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POSITIVE SCALAR CURVATURE AND
LOCAL ACTIONS OF NONABELIAN LIE GROUPS

MAREK LEWKOWICZ

1. Introduction

Lawson and Yau proved in [7] that if a compact, connected, nonabelian
Lie group G acts smoothly and effectively on a compact manifold M, then
M admits a riemannian metric of positive scalar curvature. In Theorem
A below we show that the same conclusion holds under somewhat weaker
assumptions described by the following definition:

1.1. Definition. A local action of nonabelian Lie groups (oryf-structure)
on a smooth manifold M consists of a finite cover (£//)zG/ of M by open,
connected sets £/,- and a family F,: Gt x £// —• U\ (/ e I) of smooth, effective
actions of compact, connected, nonabelian Lie groups d such that the
following compatibility condition holds:

for ij e I the set f/z ; = ί/, Π t/, (if nonempty) is both Gr
and (jy-invariant and one of the two groups contains the
other if we treat them as subgroups of

Theorem A. If a compact manifold M admits a local action by non-
abelian Lie groups, then it admits a riemannian metric of positive scalar
curvature.

§§4 and 5 contain the main conceptual body of the proof of Theorem A
and explain its relation to [7]. The technical core of the proof is deferred
to §§9 and 10.

Theorem B (see §2) states that if M and N are two manifolds with
Λ-structures and dim(Λf) = dim(TV) > 6, then the connected sum M#N
also has an JV-structure. This theorem thus provides a method of con-
structing local actions from global ones and illustrates some flexibility of
^Γ-structures, which is not shared by global actions.

Theorem C (see §3) supplies examples of manifolds (with the family
(Tn x S2)#(Tn x S2), n > 3, among them) which admit local actions but
no global action by a nonabelian group. As those manifolds have metrics
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with positive scalar curvature, they also prove that the converse of the

theorem of Lawson and Yau does not hold.

Our interest in local actions of Lie groups comes from the work of

Gromov and Cheeger ([3], [4]) who introduced the notion (using different

terminology though) and explored the case of abelian groups (tori). Quite

naturally the geometric features in the two (abelian and nonabelian) cases

differ substantially.

Finally let us mention that some related results were obtained by Phillipe
Fullsack.

2. Local actions on connected sums of manifolds

2.1. Theorem B. Ifdim(M) = dimN = n > 6, and both M and N
admit </V-structures, then so does the connected sum M#N.

Proof. We shall successively change the ^-structure on M to one for
which one of the groups is SO(n) acting on a neighborhood of a point in
the standard way.

Take a group G\ of maximal dimension acting on its domain U\ c
M. Let / : M —• [0, +oo) be a smooth function with supp(/) c U\ and
/ φ 0. Let h be the average of / under the action of G\. We still have
supp(A) c U\ and h ψ 0. Let 0 < ε < sup(/z) be a regular value of h.
M\ — h~{[ε,+oo) is a nonempty, compact, G\-invariant submanifold of
U\. We can now define new domains V[ for / φ 1 by putting V[ = Ui\M\.
The new domain for G\ will be the union of U\\M\ and a small invariant
collar neighborhood of dM\. Let H be a subgroup of G\ isomorphic to
SO(3) or SU(2), and let A" be a principal orbit of H in Int(Λ/i). X has a
neighborhood in Int(Mi) iϊ-equivariantly isomorphic to Dk (1) x X where
Dk{\) is a /c-dimensional disc of radius 1 (k = n - dim(ΛQ) and H acts on
the second factor.

We enlarge the set of groups of our yΓ-structure as follows. We take H
as one of the new groups—its domain will be \n\(M\ )\{Djc(l/2)xX}. Next
we take SO(fc) x H acting diagonally on {Dk(l)\DJ^Tj4)} x X and SO(fc)
acting on {Dk(l/3) x X}\Dn(l/6) where Dn(r) denotes an ^-dimensional
disc of radius r centered at a fixed point p = (O,JC) E Dk{\) e X, 0
being the center of Dk(l) and x being a point in X. Note that SO(fc) is
nonabelian since k = n - dim(X) > 3 (n > 6,dim(AΓ) < 3). Finally we
take one group more—SO(w) acting on Dn(l/5). Now M* = M\Dn(l/7)
is a manifold whose boundary is the (n - l)-dimensional sphere with the
standard action of SO(Λ). Having done the same for N we can glue the
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boundaries dM* and dN* by a reflection φ: dM* -> dN*9 φ(xu •- ,xn) =

(X{> Λ - i , —Xn).

The two copies of SO(n) acting in M and TV respectively are identified
as transformation groups of a neighborhood of dM* = dN* by an isomor-
phism g >-> φ~ι ogoφ. This completes the construction of an JV-structure
on M#N.

2.2. Remark. This argument shows in fact that the initial jf -structure
on the disjoint union M u N can be extended to an JV-structure on the
standard cobordism between Mu N and M#N.

2.3. Remark. In view of Theorem A saying that the yΓ-structure im-
plies positive scalar curvature, Theorem B appears to be analogous to the
following theorem [5]: Ifdim(M) = dim(iV) > 3, and both M andN admit
riemannian metrics of positive scalar curvature, then so does M#N. In fact
Gromov and Lawson proved in [5] that the class of manifolds with posi-
tive scalar curvature is closed under surgery in codimension > 3. The same
for c/f-structures would be extremely difficult, if not impossible, although
it can be proved in case of trivially attached handles. More precisely, a
modification of the above proof of Theorem B shows that if / is a framed
embedding of the sphere Sk into Mn extendible to a framed embedding
of Dk+{, 0<k<n-l,n>6, then every .^-structure on M extends to
an yΓ-structure on Wn+ι = Mn x [0,1] U Dn+ι, the trace of surgery on M
along / .

3. Manifolds with no global nonabelian action

3.1. Theorem C. Let M\ and Mi be closed, oriented, n-dimensional
{n > 3) K{π, lymanifolds {that is τti{Mk) = 0foriφl and πγ(Mk) = Gk

for k = 1,2). Then the manifold M = (M{ xS2)#(M2xS2) has the following
properties:

(i) M admits a local action of nonabelian groups;
(ii) M admits a global action o/SO(2);

(iii) M has no global action by a compact, connected, nonabelian Lie

group.

Proof (i) This follows from the proof of Theorem A since Mk x S2

admits an action of SO(3) (on the second factor). We do not need
dim(Mk x S2) > 6 since the orbits are two-dimensional.

(ii) SO(2) acts on Mk x S2 as a subgroup of SO(3). If xk e Mk is
any point, and y e S2 is a pole, then pk = (xk,y) e Mk x S2 is a fixed
point of SO(2), andpk has a neighborhood SO(2)-equivariantly isomorphic
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to the product Dn x D2 with the standard action on the second factor.
Hence a small open ball Bk about pk is SO(2)-invariant and so is Λ^ =
(Mk x S2)\Bk. In order to form the connected sum M = (M\ x S2)#
(M2 x S2) we have to glue dN{ = Sn+ι and dN2 = Sn+ι by an orientation-
reversing linear map Sn+ι —• 5r/ l+1. If we change the action of SO(2) on
Λ̂2 by the automorphism g ^ g~ι (g e SO(2)), then the two actions
of SO(2) on N\ and N2 agree with the glueing Sn+ι 3 (xi, ,xΛ+2) *-*
(xi, ,xΛ +i, -JC Λ + 2) € S714"1, and we get a global action of SO(2) on M.

To prove (iii) we use a theorem of Browder and Hsiang (see [1, p. 412])
which we recall now. Suppose that a compact, connected group G acts on
M, and / : Af —• Λ (̂π, 1) is a map such that /*: π\(M) —> π\(K(π, I)) = π
is surjective. Let p: M -> M/G be the quotient map, and /: (7 -> Λf be
given by z(g) = ^m, where m is a base point in M. One proves that
i*{π\(G)) is contained in the center of πi(Af). Hence π' = π/f*i*(π\G) is
a group. Let α: ϋΓ(π, 1) —• ϋΓ(π;, 1) be the map induced be the projection
π-^π'.

3.2. Theorem {Browder-Hsiang [ 1 ]). There exists a map π: H* (M/G; Q)
—• H*(K(π', 1);Q) ŵcΛ /Λύtf the following diagram commutes:

In our application of this theorem we set π = G\*G2 (the free product
of G\ and G2). Note that the center of G\ * G2 is trivial and hence πf = π,
a = identity. Obviously Afi V M2 is a A"(π, l)-space. The map / : Af —•
MιVM2 = K(π, 1) will be the collapsing of 0 ^ = 5Λ 2̂ = ^ + 1 to a point:
(Afi x S2)#(M2 x S2) -^ (Afi x S2) V (Af2 x S2) followed by the projection
(Mi x S2) V (Af2 x S2) -> Af! V Af2. The induced map /*: πx(M) -• π is
an isomorphism.

Now//A ί(M1vM2;Q) = //«(M!;Q)e//«(M2;Q) = Q θ Q . If z i sapoint
in 5 2 , then M\ x z and Af2 x z are /? -dimensional homology classes in M,
and their images in Hn(M{ V Aί2;Q) under /* generate Hn(M\ V AΓ2;Q) so
that /* is onto.

Suppose now that M admits an effective action by a compact, connected,
nonabelian Lie group G. Replacing G by its subgroup [G, G] we can assume
that G is semisimple.

To complete the proof of (iii) it is enough to show that dim Hn(M/G; Q)
< 1. This is obvious if the dimension of the principal orbits is at least
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3 since then dim(M/G) < dim(M) - 3 = n - 1 and Hn(M/G\Q) = 0.
G has no homomoφhic images of dimension 1 and 2 because there is
no semisimple group in these dimensions and the image of a semisimple
group is semisimple. It follows that G has no orbit of dimension 1 as the
only candidate Sι would give an epimorphism G -» SO(2).

We are left with the case when the principal orbits are two-dimensional.
Let M° denote the union of all the principal orbits. M/G is a pseudomani-
fold of dimension n, M°/G is a manifold, and dim((M- M°)/G) is strictly
less than n. Now M°/G is connected (see [6, p. 12]) and it follows that
dimHn(M/G;Q) < 1 similarly as for manifolds. Hence Im(φ o p+) can
be at most 1-dimensional. Since dim(Im/*) = 2, we get a contradiction
which shows that there is no action of a nonabelian Lie group on M.

3.3. Remark. The class of K(π9 l)-manifolds includes manifolds of
nonpositive curvature (as the torus Tn or hyperbolic manifolds) and also
nil-manifolds (as the (2k + l)-dimensional Heisenberg nil-manifold—the
quotient of Heisenberg group by its standard integral lattice).

It was pointed out by the referee that Theorem C overlaps a theorem
of Burghelea and Schultz [2]. In particular they proved that the connected
sum of Tn x S2 with itself has properties 3.1 (ii) and (iii).

4. Towards a proof of Theorem A

Let us recall the theorem of Lawson and Yau proved in [7]:
4.1. Theorem [7]. If a compact, connected, nonabelian Lie group G acts

smoothly and effectively on a manifold M, then M admits a riemannian
metric of positive scalar curvature.

The remainder of the present paper is devoted to a proof of the following
generalization of Theorem 4.1:

4.2. Theorem A. If a compact manifold M admits a local action (G/ x
Ui —• Ui) by nonabelian Lie groups Gi (cf. Definition 1.1), then it admits a
riemannian metric of positive scalar curvature.

The action Gi x C// —• C/, provides [/,- with a metric gi of positive scalar
curvature (obtained for example by means of Theorem 4.1). One could
try to build up a metric of positive scalar curvature on M by glueing the
metrics gi together. A natural way (as it is explained in more detail in
§5) is to show that the metrics on the intersections ί7Zl Π Π C/, fc obtained
from the actions of different groups GZl, , Gik are homotopic. Unfor-
tunately, we are not able to prove this for the metrics obtained from the
original construction of Lawson and Yau. In order to display the diffi-
culty which arises here let us recall how the construction of Lawson and



34 MAREK LEWKOWICZ

Yau works. For a bi-invariant metric on G the sectional curvature k(X, Y)
equals \\\[X9 Y]\\2 > 0, and the submersed metric on a homogeneous space
G/K has also nonnegative sectional curvature. For a general global action
of G on a manifold N the idea is that shrinking a (/-invariant metric on N
in the directions tangent to the orbits of G (in a way to be specified) one
gets large positive curvature in these directions that predominates over the
whole possibly negative curvature coming from the other directions. This
does not work in the fixed points NG where the orbits are zero-dimensional,
although the set with possibly negative curvature can be made an arbitrar-
ily small neighborhood of NG. Lawson and Yau cope with this problem
by choosing the initial metric to be a torpedo metric near NG. This means
that small discs transversal to NG are isometric to a hemisphere of small
radius and hence carry large positive curvature. This property guarantees
that during the shrinking one has positive scalar curvature on a small but
fixed neighborhood of NG. In order to prove the above-mentioned homo-
topy relations we should be able to shrink a metric along the orbits of all
the groups simultaneously, with different weights. The main problem with
using torpedo metrics in this situation is that if H is a subgroup of G, then
it seems to be impossible to find a G-invariant metric which is torpedo
near NH (since NH is not G-invariant in general).

Fortunately there is another geometric phenomenon, neglected by Law-
son and Yau, which enables us to show that their condition on the initial
metric to be a torpedo metric is superfluous. The simplest example of
this is the following. Shrinking the orbits of the standard action of Sι on
the flat IR2 we get small curvature on most of R2 (since Sι is abelian) but
large positive curvature near the fixed point. In §9 we show that near the
fixed points of any action the situation is very similar. One could observe
that the neighborhood of MG with positive curvature obtained in this way
lessens quickly. The aim of §§9 and 10 is to show that the set with posi-
tive curvature obtained by shrinking the orbits extends and nears MG even
faster. Thus the two sets eventually cover the manifold and we get positive
scalar curvature everywhere.

A rigorous treatment of both sources of positive scalar curvature is based
on a modification (presented in §6) of the main construction from [7]. The
shrunken metric is obtained as a metric submersed from a riemannian
product. Its curvature is described by a formula of O'Neill recalled in §8.
In this more technical setting the first source of positive scalar curvature
(shrinking the orbits) corresponds to the horizontal curvature while the
second source (described conceptually above) makes its appearance as the
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fundamental tensor^ of the riemannian submersion (6.1) and originates in
nontrivial representation of isotropy groups acting on the tangent spaces.

5. First step in the proof: local actions reduced to global ones

In the first part of the proof of Theorem A we transform the existence
problem on positive scalar curvature metrics in case of local actions into
a problem of homotopy of metrics in case of global actions (our aim is to
show how Theorem A follows from Proposition 6.2).

With the purpose of illustrating this idea we take a group G\ of maximal
dimension and a compact, G\ -invariant submanifold (with boundary) M\
of codimension zero in M which covers almost the whole domain U\ of G\
(this means that Mx c U{ and Cl(M\M{) c \J{Uii i φ 1}). We fix a collar
structure near d M\ (that is, a diffeomorphism of a neighborhood of dM\
in M onto dM\ x (—ε,ε)) which is compatible with the action of G\, and
hence with all the actions. Now suppose that we have obtained metrics of
positive scalar curvature on Cl(M\M\) and Mi which are product metrics
near the boundary dM\ by construction. In order to glue the metrics
together it is enough to find a homotopy in 3P{dMx) (the space of metrics
with positive scalar curvature on dM\) between their restrictions to dMx

since such a homotopy provides a metric of positive scalar curvature on the
collar ΘM\ x [0,1], a product near the boundary. Note that the two metrics
on dM\ are obtained from local actions: (1) {Gt•: UiΠdMi φ 0J φ 1} and
(2) global action by G\. Note also that all the groups in (1) are contained
in G\ since άim(G\) is maximal.

We shall continue this idea and decompose M into pieces with global
actions. The metrics of positive scalar curvature provided by these actions
can be glued together by one- and multi-parameter homotopies since they
are constructed in an almost canonical way: the metric dmj t defined by
(6.1) depends on a bi-invariant metric on a Lie group, an invariant metric
on the manifold, and on a real number t, and the set of these parameters
is contractible. Moreover, the metric dmζt depends on weights ζj > 0
associated with groups G, forming a tower Gn < < G\. Hence there is
a standard homotopy joining metrics provided by such a tower and by its
subtower—simply by letting some of the weights & tend to zero.

The decomposition of M which we are going to use is based on the
following refinement of the data provided by a local action:

5.1. Proposition. Let (Ft: G/ x C/, -• t//)/G/ be a local action of compact,
connected {not necessarily nonabeliaή) Lie groups on a closed manifold M.
Then there exist compact submanifolds with boundary Mi of codimension
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zero in C/z (/ G /) and a riemannian metric dm2 on M satisfying the fol-
lowing conditions:

(i) The family {Fi\Gi x ln\Mt•: i e /} is a local action on M.
(ii) dMi and dMj are orthogonal for i φ j .

Let Xi be the inward unit normal vector field on dMi. For J c I let

(iii) For some ε > 0 the exponential map

exp7: Nj x (-ε,ε)J 3 (n,(Xj)jej) »

is an isometric embedding.

We identify Nj x (-ε,ε)J with its image by expy in M.

(iv) The metric dm2 is Grinvariant on Mi U (dMi x (-ε, ε)).

5.2. Remark. It follows immediately that for small ε and K c J C I

expj maps Nj x (-e,^)^ into Nj-χ, and f |{^M x ( - £

?

ε ) : / G /} =

Proof of Proposition 5.1. We can assume that / = (1,2, ••• ,/?o} and
/ < j implies dim Gz > dim Gj.

We prove by induction that for k e I one can find manifolds Mt (i <k)
and a metric dm2 with properties (i^)-(iv^) analogous to (i)-(iv) above,
namely in /* we require that the family {Int(Af, ): / < k, {//: / > k} with
the restricted action is a local action and (ii^)-(iv^) differ from (ii)-(iv)
by the condition / < k, j < k, J c {1, , k}.

Suppose Mi (i < k) and a suitable metric dm2 are found.
5.3. Lemma. If C is a compact subset ofU^, then for small ε there is a

smooth nonnegative function h on M such that:
(a) supp(Λ) c Uic, h is G^-invariant on Uk\
(b) for i < k, h is Grinvariant on Mi u (dMi x [-ε, ε]);
(c) if0 φ J c {/: / < k} andy e NJ} then h is constant on {y}x[-ε,ε]J\
(d) h is strictly positive on C.
Proof of Lemma 5.3. Take ε' slightly greater than ε. For J c {i: i < k}

letCy = Cn(Λ^yx[-ε/,ε/] / )and let πj be the projection from Njx[-ε',ε']J

onto Nj. If ε and ε' are small, then Bε>(πj(Cj)) x [-e',ε']J c U^, where
Bε(X) is the closed ε-neighborhood of X in M for ε > 0 and Λ" c M.

For / < fc let P? = dMt x [-ε,ε], P+ι = d(Mi\P9)9 and P~ι =
C K M ^ 1 ^ 0 ) . For //: {/: / < Λ) -> {-l,0,+l} let P» = f\{P^{i): i < k}.
Now C = \JCη where Cη = C ΠPη. It is relatively easy to construct a
function /ẑ  satisfying (a), (b), and (c), strictly positive on Cη. Therefore
h = Σhη meets conditions (a)-(d) as required.
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We continue the proof of 5.1 by applying 5.3 to any compact connected
subset C of Uk containing Af\|J{Int(Af/): / < k}\\J{Ui: i > k}. Let
c e (0,infA(C)) be a regular value of h and let Mk be the connected
component of {p e M: h(p) > c} containing C.

Replace dm2 by a metric dm\ which is Gk-invariant near Mk, a product
near dMk. Then the manifolds Af, (/ < k), the metric dm\, and a small
ε > 0 satisfy (i^)-(iv^) and the proof of Proposition 5.1 is complete.

We still assume that / = {1,2, , HQ} and that / < j implies dim((7z) >
dim(Gj). Fix a bi-invariant metric dhf on Gj. Similarly as before let
Pf = dMi x [-ε,ε], P+1 = C1(M\^°), and P~x = C\(M\P+X\P?) for
each i e /. Thus M is decomposed as a union of three manifolds M =
P+1 U P° U P~ι glued along boundaries. For η: I -• {—1,0,-4-1} let again
P^ = Π { ^ ' : z e }̂ ^ o w w e Ŝ t the desired decomposition of M into a
union Λf = \J{Pη} of manifolds with corners.

Let us fix η for a while and describe a riemannian metric of positive
scalar curvature on Pη. Let j \ < < j z (resp. &i < < kp) denote all
the indices i e I for which η(i) is zero (resp. nonnegative). Now (Pη, dm2)
can be written as a riemannian product Y x [-ε,ε]z where Y is equal to
n { ^ ( / ) : n{ϊ) Φ °) Π Π ί ^ M ί(/) = 0} and admits a global action by
(Jfcj. Denote by φ and y/ two auxiliary smooth increasing functions from
] - ε,ε] to [0,1] with φ(x) = 0 for x < O.lε, φ(x) = 1 near x = ε, and
^(x) = l - φ(-x). We consider the z-parameter homotopy λt: [-ε,ε]z —•
^f(y) (where ^ ( F ) is the space of all riemannian metrics on Y) defined
by λt(XjW' >Xjz) = dm^r Here we adopt notation from §6 and use
the metric dm2, the groups Gkχ > > Gkn, and the weights ξ given
by ξi = 1 if η(i) = +1 and ξj = φ(Xi) if η{i) = 0. The bi-invariant
metric used depends on x e [-ε,ε]Σ and can be defined as follows. Let
/ = min{/ e I: η(i) = 4-1} and let i\ < < /5 be all the indices preceding /
for which η = 0. Now we choose our bi-invariant metric to be ψ(xn )dh2

{ +
[1 - ψ(xn)]ψ(Xi2)dh}2 + - + [l - ψ(xn)] [1 - ψ{xis)]dh2. Note that this
metric may not be defined on some groups—but then the corresponding
weights are zero.

Proposition 6.2 implies that there is a large value of t, common for all
η, such that λt maps [-ε, ε]z into 3°(Y). Thus for each Pη we get a metric
λt(x) Θ f(x) dx2 of positive scalar curvature, with /, a suitable function
elongating the intervals [-ε,ε] and dx2, the standard metric on [-ε,ε]z.
All these metrics are product metrics with respect to the splittings 5.1(v)
and hence give rise to smooth metric of positive scalar curvature on M.
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Remark. For a compact, connected, nonabelian Lie group G the com-
mutator group [G, G] is semisimple, and a homomorphism / : / / — • ( /
induces / : [H,H] —• [G, G], Using this we can replace the groups G, by
[Gi, Gi] and work in the sequel with this new yΓ-structure for which the
groups are semisimpίe. We shall exploit this property in the proof of (7.5).

6. Construction of the metric dm]; t

Suppose we are given compact, connected, semisimple Lie groups Gn <
Gn-\ < - < G\ and a smooth, effective action F\: G\ x M —> M of G\ on
a compact manifold M. The map

F: GnX-xGtxM -> M, F(gn, - ,g\,m) = gn-'g\m

is a principal (Gn x x Gi)-bundle with the action Δ given by

(g,m)g = (gngn,gήl8n-\8n-\, - ,8^8x81, Sf1™).

Fix a Gi -invariant metric dm2 on Λf and a bi-invariant metric d^ 2 on G\.
The restriction ί/g? = dg^ld is a bi-invariant metric on G, , / = 1, , n.
For (£, ί), where ζ e (0,1]" and t e [1, oo), let dmj t be the only riemannian
metric on M such that

(6.1) F: ζ~2dg2

n θ Θζ;2dg2 θ t2 dm2 -> rfm2

f

is a riemannian submersion. For <̂  e [0,1]" let rfm^ = dm2

t, where ^ is
the sequence ξ with zeros entries omitted. It follows from (7.2) that the
map

[0, I f x [l,oo) - Λ f (M), (ζ,t) ^ dm2

ξί

is continuous. Vaguely speaking, £,- —• 0 means that the group G, disap-
pears.

6.2. Proposition. L^ί I < s < n. There exist to e [l,oc) .swc/z that for
t > to and any ζ e [0,1 ]n with ξs = 1 ίΛe 5 cα/αr curvature ofdrn^ t is positive.
For continuity reasons the same is true if dg\ is allowed to range over a
compact set of metrics.

The proof of 6.2 occupies the succeeding sections from 7 to 10.

7. Some preparatory lemmas

Let g (resp. g) denote the Lie algebra of left (resp. right) invariant fields
on a group G. If F: G x M —• M is a left action, then the same letter F
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will denote the induced Lie algebra homomorphism F: 9 -> Vect(Λf). Fj
will be the action F{ restricted to G7.

We describe now vertical and horizontal fields for the riemannian sub-
mersion (6.1).

Lemma. Δ: gπ 0 0 Q{ —• Vecl(Gn x x G j X M) is given by

(7.1) Δ(vΛ, ,t>i) = (vΛ,f?Λ + ιv_i, ,#2 + ^ 1 , - ^ 1 ) ,

where $ 3 v ^ ϋ e Q is the natural Lie algebra isomorphism for which
ϋ(e) = -v(e). The horizontal lift X of a field X on M is equal onex -x
e x M to

(7.2) X = (

where S = I + Σli H^F* = E = o *
2tf W ζ0 = l/t, Fo = /.

Proof The formula for Δ is evident. The right-hand side of (7.2) is
horizontal since

1=0

n-\

_ ξ~2h2ξ2fJ*S~ιX v ) +

- ί 2 <S- '* ,F i υ i >

n~\

1=1

Finally

ι=0 / \i=0 /

In the proof of the next lemma we shall make use of the following
blowing-up construction. Let M be a riemannian manifold and N a closed
submanifold of M. Let /? be the inactivity radius for the normal bundle
vN and put rN(m) - f(d(m,N))9 where / : R —• R is a smooth increas-
ing function such that f(x) = x near zero and f(x) = 1 for x > p/2.
The function rN: M —> R is continuous and smooth on M\JV. We iden-
tify the normal disc bundle D(uN, p) of radius p with its image in M by
exp: vN -» M. Let π be the linear automorphism of T(M\N), which mul-
tiplies by l/rs the vectors tangent to normal spheres and leaves the vectors
normal to the spheres unaltered. Consider the noncomplete riemannian
manifold M\N with the metric π* dm2; its completion is a compact rie-
mannian manifold which we shall denote by M = M(N) and call the
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blowing-up of M along N. The identity on M\N extends to a smooth
map π: M —• M which is covered by the isometry of tangent bundles π.

Note that topologically M is obtained from M by replacing TV by the unit
sphere bundle dD(vN, 1). The metric π* dm2 on dD(vN, 1) coincides with
one coming from a standard construction which supplies a riemannian
metric on the total space of a vector bundle with a riemannian connection
over a riemannian manifold (applied to vN over N here).

Further on we shall need the following estimates.

Lemma. For some positive constants a and y and any i = 1, • , n we
have

(7.3) \FiU\ < a\u\n and \F?X\ < a\X\rr,

(7.4) \[F?X,F?Y]\<a\X\\Y\rf\

(7.5) the norm of the tensor I J H [F*X, F* Y] G g, is greater than γrf,

where τι - rN for N = MGi and u e gz.

Proof If F: G x M -^ M is an action by isometries and N — MG,
then there is an action F: G x M —»> M without fixed points for which π
is equivariant. It follows that for F: g —• TM and F : ή -+ TM we have
F = Tπ o F = r/π o F. F is defined on the compact manifold M, and
hence \Fu\ < a\u\, \F*X\ < a\X\ and \[F*X,F*Y]\ < a\X\\Y\ on M for
some a. But π is an isometry, so (7.3) and (7.4) follow. As regards (7.5)
it is enough to show that the tensor X, Y »-• [F*X,F*X] e g is nonzero
at every point of M. Now ImF* = (kerF)-1 in g, and in a semisimple
Lie algebra g (with a bi-invariant metric) fc-1 is abelian (for a subalgebra)
t < g) only if t = g. Since F has no fixed points, (7.5) is proved.

8. Curvature of a riemannian submersion

We recall a formula of O'Neill [8] relating horizontal and base sectional
curvature of a riemannian submersion p: E —• B.

Denote by V and H the vertical and horizontal bundles. Let Xv (resp.
Xh) be the vertical (resp. horizontal) component of a vector field X on
E. For a field Y on 5 let F be its horizontal lift to F. We define the
fundamental tensor A: H ® // —• V by

(8.1) A(Ϋ,Z) = \\Ϋ,Z\\

The Levi-Civita connection V and the curvature tensor Ron E are related
to those on 5 in the following way.
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8.2. Proposition {O'Neill [8]).

(R(Ϋ,Z)Z,Ϋ) = (R(Y,Z)Z,Y) -3\A(Ϋ,Z)\2

Define the horizontal scalar curvature at e e E as

Scalhor(e) = £<*(£•,£;)£;,£,•),

where {£/} is an orthonormal basis for the horizontal space H(e).
8.3. Corollary. The horizontal and base scalar curvatures are related to

the tensor A as follows:

Scal(p(e)) = Scalhor(e) + 3||Λ||2 for eeE.

9. The fundamental tensor A

We plan to show that Scal(Af, dm^ t) > 0 using Corollary 8.3. For this we
shall calculate the tensor A and the horizontal scalar curvature at e x e x
x e x M.

9.1. Lemma. There exist small positive constants ε and δ such that the
norm \\A\\ of the fundamental tensor of the riemannian submersion (6.1) is
greater than δ for any (ξ, t, m) satisfying rs(m) < ε/t, ξs = I.

Proof Let v, = 0 for n > i > s and vtr = w e gs for s > i > 1. Applying
(7.3) we see that

\w\2 < |Δv|^ < M 2 + t2\F{w\2 = \w\2 + t2\Fsw\2

< \w\2 H- t2a2r2

s\w\2 < \w\2(l + α V ) ,

so that the norm of Av is uniformly bounded with respect to ξ, t, and to
prove the lemma it is enough to bound from below the norm of the tensor

(1SX9SΫ) ^ (A(JX9SY)9Av)ξtt

in the metric

i=0

For rs <ε/t this metric is equivalent to

(9.2) CTg^Σ^?^*^
1=0

because if / > s then

t4ξf\F*X\2 < t4a2\X\2rf < t4a2\X\2r2 < a2ε2t2\X\2 < a2ε2\SX\'ξ
2

t
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(as Ti < rs for i > s and small rs) so that

\SX\'2 < \SX\2 < (1 + na2ε2)\SX\'2.

Now

2(A(SX,SY,Aυ) = 2(VwSY,Av) = -2(SY,VW,
s-l

= - 2ί4(Fs* Y, VF;xw) - 2 Σ t4ξf(F* Y, V f,χ(

-2t2{Y,Vx-Fιw)
5 - 1

= t4([F;x, F; Y], w) + 2 ̂  t4ζf([F*x, F* Y], I

+ t2(Y,VxFιw)-t2(X,VyF1w)

= a + b + c,

where

a = t4([F;X,Fs*Y],w),

b = £t*ξJFiF;Y,VxFιW) - §2t*ζfFiF;X,VYFlW),
/=1 ί=0

c = (X, VFιW Σ t'ζfFiF* Y) - (Y, VFlW Σ t'ξfFF X),
( = 1 ; = 1

because

2([F*X,F*Y],w) = ([F*X,F*Y],w) - ([F*Y,F*X],w)

- - (F; Y, [F X, W]) + (F X, [F; Y, W])

= - (Y, Fi[F*X, w]) + {X, Fi[F*, Y, w])

= {Y, [FiF'X, FiW]) - {X, [FiF*Y,FiW])

+ (X,VFiWFiF*Y).

We shall show that the tensors a and c have small norms for small ε and
that the norm of b is large enough. By (7.4),

\a(SX,SΫ,Av\ = /4|([/7ΛΓ,JF;y],u;>| < atA\X\\Y\\w\ή

< aε2t\X\t\Y\\w\ < α 2 3 T

Thus ||a|| < at2.
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Now let d = sup[|{X,VYFXZ)\ where the supremum is taken over X,Y
TM, Z e fli, \X\ < 1, IJΊ < 1, and \Z\ < 1. Then

\(X, VFiWt*ξ}FiFΐY)\ = d\X\ars\w\t4ξf\F*Y\

so that ||c|| < Isdaε.
To deal with b we prove the following algebraic lemma.
Lemma. Suppose that D: Rn xR" -» R is a tensor and B: Rn -> Rn is

a selfadjoint, nonnegative linear map. Let Φ = t2(I + B) and C(X, Y) =
D(X,ΦY) + D(ΦX, Y). Then we have \\C\\Ψ > 2\\D\\, where \\C\\)φ is the
norm ofC taken with respect to the inner product (X, Y)φ = (ΦX, Y).

Proof. Let {ei9ej) = δu and Bet = λ/^ . Then (ei9ej)φ = t2{\ + λ, )ί//
and

. M 2

\\c\\i =i =
U

c
Ji
n+λity/T+λ})\

\D(eht
2(l +λj)ej) + D{t2{\ +λi)ei,ej)\2

since (a + b)2/ab > 4.
Applying the lemma to D(X, Y) = (X, VyFyw) and

Λ - l

i=0

we get that \\b\\ξtt is greater than the norm of D in the metric dm2. But D
and dm2 are independent of ξ, t. Moreover D is nonzero at every point of
Ms = MGs. To see this, note that Fγw = 0 on Ms, and hence VγF\W does
not depend on the metric on M. Thus D is determined by the orthogonal
representation of Gs in TmM (m e Ms), which is the same at every point
of the connected component of My. For 0{n) acting on Rn, (X,VγFw) =
(X,Fw Y) where Fw e o(n) c End(Rπ). As \\D\\ > 0 on Ms, for some
ε,δ we have \\D\\ > δ > 0 if rs(m) < ε > 0. This proves Lemma 9.1.

10. Horizontal curvature

Now we consider the other part of 8.3—the horizontal scalar curvature
Scalhor. For orthonormal vectors X, Y in a riemannian product N{ x N2
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we have

2

, Y) = (R(X, Y)Y,X) =
i=\

2

= Σ(\Xi\2\Yi\2 - (Xi9YΪ)2)Scct{XhYi)9

i=\

where Xj9 7/ e ΓiVj are the components of X, 7.

In this way the horizontal curvature Scalhor decomposes as the curva-
ture coming from Gn x x G\ and from M:

(10.1) Scalhor = Scalhor G + Scalhor M

with Scalhor G> 0 and

I ScalhorM\ < Γ2 dim(M)(dim(M) - 1) sup | Sect(A/)|

so that in order to prove Proposition 6.2 we have to show that for any K
the nonnegative terms 3| |^ | | 2 + Scalhor G in 8.3 are greater than Kt~2 for
large /. From Lemma 9.1 this is clear for rs{m) < ε/t. To show this for
rs(m) > ε/t we shall use Scalhor G.

10.2 Lemma. For fixed ξ Scalhor G is a monotonically increasing func-
tion oft.

Proof For a tensor C let C(X, Y): Φ(X) denote | |C | | 2 with respect to
the inner product for which (X,X) = Φ(X). In this notation

4ScalhorG=

because for a Lie group with a bi-invariant metric (R(X,Y)Y,X) =
\\[X, Y]\2. For t -• oo, t~2\X\2 decreases monotonically, and the other
parts of the expression are independent of t.

It follows that we may assume that t - 1 for rs > ε and / = ε/rs(m) for
rs(m) < ε. In the first case we have a positive lower bound for Scalhor G
since by (7.5) the tensor [F*X, F* Y] vanishes only on Ms and so Scalhor G
is everywhere strictly positive on M\MS. It remains to consider the case
where 0 < rs < ε, t = ε/rs. Here, following (9.2) and then using (7.3)-(7.5)
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we have

4(l+«αV) 2ScalhorG>
I

<i=l

Consider now two cases:

(a) If maxi</<5 ί&r,- = tξkrk > β > 1, then

B > (ξkrk)*ξl(sξlφ-2 > s-2(β/tτk)
2 > β1s~1r\

and β2s~2 is large for large β.

(b) If tξin < β for 1 < / < s, then

B> (ξsrs)
4ξjt4(sβ2)-2 = ε4s-2β-\

which is constant and positive. This completes the proof of Proposition
6.2 and simultaneously proves Theorem 4.2.
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