CURVATURE AT INFINITY OF OPEN NONNEGATIVELY CURVED MANIFOLDS

J. H. ESCHENBURG, V. SCHROEDER & M. STRAKE

1. Introduction

Let *M* be a complete open manifold of nonnegative sectional curvature. By the structure theory of [6] *M* is diffeomorphic to the normal bundle of a compact totally convex submanifold Σ of *M*. Σ is called a soul of *M*. We fix a soul Σ and define $\kappa(t) = \sup\{K(\sigma)|\operatorname{dist}(\pi(\sigma), \Sigma) \ge t\}$, where $K(\sigma)$ is the sectional curvature of a tangent plane σ at a point $\pi(\sigma)$ with distance dist $(\pi(\sigma), \Sigma)$ to the soul. We obtain a bound on the decay of the function κ under suitable topological conditions.

Theorem 1. Let $n = \dim M$ be odd, $k = \dim \Sigma$, and $\alpha = 2 - 2k/(n-1)$. If $\chi(M) \neq 0$ where $\chi(M)$ is the Euler characteristic of M, then $\limsup \kappa(t) \cdot t^{\alpha} > 0$ or M is isometric to a euclidian n-space \mathbb{R}^n .

The theorem implies in particular that Σ is a point and thus M is diffeomorphic to \mathbb{R}^n if $\kappa(t) \cdot t^\beta \to 0$ for an exponent $\beta \ge 2 - 2/(n-1)$. If κ decays quadratically, i.e., $\kappa(t) \cdot t^2 \to 0$, then M is indeed isometric to the euclidean space. The last result was proved first by Greene and Wu [11] under the additional assumption that M has a pole. In general this was recently proved by Kasue [15].

In the case where the codimension of Σ is ≤ 3 we obtain the much stronger result that the function $\kappa(t)$ cannot tend to 0 if the soul is not flat. More precisely we prove

Theorem 2. If $\operatorname{codim} \Sigma = n - k \leq 3$ and $\kappa(t) \to 0$, then either M is flat or the universal cover \tilde{M} splits isometrically as $X \times \mathbb{R}^k$, where X is diffeomorphic to \mathbb{R}^{n-k} . The fundamental group of M is a Bieberbach group of rank k, and any soul of M is a compact flat k-dimensional manifold.

The last result leads us to the following conjecture:

Let M be a complete open manifold with nonnegative sectional curvature. If $\kappa(t) \rightarrow 0$, then the soul Σ of M is flat.

Received August 25, 1987 and, in revised form, April 11, 1988.

In §3, the final section of this paper, we discuss some examples and give generalizations of the above theorems.

2. Proof of the theorems

Proof of Theorem 1. We distinguish the cases dim $\Sigma \ge 1$ and dim $\Sigma = 0$. Case 1. dim $\Sigma \ge 1$. Since $\chi(M) \ne 0$, the fundamental group $\pi_1(M)$ is finite by [6, Corollary 9.4]. Since the universal covering $\tilde{M} \to M$ is finite, one checks easily that \tilde{M} satisfies the same curvature conditions as M. Thus we assume without loss of generality that M is simply connected.

Let Σ be a soul of M arising from the basic construction of [6, §1] using all rays starting from a fixed point $p_0 \in M$. Then there exists a nonnegative, convex, nonexpanding map $f: M \to \mathbb{R}_+$ with $f|_{\Sigma} = 0$. Up to an additive constant, f is the supremum of the Busemann functions of rays at p_0 . The sublevels $C_t = \{p \in M | f(p) \le t\}$ with $t \ge 0$ are compact and convex. Since f is nonexpanding, we have

(1)
$$B_t := \{p \in M | d(p, \Sigma) \le t\} \subseteq C_t, \qquad d(\partial C_{t_1}, \partial C_{t_2}) \ge |t_1 - t_2|.$$

The convexity of f implies

$$(2) C_t \subset B_{At}$$

for all $t \ge 1$ and $A := \max\{d(p, \Sigma) | p \in C_1\}$.

Let us assume $\limsup \kappa(t) \cdot t^{\alpha} = 0$. Under this assumption and the condition dim $\Sigma \ge 1$ we obtain:

Proposition 1. There exist a sequence $t_i \to \infty$ and a sequence H_i of compact hypersurfaces $H_i \subseteq M$ homeomorphic to the unit normal bundle $N_1(\Sigma)$ with the properties:

- (a) $H_i \subseteq M B_{t_i}$.
- (b) $||L_i|| \cdot t_i^{\alpha/2} \to 0$ for the Weingarten map L_i of H_i .

(c) $\operatorname{vol}(H_i) \leq \operatorname{const} \cdot t_i^{n-1-k}$.

We will prove this proposition below. We remark here that Proposition 1 does not hold in the case dim $\Sigma = 0$ and $\alpha = 1$. In this case, instead of (b) we only get that $||L_i|| \cdot t_i$ is bounded.

Note that the hypersurfaces $H_i \cong N_1 \Sigma$ are oriented, since M is simply connected. Let G_i be the Chern-Gauss-Bonnet integrand of H_i . Then

(3)
$$\chi(H_i) = \chi(N_1\Sigma) = \frac{2}{\omega_{n-1}} \cdot \int_{H_i} G_i \, dV_i,$$

where ω_{n-1} is the volume of the standard (n-1)-sphere S^{n-1} . The dimension k of Σ is even since $\chi(\Sigma) = \chi(M) \neq 0$. Thus the fibers of $N_1\Sigma$

have even dimension. So we obtain $\chi(N_1\Sigma) = \chi(\Sigma) \cdot \chi(S^{n-k-1})$ (cf. [3, p. 182]) and in particular $|\chi(N_1\Sigma)| \ge 2$. With $Q_i := G_i - \det L_i$ from (3) we obtain

$$\omega_{n-1} \leq |P_i| + |T_i|,$$

with

$$P_i := \int_{H_i} \det L_i \, dV_i, \qquad T_i = \int_{H_i} Q_i \, dV_i.$$

We will show that the curvature assumption $\limsup \kappa(t)t^{\alpha} = 0$ implies $P_i, T_i \to 0$. This contradiction proves Case 1 of the theorem.

A purely algebraic computation (cf. [11, p. 70]) shows

$$\|Q_i\| \leq \operatorname{const} \cdot \sum_{p=1}^m \kappa(t_i)^p (\|L_i\|^2)^{m-p},$$

with $m = \frac{1}{2}(n-1)$.

By property (c) of the proposition we have $vol(H_i) \leq const \cdot t_i^{n-1-k} = const \cdot t_i^{\alpha \cdot m}$. Thus

$$|T_i| \leq ||Q_i||\operatorname{vol}(H_i) \leq \operatorname{const} \cdot \sum_{p=1}^m (\kappa(t_i)t_i^{\alpha})^p (||L_i||^2 t_i^{\widehat{\alpha}})^{m-p}.$$

Hence $T_i \rightarrow 0$ by the curvature assumption and the boundedness of $||L_i||t_i^{\alpha/2}$ by property (b).

For P_i we obtain

$$|P_i| \leq \operatorname{const} \cdot ||L_i||^{n-1} \cdot t_i^{n-1-k} = \operatorname{const} \cdot (||L_i||t_i^{\alpha/2})^{n-1},$$

and hence also $P_i \rightarrow 0$ by (b).

It remains to prove Proposition 1. We need some preparations. The first result follows from [6, Theorem 2.5].

Lemma 1. For t > 0 the boundary of the set C_t is homeomorphic to the unit normal bundle $N_1\Sigma$.

Lemma 2. Assume that the boundary $S_t = \partial C_t$ is a smooth hypersurface for some t > 0. If $0 \le K \le \varepsilon^2$ on $M \setminus C_t$, then the distance set $S_t^r = \{p \in M | d(p, C_t) = r\}$ is a smooth hypersurface for $0 \le r \le \frac{1}{2}\pi/\varepsilon$, and the Weingarten map L_t^r of S_t^r (with respect to the outer normal vector) satisfies

(4)
$$1/r \ge L_t^r \ge -\varepsilon \tan(\varepsilon r).$$

In particular, the Weingarten map L_t of $H_t = S_t^r$ for $r = \frac{1}{4}\pi/\varepsilon$ satisfies

(5)
$$||L_t|| \leq \left(\frac{4}{\pi}\right) \cdot \varepsilon.$$

Proof. Since S_t is a convex hypersurface, a standard comparison argument implies that the focal points of S_t in $M \setminus C_t$ have distance $\geq \frac{1}{2}\pi/\varepsilon$ from S_t . If the nearest cut point of S_t in $M \setminus C_t$ is closer, then there exists an unbroken geodesic $\gamma: [0, 2a] \to M \setminus \operatorname{interior}(C_t)$ with endpoints on S_t . Now $f \circ \gamma(0) = f \circ \gamma(2a) = t$ but $f \circ \gamma(s) > t$ for $s \in (0, 2a)$. This is a contradiction to the convexity of f. Thus there are no cutpoints, and S_t' is embedded for $0 \leq r \leq \frac{1}{2}\pi/\varepsilon$. The inequality $1/r \geq L_t'$ follows from $K \geq 0$ and comparison with the Euclidean situation (K = 0) while we obtain $L_t \geq -\varepsilon \tan(\varepsilon r)$ by comparison with the sphere of curvature ε^2 (e.g. cf. Proposition 2.3 of [8]).

Smoothing. In general, the hypersurface S_t is not smooth. To remedy this, we use a smoothing process ([9], [10], [14], [1], [7]) for f in a neighborhood of C_t , i.e., we pass to the function

$$\tilde{f}(x) = \int_{T_x M} f(\exp_x(v))\phi(||v||) \, dv,$$

where $\phi: \mathbb{R}_+ \to \mathbb{R}_+$ is a weight function being constant near 0 with support in $[0, \varepsilon]$. Then \tilde{f} is a smooth function whose Hessian is bounded from below by $-\delta$ with $\delta \to 0$ as $\varepsilon \to 0$, and $|\tilde{f} - f| < \varepsilon$. Moreover, for any $p \in S_t$ we have f(p) = t and $d(p, \Sigma) \leq A \cdot t$. Hence for sufficiently small ε , the gradient $\nabla \tilde{f}$ satisfies

$$\langle \nabla \tilde{f}(p), -\gamma'(0) \rangle \geq \frac{1}{2}A,$$

where γ is any shortest unit speed geodesic from p to Σ . Thus the principal curvatures of the regular hypersurface $\tilde{S}_t = {\tilde{f} = t}$ are bounded from below by $-2A\delta$, and

$$d(\tilde{S}_t, S_t) \leq 2A\varepsilon.$$

Now we may replace S_t with \tilde{S}_t and recover the estimates (4) and (5) of Lemma 1 up to an arbitrary small error.

Lemma 3. Let D_t , $t \ge t_0$, be a family of compact subsets of M with $D_t \subset D_{t'}$ for t' > t and

(6)
$$d(\partial D_{t'}, \partial D_t) \geq t' - t,$$

such that $H_t = \partial D_t$ is a smooth hypersurface. Let there be $\varepsilon > 0$ such that the sets $H_t^s = \{p \in M | d(p, D_t) = s\}$ are smooth hypersurfaces for all $s \in [0, \varepsilon]$ and all $t \ge t_0$. If there is a continuous function h such that $vol(H_t^s) \ge h(t)$ for all $t > t_0$ and $s \in [0, \varepsilon]$, then $vol(D_{t_2} - D_{t_1}) \ge \int_{t_1}^{t_2} h(t) dt$ for $t_2 > t_1 \ge t_0$.

158

Proof. Let $s_0 < \cdots < s_q$ be any subdivision of $[t_1, t_2]$ with $r_i := s_{i+1} - s_i \le \varepsilon$. Then (6) implies that

$$\operatorname{vol}(D_{t_2} - D_{t_1}) \ge \sum_{i=0}^{q-1} \int_0^{r_i} \operatorname{vol}(H_{t_i}^{\sigma}) d\sigma \ge \sum_{i=0}^{q-1} h(t_i)(r_i).$$

Lemma 4. The function $t \to \operatorname{vol}(B_t)/t^{n-k}$ is monotone decreasing.

The proof of Lemma 4 is analogous to the Bishop-Gromov inequality (cf. [13], [2], [8]). One estimates the dilatation of the normal exponential map of Σ using the comparison theorems of Rauch (cf. [8, Theorem 6.4]). For a different approach compare [15].

Proof of Proposition 1. Since $\limsup \kappa(t) \cdot t^{\alpha} = 0$ and $\alpha < 2$, there exists a monotone decreasing function a with $a(t) \to 0$ as $t \to \infty$, and with $a(t) \ge \max\{\sqrt{\kappa(t)} \cdot t^{\alpha/2}, (1/t)^{1-\alpha/2}\}$. We consider the family $\tilde{C}_t = \{\tilde{f}_t \le t\}$, where \tilde{f}_t denotes the smoothing of f near C_t as described above. By (1) and the choice of the function a(t) we have $0 \le K \le a^2(t) \cdot t^{-\alpha}$ on $M \setminus C_t$. Put

$$D_t := \{ p \in M | d(p, \tilde{C}_t) \le (\pi/4) a(t)^{-1} t^{\alpha/2} \}$$

and let $H_t = \partial D_t$. By Lemma 2, H_t is smooth with Weingarten map L_t satisfying

$$||L_t||t^{\alpha/2} \to 0.$$

Furthermore, H_t is homeomorphic to S_t which in turn is homeomorphic to $N_1\Sigma$ by Lemma 1. To finish the proof, we show that there is a sequence $t_i \rightarrow \infty$ such that

$$\operatorname{vol}(H_{t_i}) \leq c \cdot t_i^{n-1-k},$$

where $c = 4(n-k)(A + \pi/4)^{n-k} \operatorname{vol}(N_1\Sigma)$, and A is the constant of (2).

Let us assume to the contrary that $vol(H_t) > c \cdot t^{n-1-k}$ for all $t \ge t_0$. By (5) the second fundamental form of H_t tends to zero. The same is true for the ambient curvature. By Lemma 2, for $0 \le s \le 1$, the distance sets

$$H_t^s = \{p \in M | d(p, D_t) = s\}$$

are smooth hypersurfaces, and one checks easily that

$$\operatorname{vol}(H_t^s) \geq \frac{c}{2} \cdot t^{n-1-k}$$

for all $s \in [0, 1]$ and all t sufficiently large. Thus the sets D_t satisfy the conditions of Lemma 3 for t_0 large enough, and $h(t) = c/2 \cdot t^{n-1-k}$. Thus

$$\operatorname{vol}(D_t - D_{t_0}) \geq \frac{c}{2(n-k)} \cdot t^{n-k} - c^*$$

for some constant c^* .

Now $C_t \subset B_{A \cdot t}$ by (2) for $t \ge 1$, and since $a(t)^{-1} \cdot t^{\alpha/2} \le t$ by the choice of a(t) we have $D_t \subset B_{A' \cdot t}$ with $A' = A + \pi/4$. This leads to a lower bound for the volume growth of distance balls:

$$\liminf_{t\to\infty} \frac{\operatorname{vol}(B_t)}{t^{n-k}} = \liminf_{t\to\infty} \frac{\operatorname{vol}(B_{A'\cdot t})}{(A'\cdot t)^{n-k}}$$
$$\geq \frac{c}{2(n-k)\cdot A'^{n-k}} = 2 \cdot \operatorname{vol}(N_1\Sigma).$$

By Lemma 4, $vol(B_t)/t^{n-k}$ is monotone decreasing, thus

$$\lim_{t\to\infty}\frac{\operatorname{vol}(B_t)}{t^{n-k}}\leq \lim_{t\to0}\frac{\operatorname{vol}(B_t)}{t^{n-k}}=\operatorname{vol}(N_1\Sigma).$$

This is a contradiction.

Case 2. dim $\Sigma = 0$. We have to prove that $\lim_{t\to\infty} \kappa(t) \cdot t^2 = 0$ implies the flatness of M. Let therefore a(t) be a positive monotone decreasing function with $\lim_{t\to\infty} a(t) = 0$ and $\kappa(t) \cdot t^2 \leq a^2(t)$. Let $r(t) = \frac{1}{4}\pi/b(t)$ where b(t) = a(t)/t. By Lemma 2, we can consider the embedded hypersurfaces S_t^r with $r \leq r(t)$.

We have
$$1/r \ge L_t^r \ge -b(t)\tan(b(t)r)$$
. Since $r \le r(t) = \frac{1}{4}\pi/b(t)$ we have $b(t)\tan(b(t)r) \le b(t)\tan(\pi/4) = b(t) \le 4b(t)/\pi = 1/r(t) \le 1/r$.

Thus $||L_t^r|| \le 1/r$ for all $0 \le r \le r(t)$. For S_t^r we consider the Gauss-Bonnet integrand G_t^r and $Q_t^r = G_t^r - \det L_t^r$. As in Case 1 we have

$$\begin{split} \|Q_{t}^{r}\| &\leq \operatorname{const} \sum_{p=1}^{m} \kappa(t+r)^{p} (\|L_{t}^{r}\|^{2})^{m-p} \\ &\leq \operatorname{const} \sum_{p=1}^{m} \frac{a^{2p}(t+r)}{(t+r)^{2p}} (\|L_{t}^{r}\|^{2})^{m-p} \\ &\leq \operatorname{const} \sum_{p=1}^{m} \frac{a^{2p}(t)}{r^{2p}} \left(\frac{1}{r^{2}}\right)^{m-p} \\ &\leq \operatorname{const} \sum_{n=1}^{m} a(t) \cdot \frac{1}{r^{n-1}} \leq c \cdot a(t) \cdot \frac{1}{r^{n-1}}, \end{split}$$

if $a(t) \leq 1$, where the constant c depends only on the dimension. We claim for t large enough

(8)
$$\operatorname{vol}(S_t^r) \ge \omega_{n-1} r^{n-1} (1 - c \cdot a(t)),$$

where ω_{n-1} is the volume of S^{n-1} . Suppose therefore that $vol(S_t^r) \le \omega_{n-1}r^{n-1}$. Then for t large enough such that $a(t) \le 1$ we have

$$\int_{S_t^r} \|Q_t^r\| \, dV \leq c \cdot a(t) \cdot \frac{1}{r^{n-1}} \cdot \omega_{n-1} r^{n-1} = c \cdot a(t) \cdot \omega_{n-1}.$$

160

Since

$$\int_{S_t^r} G_t^r \, dV = \frac{\omega_{n-1}}{2} \chi(S_t^r) = \omega_{n-1},$$

we have

$$\int_{S'_{t}} |\det L'_{t}| \, dV \ge \omega_{n-1} - \int_{S'_{t}} \|Q'_{t}\| \, dV = \omega_{n-1}(1 - c \cdot a(t)).$$

Since $||L_t^r|| \le 1/r$ we have $|\det L_t^r| \le 1/r^{n-1}$ and this implies (8).

By construction $S_t^r \subset B_{A \cdot t + r(t)}$ for $t \ge 1$, $r \le r(t)$, and A as in (2). Therefore

$$\lim_{t \to \infty} \frac{\operatorname{vol}(B_t)}{t^n} = \lim_{t \to \infty} \frac{\operatorname{vol}(B_{A \cdot t + r(t)})}{(A \cdot t + r(t))^n} = \lim_{t \to \infty} \frac{\operatorname{vol}(B_{A \cdot t + r(t)})}{r(t)^n}$$
$$= \lim_{t \to \infty} \frac{1 - c \cdot a(t)}{r(t)^n} \int_0^{r(t)} \omega_{n-1} s^{n-1} \, ds = \frac{1}{n} \omega_{n-1}.$$

The second equality follows from the fact that $r(t)/t \to \infty$. Since the volume growth is euclidean, M is isometric to \mathbb{R}^n (cf. e.g. [11, Lemma 1]).

Proof of Theorem 2. We study first the simply connected case and prove:

(*) Let M be simply connected with $\operatorname{codim} \Sigma \leq 3$. If $\kappa(t) \to 0$, then Σ is a point.

We need a result on the normal holonomy of Σ .

Proposition 2. Let Σ be a soul of codimension ≤ 3 in the simply connected manifold M. Then one of the following holds:

(A) There exists a parallel normal unit vectorfield on Σ .

(B) There is a constant C > 0 such that for any two unit normal vectors v and w at points $p, q \in \Sigma$ there exists a piecewise differentiable path $c: [0, 1] \rightarrow \Sigma$ of length $\leq C$ from p to q such that the parallel translation of v along c gives w.

We will prove the proposition at the end of this section.

Consider first case (A) and assume that V is a parallel normal unit vectorfield on Σ . Let $\phi: \Sigma \times \mathbb{R} \to M$ be the map $\phi(p, t) = \exp_p t V(p)$. We claim that ϕ is a totally geodesic isometric immersion.

For $|t| < \varepsilon$, where ε is small, $\Sigma_t = \phi(\Sigma, t)$ is an embedded submanifold of M. By Rauch's theorem [5, 1.31] the map $\phi_t \colon \Sigma \to \Sigma_t$, $\phi_t(p) = \phi(p, t)$ is contracting, i.e., $d(\phi_t(p), \phi_t(q)) \le d(p, q)$. By the work of Sharafutdinov [17], [18], there exists a contracting map $\psi \colon M \to \Sigma$ with $\psi|_{\Sigma} = id|_{\Sigma}$. It follows that $\psi \circ \phi_t \colon \Sigma \to \Sigma$ is a contracting map which is homotopic to the identity. Such a map is an isometry (see e.g. [17, Lemma 1.2]) and hence ϕ_t is an isometry. By the rigidity part of Rauch's theorem, ϕ is an isometric immersion on $\Sigma \times [-\varepsilon, \varepsilon]$. The above argument shows more 162

generally that the set of all t > 0 such that ϕ is an isometric immersion on $\Sigma \times [-t, t]$ is open. Since it is clearly closed, it follows that ϕ is a totally geodesic isometric immersion.

Using the structure theory of [6] one checks easily that the image of ϕ does not stay in a compact subset of M. Since we assume that $\kappa \to 0$ and Σ_t is totally geodesic and isometric to Σ , it follows that Σ is flat. Thus Σ is compact, simply connected and flat. Hence Σ is a point.

It remains to consider case (B) of the proposition. We first make the following general comments:

Let $h: [0, \infty) \to M$ be a ray parametrized by arc length with $p = h(0) \in \Sigma$. Then [6, 8.22(3)] implies that h(0) is perpendicular to Σ . If $g: \mathbb{R} \to \Sigma$ is a geodesic in Σ with g(0) = p and V(s) the parallel vectorfield along g with $V(0) = \dot{h}(0) = v$, then [6, 8.22(4)] implies that $\Phi: \mathbb{R} \times [0, \infty) \to M$, $\Phi(s, t) = \exp_{g(s)} tV(s)$ is a totally geodesic isometric immersion and the geodesics $h_s(t) = \Phi(s, t)$ are rays for all s.

Let $c: [0, 1] \to \Sigma$ be any piecewise differentiable path in Σ with c(0) = pand let V(s) be the parallel vectorfield along c with V(0) = v. Using an approximation of c by piecewise geodesics we see that the vectors V(s)are all initial vectors of rays. By (B) every unit normal vector of Σ is in the same orbit of the normal holonomy as v. It follows that all geodesics normal to Σ are rays. Therefore $H_t = \{x \in M | d(x, \Sigma) = t\}$ is a smoothly embedded submanifold. Note that H_t is canonically diffeomorphic to the normal sphere bundle $N_1(\Sigma)$. Since Φ is an isometric immersion, one checks that all rays h_s have the same Busemann function. It follows that the sets H_t are the level sets of the Busemann function of h, and hence H_t is a convex hypersurface. It follows now from Lemma 2 that the norm of the second fundamental tensor L_t of H_t satisfies $||L_t|| \leq 1/t$, in particular $||L_t|| \to 0$. Since $\kappa(t) \to 0$ also the intrinsic curvature of H_t goes to 0.

We claim that the diameter of H_t is bounded by the constant C of Proposition 2. Let therefore $x, y \in H_t$. Then $x = \exp_p tv$ and $y = \exp_q tw$, where v, w are unit normal vectors at $p, q \in \Sigma$. By (B) there exists a piecewise differentiable curve $c: [0, 1] \to \Sigma$ of length $\leq C$ such that V(1) =w for the parallel vectorfield V along c with V(0) = v. By the above comments the curve $c_t(s) = \exp_{c(s)} tV(s)$ has the same length as c and is contained in H_t .

Thus the metrics on H_t , t > 0, define a family of metrics on $N_1(\Sigma)$ with bounded diameter and curvature converging to 0. Thus $N_1(\Sigma)$ is an almost flat manifold in the sense of Gromov [12]. We consider the homotopy sequence of the S^{n-k-1} -bundle $N_1(\Sigma)$ and obtain the exact sequence

$$\pi_1(S^{n-k-1}) \to \pi_1(N_1(\Sigma)) \to \pi_1(\Sigma).$$

Since $\pi_1(\Sigma)$ is trivial by assumption and $\pi_1(S^{n-k-1})$ is either trivial of isomorphic to \mathbb{Z} , it follows that $\pi_1(N_1(\Sigma))$ is either trivial or cyclic. By Gromov's theorem [12] (compare also [4]) an almost flat manifold with this fundamental group is the circle S^1 . It follows that M is 2-dimensional, and since M is simply connected, M is diffeomorphic to \mathbb{R}^2 and Σ is a point.

We now consider the general case. By [6, Corollary 6.2] the universal cover \tilde{M} splits isometrically as $X \times \mathbb{R}^s$, where the isometry group of X is compact. We can assume that M is not flat which implies that X is not trivial. Let $\pi: \tilde{M} \to M$ be the covering and $\pi_X: \tilde{M} \to X$ the projection. Note that $\pi^{-1}(\Sigma)$ is a totally convex submanifold of \tilde{M} and hence also $\Sigma' = \pi_X(\pi^{-1}(\Sigma))$ is totally convex. We claim that Σ' is a point. Since the isometry group of X is compact and $\pi^{-1}(\Sigma)$ covers the compact set Σ , it follows that Σ' is compact. Therefore Σ' is a totally convex compact submanifold without boundary. By [6, Theorem 2.1] the inclusion $\Sigma' \subset X$ is a homotopy equivalence. Now let Σ_X be a soul of X. Then Σ' and Σ_X have the same homotopy type and in particular dim $\Sigma_X = \dim \Sigma'$. Since codim $\Sigma \leq 3$, it follows that the codimension of Σ_X in X is ≤ 3 . Let κ_X be the curvature function on X. Since the isometry group of X is compact, the projection $\pi|_{X \times \{0\}}$ is proper. Since $\kappa(t) \to 0$ on M it follows that $\kappa_X(t) \to 0$. By $(*), \Sigma_X$ (and hence Σ') is a point.

Thus $\pi^{-1}(\Sigma) = \{q\} \times H$, where q is a point in X, and H is an affine subspace of \mathbb{R}^s . We claim that $H = \mathbb{R}^s$. Since X is not flat, there exists a tangent plane σ at a point $q' \in X$ with $K(\sigma) > 0$. If $H \neq \mathbb{R}^s$, then there are points $t_i \in \mathbb{R}^s$ with $d(t_i, H) \to \infty$. Thus the points $q_i: \pi((q', t_i))$ satisfy $d(q_i, \Sigma) \to \infty$, but the curvature at q_i does not tend to 0. Hence $H = \mathbb{R}^s$, s = k, and Σ is a compact quotient of \mathbb{R}^k . X has dimension n - k, and since Σ_X is a point, it is diffeomorphic to \mathbb{R}^{n-k} .

Proof of Proposition 2. Since the statement is easy to prove for codim $\Sigma \leq 2$, let codim $\Sigma = 3$. We assume that there is no parallel unit normal vectorfield on Σ and prove (B). We fix a point $p \in \Sigma$ and consider closed piecewise differentiable curves on Σ at p. The parallel translation of c defines an element $\phi(c)$ in the normal holonomy group at p. Since Σ is simply connected, $\phi(c)$ is orientation preserving and thus we can consider $\phi(c)$ as an element of SO(3). Since there is no normal parallel vectorfield on Σ , there are closed smooth curves c_0, c_1 at p, such that the elements $\phi(c_0), \phi(c_1) \in SO(3)$ have different axes. Since Σ is simply connected there is a smooth homotopy c_i between c_0 and c_1 . We consider the differentiable

map $a(t) = \phi(c_t)$ in SO(3). Since a(0) and a(1) have different axes, $\dot{a}(t)$ is not everywhere a multiple of a given left invariant vectorfield. Thus there are $t_1, t_2 \in (0, 1)$ such that the left translation of $\dot{a}(t_1)$ to $a(t_2)$ is linearly independent from $\dot{a}(t_2)$.

Let $h_t^i = c_{t_i}^{-1} \circ c_{t_i+t}$ for i = 1, 2. The h_t^i are two families of piecewise differentiable curves which are defined for |t| small. By construction the maps $a_i(t) = \phi(h_t^i)$ are smooth such that $\dot{a}_1(0)$ and $\dot{a}_2(0)$ are linearly independent vectors at the identity e of SO(3).

Put $k_t = h_t^1 \circ h_t^2 \circ (h_t^1)^{-1} \circ (h_t^2)^{-1}$ and $h_u^3 = k_{\sqrt{u}}$. Then $a_3(u) = \phi(h_u^3)$ defines a C¹-curve in SO(3) starting at e with

$$\dot{a}_3(0) = [\dot{a}_1(0), \dot{a}_2(0)].$$

Hence $\dot{a}_1(0), \dot{a}_2(0), \dot{a}_3(0)$ are linearly independent. Then $h(t, s, u) = h_t^1 \circ h_s^2 \circ h_u^3$ is a 3-parameter family of piecewise differentiable curves at p, which is defined for $(t, s, u) \in I^3$ where I is a small interval containing 0. Let $\Phi: I^3 \to SO(3), \Phi(t, s, u) = \phi(h(t, s, u))$. By construction, the differential of Φ is nonsingular in 0, and thus $\Phi(I^3)$ is a neighborhood of e in SO(3).

Thus there is a constant $N \in \mathbb{N}$ such that for every element $\alpha \in SO(3)$ there exists an element $\beta \in \Phi(I^3)$ with $\beta^N = \alpha$. There is a constant C_1 such that every curve h(t, s, u) has length $\leq C_1$. Thus for every $\alpha \in SO(3)$ there exists a curve c of length $\leq N \cdot C_1$ with $\phi(c) = \alpha$.

Let now v and w be as in the statement of (B). Choose a path c_1 of length \leq diameter(Σ) from p to q. Then there exists a suitable closed curve c_2 at p of length $\leq N \cdot C_1$ such that the parallel translation along $c = c_1 \circ c_2$ maps v onto w. The length of c is bounded by $C = N \cdot C_1$ + diameter(Σ).

3. Final remarks

1. For the last step of the proof of Theorem 1 it suffices to know that

$$\limsup_{t\to\infty}\frac{\operatorname{vol}(B_t)}{t^{n-k}}<\infty.$$

If dim $\Sigma = k$ this is a consequence of Lemma 4. Theorem 1 remains valid, if we assume instead of dim $\Sigma = k$ only that the volume grows of order t^{n-k} where k is any positive real number.

2. The proof of Theorem 2 shows that $\kappa(t)$ cannot tend to 0 if the normal holonomy of the soul Σ satisfies either (A) or (B) of Proposition 2. One of these conditions may also hold in higher codimension. We give two examples:

(a) If M has two different souls Σ_1 and Σ_2 , then one can show that on Σ_1 there exists a normal parallel vectorfield pointing towards Σ_2 . Thus if $\kappa(t) \to 0$ on M, then the souls of M are flat.

(b) One can show that condition (B) holds if Σ is simply connected and the normal holonomy group acts transitively on $N_1\Sigma$. In special cases the transitivity follows from the topology of the bundle. If $\operatorname{codim} \Sigma = 4$, then there exists a parallel normal vectorfield or the holonomy is transitive or the holonomy group is SO(2) × SO(2) and $N\Sigma$ splits into two parallel subbundles. If, e.g., $\Sigma = \mathbb{C}P^2$ and $N\Sigma = T\mathbb{C}P^2$ (as a vector-bundle), then from analysing the Stiefel-Whitney classes it follows that the bundle does not split, and thus the holonomy group acts transitively. Hence the conclusion of Theorem 2 holds also for this bundle.

3. Note that the constant C of Proposition 2 gives a universal bound for the diameter of the distance tubes H_t . It follows that there exists a positive lower bound for $\kappa(t)$ which depends only on C and the dimension n. Thus the geometry of $N_1\Sigma$ determines already a lower bound for the curvature function κ .

4. By the O'Neill formula one can compute the function $\kappa(t)$ explicitly for homogeneous vectorbundles $(G \times \mathbb{R}^n)/H$, where G is a compact Lie group, and H is a closed subgroup operating on \mathbb{R}^n by a representation $\mu: H \to O(n)$. We consider the special case $(S^3 \times \mathbb{R}^2)/S^1$, where S^3 and \mathbb{R}^2 have their standard metrics, S^1 operates by the Hopf-action on S^3 and by rotation on \mathbb{R}^2 . Then the soul is $S^2 = \mathbb{C}P^1$ with a metric of constant curvature 4. The distance tubes H_t are diffeomorphic to S^3 and carry a Berger metric, where the Hopf-circles are multiplied by a factor $t/(1 + t^2)^{1/2}$. For $t \to \infty$, the metric converges to the standard metric on S^3 . The maximal value of the curvature is 4 and is assumed only on the soul. Hence $\kappa(0) = 4$ and $\kappa(t) \to 1$ for $t \to \infty$.

5. After finishing this work, we learned that V. B. Marenich [16] has published a proof of our conjecture (cf. §1) using different methods. This would also imply Theorem 2 and the (k > 0)-part of Theorem 1. However, from what is written in [16], we were not able to verify that the proof is correct.

References

- [2] R. Bishop & R. Crittenden, Geometry of manifolds, Academic Press, New York, 1964.
- [3] R. Bott & L. Tu, Differential forms in algebraic topology, Springer, New York, 1982.
- [4] P. Buser & H. Karcher, Gromov's almost flat manifolds, Astérisque 81, Paris, 1981.

 ^[1] V. Bangert, Über die Approximation von lokal konvexen Mengen, Manuscripta Math. 25 (1978) 397-420.

- [5] J. Cheeger & D. Ebin, Comparison theorems in Riemannian geometry, North-Holland, Amsterdam, 1975.
- [6] J. Cheeger & D. Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math. (2) 96 (1972) 413–443.
- [7] J.-H. Eschenburg, Local convexity and nonnegative curvature—Gromov's proof of the sphere theorem, Invent. Math. 84 (1986) 507-522.
- [8] ____, Comparison theorems and hypersurfaces, Manuscripta Math. 59 (1987) 295-323.
- [9] R. Greene & H. Wu, On the subharmonicity and plurisubharmonicity of geodesically convex functions, Indiana Univ. Math. J. 22 (1973) 641-653.
- [10] ____, C^{∞} -convex functions and manifolds of positive curvature, Acta Math. 137 (1976), 209–245.
- [11] ____, Gap theorems for noncompact Riemannian manifolds, Duke Math. J. 49 (1982) 731-756.
- [12] M. Gromov, Almost flat manifolds, J. Differential Geometry 13 (1978) 231-242.
- [13] ____, Curvature, diameter and Betti numbers, Comment. Math. Helv. 56 (1981) 179-195.
- [14] K. Grove & K. Shiohama, A generalized sphere theorem, Ann. of Math. (2) 106 (1977) 201-211.
- [15] A. Kasue, On manifolds of asymptotically nonnegative curvature, preprint, Math. Sci. Res. Inst., 1986.
- [16] V. B. Marenich, The topological gap phenomenon for open manifolds of nonnegative curvature, Soviet Math. Dokl. 32 (1985) No. 2, 440–443.
- [17] V. A. Sharafutdinov, Convex sets in a manifold of nonnegative curvature, Mat. Zametki 26 (1979) 556–560.
- [18] J. W. Yim, Distance nonincreasing retraction on a complete open manifold of nonnegative sectional curvature, preprint, University of Pennsylvania, 1987.

University of Augsburg University of Münster