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REGULARITY OF THE ALBANESE MAP
FOR NONORIENTABLE SURFACES

WILLIAM H. MEEKS, III

The function theory of a closed Riemann surface is fundamentally related
to the Jacobi or Albanese map of the Riemann surface into a complex torus
called the Jacobi variety of the surface. The Jacobi embedding theorem (2]
states that this natural map is a smooth embedding and Abel’s theorem [1]
gives necessary and sufficient conditions, in terms of this mapping, for a divisor
of the Riemann surface to be the divisor of a meromorphic function. Other
important conformal information about the Riemann surface can be obtained
from the embedding into its Jacobi variety. For example, Torelli’s theorem
[3] which describes the moduli space of Riemann surfaces in terms of the
Jacobi map displays the deep interplay between the conformal structure of
the Riemann surface and its Jacobi mapping.

The Albanese map, which in the case of Riemann surfaces is usually called
the Jacobi map, is a holomorphic map of the Riemann surface into a flat com-
plex torus, and this map induces an isomorphism between the first homology
groups of the surface and the complex torus. In particular, the Albanese
map is a harmonic map between the Riemann surface and a flat torus. For
any closed Riemannian manifold M one can define a natural harmonic map
f: M — A(M) where A(M) is a flat torus R™/A for some lattice A. The
map f also has the property that it induces an isomorphism between first in-
tegral homology of M (modulo torsion) and the first integral homology group
of A(M). The map f is called the Albanese map of M and A(M) is called
the Albanese variety of M. A rigorous definition of f: M — A(M) is given
at the beginning of the main body of the paper. For the moment it suffices
to note that the Albanese map satisfies the following universal property: If
g: M - T = R"™/L is a harmonic map with g(po) = 0, and f(po) = 0, then
g = mo f for some “linear” homomorphism 7: A(M) — T.
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In this paper we prove a theorem on the regularity of the Albanese map of
a nonorientable Riemannian surface. This theorem, Theorem 1.4, gives nec-
essary and sufficient conformal conditions for the Albanese map of a nonori-
entable Riemannian surface to be a smooth embedding. The proof of this
theorem is based on classical results in Riemann surface theory. These re-
sults include Abel’s theorem and the embedding of the canonical curve of a
nonhyperelliptic Riemannian surface.

A surface M in R" is called n-periodic if there exists a lattice Lys of R™
such that M is invariant under translation by elements of Ls. In classical
differential geometry the collection of n-periodic minimal surfaces R™ forms
a rich and important collection of minimal surfaces. For example, the lifts of
Riemann surfaces in their Jacobi varieties to C™ are important examples of
2n-periodic least-area minimal surfaces in R?”. Of special geometric interest
is the case of 3-periodic minimal surfaces in R3.

In his thesis, Meeks [4] described a six-dimensional family of noncongruent
embedded minimal surfaces of genus 3 in flat 3-tori. Recently [6] he has
shown that ever flat 3-torus contains an infinite number of the surfaces in this
family via an independent minimax argument. What Meeks actually proves
in [6] is a lemma which shows that every flat 3-torus T contains an infinite
number of branched nonorientable minimal surfaces f;: M; — T such that
fi is the Albanese map of a nonorientable “Riemann surface” M; with Euler
characteristic —2. These branched minimal surfaces arise from a variational
problem which yields solutions which are branched “conformal” harmonic
maps rather than smooth embeddings. However, it follows from the regularity
theorem (Theorem 1.4) in the present paper that the branched immersions
fi: M — T are smooth embeddings.

Applying the techniques in [7] one can prove that every flat 4-torus contains
an infinite number of branched minimal immersions of nonorientable surfaces
of Euler characteristic —3. Our regularity theorem and Corollary 2 imply that
these surfaces are smooth embeddings and that they lift to properly embedded
4-periodic nonorientable minimal surfaces in R*.

In a natural sense the regularity theorem for the Albanese map of a nonori-
entable surface (Theorem 1.4) gives a complete generalization of the Jacobi
embedding theorem for Riemann surfaces to the case of nonorientable Rie-
mannian surfaces. So far the only application of this regularity theorem has
been to prove the existence of many n-periodic smoothly embedded minimal
surfaces in R™. However it seems likely that this regularity theorem and
similar theorems might shed some information on the geometry of the classi-
cal case of a Riemann surface contained in its Jacobi variety. For example,
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as shown in [7], a nonhyperelliptic Riemann surface contains, up to transla-
tion, two different embeddings in its Jacobi variety where each embedding
represents the limit of a continuous one-parameter family of nonorientable
harmonic surfaces.

The author would like to thank Professor Gaber at Institut des Hautes
Etudes Scientifiques for some informative discussions of the material contained
in this paper.

1. The regularity theorem

We first give a rigorous definition of the Albanese map for a closed Rie-
mannian manifold.

Definition 1.1. Let M be a closed Riemannian manifold and let
hi,---,hi be a basis for the vector space of harmonic 1-forms on M. Let
po be a basepoint for M and let

A= {L(hl,... Jhi)t | fyeHl(M,Z)}.

Let f: M — A(M) = R¥/A defined by the integral f(p) = | :o(hl’ <o )]
The flat torus A(M) which depends on the choice of basis of the harmonic
1-forms is called the Albanese torus for M and f: M — A(M) is called the
Albanese map. The map f is the unique harmonic map of M into A(M) in
the homotopy class of f up to translation in A(M).

In classical Riemann surface theory a basis of harmonic forms can be cho-
sen so that hgo; = *hg;—; where * is the Hodge star operator. In this case
w; = hoi_1 + v/—1*hg; is a holomorphic 1-form, A(M) has a natural orthog-
onal almost complex “linear” structure so that the map f: M — A(M) is
holomorphic, and much of the important conformal information of M can be
uncovered from the placement of f(M) in A(M). A key result in this direction
is Abel’s theorem which states that a necessary and sufficient condition for
Z:;l(pi — ¢;) to be a divisor of a meromorphic function on M is

Y f) =) fl@) i AM).

Furthermore it follows from Abel’s theorem that f is always injective. We
now analyze the Albanese map for a nonorientable surface. The Albanese
map for a nonorientable surface which is diffeomorphic to the projective plane
is the constant map. Since harmonic 1-forms on a flat manifold are parallel,
we note that the Albanese map of a Klein bottle is a submersion onto a circle.

Suppose that M is a nonorientable closed Riemannian surface, po is a base
point for M and {h;,-- ,h} is a fixed basis for the harmonic 1-forms of M.



348 WILLIAM H. MEEKS, III

Let m: M — M denote the oriented 2-sheeted cover of M, let o denote t~he
order-two covering transformation and let hi =" (h;) and w; = h;++/=1*h;.
Choose pg to be one of the points in 77 !(pg). Then {wi, e , Wk } forms a
basis for the holomorphic 1-forms on M. Let f: M — A(M) = C* /A and
f: M — A(M) be the corresponding Albanese maps and let 7: A(M) —
A(M) be the linear homomorphism which is induced by the harmonic maps
fom: M — A(M). Let T(v/=1) denote the subtorus of A(M) which is
the image torus of the purely imaginary vectors in C*¥. Let Re: A(M) -
A(M)/T(vV=1) = A(M) be the linear homomorphism to the torus A(M)
induced by the real projection Re: Ck — R¥ and let H: A(M) — A(M) be
the induced projection.

Lemma 1.2. Let M be a closed nonorientable Riemannian surface. Then
the following properties hold:

(1) o extends to a map & = ¢voc of A(M), where c is the map on A(M)
induced by complez conjugation on Ck and ¢vg is translation by the point
vo = f(o(po)) = —c(vo).

(2) o extends to a map & on A(A:I ) which is a pure translation by the point
Re(vo).

(3) The map c: A(M) — A(M) satisfies c(z) = —z for all z in the kernel
of 7.

Proof. Let hy,hs,---,hi be a basis for the vector space of harmonic 1-
forms of M. Since o is an orientation reversing isometry of the orientable
surface M and o leaves invariant the harmonic 1-forms h; = = *(h;) and

o*( *hi ;) = —*h;. Hence o (w,) = w;, where @; denotes the complex conjugate
to the form w; = h; + V=1%hi;. A simple Euler characteristic calculation
shows wy, -+ ,w is a basm for the holomorphic 1-forms on M. Now let

W = (w1, ,wk)t. Then

fom) = [/p:(,,) W] = sz(p")wﬁuf;(’:; w} = v+ [/p:aw]

=+ [/:W] =vp+co f(p).

0

(1.1)

Since ¢ has order two, f(po) = 0 = f(o(a(po))) = vo + ¢ o f(o(po)). Hence,
vo = —c(vg). This proves part (1) of the lemma and by a similar argument
one can prove part (2).

Note that IEe(vo) may equal zero in which case it trivially has order-two in
the group A(M). Since & acts on A(M) by translation by the point Re(vo)
and o has order-two, it follows that everything in the kernel K of 7 can be
expressed as k + r, where k € T(v/—1), and r is the image of a purely real
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vector in C* and has order two in A(M). Since r has order-two, r = —r and
so ¢(k+4) = c(k) + ¢(r) = =k +r = —(k + r). This final equation completes
the proof of the lemma.

We now describe a conformal property of certain special Riemannian nonori-
entable surfaces.

Definition 1.3. Consider $% to be CU {00} under stereographic projec-
tion and let 6: S2 — S2 be the map induced by the complex conjugation. Let
T = {p1,6(p1), - ,Pk,6(pk)} be 2k distinct points in C, let P: My — S2 be
the 2-sheeted branched cover of S? branched over I', and let o: Mp — Mp
be the lift of §: 2 — S2 to M which acts freely on Mr. A nonorientable
Riemannian surface M is called special if M is conformally diffeomorphic to
Mr /o for some choice of I'. In particular, if M is special, then the oriented
2-sheeted cover of M is hyperelliptic.

Theorem 1.4. Let M be a closed Riemannian surface of negative Euler
characteristic and let f: M — A(M) be the Albanese map. Then the following
are equivalent:

(1) f 1is not ingective.

(2) There is a simple closed curve o on M such that f(a) is a single point.

(3) f is not an immersion.

(4) M 1is a special surface.

Proof. Suppose that M is special and that the oriented 2-sheeted cover of
M is My for some choice of points I in C. Let h: Mr — My be the hyper-
elliptic automorphism of Mr which is the order-two covering transformation
for the branched cover P: Mr — S2. Since the pull-back by & of a harmonic
1-form on M is the negative of that harmonic 1-form, the induced isometry
h: A(Mp) — A(Mr) = CF/A has linear part which is —I where I is the
identity matrix. Directly from the definition of a special surface we conclude
that

(1.2) 4 =Fix(hoo) = P} (RU {o0}) C Fix(h 0 7),

where Fix(h o 0) and Fix(h o 5) are the fixed point sets of the respective
automorphisms.

The above general discussion holds for any choice of the base point o~f Mr.
Now choose pg € ~ and base point pg = (o) for M. Let f: My — A(Mr) =
Ck /A be the associated Albanese map and let 4 = f(v). Since o is a fixed
point of h o & and the linear part of & is induced by complex conjugation
(Lemma 1.2), h o7 acts on A(Mr) by —c and hence h o7 fixes T(v=1).
Since 4 must be fixed by —c, T'(y/—1) is a connected component of Fix(h o7)
and 4N T(v=1) # @, we conclude that 4 C T(v/—1). In particular 4 is in
the kernel of 7: A(Mr) — A(M) and therefore 7(%) = f(po) = 0 is a single
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point. Hence part (4) of the theorem implies part (2). Clearly part (2) of
the theorem implies parts (1) and (3). We shall complete the proof of the
theorem by showing that part (1) implies part (3) and part (3) implies part
(4). Let f: M — A(M) be the Albanese map for M.

Suppose that f~!(f(p)) contains some point q different from p, and choose
the base point py to be the point p. Let pp be one of the points in 7= (po)
and let § be one of the points in 7~ 1(g). Let po be the base point for M and
note that f(fo) and f (q@) are both in the kernel of 7. Parts (1) and (3) of
Lemma 1.2 immediately give

(1.3) f(@(@) = —£(@) + vo,
(1.4) F(Bo) + (o (o)) = vo,
(1.5) 7@ + f(e(@) = vo.

(1.4) and (1.5) together with Abel’s theorem show that po+0(po) —§—o0(§)
is the divisor of a meromorphic function P: M — S2 of degree-two. In
particular if h: M — M is the order-two covering transformation for the
branched cover P, then h is the hyperelliptic automorphism on M and h
extends to an isometry k on A(M) whose linear part is the negative of the
identity matrix. Since ho@ fixes the point pp, ho& = —c. Hence, the tangent
space TpoM is invariant under complex conjugation. Since TpoM is invariant
under complex conjugation, it must contain a purely imaginary vector. Thus
the differential of EIM at po has rank less than one, and part (1) implies part
(3) of the theorem.

Suppose that f is not an immersion at py so that T,,OM contains a purely
imaginary vector. Choose py to be the base point of M and choose a base
point pg on M that covers po- Since TpoM is invariant under complex con-
jugation, part (1) of Lemma 1.2 implies that the Gauss or canonical map
G: M — CP*~1 has the same values at the points fio and o(fo). Hence the
canonical map of M is not one-to-one. A classical theorem on Riemann sur-
faces (2] implies that G(M) is an embedded sphere S? contained in CP¥~!
and that the induced map G: M — S? is a 2-sheeted branched cover. Part
(1) of Lemma 1.2 also shows that S? is invariant under the automorphism
d: CP¥~! — CP*~1 induced by complex conjugation. Furthermore d|S? has
a fixed point at G(pp). Since the induced anticonformal map d|S2: §% — §?
has order-two and d|S? has a fixed point, d|S? is conjugate, under a confor-
mal diffeomorphism of S? with C U {co}, to the map induced by complex
conjugation on C. Since o is a lift of d|S? to M and acts freely on M, the
definition of a special nonorientable surface shows that M is special. This
completes the proof of the theorem.
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Corollary 1. If the Albanese map of a elosed nonorientable surface is a
branched minimal immersion, then the map 1s a one-to-one immersion.

Proof. By Theorem 1.4 the corollary can only fail when the image of some
curve on the surface composed with the Albanese map is a single point. Since
this never occurs for a branched immersion, the corollary is proved.

Corollary 2. Suppose M is a closed nonorientable Riemannian surface
with k > 0 independent harmonic 1-forms. Let 6: A(M) — A(M) be the
map defined in Lemma 1.2. Then ¢ acts trivially if and only if k is even. If
A: Rk — A(M) denotes the universal cover of A(M) where M is not special,
then A=1(M) is a periodic embedded harmonic surface that is orientable when
k is odd and nonorientable when k s even.

Proof. We first prove the corollary in the case where M is not special.
By Theorem 1.4, M is a smooth embedded surface in A(M). By Lemma
1.2, ¢ acts on A(M ) by translation by wo = Re(vg). If wg = 0, then the map
H: A(M ) — A(M) is the identity map. When wq # 0, then wg has order-two.
If wo # 0, then & acts on the embedded orientable surface Re(f(M)) in A(M)
as an orientation reversing map. It remains to prove that wg # 0 precisely
when k is odd. When k is even, the classification of closed surfaces implies
there is a Jordan curve « on M whose regular neighborhood N («) is of Mébius
strip, M —+ is an orientable surface and ~ represents the order-two element of
the first homology group of M. Since the fundamental group of a torus is free
abelian, then f(«) is homotopically trivial and hence the neighborhood N ()
lifts to A~!(M). Since A~(M) contains a Mébius strip, it is nonorientable
and so wq is zero.

When k is odd it is easy to check that the image of Hy(M) in
H,(M)/Torsion is a subgroup of index-two. Since f.: Hi(M)/Torsion —
H;(A(M)) is an isomorphism, there exists a 2-sheeted cover Am) of A(M)
corresponding to the subgroup f.(m.(H1(M))) C Hy(A(M)) for which 7 o
f: M — A(M) lifts but for which f does not lift. It follows that wo is
nonzero, Am) = A(M) and A~1(M) is orientable. This proves the corollary

under the assumption that M is not special.

If M is special, then the last argument that 6 acts nontrivially on A(M )
works when k is odd. If k is even, then a similar analysis using the fact that
the image of Hy(M) in H;(M)/Torsion is the entire group proves that 7 acts
trivially on A(M ). This completes the proof of the corollary.

Remark. Although it is not stated in Corollary 1, it is easy to check
that T'(v/—1) = Ker(7) if and only if k is even. When £ is odd, T'(v/—1) has
index-2 in Ker(7).
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