well assume
that C is smooth. Also, it will suffice to prove that any point pe CN M
has a neighborhood U’ such that CN M N U’ is countable.

Thus pick a point p € CNM, p = (z,, w,). If TpC is parallel to
the w axis, then C and M intersect transversely in p, hence p is an
isolated point of C N M. Thus we can assume that 7,C is not parallel
to the w axis, in which case, near p, C is the graph of a holomorphic
function w = h(z). Therefore we have to prove that the equation

(1 h(z)=¢(Rez)—iy(lmz)

has countably many solutions near z, for any holomorphic function 4
defined on some neighborhood of z;.
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Any solution of (1) satisfies
¢(z) =Reh(z) — p(Rez) =0.

The set S characterized by this latter equation is covered by a countable
set of curves of the form

(2) Rez =g(Imz),

with g € {ﬁ at(I), I some interval in R. To see this, observe that since
Re A is real analytic while ¢ has very large derivatives, in every z there
is an r such that

'p(z)/ox" #£0  (z=x+1iy).
Hence S c U2, S,, where

r=1%r>
S ={z:0""'¢(z)/ox"" =0, 8"p(z)/0x" # 0}.

We can now apply Lemma 8, parts (a) and (c) to conclude first that
8" '¢/ox""" € {M_,}(V), V a neighborhood of z,, and then that S,,

locally, is indeed a curve of form (2), g € {ﬂnk}(I) .
Thus now it would suffice to prove that on any curve of this form, the
equation
Imh(z) + y(Imz)=0

has countably many solutions near z,. In other words

(3) Y(y)=Imh(g(y) +iy)+y() =0

has countably many solutions y near y, = Imz,. Now this can be shown
exactly as the corresponding statement about the equation ¢(z) = 0 was
shown: One first notices that for any y there is an r such that g »)#0,
since the first term in ¥ isin {N,, }(I) while the second has much larger
derivatives. Secondly, for every r the sets {y: ‘I’('_l)(y) =0, ¢V v) # 0}
are discrete. Since any solution of (3) belongs to one of these sets, it
follows that (3) has countably many solutions. This completes the proof
of Theorem 4.

Finally we remark that a slight variation of the proof would have shown
that the intersection of M with any two-dimensional real analytic set is
also countable.

Added in proof. We have learned that Lemma 3 is a special case of
a result proved by Lipman Bers many years ago (see pp. 259-263 in the
book, Partial Differential Equations, by L. Bers, F. John, and M. Schechter,
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Lectures in Applied Math., Vol. 3A, Amer. Math. Soc., Providence, RI,
1964).

We wish to thank Herb Alexander for pointing out to us that our proof
of Theorem 1 actually gives a stronger result with no additional work.
The hypothesis that f extend continuously up to the curve y, can be
replaced by the weaker condition that there is a bound M such that for
every sequence of points z, in D_ such that dist(z,,y,) — 0 as n — oo,
the sequence f(z,) is bounded in modulus by M and dist(f(z,), 7,) — 0
as n— oo.
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