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WITTEN'S COMPLEX AND
INFINITE DIMENSIONAL MORSE THEORY

ANDREAS FLOER

Abstract

We investigate the relation between the trajectories of a finite dimensional
gradient flow connecting two critical points and the cohomology of the
surrounding space. The results are applied to an infinite dimensional
problem involving the symplectίc action function.

1. Introduction

Let M be a smooth finite dimensional manifold and let / : M -> R be
a smooth function. It is the aim of Morse theory to relate the topological
type of M and the number and types of critical points of / , i.e. of points
x eM with df(x) = 0. For example, if M is compact and all critical points
of / are nondegenerate, then there are the well-known Morse inequalities
(see e.g. [6]) relating the number of critical points and their Morse indices
to the dimension of the graded vector spaces H*(M9F)9 where F is any
field and H*(M9F) is the graded cohomology of M with coefficients in
F. (Throughout the paper, we will use Alexander-Spanier cohomology;
see [12].) The Morse inequalities are usually stated as a relation between
polynomials in F[t], but can be formulated equivalently as follows: Let us
denote by Cp the free F-vector space over the set C of critical points of
/ . That is, Q ^ (F)'cl, is identified with a set of generators of Q . Then
the Morse inequalities are equivalent to the existence of an F-linear map,
called a coboundary operator <5F * Cp —• Cp so that δFδp = 0 and

(1.1) kerJp/imJp =H*(M,F).

The central tool in the proof of the Morse inequalities is the gradient flow
of / : If g is a Riemannian metric on M, and Vgf denotes the gradient
vector field of / with respect to g, then the solutions of the ordinary
differential equation
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for x e M define homotopies

χ: M x R -> M; χ(x, ί) = x t := x(ί).

This is called the gradient flow; the solutions of (1.2) are called flow tra-
jectories. Clearly, the function decreases on the flow trajectories unless
df(x) = 0, in which case x t = x for all t. As a result, one can show that
for compact M, the topology of the sets

Ma = {JC e M\f(x) < a}

for a € R changes only at those real numbers a which are values of critical
points of/. By analyzing these changes, one obtains the Morse inequalities
(see e.g. [6]).

There is a different approach to the Morse inequalities, which gives a
geometrical interpretation of δu in terms of flow trajectories "connect-
ing" critical points. (For a precise statement, see Definition 2.1 and the
corollary in §2.) This approach depends on certain generic properties of
gradient flow discovered by Smale [11]. The existence of <5F was known to
Thorn [13] and Smale [10]. The connection with the flow trajectories was
partly used in Milnor's lectures [7] on the Λ-cobordism theorem (in fact,
Lemma 7.2 and Theorem 7.4 of [7] establish a proof of (1.1) in the spe-
cial case of "self-indexing" functions). However, it did not receive much
attention in general. It was rediscovered by Witten, who in [14] gave a
"physicist's proof of the Morse inequalities in the form of (1.1) by in-
terpreting the critical points of / as "ground states" and the connecting
trajectories as "tunneling effects" in a (super-symmetric) quantum dynam-
ical system. Witten's arguments were subsequently extended and made
more precise in [5], for example. Because of [14], we call the complex of
(1.1) Witten's complex.

In this paper, we are interested in the complex (1.1) for rather different
reasons, concerning extensions of Morse theory of infinite dimensional
manifolds M. It is well known that the traditional approach to Morse
theory via an analysis of the sets Ma gives meaningful results only if the
critical points of / (or its negative) have finite Morse index. If both the
negative and the positive eigenspace of D2f(x) are infinite dimensional,
then the homotopy type of Ma does not change when a passes through
f{x). On the other hand, it was shown in [3] that for a certain function
of the latter type, the symplectic action function on the loop space of a
symplectic manifold, the spaces of trajectories connecting critical points
behave essentially as in the finite dimensional case. In fact, in this situation
one can define a cohomology group based on an operator δp as described
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above. This was done in [2] for F = 12. It cannot be directly identified
with the cohomology of the Conley index of a compact invariant set in
finite dimensional Morse theory. This Conley index was defined in [1] to
extend Morse theory to arbitrary flows on locally compact spaces (although
we restrict ourselves here to gradient flows on arbitrary finite dimensional
manifolds). The definition is given in §2.

The purpose of this paper is twofold: First, we extend the statement
of Witten's complex to cover the Conley index in noncompact manifolds
as well as to arbitrary rings F. It turns out that a proof of this extended
statement can be given by rather elementary methods of Conley's index
theory (see §3). The second purpose is to use this result to calculate the
"cohomologicaΓ Conley index of [2] in a special limit situation. In view of
the "deformation invariance" of the construction of [2], this determines the
cohomological Conley index in a rather general situation, and is therefore
the final step in the estimates of Lagrangian intersections in [2].

2. The Conley index

If M is not compact, then the Morse inequalities (1.1) generally fail
to hold. In this case, a different relation can be recovered for a set of
critical points provided that the flow-invariant set of points in M lying on
connecting trajectories is compact and isolated.

Here, we call a compact invariant set S isolated if there exists a compact
neighborhood U of S whose maximal invariant set

S(U):={xeU\R xc U}

coincides with S. In this case, Conley [1] defined the following invariant
of S: For each neighborhood U as above, there exists a compact subset
A c U - S satisfying the following:

(1) If x e U and x t φ U for some / > 0, then there exists /' e [0, /]
such that x /' e A.

(2)IfxeAandxt(£Afort> 0, t h e n x tφU.

Because of these properties, A is called an exit set for U. A pair (U,A)
satisfying these conditions is called an index pair for S. The Conley index
7(5) is defined as the pointed homotopy type of the topological quotient
X/A with base point {A}, i.e., as its equivalence class under the relation
of pointed homotopy equivalence. It is shown in [1] that it does not
depend on the choice of the index pair (U, A) and that it is invariant
under continuous deformations of the flow as long as S remains isolated
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in an appropriate sense. In particular, the relative cohomology

(2.1) Γ0S;F) = JΓ(l/,i4;F)

is well defined for any coefficient ring F. It is the cohomology which takes
the place of H*(M,F) in the Morse inequalities.

Example 1. If M is compact, then an index pair of S = M is given by
(A/, 0), so that I(M) = (Mu {0}, {0}).

Example 2. One easily shows that any isolated critical point x of / is
an isolated invariant set with respect to any gradient flow of / . If x is
nondegenerate, i.e. if the linearization

Ax = DVgf(x), TXM -> TXM

is an isomorphism, then a special index pair can be constructed as fol-
lows: Since Ax is selfadjoint, it splits TXM into a positive and negative
eigenspace Ef. Then, if expx: TXM —• M is the Gauss normal chart and
Bf is the ε-ball in £±, the image under expx of

is an index pair of x for ε small enough (see [1]). This is also called an
isolating block. Hence

Γ(x F) = //*(5 + ε 0 5-,5 ε

+ x d £ " , F )

Conley index itself is a pointed sphere of dimension μ{x)). Note that the
choice of a generator of I*(x, F) corresponds to the choice of an orientation
o f £ - .

Example 3. It is easy to see from the definition that if disjoint sets
S\, S2 are compact isolated invariant, then so is SΊ U 52 and

Here, A V B is the 1-point union of pointed topological spaces. From
Examples 2 and 3, we conclude that any finite set C of nondegenerate
critical points has a Conley index

(2.2) Γ(C;F) = Q .

The grading of /*(C,F) corresponds to the grading Cp = ® / i > 0 Cp of
Cp defined by the Morse index μ(x) = dim£~. Moreover, particular
isomorphisms in (2.2) are specified by a family o of orientations on E~.
xeC.
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The coboundary operator δp is now defined as follows: For x,y e C,
define the space Mg(x,y) of trajectories of the gradient flow connecting x
and y. It can be described as the intersection

(2.3) Mg(x,y) = Wu(x)nWs(y)

of the stable and unstable manifolds at x and y, respectively. We say that
the gradient flow is of Morse-Smale type if all intersections in (2.3) are
transversal. This can be shown to be the case for a dense set of metrics g
on M (see [11]). Then it is easy to verify that

dim Mg(x,y) = μ(x) - μ(y).

Note that due to the invariance of the flow equation with respect to trans-
lations in τ, any nonempty trajectory space has dimension at least one,
i.e. for a Morse-Smale flow there do not exist nonconstant trajectories
connecting critical points x,y for μ(x) < μ(y). Now for two critical
points x,y with μ(x) = μ{y) + 1, we define the matrix element (x,δy)
by counting the trajectories between x and y up to translations. There
are of course two problems involved. First, we must make sure that the
set M(x,y) = M(x,y)/R is finite, and second, we must assign a sign to
each of its elements in order to obtain an "invariant" result. To treat the
first problem, note that we can identify M(x,y) with M(x,y)Γ\Ma, where
Ma = {x e M\f(x) = a} for any (say regular) value a between f(x) and

Lemma 2.1. For μ(x) = μ(y) + 1, M(x,y) n Ma is compact for every
regular value a.

Proof. Let wf be a sequence of trajectories in M(x,y) with M, (0) = a.
Clearly, since M, (0) e S and S is compact, we have M, (0) -+ x e ManS
for some subsequence. If this subsequence does not converge in M(x,y),
then x = v(0) for some trajectory in S which does not connect x with
y. Repeating the process for different regular values a leads to the con-
clusion that there exist critical points x = z0, zo, , zn = y trajectories
Ui in A/(z, _i,z/) in the closure of M(x,y) in M. But this is impossi-
ble for a Morse-Smale flow if μ(x) = μ(y) + 1, so that Ma Π M(x9y) is
compact, q.e.d.

As to the second problem, it turns out that each of the manifolds
M(x,y) for arbitrary μ(χ) - μ(y) actually has a natural normal framing
defined by frames on E~ and E~. To define it, note that frames on £+
and E~ define normal frames φ± on Wu(x) and Ws(y). On the trans-
verse intersection, they define a normal frame φ+<$φ- of M{x,y) in TM.
To obtain a normal frame of M(x,y) in TM, we now only have to add
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the vector given by the flow direction. Now note that TM is trivial over
M(x,y). In fact, a framing of TM over all of Wu(x) is given by a frame
on TXM, that is by an additional frame on E~. It is then easy to see that
up to isomorphy, the normal framing of M depends only on the frames
of E~ and E~. In this paper, we will only make use of the orientation
on the normal (and hence on the tangent) bundle of M(x9y), which only
depends on orientations of E~ and E~.

Definition 2.1. Ifo = {ox} is a choice of orientation on E~ for all
critical points x off, then we define (x, δoy) Gl as the intersection number
of the oriented manifolds Wu{x) n Ma and Ws(y) n Ma in Ma. Moreover,
we define for any coefficient ring F,

xec

Now recall that o also defines the isomorphism (2.2). We are therefore
ready to state

Theorem 1. Let S be a compact invariant set of a Morse-Smale gradient
flow on M. Then ifS is isolated, we have δoδo = 0 and an isomorphism of
F-modulus:

I*(S,F)~kerδo/imδo.

If M is compact and S = M, then Theorem 1 yields the well-known
Morse inequalities.

Corollary. For any Morse-Smale gradient flow on a compact manifold
M, we have

H*(M,F) = kerδo/imδo.

In a more general situation, Fransoza [4] defined a "connection matrix"
recovering the cohomology of the index of S (see also [9]). In fact, the
existence of the homomorphism δ follows directly from Fransoza's work.
While it is known that the connection matrix is related to flow trajectories,
it is only in the case of a smooth Morse-Smale flow on a finite dimensional
manifold that it can actually be obtained from those. Our methods in
proving Theorem 1 do not use Fransoza's work but only the elementary
technique of Morse decompositions as introduced in [1].

The fact that the trajectory spaces are framed rather than only oriented
suggests the following extension of the above program: If h* denotes a
general cohomology theory, then it should be possible to obtain h*(I(S))
in a way similar to that above through an analysis of trajectory spaces. The
chain complex would have to be replaced by h*(I(C)) = (&xec h*~μ^x\ and
the <J-homomorphism would, in contrast to the singular case, depend on
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trajectory spaces of arbitrary dimension. For example, in the case of sta-
ble cohomotopy h* = π*9 the contribution of every compact component of
M(x,y) should be given by the element of π* classifying its framed cobor-
dism type. (In fact, the spaces M(x9y) undergo framed cobordisms under
a change of the metric.) Of course, the higher dimensional components of
M(x,y) do not have to be compact, but a reasonable modification of the
program should lead to a spectral sequence converging to h*(I(S)), as one
would expect. This program is only of limited use for finite dimensional
Morse theory, but might have applications to infinite dimensional cases.

3. Proof of Theorem 1

The Conley index of a compact isolated invariant set S can be related to
the Conley indices of isolated invariant subsets by the notion of a "Morse
decomposition" of S. To describe this, let us denote for any two subflows
S\, 5*2 in S the subflow S\ &S2 as the union of S\, S2, and of all trajectories
"connecting" S\ and 5*2. Then a collection of disjoint compact invariant
sets (Mi, ,Mn) is called a Morse decomposition of S, if for all x € S
there exist 1 < / < j < n so that x e Mj&Mj. That is, each point
in S - [j Mj lies on a trajectory connecting some M/ with some Mj for
j > i. In particular, there are no trajectories from Mz to M/ which are
not completely contained in Mz , and there are no trajectories at all from
Mi to Mj if j < i. For example, if the gradient flow of (/, g) on M is of
Morse-Smale type, then the sets

(3.1) Mi = {xe S\df(x) = 0,μ(x) = i}

define a Morse decomposition. We define an index filtration associated
with the Morse decomposition (Mi, , Mn) as an increasing family No c
• c Nn of compact subsets of M such that (JV, , iV, _ 1) is an index pair for
M/. In the case (3.1), this implies that

and Ip(Mi) = 0 for p φ i (see the remarks at the end of the preced-
ing section). Throughout this section, H*(X9A) denotes cohomology with
coefficients in F. A choice o of orientations on E~ defines a preferred
set of generators in H*(Ni9Nj-\). Moreover, an index pair of M/&M/+i
is given by (Ni+\,Ni-\). An index pair of M/&M/+1&M/+i is given by
(7V/+2, iV,_i) and so on. In particular, (Nn, No) is an index pair of S. Now
consider the exact triangle (the long exact cohomology sequence) of the
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triple (JV, +1,ΛΓ, , # , _ , ) :
I*(Mt&Mi+x)

I I
where δγ is of degree 1.

Lemma 3.1. With respect to the preferred basis of Ck given by o, we
have

δτ = δ0: V(Mi) c± σ -> C / + 1 ~ //+1(Afi )

Lemma 3.1 implies Theorem 1, since we can apply to the index filtration
(No,-" ,Nn) the procedure which in [8, Appendix A] is applied to the
cell filtration of a CW-complex. In fact, this procedure depends only on
the algebraic fact that H*(Ni,Ni-\) is free and has only one nontrivial
dimension.

To prove Lemma 3.1, first note that one can treat each pair of points
(x,y) e Miχ x Mi separately. In fact, by using the index filtration of the
Morse decomposition (Af, - {y}, {>>}, {x}, Mi+\ - {x}) of Mi&Mj, one can
reduce Lemma 3.1 to the following statement: For each x G Mi+\ and
y E Mi, the operator δγ in the exact triangle

r(x&y)

1 ϊ
Z = /*(y)-^/ (jc) = Z

is given by multiplication with k = (x,δy). This is essentially proved in
Lemma 7.2 of [7]. To give a proof in terms of the Conley index, we use
the freedom of choosing suitable index pairs for x and y: First, choose a
regular value a of / in (f(x),f(y)), and define Afo = {x G M\f(x) = a}
and M± = {x e M\ ± f(x) > ±a). Since the invariant set S was assumed
to be compact, so is the closure of Wu(x) intersected with M+ and the
closure of Ws(y) intersected with Λ/_. Moreover, let Bx,By denote blocks
as in Example 2 above around x and y of some (small) radius ε > 0. Then

U:=BX [09R] Π M+ and V = By [-R,0] n M_

are compact sets, too. Clearly, if B~ = exp^(5e

+ x dB~) is the exit set of
Bx, then

A:=UΠ(MOUBX R)

is by this construction an exit set for U,so that (U,A) is an index pair for
x. Similarly,

B = dV-(MoυBy(-R))
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is an exit set for V, so that (V,B) is an index pair for y. (It is instructive
to visualize this and the following construction in the case where all values
between f(x) and f(x) are regular. Then one can choose R large enough
so that A = U nMo and B = d V - Mo.) Now an index filtration No, N{, N2

of ({x}.{y}) is given by

0 V, N{ = VUA, N2 = UUV.

Note that we have excision isomorphisms H*(Nι,N0) -» H*(V,B) and
H*(N2,N\) -> H*(U,A). Hence we have to prove that the ί-homomor-
phism of the exact triangle

I*(UUV,B\JA-V)

J !J_
H*(V,B) ~ H*(V U A,B U A - V) Λ i/*(F U ί7, F U A) - H*{U,A)

maps the generator e of H*(V,B) into the /c-fold of the generator / of
H*(U,A). The 5-homomorphism of a triple factors through

Hμ(V UA,BUA- V)r -+ Hμ(V \JA)-+ Hμ+{{V

Note that (U,A) is a thickening of a cell (D^+1,5 ί^). Now if [A] e
Hn(V U A) denotes the corresponding «-cycle, then j*e[A] = k by the
definition of the intersection number. Moreover, the 5-homomorphism of
the pair (V e U, V e A) satisfies δa = a[A]f. This completes the proof
of Theorem 1.

4. An application to symplectic geometry

Let P be a smooth manifold of even dimension 2n which carries a
symplectic form ω. Let L and L' be two Lagrangian submanifolds of P,
i.e., L and L' are of dimension « and ω vanishes on TL and TV. In [2]
and [3], we studied the Morse theory for the symplectic action function
on the space Ω(L,Lf) of smooth paths in P connecting L and ZΛ More
precisely, the symplectic action a is defined on the universal covering Ω
of Ω by the condition

da(z)ξ= f
Jo

ω(z(tU(t))dt.

The critical points of a are the constant paths z(t) = x, where x by defini-
tion of Ω must be an intersection of L with L'. This variational problem
can therefore be used to estimate the number of such intersections. To
give a rough outline of the method, let Jt, t e [0,1], be any smooth family
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of smooth almost complex structures on P satisfying the Kahler condition
with respect to ω. This means that the bilinear forms

(4.1) gt = ω(Jr,')

are symmetric and positive for each t. Such a family Jt will be called
an almost Kahler structure. Then we consider for each pair (X+,JC_) of
intersections of L and U the set

(4.2)

Mj(x.,x+) = {u:Rx [0,1] - P\ (1) u(R x {0}) c L\

( 2 ) M ( R X { 1 } ) C L / ;

(3) lim u(τ, t) = x± for all t € [0,1];
τ—> ± o o

(4) dju = 0}.

Here, Έj is the Cauchy-Riemann operator

Although Px[0,1] is not compact, the image of each u e Mj(x,y) turns out
to be precompact due to the asymptotic conditions. If / is independent of
t, then u can be considered as a holomorphic disc in P with two "corners".
Here, however, we interpret the vanishing of dj u as the trajectory equation
for the "flow" generated by the "vector field" g(z)(ή = Jt dz(t)/dt on the
space Ω(L,Lf), which is in fact the gradient of the action functional with
respect to an L2-inner product on ΓΩ(L, Z/). Of course this "gradient
flow" is not well defined as a family of maps from Ω into itself. However,
the spaces (4.2) of "trajectories" connecting two zeros of g share many
properties of trajectory spaces in finite dimensional Morse theory. For
example, Mj(x,y) "generically" is a smooth manifold, as in the case for
trajectory spaces for finite dimensional gradient flows. We will discuss
this property later on. Also, the compactness properties of Mj(x,y) are
similar to those of trajectory spaces of finite dimensional manifolds. For
a detailed study of the Cauchy-Riemann flow, see [3].

In this paper, we approach the relation between the Cauchy-Riemann
flow and finite dimensional Morse theory from a different angle. Let L be
any smooth manifold, and denote by P = T*L the cotangent bundle of
L with the canonical symplectic structure. Then L is a Lagrangian sub-
manifold of P, and so is the graph of any closed 1-form on L. In particu-
lar, any smooth function / : L —> R determines a Lagrangian submanifold
L' = {(x,df(x))\x e 1} in P. Clearly, L and L' intersect precisely at the
critical points of /. Our aim is to compare the gradient flow of / with
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respect to some metric g on L with the Cauchy-Riemann flow in Ω(L, L')
with respect to a suitable family /, of almost complex structures.

Theorem 2. Let L be a smooth manifold with metric g. Then there
exists a constant ε > 0 such that iff: L-+Ris a smooth function satisfying

(4.3) l/(*)l

for all x e L, then there exists a family J = {Jt}te[0,i] ΛS in (4.1) such that
the assignment

Mj(x9y) = C°°(R,L), u -> uo(τ) = κ(τ,0)

is a bijection onto the set of bounded trajectories of the gradient flow con-
necting two critical points x and y of f.

In [2], we defined an algebraic invariant for the Cauchy-Riemann flow,
which depends solely on the space of bounded trajectories and the lin-
earized flow operator

Eu = Dd(u) = Vi + ΛV2 + Zu

along them. Here Z is a zero order operator, which depends on the con-
nection V. If V is the Levi-Civita connection, then the L2-adjoint of Eu

is

Eu and e+ act on the space of smooth sections ξ of the bundle u*TP
satisfying the boundary conditions £(τ,0) e TL and ί(τ, 1) e TLf. We
denote by ker£"M the space of bounded solutions of Euξ = 0 and by cokEu

the space of bounded solutions of E+ξ = 0. If u e M(x9y) and x and
y are nondegenerate critical points, then these spaces are related to the
stable and unstable manifolds Wu(x), Ws{y) as follows.

Proposition 1. Let x,y be two nondegenerate critical points and let
u e Mj(x,y) be as in Theorem 1. Define p = ι/(0,0). Then we have
an isomorphism

- TpW\x) Π TpW\y\ ξ -> £(0,0).

The same map also defines an isomorphism between CO\LEV and a comple-
ment ofTpW

u(x) + TpW*(y) in TL.
We now call u e Mj(x,y) regular if cok£w = 0. It can be shown (see [3,

Theorem 3]) that if x and y are transverse intersections of L and Lf and
if u is regular, then Mj(x,y) is a smooth manifold near w, whose tangent
space is isomorphic to ker£w.

Definition 1. Assume the following:
(1) The spaces Mj(x,y) are regular.
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(2) Whenever dimM j(x,y) = 1, then M/(jt, ;y)/R is finite.
(3) The Z2-numbers

, s . (#(Mj(x,y)/R)mod2 if dimMj(x,y) = 1,
(4.4) (x,δy) = { Λ ,
v ; x ' 1 0 otherwise
satisfy

£ <x,<Jy)(y,eJz) = 0.
>>€LnL'

We then define the index cohomology of L and Z/ with respect to L as

where δ is the operator on the free /2-vector space over the set Lπ L'
defined by the matrix elements (x,δy) of (4.4).

Here, Mj(x,y)/R is the quotient by the translational symmetry of
Mj(x,y) in the τ-variable, which can be shown to be a smooth mani-
fold. For appropriate /, conditions (l)-(3) can be shown to hold in the
special case where P is compact, V is an "exact deformation" of L, and
ni{P,L) = 0. Now Theorems 1 and 2 together yield

Theorem 3. Let L c T*L be the zero section and let LI be the graph of
df, where f is a Morse function on L satisfying (4.3). Then there exists a
family J = {/,} as in (4.1) such that

5. Proof of Theorem 2 and Proposition 1

Let us start with defining the family Jt of almost complex structures on
T*L. Every metric g on L defines an almost complex structure Jg on T*L
which satisfies (4.1) with respect to the canonical symplectic structure on
T*L and which for every (x9 ξ) eT*L maps the vertical tangent vectors to
horizontal tangent vectors with respect to the Levi-Civita connection of g.
In particular, for (JC,O) e L c Γ*L, it assigns to each φ e TXL c T(T*L)
the cotangent vector Jφ = g(φ, •) e t*L c T(T*L). Now let φtT*L -• T*L
denote the exact deformation induced by the Hamiltonian H(p) = f(πp),
where π: T*L —• L is the projection. Define

Clearly, φx(L) = V c T*L is the graph of df. Then for each smooth
map xR —• L, we define
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Lemma 5.1. Ifx'(τ) + grad^ f(x(τ)) = 0 for all τeR, then ~dx = 0.
Proof. We have

= Dφt{x{τ))gndgf{x{τ)).

On the other hand,

a ^ O = βφψ» = XH{φt{x{τ))) = Dφt{x[τ))χH{x{τ))

= Dφt(x(τ))J(x(τ))gκdgf(x(τ))

= Jt{X(τ,t))Dφt(x{τ)).

Hence

dx(τ,t)
7 +

= 0. q.e.d.

It remains to show that the map Γ is surjective for / small enough in
C2(L,R). We therefore invert the above construction: For any path u in
Ω{L,L')9 we define the path

ΰ:Rx [0,1] -> T*L, β(τ,r) = 0-,w(τ,O

in Ω(L, L). Clearly, w is in the image of the map Γ if and only if for each
τeR,

is constant. This however does not follow from the Cauchy-Riemann equa-
tions. In fact, if <90w = dΰ/dτ + Jodΰ/dt, then we have

+ J0(n(τ,t)) \Dφ-t(u{τ,t)) ^ -φ-t{u{τ,ή)\.

Here,

Φt(z) = ̂ p- = XH{ΦM) = -(J0H')(φt(z))

is the Hamiltonian vector field. Moreover, by the definition of Jt and for
Έu - 0,1 we have

) + //'(δ(τ,0) = 0.
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Let us now write ΰ(τ, t) - (x(τ, t), y(τ, t))9 where x(τ, t) e L and y(τ, t) e
T*(τΛL. Then (5.1) decomposes into its projection onto L and

and its go-orthogonal projection onto the fibers

(5.2) v τ , ( τ , / ) - ^ = 0.

Clearly, if we can show that y vanishes identically, then x is constant in
t by (5.2) and satisfies x'{τ) + grad^ f(x(τ)) = 0. Moreover, by the above
construction, we then have u = x. To prove that y = 0, define

where the inner product ( , ) between sections of (ΰ(τ))*TP is defined as

(ζ,ζ)Jg(ζ{t),ζ(t))dt9

and g is the standard extension of the Riemann metric on L to the cotan-
gent bundle. The following lemma proves that γ and therefore y vanish
identically.

Lemma 5.2. Iff satisfies (4.3) for ε small enough, then for all T G R ,

>

dτ2 *

Proof. We have

Now since the Levi-Civita connection is torsion free, we have

dx(τ,t) _ dx(τ,t)

= -Vjy(τ,t) - f"(x(τ,t))Vτy(τJ).

Since y(τ, 0) = y(τ, 1) = 0, we can perform an integration by parts to
obtain

(5.3) ^ 1 = ||V^(τ)||2
2 + ||V^(τ)||^ - (y(τ),f"(x(τ))Vτy).
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Using again the fact that y(τ) vanishes on the boundary of the interval
[0,1], we conclude that there exists a constant γ independent of u = (x,y)
and of h such that

We can therefore choose / small enough in C2(L,R) such that

<y(τ),r°(*(0)Vτy(τ)> < Cmax|/"(x) | • ||V^(

< |l|V,y(τ)||2 | |VTy(τ)||2.

Then since
a2 b2 1 , *

Ύ + Ύ-4ab

(5.3) yields the estimate

(τ)\\l > ±y{τ).

This completes the proof of Lemma 5.2, and hence of Theorem 2. In
order to prove Proposition 1, we proceed similarly.
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