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CURVATURE AT INFINITY OF OPEN
NONNEGATIVELY CURVED MANIFOLDS

J. H. ESCHENBURG, V. SCHROEDER & M. STRAKE

1. Introduction

Let M be a complete open manifold of nonnegative sectional curvature.
By the structure theory of [6] M is diffeomorphic to the normal bundle of
a compact totally convex submanifold Σ of M. Σ is called a soul of M. We
fix a soul Σ and define κ(t) = sup{K(σ)\dist(π(σ),Σ) > t}, where K(σ) is
the sectional curvature of a tangent plane σ at a point π(σ) with distance
dist(π(σ),Σ) to the soul. We obtain a bound on the decay of the function
K under suitable topological conditions.

Theorem 1. Let n = dim M be odd, k = dim Σ, and a = 2 - 2k/(n - 1).
Ifχ(M) Φ 0 where χ(M) is the Euler characteristic ofM, then limsup κ(t)
ta > 0 or M is isometric to a euclidian n-space Rn.

The theorem implies in particular that Σ is a point and thus M is dif-
feomorphic to Rn if κ[t) tβ -> 0 for an exponent β > 2 - 2/{n - 1). If K
decays quadratically, i.e., κ(t) t2 —• 0, then M is indeed isometric to the
euclidean space. The last result was proved first by Greene and Wu [11]
under the additional assumption that M has a pole. In general this was
recently proved by Kasue [15].

In the case where the codimension of Σ is < 3 we obtain the much
stronger result that the function κ(t) cannot tend to 0 if the soul is not
flat. More precisely we prove

Theorem 2. TfcodimΣ = n - k < 3 and κ(t) —> 0, then either M is
flat or the universal cover M splits isometrically as X x Rk, where X is
diffeomorphic to Rn~k. The fundamental group ofM is a Bieberbach group
of rank k, and any soul ofM is a compact flat k-dimensional manifold.

The last result leads us to the following conjecture:

Let M be a complete open manifold with nonnegative sectional curvature.
Ifκ(t) -+ 0, then the soul Σ ofM is flat.
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In §3, the final section of this paper, we discuss some examples and give
generalizations of the above theorems.

2. Proof of the theorems

Proof of Theorem 1. We distinguish the cases dim Σ > 1 and dim Σ = 0.
Case 1. dimΣ > 1. Since χ{M) Φ 0, the fundamental group π\(M) is

finite by [6, Corollary 9.4]. Since the universal covering M —> M is finite,
one checks easily that M satisfies the same curvature conditions as M.
Thus we assume without loss of generality that M is simply connected.

Let Σ be a soul of M arising from the basic construction of [6, §1]
using all rays starting from a fixed point po € M. Then there exists a
nonnegative, convex, nonexpanding map / : M —• R+ with / | Σ = 0. Up
to an additive constant, / is the supremum of the Busemann functions of
rays at /?o The sublevels C, = {p e M\f(p) < t} with t > 0 are compact
and convex. Since / is nonexpanding, we have

(1) Bt := {p e M\d(p,Σ) < t) c C,, d(dCt],dCh) > \tx - t2\.

The convexity of / implies

(2) Q c BΛt

for all / > 1 and A := max{d(/?,Σ)|/? e Cx).
Let us assume limsupA:(/) Γ = 0. Under this assumption and the

condition dimΣ > 1 we obtain:
Proposition 1. There exist a sequence t[ —• oo and a sequence Hi of

compact hypersurfaces Hi C M homeomorphic to the unit normal bundle
N\ (Σ) with the properties:

(a) HiCM-Btr

(b) \\Li\\ ή12 -+ Ofor the Weingarten map U of Hi.

(c) vol(/f, ) < const- f-{-k.
We will prove this proposition below. We remark here that Proposition

1 does not hold in the case dim Σ = 0 and a = 1. In this case, instead of
(b) we only get that ||L/|| ί, is bounded.

Note that the hypersurfaces //, = N\Σ are oriented, since M is simply
connected. Let (7, be the Chern-Gauss-Bonnet integrand of ///. Then

(3) X(H,) = χ{N{Σ) -sέτ7»
where ωn-\ is the volume of the standard (n - l)-sphere Sn {. The di-
mension k of Σ is even since χ(Σ) = χ(M) ψ 0. Thus the fibers of TViΣ
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have even dimension. So we obtain χ(N\Σ) = χ(Σ) χ(Sn~k~ι) (cf. [3, p.
182]) and in particular \χ(NxΣ)\ > 2. With β z := Gz - detLz from (3) we
obtain

with

/ Γz =
H,

We will show that the curvature assumption limsupκ(t)ta = 0 implies
Pi, Tj —> 0. This contradiction proves Case 1 of the theorem.

A purely algebraic computation (cf. [11, p. 70]) shows

m

| | β ι | | < c o n s t - Y ^ K t f

with m = ^(« - 1).
By property (c) of the proposition we have vol(//, ) < const t"~ι~k

const η'm. Thusη

\Ti\ < \\Qi\\vol(Hi) < const
p=\

Hence Γz —• 0 by the curvature assumption and the boundedness of ||LZ | |/^2

by property (b).
For Pj we obtain

\Pi\ < const IIL/II"-1 tf'ι'k = const (\\Li\\tf)"-\

and hence also Pz —• 0 by (b).
It remains to prove Proposition 1. We need some preparations. The

first result follows from [6, Theorem 2.5].
Lemma 1. For t > 0 the boundary of the set Ct is homeomorphic to the

unit normal bundle N\Σ.
Lemma 2. Assume that the boundary St = dCt is a smooth hypersurface

for some t > 0. IfO<K<ε2on M\Ct, then the distance set Sr

t =
{p e M\d(p, Ct) = r} is a smooth hypersurface for 0 < r < \π/ε, and the
Weingarten map L\ ofS\ (with respect to the outer normal vector) satisfies

(4) l/r>Lr

t> -εtan(εr).

In particular, the Weingarten map Lt ofHt = Sr

t for r = \π/ε satisfies

(5) l|£/ll
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Proof. Since St is a convex hypersurface, a standard comparison argu-
ment implies that the focal points of St in M\Ct have distance > \πjε
from St. If the nearest cut point of St in M\Ct is closer, then there exists
an unbroken geodesic γ: [0,2a] —> Λ/\interior(C/) with endpoints on St.
Now / o y(0) = foγ(2a) = t but f o γ(s) > t for s G (0,2α). This is a
contradiction to the convexity of / . Thus there are no cutpoints, and SJ"
is embedded for 0 < r < \πjε. The inequality 1/r > Ut follows from
K > 0 and comparison with the Euclidean situation (K = 0) while we
obtain Lt > -ε tan(εr) by comparison with the sphere of curvature ε2 (e.g.
cf. Proposition 2.3 of [8]).

Smoothing. In general, the hypersurface St is not smooth. To rem-
edy this, we use a smoothing process ([9], [10], [14], [1], [7]) for / in a
neighborhood of Ct, i.e., we pass to the function

/(*) =
tTλM

where φ: R+ —• U+ is a weight function being constant near 0 with support
in [0,ε]. Then / is a smooth function whose Hessian is bounded from
below by —δ with δ —> 0 as ε —> 0, and \f — f\ < ε. Moreover, for any
p € St we have /(/?) = t and d(/?, Σ) < A /. Hence for sufficiently small ε,
the gradient Vf satisfies

where γ is any shortest unit speed geodesic from p to Σ. Thus the principal
curvatures of the regular hypersurface St = {/ = t} are bounded from
below by -2Aδ, and

d(St9St)<2Ae.

Now we may replace St with St and recover the estimates (4) and (5) of
Lemma 1 up to an arbitrary small error.

Lemma 3. Let Dt, t > to, be a family of compact subsets of M with
Dt c Dv for t' > t and

(6) d{dDv,dDt)>t' -U

such that Ht = dDt is a smooth hypersurface. Let there be ε > 0 such
that the sets Hf = {p e M\d{p,D() = s} are smooth hypersurfaces for
all s G [0,ε] and all t > t0. If there is a continuous function h such that
vol(///) > h(t) for all t > tΌ and s e [0, e], then vol(Dh - A,) > X'2 h{t) dt
for t2>t]> tΌ.
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Proof. Let SQ < < sq be any subdivision of [t\Ji\ with rz :=
Si < ε. Then (6) implies that

vol(A2 - A,) > Σ Γvol(H°)dσ > ^

Lemma 4. The function t —> vol(Bt)/tn~k is monotone decreasing.
The proof of Lemma 4 is analogous to the Bishop-Gromov inequality

(cf. [13], [2], [8]). One estimates the dilatation of the normal exponential
map of Σ using the comparison theorems of Rauch (cf. [8, Theorem 6.4]).
For a different approach compare [15].

Proof of Proposition 1. Since limsupfφ) ta = 0 and a < 2, there
exists a monotone decreasing function a with a(t) —• 0 as t —• oo, and with
a{t) > maxίv^Φ) f*/2, (1/ί) 1 "^ 2 }. We consider the family C, = {/r < t},
where /r denotes the smoothing of / near Ct as described above. By (1)
and the choice of the function a(t) we have 0 < K < a2(t) Γa on M\Ct.
Put

A := {P e M\d(p,Ct) < {π/4)a{t)-ιt"'2}9

and let Ht = 9 A By Lemma 2, //, is smooth with Weingarten map Lt

satisfying

Furthermore, Ht is homeomorphic to St which in turn is homeomorphic
to Λ̂ iΣ by Lemma 1. To finish the proof, we show that there is a sequence
ti —• oo such that

where c = 4(n - k){A + π/4)n~kyol(N\Σ)9 and A is the constant of (2).
Let us assume to the contrary that vol(Ht) > c tn~x~k for all / > to. By

(5) the second fundamental form of Ht tends to zero. The same is true
for the ambient curvature. By Lemma 2, for 0 < s < 1, the distance sets

Hf = {peM\d(p9Dt)=s}

are smooth hypersurfaces, and one checks easily that

for all s e [0,1 ] and all / sufficiently large. Thus the sets A satisfy the
conditions of Lemma 3 for to large enough, and h(t) = c/2 tη~[~k. Thus

»-X \ N^ ^ lΠ If *

for some constant c*.
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Now Ct c BΛt by (2) for t > 1, and since a(t)~ι tal2 < t by the choice
of a{t) we have Dt c BA».t with A1 - A + π/4. This leads to a lower bound
for the volume growth of distance balls:

By Lemma 4, vol(Bt)/tn~k is monotone decreasing, thus

r vol(5,ϊ r vol{Bt)
hm — ^ ^ < hm — ^ - ^ = vol(NiΣ).
^ o o tn-k ~ t_+Q tn-k v ι J

This is a contradiction.
C&se 2. dimΣ = 0. We have to prove that lim^oo κ(t) t2 = 0 implies

the flatness of M. Let therefore a(t) be a positive monotone decreasing
function with lim^ootf^) = 0 and κ{t) t1 < a2(t). Let r(t) = \π/b(t)
where Z?(/) = a{t)/t. By Lemma 2, we can consider the embedded hyper-
surfaces Sr

t with r <r(t).
We have 1/r > L; > -b{t)\zn(b{t)r). Since r < r(t) = \π/b{t) we have

6(0tan(6(0r) < 6(0tan(π/4) = 6(0 < 46(ί)/π = l/r(ί) < 1/r.
Thus ||Lj:|| < 1/r for all 0 < r < r(t). For 5[ we consider the Gauss-Bonnet
integrand G\ and Qr

t = G{" - detL[. As in Case 1 we have

p=\ v

m—p

< const ] Γ α(/) ^ ^ < c a(ή ; ^ r r ,

if a{t) < 1, where the constant c depends only on the dimension. We claim
for t large enough

(8) vo l (5 r ; )>ω Λ - 1 r Λ - 1 ( l -c . f l (0) ,

where ωn-\ is the volume of Sn~{. Suppose therefore that vol(S[) <
ωn-\r"~ι. Then for t large enough such that a(t) < 1 we have

\\Qr

t\\ dV < c fl(0 - ^ ωΛ_,r^"1 = c a(t) ω ^ ! .
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Since

we have

ί ί = ωn-l(l-ca(t)).ί \dclUt\dV>ωn^- ί \\Q't\
Js; Js;

Since ||LJΊ| < 1/r we have |detLJΊ < \/rn~ι and this implies (8).
By construction 5[ c BA.ί+r{ί) for / > 1, r < r(t), and A as in (2).

Therefore

l i m j f ^ = lim
tn (^oo (A-t + r{t))n ί-oo

\-ca{t) fr{<)

The second equality follows from the fact that r(t)/t —> oo. Since the
volume growth is euclidean, M is isometric to W1 (cf. e.g. [11, Lemma 1]).

Proof of Theorem 2. We study first the simply connected case and
prove:
(*) Let M be simply connected with codimΣ < 3. If κ(t) —• 0, then Σ is a
point.

We need a result on the normal holonomy of Σ.
Proposition 2. Let Σ be a soul of codimension < 3 in the simply con-

nected manifold M. Then one of the following holds:
(A) There exists a parallel normal unit vectorfield on Σ.
(B) There is a constant C > 0 such that for any two unit normal vec-

tors v and w at points p,q e Σ there exists a piecewise differentiable path
c: [0,1] —• Σ of length < C from p to q such that the parallel translation of
υ along c gives w.

We will prove the proposition at the end of this section.
Consider first case (A) and assume that V is a parallel normal unit

vectorfield on Σ. Let φ: Σ x R -> M be the map φ(p,t) = expptV(p). We
claim that φ is a totally geodesic isometric immersion.

For |ί| < ε, where ε is small, Σ, = φ(Σ, t) is an embedded submanifold
of M. By Rauch's theorem [5, 1.31] the map φt:Σ^ Σ,, φt(p) = φ{pj) is
contracting, i.e., d{φt(p),φt{q)) < d(p,q). By the work of Sharafutdinov
[17], [18], there exists a contracting map ψ: M —> Σ with ψ\z = id|χ. It
follows that ψ o φt: Σ —• Σ is a contracting map which is homotopic to
the identity. Such a map is an isometry (see e.g. [17, Lemma 1.2]) and
hence φt is an isometry. By the rigidity part of Rauch's theorem, φ is
an isometric immersion on Σ x [-ε,ε]. The above argument shows more
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generally that the set of all t > 0 such that φ is an isometric immersion on
Σ x [-/, t] is open. Since it is clearly closed, it follows that φ is a totally
geodesic isometric immersion.

Using the structure theory of [6] one checks easily that the image of φ
does not stay in a compact subset of M. Since we assume that K —• 0 and
Σ, is totally geodesic and isometric to Σ, it follows that Σ is flat. Thus Σ is
compact, simply connected and flat. Hence Σ is a point.

It remains to consider case (B) of the proposition. We first make the
following general comments:

Let h: [0, oo) —• M be a ray parametrized by arc length with p = h(0) G
Σ. Then [6, 8.22(3)] implies that λ(0) is perpendicular to Σ. If g: R -* Σ
is a geodesic in Σ with g(0) = p and V(s) the parallel vectorfield along g
with F(0) = A(0) = v, then [6, 8.22(4)] implies that Φ: R x [0,oo) -> M,
Φ(s,t) = expg(S)tV(s) is a totally geodesic isometric immersion and the
geodesies hs(t) = Φ(s, t) are rays for all s.

Let c: [0,1] —• Σ be any piecewise differentiate path in Σ with c(0) = p
and let V(s) be the parallel vectorfield along c with V(0) = v. Using an
approximation of c by piecewise geodesies we see that the vectors V(s)
are all initial vectors of rays. By (B) every unit normal vector of Σ is in
the same orbit of the normal holonomy as v. It follows that all geodesies
normal to Σ are rays. Therefore Ht = {x e M\d(x,Σ) = t) is a smoothly
embedded submanifold. Note that Ht is canonically diffeomorphic to the
normal sphere bundle N\(Σ). Since Φ is an isometric immersion, one
checks that all rays hs have the same Busemann function. It follows that
the sets Ht are the level sets of the Busemann function of h, and hence Ht

is a convex hypersurface. It follows now from Lemma 2 that the norm of
the second fundamental tensor Lt of Ht satisfies ||L,|| < \/t, in particular
||L/|| —• 0. Since κ{t) —• 0 also the intrinsic curvature of Ht goes to 0.

We claim that the diameter of Ht is bounded by the constant C of
Proposition 2. Let therefore x,y e Ht. Then x = expptv and y = expqtw,
where v,w are unit normal vectors at p,q e Σ. By (B) there exists a
piecewise differentiable curve c: [0,1] -> Σ of length < C such that V(l) =
w for the parallel vectorfield V along c with V(0) = v. By the above
comments the curve ct(s) = expc{s)tV(s) has the same length as c and is
contained in Ht.

Thus the metrics on //,, / > 0, define a family of metrics on N\ (Σ) with
bounded diameter and curvature converging to 0. Thus N\ (Σ) is an almost
flat manifold in the sense of Gromov [12]. We consider the homotopy
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sequence of the Sn~k~{-bundle N\(Σ) and obtain the exact sequence

Since πi(Σ) is trivial by assumption and π\(Sn~k~ι) is either trivial of
isomorphic to 2, it follows that πi(iVi(Σ)) is either trivial or cyclic. By
Gromov's theorem [12] (compare also [4]) an almost flat manifold with
this fundamental group is the circle Sι. It follows that M is 2-dimensional,
and since M is simply connected, M is diffeomorphic to IR2 and Σ is a point.

We now consider the general case. By [6, Corollary 6.2] the universal
cover M splits isometrically as X x Rs, where the isometry group of X is
compact. We can assume that M is not flat which implies that X is not
trivial. Let π: M —• M be the covering and πx: M —> X the projection.
Note that π - 1 (Σ) is a totally convex submanifold of M and hence also
Σ1 = πx(π~ι(Σ)) is totally convex. We claim that Σ' is a point. Since
the isometry group of X is compact and π~ι(Σ) covers the compact set
Σ, it follows that Σ' is compact. Therefore Σ' is a totally convex compact
submanifold without boundary. By [6, Theorem 2.1] the inclusion Σ ' c l
is a homotopy equivalence. Now let Σ* be a soul of X. Then Σ' and Σx

have the same homotopy type and in particular dimΣ^ = dimΣ'. Since
codimΣ < 3, it follows that the codimension of Σx in X is < 3. Let κx be
the curvature function on X. Since the isometry group of X is compact,
the projection π|;rχ{o} is proper. Since κ(t) —• 0 on M it follows that
κχ{t) —> 0. By (*),Σχ (and hence Σ') is a point.

Thus π - 1 (Σ) = {q} x H, where q is a point in X, and H is an affine
subspace of Rs. We claim that H = W. Since X is not flat, there exists a
tangent plane a at a point q' e X with K(σ) > 0. If H φ R5, then there
are points ί, € W with rf(f/, //) —• oc. Thus the points ήf, : 7r((^', //)) satisfy
d(qj,Σ) —• oo, but the curvature at <?, does not tend to 0. Hence H = Rs,
s = /c, and Σ is a compact quotient of Rk. X has dimension n - k, and
since Σ* is a point, it is diffeomorphic to Rn~k.

Proof of Proposition 2. Since the statement is easy to prove for codim
Σ < 2, let codimΣ = 3. We assume that there is no parallel unit normal
vectorfield on Σ and prove (B). We fix a point p eΣ and consider closed
piecewise differentiable curves on Σ at /?. The parallel translation of c
defines an element φ(c) in the normal holonomy group at p. Since Σ is
simply connected, φ(c) is orientation preserving and thus we can consider
φ(c) as an element of SO(3). Since there is no normal parallel vectorfield
on Σ, there are closed smooth curves Co,C\ at /?, such that the elements
φ(co),φ(c\) e SO(3) have different axes. Since Σ is simply connected there
is a smooth homotopy ct between CQ and C\. We consider the differentiable
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map a(t) = φ(ct) in SO(3). Since α(0) and α(l) have different axes, ά(t) is
not everywhere a multiple of a given left invariant vectorfield. Thus there
are t\,t2 € (0,1) such that the left translation of ά{t\) to a{t2) is linearly
independent from ά(t2).

Let h\ = cjt

x o cti+t for / = 1,2. The A/ are two families of piecewise
differentiate curves which are defined for |;| small. By construction the
maps di(t) = φ{h\) are smooth such that άi(0) and 02(0) are linearly inde-
pendent vectors at the identity e of SO(3).

Put kt = h\ o hf o (A/)"1 o (A,2)"1 and A3 = k^. Then a3(u) = 0(A3)
defines a C1 -curve in SO(3) starting at e with

Δ3(0) = [Δi(0),ά2(0)].

Hence άi(0),02(0),ά3(0) are linearly independent. Then h(t,s,u) = h\ o
A^oA3 is a 3-parameter family of piecewise differentiable curves at/?, which
is defined for (t,s,u) e I3 where / is a small interval containing 0. Let
Φ: / 3 -> SO(3), Φ(t,s,u) = φ(h(t,s,u)). By construction, the differential
of Φ is nonsingular in 0, and thus Φ(/3) is a neighborhood of e in SO(3).

Thus there is a constant iV e N such that for every element a G SO(3)
there exists an element β e Φ(/3) with βN = a. There is a constant C\
such that every curve h(t9s, u) has length < C\. Thus for every a e SO(3)
there exists a curve c of length < N C\ with 0(c) = α.

Let now v and it; be as in the statement of (B). Choose a path c\ of length
< diameter(Σ) from p to q. Then there exists a suitable closed curve c2

at p of length < N C\ such that the parallel translation along c = C\ oc2

maps υ onto w. The length of c is bounded by C = N C\ + diameter(Σ).

3. Final remarks

1. For the last step of the proof of Theorem 1 it suffices to know that

vol(Bt)hm sup ——r1- < oo.
Hoo tn~k

If dim Σ = k this is a consequence of Lemma 4. Theorem 1 remains valid,
if we assume instead of dimΣ = k only that the volume grows of order
tn~k where k is any positive real number.

2. The proof of Theorem 2 shows that κ(t) cannot tend to 0 if the
normal holonomy of the soul Σ satisfies either (A) or (B) of Proposition
2. One of these conditions may also hold in higher codimension. We give
two examples:
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(a) If M has two different souls Σi and Σ2, then one can show that on
Σi there exists a normal parallel vectorfield pointing towards Σ 2. Thus if
κ{t) -> 0 on M, then the souls of M are flat.

(b) One can show that condition (B) holds if Σ is simply connected
and the normal holonomy group acts transitively on N\Σ. In special cases
the transitivity follows from the topology of the bundle. If codim Σ = 4,
then there exists a parallel normal vectorfield or the holonomy is transitive
or the holonomy group is SO(2) x SO(2) and NΣ splits into two parallel
subbundles. If, e.g., Σ = CP 2 and NΣ = TCP2 (as a vector-bundle),
then from analysing the Stiefel-Whitney classes it follows that the bundle
does not split, and thus the holonomy group acts transitively. Hence the
conclusion of Theorem 2 holds also for this bundle.

3. Note that the constant C of Proposition 2 gives a universal bound for
the diameter of the distance tubes Ht. It follows that there exists a positive
lower bound for κ(t) which depends only on C and the dimension n. Thus
the geometry of N\ Σ determines already a lower bound for the curvature
function K.

4. By the O'Neill formula one can compute the function κ(t) explic-
itly for homogeneous vectorbundles (G xUn)/H, where G is a compact
Lie group, and H is a closed subgroup operating on Rπ by a representa-
tion μ: H —• O(n). We consider the special case {S3 x R 2 )/5 ! , where S3

and R2 have their standard metrics, Sι operates by the Hopf-action on
S3 and by rotation on R2. Then the soul is S2 = CPι with a metric of
constant curvature 4. The distance tubes Ht are diffeomorphic to S3 and
carry a Berger metric, where the Hopf-circles are multiplied by a factor
//(I + ί2)ι/2. For t —• oo, the metric converges to the standard metric on
S3. The maximal value of the curvature is 4 and is assumed only on the
soul. Hence /c(0) = 4 and κ(t) —• 1 for / —• oo.

5. After finishing this work, we learned that V. B. Marenich [16] has
published a proof of our conjecture (cf. §1) using different methods. This
would also imply Theorem 2 and the (k > O)-part of Theorem 1. However,
from what is written in [16], we were not able to verify that the proof is
correct.
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