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COMPLETE NONCOMPACT THREE-MANIFOLDS
WITH NONNEGATIVE RICCI CURVATURE

WAN-XIONG SHI

1. Introduction

In this paper we are going to prove the following main theorem.
Theorem 1.1. Suppose M is a complete noncompact three-dimensional

Riemannian manifold with bounded nonnegatiυe Ricci curvature. Then M is
diffeomorphic to a quotient space of one of the spaces R 3 or S2 x R 1 by a
group of fixed point free isometries in the standard metrics.

The classification of three-dimensional Riemannian manifolds with nonneg-
ative Ricci curvature has been an interesting problem for many years. In the
noncompact case, R. Schoen and S. T. Yau [3] proved that every complete
noncompact three-dimensional Riemannian manifold with positive Ricci cur-
vature is diffeomorphic to R3; if the Ricci curvature is only nonnegative, the
problem is still open.

On the other hand, R. S. Hamilton [1] developed the important heat equa-
tion method to deal with the compact three-dimensional Riemannian man-
ifolds with positive Ricci curvature and proved that such a manifold is dif-
feomorphic to the quotient space of S 3. Using his argument, finally in 1986
Hamilton [2] gave an entire classification of compact three-dimensional Rie-
mannian manifolds with nonnegative Ricci curvature.

Theoretically speaking, one can use the heat equation method to classify
the complete noncompact three-dimensional Riemannian manifolds with non-
negative Ricci curvature just exactly the same way as Hamilton did in the
compact case in [1] and [2]. But we still have some technical problems which
come from the noncompactness of the manifold; in the compact manifold case
the heat equation always has a solution for at least a short time interval and
this is not true in the noncompact manifold case.

If we assume the curvature of the noncompact manifold is bounded, then
we have the short time existence for the solution of the heat equation on the
manifold. The short time existence theorem for the heat equation was proved
by author [4] under the assumption of bounded curvature tensor, thus we can
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prove Theorem 1.1 by using the same arguments as Hamilton used in [1] and

[2]

The author would like to thank Professor S. T. Yau for his suggestions and

encouragement.

2. Preliminary results

For any n-dimensional Riemannian manifold M with the metric

ds2 = gij(x)dxidxj > 0

we use Rm = {Rijki} to denote the Riemannian curvature tensor and use

Rii = 9klRikjι, R = gijRij = 9ij9klRikji

to denote the Ricci curvature and scalar curvature respectively, where (gυ) =

We use \Rijki\2 to denote the norm of the curvature tensor and use V to

denote the covariant derivative. For any integer m > 0, Vm Rijki denotes all

of the rath order derivatives of the curvature tensor.

Consider the heat equation

on the manifold. We have the following short time existence theorem in the

noncompact case:

Theorem 2.1. Let M be an n-dimensional complete noncompact Rie-

mannian manifold with its Riemannian curvature tensor {Rij^i} satisfying

(2) \Rijhi\2<κo onM,

where 0 < /CQ < +oo is a constant. Then there exist constants T = T(n, /Co) >

0 and Cm = Cm(n, /Co) > 0 depending only on n and /Co for m = 0,1,2,3,...

such that the evolution equation (1) has a smooth solution gij(x,t) > 0 for a

short time 0 < t < T, and satisfies

(3) sup \VmRijkl(x, t)\2 < Cm/tm, 0 < t < Γ,
eM

for all integers ra > 0.

Proof This is Theorem 1.1 in [4].

In the remainder of this paper, we always assume that M is a complete

noncompact three-dimensional Riemannian manifold with its Ricci curvature

{Rijki} satisfying

(4) 0 < {Rij} < κogij on M,

where 0 < K,Q < +oo is some constant.
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Theorem 2.2. In dimension three we have

(5) Rijki = 9ikRji - guRjk - QjkRii + gjiRik - \R{g%kgji - gu9jk)>

Proof. This is Theorem 8.1 in [1].

This result means that we can control the full Riemannian curvature tensor

Rijki just from the Ricci curvature Rij in the three-dimensional manifold.

Thus if (4) is satisfied, using (5) we get

(6) \Rijki\2 < 4000κl onM.

Combining (6) and Theorem 2.1 we have

Corollary 2.3. Suppose M is a complete noncompact three-dimensional

Riemannian manifold with its Ricci curvature satisfying

0 < Rij < Kogij on M,

where 0 < /CQ < +oo is some constant. Then there exist constants T =

T(KQ) > 0 and Cm = Cm(/co) > 0 depending only on κ,0 for m = 0,1,2,3,...

such that the evolution equation (1) has a smooth solution gij(z,t) > 0 on

M x [0,T], and satisfies

(7) Sup \VmRijkι{x,t)\2 < Cm/tm, 0<t<T,

for all integers m > 0.

Moreover, we have the following lemma.

Lemma 2.4. Suppose gij(x,t) > 0 defined on M x [0,T] is the solution

obtained in Corollary 2.3. Then

(8) 0 < / M M ) < >/3^0i;θMJ

holds for all (z, t) G M x [0, T], where 0 < CQ < +oo is the constant in (7).

Proof. From (7) we know that

(9) | ϋ W M ) l 2 <Co, (x,t)eMx [o,τ].

Thus we have

\Rij(x,t)\2 <3C 0 onMx[0,T],

(10) -VUhgijfat) < Rij{x,t) < y/ΪQigijίx,t)

for all (x,t)eMx [0,T].

Just the same as R. S. Hamilton did in [2], we pick an abstract vector

bundle V isomorphic to the tangent bundle TM, but with a fixed metric Λα&

on the fibers. We choose an isometry U = {U%

a} between V and TM at time

t = 0, and let the isometry U evolve by the equation

(11) ^Uί = 9iJRjkUk

a.
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Then the pull-back metric

(12) hab = 9ijUaU
J

b

remains constant in time. It is easy to see that Ĵ ftαδ = 0 and U remains an

isometry between the varying metric Qij on TM and the fixed metric hab on

V. We use U to pull back the curvature tensor to get a tensor on V:

(13) Rabcd = RijkιU
ι

aU
3

bU^Uι

d.

We can also pull back the Levi-Civita connection Γ = {Γ^ } on M to get

a connection Γ = {Γ^c} on V, where the covariant derivative of a section

w = {wa} of V is given locally by

(14) ViWa = ^ l . ~

Thus we may take the covariant derivative of any tensor of V and TM. In

particular we have

(15) ViUΪ = 0, Vihab = 0.

We define the Laplacian operator

(16) ΔRabcd = Q%3^i^ jRabcd

to be the trace of the second covariant derivatives. Then from Hamilton [2]

we have
d

(17) -^Rabcd = ΔRabcd + %{Babcd "" Babdc ~ Badbc + Bacbd)i
at

Where Babcd - RaebfRcedf-
Using (17) it is easy to see that

d _

dt

where Qab is quadratic in #α&. If Rab is diagonal:

(x

(19) (Rab) = μ

V v.
then Qab is also diagonal:

(20) (Qab) = σ

where

(21)
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Thus

(22) {Qab)>0 if(Rab)>0.

Because Rab = RijUfoi, from (10) we have

(23) ->/3Q)hab(x, t) < Rah{x, t) < y/ZC~ohab{x, t)

on M x [0,T]. By assumption, Rij(x,0) > 0; we have

(24) Rab(x,0)>0 onM.

From (18), (22), (23), (24) and using the cut-off function argument as we did
in the proof of Theorem 4.14 of [5] we know that

(25) Rabfa t)>0 on V x [0,Γ].

This implies

(26) Rij (z, t) > 0 on M x [0, T].

From (10) and (26) we know that Lemma 2.4 is true.
Thus the nonnegativity of the Ricci curvature is preserved by the heat

equation in the case of dimension three. If the Ricci curvature of M becomes
strictly positive after a short time, then we can apply the following theorem.

Theorem 2.5. Let M be a complete noncompact three-dimensional Rie-
mannian manifold with positive Ricci curvature. Then M is diffeomorphic to
R 3 .

Proof. This is Theorem 3 in [3].

3. Local decomposition

Using the notation of the last section, suppose V is the abstract vector
bundle isomorphic to the tangent bundle ΓM, ftαfc is the fixed metric on V,
U = {f/*} is the isometry between V and ΓM, and Rab = RijU^U^

We can regard (Rab) as a symmetric bilinear form on V; from (18), (22),
(23), and (25) of §2 we know that

/j\ ~diRab = Δ Λ α 6 + ^ α 6 '
Qα6>0 i f β α 6 > 0 ,

(2) 0 < Rab < y/ΪC~ohah onVx[0,Γ].

If the Ricci curvature of M does not become strictly positive after a short
time, we have the following lemma.
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Lemma 3.1. There exists a constant δ > 0 such that on the time interval
0 < t < δ the rank of(Rab) is constant and the null space of(Rab) is invariant
under parallel translation and invariant in time and also lies in the null space

0f(Qab).
Proof. The proof of this lemma is exactly the same as the proof of Lemma

8.2 in [2]. Because all of the arguments used in that proof are local arguments,
they also work in the noncompact case.

Now we are in the position to prove Theorem 1.1. We know that on 0 <
t < δ, the rank of (Rab) is constant and is invariant in time because the null
space of (Rab) is invariant in time.

Case A. rank(βα6) = 0 on V x (0, δ).
In this case Rab = 0; thus

(3) Rij(x,t) = 0 on M x (0,(5).

We know that in this case M is diffeomorphic to a quotient space of R 3 by a
group of fixed point free isometries in the standard metric.

Case B. rank(i?α6) = 3 on V x (0, δ).
In this case Ra^ > 0 on V x (0, <$); thus

(4) Rij{x,t)>0 onMx(0, ί) .

Using Theorem 2.5 we know that M is diίfeomorphic to R 3.
Case C. rank(Λα6) = 1 on V x (0, δ).
We can write (Rab) as

ίx λ
(Rab) = 0 , λ > 0.

Using (20) and (21) of §2 we have

ί°
(Qab) =

Thus the null space of (Rab) does not lie in the null space of (Qab)', from
Lemma 3.1 we know that is impossible.

Case D. rank(βα6) = 2 on V x (0,«).
Fix a time to € (0, δ). The null space of {Rab) is spanned by a translation-

invariant vector field Vk on V. Using U = {U^} to pull back to TM, we know
that the null space of (Rij) is spanned by a translation-invariant vector field
Vk on TM. Thus the tangent bundle TM has an orthogonal decomposition

(5) TM =
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where V\ and V2 are invariant under parallel translation. V\ is the null space

of (Rij), dimFi = 1, dimV2 = 2.

Lemma 3.2. // the tangent bundle TM has an orthogonal decomposition

TM = Vι Θ V2, where V\ and V2 are invariant under parallel translation, then

locally there is a product decomposition M = Mi x M2 such that the metric

on M is the product of metrices on M\ and Mi and V\ = TMi, V2 = TM 2 .

Proof. This is a lemma in §9 of [2].

Therefore the manifold M splits locally as a product

(6) M = R 1 x M 2 ,

where M2 is a surface of positive curvature and R 1 is flat. It is easy to see

that such a local decomposition is always unique. For each leaf M 2 in (6), we

extend M 2 as much as possible on M to get a maximal leaf. For each point

x € M, we use M2 to denote the maximal leaf passing through x. Because of
the uniqueness of the local decomposition (6), we know that for any x € M,
M2 is a complete surface of positive curvature and without boundary. The
following properties hold:

(7) M= U Ml

(8) M2 = M2 if M2

Fix a point p G M. Since the maximal leaf M2 is a complete surface of pos-
itive curvature and without boundary, we know that M2 is diffeomorphic to
RP 2 , S2 or R2. If M2 is diffeomorphic to S2 or R2, then M2 is an orientable
surface. Using the local decomposition (6) we can find a covering map

(9) ip-.M^xR1 ->Λf,

where locally φ is an isometry. Thus in this case the universal covering space

M of M is isometric to R 2 x R 1 or S2 x R 1 , where S2 or R 2 have positive

curvature and R 1 is fiat. If M2 is diffeomorphic to R P 2 , then by the same

reasoning as in (9) we can find a covering map

(10) φ: S2xR^M.

From (6) we know that locally φ is an isometry; thus M is isometric to S2 x R 1

where S2 has positive curvature and R 1 is flat.

Thus in all the cases the universal covering space M of M is isometric to

R 2 x R 1 or S2 x R 1 with S2 or R 2 having positive curvature and R 1 flat,

and M is a quotient space of R 2 x R 1 or S2 x R 1 by isometries. If the

metric on S2 is nonstandard or the metric on R 2 is not flat, we can replace

them by some conformally equivalent metrics with constant curvature or zero
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curvature. This will not change the group of isometries. Finally we know
that M is a quotient space of R 3 or S2 x R 1 by a group of isometries in the
standard metrics.

Collecting the results of Cases A, B, C and D we know that Theorem 1.1
is true and this completes the proof of the main theorem.

Remark. We can generalize these arguments to complete noncompact
four-dimensional Riemannian manifolds with nonnegative bounded curvature
operator, just as [2] for the case of compact four-manifolds with nonnegative
curvature operator.

Suppose M is a complete noncompact four-dimensional Riemannian man-
ifold with bounded nonnegative curvature operator. From Theorem 2.1 we
know that the heat equation

(11) §-t9ij =

has a smooth solution for a short time. Using Theorem 4.14 in [5] we know
that the heat flow (11) preserves the nonnegativity of the curvature operator.
Thus using the same arguments as Hamilton used in his paper [2] and the fact
that every complete noncompact Riemannian manifold with positive curvature
operator is diffeomorphic to R n and the theorems we have proved in this paper
we can finally get the following result:

Theorem 3.3. Suppose M is a complete noncompact four-dimensional
Riemannian manifold with bounded nonnegative curvature operator. Then the
universal covering M of M is diffeomorphic to one of the spaces

R4, S 3 xR 1 , S 2 x R 2 , AT,

where N is a Kάhler surface with positive holomorphic bisectional curvature.
We omit the details for the proof of this theorem; basically one can get the

same result from J. Cheeger and D. Gromoll, On the structure of complete
manifolds of nonnegative curvature, Ann. of Math. (2) 96 (1972) 413-443.
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