
J. DIFFERENTIAL GEOMETRY
20 (1989) 489-498

IRREDUCIBILITY OF THE EQUICLASSICAL LOCUS

STEVEN DIAZ

Let D be a reduced plane curve and p a singular point of D. We know
there exists an etale miniversal deformation space for the pair (D,p) (see [2],
[3]):

peD -> x
(i) 1 I

0 € B
In B there are various loci that parametrize deformations of (D,p) that pre-
serve certain properties of the singularity. These have been extensively studied
(see [3], [7], [8]). In this article we will be interested in the equigeneric locus
EG C B which parametrizes deformations of (£>,p) in which the singularity
is allowed to possibly break up into several singularities but it is required that
the total local contribution of all these singularities to the geometric genus of a
plane curve must remain constant, and the equiclassical locus EC C EG C B
in which in addition we require that the total local contribution of the singu-
larities to the class of a plane curve (that is, the degree of its dual) remains
constant. (See [3] for some descriptive material on EC and EG.) We work
over the complex numbers.

As indicated by the title of this article our main result will be that EC
is irreducible near zero. We mean this in the strong sense that—even in the
standard metric topology or in the complete local ring of 0 in B—EC has a
single branch at 0. In fact we have the following theorem.

(2) Theorem. Let n: EC —• EC be the normalization map. Then
n~1(0) is a single point, and EC is nonsingular at n~1(0).

We also determine for which plane curve singularities EC is nonsingular.
First let us show how to use what is already known about plane curve singu-

larities to reduce the proof of (2) to a tangent space computation. References
for the next few paragraphs are [1], [3], [5], and [6].

We may assume that D is irreducible, p is the only singularity of D, and
the degree d of D is as large as desired. Let PN be the projective space which
parametrizes plane curves of degree d. The point of PN corresponding to D
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will also be denoted by D. From the versal property of the family (1) we get
neighborhoods U of D in PN and V of 0 in B and a morphism f:U-+V.
Let g be the geometric genus of D and c the class of D. In PN let Vd*9 be
the set of points corresponding to reduced irreducible curves of degree d and
geometric genus g, and let Vdi9tC C Vd'g be the set of those that also have
class c. Then for small enough U

Γ
f

Since the degree of D is very large we have that, after possibly shrinking U
and V, / is surjective with smooth fibers. U is locally in the standard metric
topology the product of V and a nonsingular variety (see [3, proof of 4.15]).
In view of these facts we see that (2) is equivalent to the following lemma.

(4) Lemma. Let n: Vd>9>c -• Vd>9>c be the normalization map. Then

n~1(D) is a single point, andVd'9iC is nonsingular at n~1(D).

To see how to prove (4) let us first recall one way of obtaining the normaliza-
tion of Vd>9 near D. Let C be the normalization of D, and φ: C -» D C P 2

be the normalization map. There exists a deformation space for the map
φ:C->P2:

Y -+ P 2

(5) I
S

We will denote the point of 5 corresponding to φ by φ. We have a natural
morphism h: S —• Vd>9 with h(φ) = D. Using the fact that the degree of D
is very large it can be proven that a small neighborhood of φ in S (which we
may as well assume is all of S) surjects onto a neighborhood of D in Vd*g\
restricted to these neighborhoods h is one-to-one, and 5 is nonsingular at φ
(see [1, pp. 486-488]). Thus, near D, S is the normalization of Vd>9, and h is
the normalization map. In view of the fact that h is one-to-one we see that (4)
will follow if we can show that h~x{yd'9'c) is nonsingular at φ. Since it is also
known (again using that the degree of D is very large) that the dimension of
every component of Vd>9tC is d + c - g+1 [3, 5.2, 5.17] and that the dimension
of Vd>9 is g + 3d - 1 [4, 2.3], we see that (4) will follow from the following
claim.

(6) Claim. The Zariski tangent space to h~ι(Vd>9>c) at φ has codimen-
sion 2d + 2g — c — 2 in the Zariski tangent space to S at φ.

As a first step toward identifying the tangent space to ft~1(Vd'^'c) at φ let
us recall how one identifies the tangent space to 5 at φ. Let θγ>2 and θc be
the tangent bundles of P 2 and C. There is a natural injective sheaf morphism
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from θc into φ*θp2. Call the quotient the normal sheaf of φ and denote it by

Nφ. We have an exact sequence

(7) 0 -- θc — Φ*ΘP2 — jVφ -* 0.

We then have that the Zariski tangent space to S at φ is given by

(8) Ts%φ = H°(C,Nφ).

The standard way to prove (8) is via the Kodaira-Spencer theory of first

order deformations. The Zariski tangent space to S at φ is isomorphic to the

space of morphisms of SpecC[ε]/(ε2) (SpecC[ε] for short) to S which take

the point of SpecC[ε] to φ. Such morphisms of SpecC[ε] to S correspond to

families

9 —> P 2

(9) 1
SpecC[ε]

which over the point of SpecC[ε] give the morphism φ. Families like (9) can

be described in terms of coordinate patches and transition data as follows.

Let % = {Ua} be a finite open cover of C with za a local coordinate on

Ua. The curve C is then described by transition data

z« = faβ{zβ) on UaΠUβ,

which satisfies the cocycle rule

(10) f«β(fβΊ{zΊ)) = f«Ί{zΊ) onUanUβnUΊ.

To give the map φ we may assume we have an open cover Ψ" = {Va} of P 2

such that φ{Ua) C Va for all α, and on each Va we have local coordinates

XotiVoi- Again we have transition data:

Xa = &β{xβ, 2//?)i Voc = 9y

aβ{xβ, Vβ) on Va Π Vβ.

The map φ is given locally by

These must satisfy the compatibility conditions

To give a family as in (9) we must let this data vary with ε:

za = faβ{zβ,ε) = faβ(zβ) + εba0{z0),

(12) xa = Φx

a{za,ε) = Φl(za) + εax

a(za),

ya = &(*α,e) = Φl{za) + εa%{za).
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One then checks that the obvious compatibility conditions which the equations
of (12) must satisfy are equivalent to the former compatibility conditions (10)
and (11), a condition on the 6α/?'s saying that we have constructed a first
order deformation of the abstract curve C, and the fact that the cochain

maps to an element of H°(C,Nφ). This element is called the Horikawa class
of the given first order deformation of φ. One checks that this class is indepen-
dent of the choices we have made and that in this way we get the identification
of (8). Now we must determine when the cochain (13) represents a tangent
vector to h"λ{yd^c).

The ramification divisor R of the morphism φ is defined to be the divisor
on C defined by the first Fitting ideal of the sheaf of relative one-forms of C
over D. Letting K be the degree of Λ, it is well known that

(14) c = 2d + 20-2-/c .

In the family (5) degree and genus are constant, so a constant class is equiv-
alent to constant K.

Let us now write down what it means for a family given by the data from
(9)-(12) to have constant /c. Let pi, ,p n be the distinct points of R. We
may assume that % is chosen so that each Ua has at most one pi (call it pα)
in it, that pa occurs at za = 0, and pa £ Uβ for a φ β. We may further
choose 2α, xQ, and ya so that

with la > ka > 0. Because near pa the first Fitting ideal of the sheaf of relative
one-forms of C over D is locally generated by dψZ/dza and dip%/dzQ, and
the greatest common divisor of these two functions is 2*α, we see that pa

occurs in R with multiplicity fcQ.

By the same reasoning we see that our family (9) represents a tangent
vector to h"ι{Vdt9'c) if and only if for each a with ka > 0 the greatest common
divisor of dφ*/dza and dψ%/dza is of the form s^+είcg+cfSβ+ +c£Q2*a)
where the cQ's are constants.

Next we must see what restrictions this puts on the cochain (13). These
restrictions will clearly be local near each pQ, so in what follows we drop the
α's to make the notation less cumbersome.
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Set ax(z) = αg + a\z + αf z2 + and 0^(2) = αg + a\z + a\z2 + . We
then have

= (A: + l)^H-(A: + 2)/? 1 ^ + 1 + ... + ε(αf-h2α^ + ),
dz

(l + 2)Ίlz
ι+2 + ••• + ε(a\ + 2a\z

d* v

To say that the greatest common divisor of these two is zk + ε ( c 0 + cχz-\ h
CkZk) is to say that there exist constants d{, ê , /», and ^, i = 0,1,2, , such
that

(fc + l)zk + {k + 2)β1z
k+1 4- (fc + 3)/?2**+2 +

•+• ε(αj •+• 2α|^ •+• 3α3^ -I- )

= (zk + ε(c0 + ci* + + ckz
k)){d0 + d ^ + + ε(e0 + βi* + ))

+ ε(eoz
k + exz

k+1 + • • • + (c0 + Ciz + • + cfcz
fc)(d0 + dxz + )),

(16)

+ cxz + + ckz
k))(f0 + fiz + • + ε{go + gxz + • ))

+ ... + (CQ + C1Z + + ckz
k){fo +

Equating like terms we get the following relations:

(17) do = fc + l, dj = (k + j + l)βjf foτj>l,

(18) ja? = Σc*di-i-i' ίoτl<j<k,
»=o

(19) fj=O ϊoτO<j<l-k-l, /,_fc

(20) iβ j =
<=o

We have not written down the relations that come from terms of the form εz3

for j > k. It is easy to see that these relations will not lead to any relations
among the α's.

Together (19) and (20) tell us that

(21) a) = 0 for 1 < j < min(Jk, / - Jfc).
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If / > 2Jfc these are all the relations; otherwise, we obtain more relations as

follows. Notice that d0 = k + 1 Φ 0. Thus (17) and (18) tell us that:

Co =

C\ =

ττi

Continuing in this way we express C{ for 0 < i < k — 1 as a linear combination

of α*, αf, , αf+1 with the coefficient of αf+1 being nonzero. Similarly //_& =

/ + 1 φ 0. Thus (19) and (20) tell us how to express c* for 0 < i < 2k - I - 1

as a linear combination of αί 's with I — k < j < i + I — k + 1 and with the

coefficient of α^+ ί_ f c + 1. nonzero. Equating these two expressions for ct we get

2k - I linear relations among the αx 's and α^'s. These can be seen to be

independent of each other because the equation obtained from C{+ι involves

αf+2 whereas the equation obtained from Ci does not. These are independent

of the relations in (21) because they do not involve αj for 1 < j < I — k.

This gives a total of k independent linear relations among the o's. We

shall call them the equiclassical relations. It is easy to see that these are

all the relations (16) gives; however, we must be careful about how we have

shown these relations to be independent. To see whether these relations are

independent on global sections of Nφ there are two further things we must

take into account.

(a) The cochain (13) is an element of C0(%ί,φ*θp2) and we are interested

in its image in H°(C,Nφ). Many different cochains of the form in (13) will

represent the same element in C°(^,Nφ) and thus H°(C,Nφ).

(b) Not every element of C0^, Nφ) actually gives an element of H°(C, Nφ).

Even if the equiclassical relations are independent on elements of C°(^, Nφ)

they need not be independent on elements of H°(C,Nφ).

For (a) consider the exact sequence (7). Near p, θc — ^c{d/dz) and

φ*θψ2 = &c{d/dx,d/dy). The morphism θc -> Φ*ΘP2 is locally given by

(22) i : / w ^ „ „ £ < „ £ + „ „ £ < „ £ .
The equiclassical relations will be independent on elements of C°(ί/^Nφ)

when every cochain in the image of i satisfies the equiclassical relations.

Clearly the image of i is contained in the set of cochains satisfying

(23) of = ax

2 = • •• = α j . , = a\ = a\ = • • • = α ? ^ = 0.

One can check directly that any cochain satisfying (23) satisfies the equiclas-

sical relations.
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We now take care of (b). Equation (22) tells us that as soon as φ has a
nontrivial ramification divisor JS, Nφ will have a torsion subsheaf isomorphic
to &R. Denote this torsion subsheaf by JPφ and define Nφ to be the quotient
of Nφ by J%φ so that we have an exact sequence

(24) 0 -> Xφ -> Nφ -+ N'φ -> 0.

Near pe R, N'φ = ^c{d/dy). The morphism Nφ —> N'φ is given by

Note that (dψy/dz)(dψx/dz)~ι is regular at p because we have assumed I > k.
If we write down a section of Nφ as

we see from (25) that s is the image of a cochain satisfying the equiclassical
relations if and only if certain linear relations among the φ's are satisfied. Let
us call a maximal locally independent set of these the pseudo-equiclassical re-
lations. Observe that the equiclassical relations only involve αf and ay for
l < z < f c - l , l < j < f c . Together with (25) this says that the pseudo-
equiclassical relations will not involve <& for i > k. Nφ is a line bundle. A
standard argument using the Riemann-Roch theorem shows that local con-
ditions of the type just described when imposed at finitely many points are
independent on global sections of a line bundle provided that the degree of the
line bundle is sufficiently large. From the exact sequences (7) and (24) and
the fact that 3tφ = ffn we see that the degree of Nf

φ is 2g — 2 — K + 3d. Since d
is very large—independent of the fcα's—we see that the pseudo-equiclassical
relations are independent on elements of H°(C,Nφ).

This will imply that the equiclassical relations are independent on elements
of /f°(C, Nφ) as follows. We have chosen our open cover % of C so that each
pa € R is in only one Ua; therefore, we have C°(&,JZφ) Ξ H°(C,XΦ) and
Cxi$ί,Xφ\ = Hx{C,3Fφ) = 0. From (24) comes the following commutative
diagram:

o - c°(W,jrφ) - C°(W,NΦ) -» c°(&,%) -> o
(26) II? T T

0 - H°(C,Xφ) - H°(C,NΦ) - H°(C,N'φ) - 0

A diagram chase shows that a cochain s in C°(^, Nφ) comes from a global
section of Nφ if and only if the image of s in C°(^, Nφ) comes from a global
section of Nφ. This fact together with another diagram chase shows that the
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equiclassical relations are independent on elements of H°(C, Nφ) if and only if
the pseudo-equiclassical relations are independent on elements of H°(C, Nφ).

Knowing the equiclassical relations to be independent on elements of
H°(C, Nφ) we see that the tangent space to h~ι{Vd'9'c) at φ has codimension
A: = Σka in H°(C,Nφ), the tangent space to S at φ. (14) now finishes the
proof of (6) and thus (2).

We now are in a position to say exactly when EC itself is nonsingular. We
already know that when all the analytic branches of D at p are nonsingular,
EC = EG is nonsingular [3].

(27) Theorem. EC is nonsingular at 0 if and only if each analytic
branch of D at p is either nonsingular or, when given parametrically as in
(15), /β = * β + l.

Proof. Using the same ideas which we used to reduce (2) to (4), we may
(with the same assumptions on D) reduce (27) to (28).

(28) Lemma. Vd>g'c is nonsingular at D if and only if each analytic
branch of D at p is either nonsingular or, when given parametrically as in

Proof (of (28)). Let us consider the morphism h: S -• Vd>9. In [1, p.
487] it is shown that the differential of h at φ,

dh: Ts,φ —• Tyd,gj),

has kernel equal to H°(C,J%φ) with its natural inclusion in H°(C, Nφ). Know-
ing that h~1(Vd'g>c) is nonsingular at φ and that h is one-to-one near φ we see
that Vd'g>c is nonsingular exactly when the intersection of the tangent space
to hrι{yc**c) at φ and H°{C,JΓΦ) is {0}. Knowing that the equiclassical
relations are independent on elements of i/°(C, Nφ) we see that this question
is local near each point of R. From (22) we see that near a point of R any
nonzero element of H°(C,JΓφ) may be written in the form

(29)

+ ((/ + l)zι~k + (I + 2)Ίlz
ι-k+x + ) | " 1 •

If D has a singularity for which we claim Vd>g'c is singular, then one may
check directly that

[{k + I ) * * " 1 + (jfe + 2)βxz
k + (k + 3)β2z

k+x + ] A
ox

+ [(I + l)z1'1 + {l + 2)Ίlz
ι + (l + Z)Ί2z

ι+1 + ] ^
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is a nonzero element in both H°(C,<%φ) and the tangent space to hrι{yd>g'c)
at φ. Vd>9>c is singular as claimed.

Now suppose D has a singularity for which we claim Vd'9*c is nonsingular. If
all the branches of D are nonsingular, then H°(C,<%φ) = 0 and we are done.
Now suppose some branch is singular, and the element (29) of H°(C,Jlφ)
satisfies the equiclassical relations. We have by assumption / = fc + 1. (21)
and (29) imply h0 = 0. If k = 1, we are done. If not, (17)-(20) give

(30) αf

Then (29) together with h0 = 0 yields

(31) αf

Together (30) and (31) imply αf = α^ = hi = c$ = 0. If k = 2, we are done.
If not, having shown α* = a\ = ftυ = c^ = 0 for 1 < s < i, 1 < t < i -I-1,
0 < v < i, 0 < w < i — 1, and i < k — 1, one shows that αf+1 = α^+2 =
fti+1 = a = 0 as follows. (17)-(20), together with what we already know is
zero, gives

(i + l)αf+1 = c<(fc + 1), (ί + 2)< + 2 = c,(/ + 1);

(32) ί
χ _

^ 1 "Then (29), together with what we already know is zero, yields

( 3 3 ) o ? + 1 f c ( * + l ) J V Λ ( / + l ) ^

Together (32) and (33) give αf+x = α^+2 = Λi+i = c, = 0. Having shown all
the hj in (29) are zero we are done, q.e.d.

As a final remark note that while we have shown that the "local" variety EC
is irreducible, Zariski [9, p. 223] has shown that the corresponding "global"
variety Vdi9iC is sometimes reducible. This is in contrast to the fact that both
the "local" variety EG and the corresponding "global" variety Vd'g are always
irreducible ([1], [3], [4]).
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