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INTRINSIC CR NORMAL COORDINATES
AND THE CR YAMABE PROBLEM

DAVID JERISON & JOHN M. LEE

1. Introduction

There is a deep analogy between the geometry of strictly pseudoconvex CR
manifolds and that of conformal Riemannian manifolds. A CR manifold car-
ries a natural hermitian metric on its holomorphic tangent bundle — the Lev:
form — which, like the metric on a conformal manifold, is determined only
up to multiplication by a smooth function. The multiple is fixed by choos-
ing a contact form — a real one-form annihilating the holomorphic tangent
bundle. A CR manifold together with a choice of contact form is called a
pseudohermitian manifold.

The simplest scalar invariant of a pseudohermitian manifold is the pseu-
dohermitian scalar curvature, which we denote R, defined independently by
S. Webster [15] and N. Tanaka [14]. The CR Yamabe problem is: Given a
compact, strictly pseudoconvex CR manifold, find a choice of contact form for
which the pseudohermitian scalar curvature is constant. In [6]-[8] we posed
this problem and gave a sufficient condition for its solvability. The purpose
of this paper is to show that “most” compact strictly pseudoconvex CR man-
ifolds satisfy the sufficient condition, so that the CR Yamabe problem can
almost always be solved. The precise statement of our result is Theorem A
below.

Solutions to the CR Yamabe problem on a 2n+ 1-dimensional CR manifold
M are critical points of the functional

RO A do™ 2
(L1) Paa(0) = AL
(0 A d8) n
over the set of contact forms @ associated to the CR structure of M. In [7]

we defined an invariant
AM) = i%f?M(O),
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and showed that if M is compact and strictly pseudoconvex, the CR Yamabe
problem has a solution provided A(M) < A = A(S?"*1), where $2"*! is the
sphere in C"*! with its standard CR structure. Then in [8] we showed that the
critical constant A is realized by the “standard” contact form = %(5— 9)|z|?
on §2n*+1 and thus A = Yg2n+1(0) = pn?m = 27n(n + 1).

The main result of this paper is

Theorem A. Suppose M is a compact, strictly pseudoconvez, 2n + 1-
dimensional CR manifold. If n > 2 and M is not locally CR equivalent to
S§2n+1 then A(M) < A, and thus the CR Yamabe problem can be solved on
M.

This is analogous to the result of T. Aubin [1] for the Riemannian version of
the Yamabe problem: Every compact Riemannian manifold of dimension > 6
which is not locally conformally flat possesses a conformal metric of constant
scalar curvature. Aubin’s result is limited to dimension > 6 because these are
the dimensions in which the local conformal geometry contains enough infor-
mation to solve the problem. In the remaining cases the problem becomes a
global one, which was solved by R. Schoen in [13] (see also [11]). Our Theo-
rem A likewise covers the cases in which only local information is required. In
fact, in terms of the parabolic dilations described below, a 2n + 1-dimensional
CR manifold has “homogeneous dimension” 2n + 2, and the limitation n > 2
is the same as 2n + 2 > 6. Thus the analogy is closer than might appear at
first glance.

To illustrate our method of proof, let us recall the much simpler proof of the
fact that A(M) < A for every compact strictly pseudoconvex M. The key idea
is that the sphere possesses a one-parameter family of extremal contact forms
that concentrate near a point. To see this, it is easiest to use as a model
not the sphere but the Heisenberg group H®* = C™ x R, with coordinates
(2,t) and holomorphic tangent bundle spanned by the vector fields Z, =
0/0z* + 12*9/dt. The Cayley transform gives a CR equivalence between
H" and the sphere minus a point, which allows us to think of the standard
spherical contact form 6 as a contact form on H™.

The Heisenberg group carries a natural family of parabolic dilations: for
s > 0, the map 6,(2,t) = (sz,s%t) is a CR automorphism of H". These
dilations give rise to a family of extremal contact forms ¢ = f/eé on H"
which become more and more concentrated near the origin as € — 0. Since
an arbitrary CR structure can be closely approximated near a point by the
Heisenberg group via suitable “normal coordinates”, one expects that the
Yamabe functional %), should be closely approximated by %4 for contact

forms supported very near the base point. This is indeed the case: in [7] we
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showed that for suitably transplanted contact forms 6 on M, Z/(6°) — A
as € — 0, thus proving that A(M) < A.

In order to prove the strict inequality A(M) < A, we need a much more
precise asymptotic expression for % (0¢) as € — 0. For this it is necessary
to refine our notion of normal coordinates considerably. In solving the Rie-
mannian version of the problem, Aubin [1] used geodesic normal coordinates.
In [11] it was shown that his argument can be simplified by using “conformal
normal coordinates” instead, in which the conformal factor has been strate-
gically chosen to simplify the Yamabe functional near a point. In the CR
case, we find that such a normalization is needed just to make the calculation
tractable. The main technical contribution of this paper is a new intrinsic
construction of CR normal coordinates for an abstract CR manifold, in terms
of which the asymptotic expansion of % (6°) can be calculated explicitly in
terms of CR invariants of M at the base point. (H.-S. Luk [12] has given
another intrinsic construction of CR normal coordinates; we have chosen a
different approach because we need coordinates more closely related to pseu-
dohermitian invariants.)

Our construction of normal coordinates proceeds in two stages. The first is
to choose an arbitrary contact form 6 on M and construct, for any base point ¢q
and any holomorphic frame at ¢, canonical coordinates in a neighborhood of g.
Our construction is reminiscent of geodesic normal coordinates, in which each
line through the origin in the tangent space T, M is mapped to the geodesic
in M tangent to that line. Since the pseudohermitian connection constructed
by S. Webster [15] and N. Tanaka [14] determines pseudohermitian-invariant
geodesics, we could in fact follow the same procedure on M. This was first
observed by C. Stanton, who showed in an unpublished note how to calculate
the Taylor series of the pseudohermitian structure in exponential coordinates,
using a method of Cartan. However, this approach is not practical for our
purposes: radial lines are the orbits of the standard dilations in TgM (i.e.
multiplication by positive reals), while the natural homogeneity of our problem
is that of the parabolic dilations of the Heisenberg group mentioned above. It
is these dilations we wish to use as the basis for a coordinate system.

In §2 we show how to map the orbits of the parabolic dilations into M in a
canonical way, as the solutions to a modified geodesic equation (see Theorem
2.1). The resulting curves are called parabolic geodesics; they induce a natural
map from Ty M into M called the parabolic exponential map. By means of this
map we define a family of natural charts near q called pseudohermitian normal
coordinates.

The second step in our construction of CR normal coordinates is to analyze
the effect of a change in contact form. The asymptotic expansion of % (6¢)
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will ultimately be expressed in terms of pseudohermitian curvature and torsion
invariants, so in order to make the calculation as easy as possible we attempt
to simplify these invariants at ¢ as much as possible. In §3 we show that
0 can be chosen in a neighborhood of ¢ so that the pseudohermitian Ricci
and torsion tensors and certain combinations of their covariant derivatives
vanish at q. Once the one-jet of 8 is fixed, its Taylor series at g is completely
determined by this condition.

Our construction is inspired by a similar construction of normal coordi-
nates for a conformal Riemannian manifold due to C. R. Graham [5]. Gra-
ham showed that any metric can be changed conformally so that the Ricci
tensor and all its symmetrized covariant derivatives vanish at a given point.
In the CR case, we must replace the Ricci tensor by a more complicated ten-
sor constructed from the pseudohermitian Ricci and torsion. (The alternate
normalization used in [11], in which the volume element of the metric is ap-
proximated to arbitrarily high order by the Euclidean volume, does not seem
to have a useful analogue in the CR case.)

By choosing pseudohermitian normal coordinates for such a normalized
contact form, we obtain an intrinsically defined “CR normal coordinate chart”
near ¢ € M. The set of all such charts is parametrized by the same finite-
dimensional Lie group that parametrizes the extrinsic normal coordinates de-
fined by Chern and Moser [3].

Having completed these preliminary constructions, we proceed in §§4 and
5 to define the “test forms” #° and to compute an asymptotic formula for
Zm(6°%) as € — 0. In §4 we use simple invariant theory to show that, if 6¢ is
defined in terms of the CR normal coordinates of §§2 and 3, the asymptotic
expression takes a particularly nice form:

A(1 = ¢c(n)|S(g)|%e*) + O(e®) for n > 3,

#u = { A(1 - ¢(2)IS(q)[*e* log 3) + O(e?) forn=2.

Here S(q) is the Chern curvature tensor of M evaluated at g [3]. Since this
formula shows that a priori |S(q)|? is the only invariant that will appear in
the final expression, it allows us to ignore most of the terms that arise in the
computation of the asymptotic expansion.

Finally, in §5 we make use of this simplification to compute the exact value
of the constant ¢(n) and show that it is strictly positive. Since, whenn > 2, S
is identically zero precisely when M is locally CR equivalent to the sphere [3],
under the hypotheses of Theorem A there is a point ¢ € M where S(g) # 0.
This implies that for € small enough we can achieve Zs(6¢) < A, thus proving
the theorem.
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We will use the notation and terminology of [8], which we review briefly
here. For our purposes a CR manifold (always assumed to be of hypersurface
type and nondegenerate) is a real 2n + 1-dimensional manifold M together
with a distinguished n-dimensional subbundle Z C CTM, the holomorphic
tangent bundle, satisfying # N# = 0 and |[#,#) C #. We write H =
Re#®#% Cc TM. If 0 is a nonvanishing real one-form annihilating H,
we assume 6 A df™ # 0 (0 is a contact form). The Levi form of 6 is the
nondegenerate hermitian form defined on # by Lg(X,Y) = —2id(X AY)
for X,Y € #; it is determined up to a conformal multiple by §. If Ly is
positive definite, M is strictly pseudoconvex.

A contact form 6 determines a characteristic vector field T, defined by
6(T) =1 and T Jdf = 0. If {W,} is any local frame for #, the admis-
sible coframe dual to {W,} is the collection of (1,0)-forms {#°} defined by
0P (W,) = 68 and 0°(Wx) = 0°(T) = 0. (Unless otherwise noted, we will
always let Greek indices run from 1 to n and assume summation over re-
peated indices.) Thus, writing W-[; = Wp, {T, Wa,Wy} forms a frame for
CT M, with dual coframe {4, 6%, 05}. In terms of such a frame, we can write
df = ih,50% A 67 and Lo(X°We,YPW5) = h,5X°Y? for some hermitian
matrix of functions k5. We will use h,z and its inverse heP to lower and
raise indices.

According to [15] or [14], a pseudohermitian structure induces a natural
linear connection on M, which we denote by V and call the pseudoherms-
tian connection. Using Webster’s notation (see also [9]), the connection is
expressed in terms of a holomorphic frame by VW, = w,” ® W, VT = 0,
where the one-forms w,? satisfy

(1.2)  d6f = 0% Awo” + APGO NGO, Aap = Apa, w,5+wg, =dh 3.
The tensor with components A, is called the pseudohermitian torsion. The
connection forms also satisfy
dwo® — wa? NwyP = RoP j50P N7 + Aany POTNO — A5P L0 N O
(1.3) + 45450, AT — iAnr07 A 6P,
(cf. [10, (2.2), (2.4)]), where the pseudohermitian curvature Ro” 7 has the
symmetries
B35 = Bypaz = Rewop-

Contractions of the curvature yield the pseudohermitian Ricci Rz = Ro* o5
and the pseudohermitian scalar curvature R = R,’.

We will denote the components of pseudohermitian covariant derivatives
of a tensor by indices preceded by a comma, as in Aap5,; a zero index indi-
cates covariant differentiation with respect to T'. The sublaplacian is the real
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differential operator defined on functions by
Aof = =(fa™+ [5°)-

We would like to thank Victor Guillemin for showing us a quick proof of
Proposition 5.3.

2. Pseudohermitian normal coordinates

A pseudohermitian structure on a manifold M induces natural parabolic
dilations on any tangent space T,M analogous to those on the Heisenberg
group. In this section we will show how to map the orbits of these dilations
to pseudohermitian-invariant curves in M, called parabolic geodesics. The
resulting parabolic exponential map is a local diffeomorphism from T, M into
M, naturally induced by the pseudohermitian structure. Then any choice of
orthonormal frame for #; gives an identification of ToM with H"; composing
this identification with the parabolic exponential map yields pseudohermitian
normal coordinates near q. We will show how to use these coordinates to
compute the Taylor series of the pseudohermitian structure explicitly in terms
of pseudohermitian curvature and torsion invariants.

To see how to incorporate the parabolic dilations into our exponential map,
let us first examine the model case of the Heisenberg group H* = C" x R,
with coordinates (z,t). We consider H" to be a pseudohermitian manifold
with holomorphic tangent bundle /Z spanned by the vector fields

9 9
2. =2 +iz0
o= g TG

and standard contact form

a=1,,n,

O = dt +12%dzZ* —1Z%d2".

This pseudohermitian structure is left-invariant under the group law on H" (cf.
[7]). (We will have no occasion to use the group structure here.) With these
choices, the characteristic vector field of © is 3/dt, the admissible coframe
dual to {Z,} is {dz*}, and the Levi form is given by h oF = 26,5 The natural
parabolic dilations on H™ are the CR automorphisms é,: H* — H" defined
by 6s(2,t) = (sz,s%t) for s > 0. The infinitesimal generator of this R*-action
on H™ is the vector field
Py = z"a—c;’; + 2"% + 2t% = 2%Zo + 7% Zz + 2tT.

A function or tensor w on H" is homogeneous of degree m with respect to the
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dilations if and only if its Lie derivative with respect to P satisfies Lpw =
mw. For example, the natural distance function p(z,t) = (|z|* + t?)1/4 is
homogeneous of degree 1.

The orbits of the dilations (except for the degenerate orbits where z = 0 or
t = 0) lie on parabolas through 0. For fixed (W,c) € H", consider the curve
~: R — H" given by ~(s) = (sW, s%c). Its image is the (possibly degenerate)
parabola containing the orbits of (W, c) and (—W,¢). Its tangent vector at 0
is (W,0), and for s # 0,

A(s) = S_IP,Y(S).

Using the fact that the pseudohermitian connection on H" satisfies VZ, =
VT =0, one can compute that ~ satisfies the ordinary differential equation

(2.1) V. = 2T.

On a manifold M, a pseudohermitian structure yields a natural splitting
TM = H®RT. This splitting in turn determines a natural family of parabolic
dilations on any tangent space Ty M analogous to those on the Heisenberg
group, by setting 8,(W + ¢T) = sW + s%¢T for W € H, ¢ € R. The curves
in T,M given by ow,(s) = sW + s2¢T are parabolas analogous to the curves
~ described above. The key to the construction of our parabolic exponential
map is to use equation (2.1), which makes sense on any pseudohermitian
manifold, to map these parabolas into M, in the same way that the classical
exponential map sends radial lines to geodesics. This is carried out in the
following theorem.

Theorem 2.1. Let M be a nondegenerate pseudohermitian manifold and
gE M. For any W € Hy and c € R, let vy = yw,. denote the solution to the
ordinary differential equation (2.1) on M with initial conditions v(0) = q and
A4(0) = W. We call ~ the parabolic geodesic determined by W and c. Define
the parabolic ezponential map ¥: Ty;M — M by

(2.2) Y(W +cT) = (1),

where defined. Then ¥ maps a neighborhood of 0 in TyM diffeomorphically
to a neighborhood of ¢ in M, and sends ow, to Yw,c.

Proof. For any (W, ¢c), Yw,c(s) is uniquely defined for s small enough. We
begin by showing that the curves yw . satisfy the following rescaling law:

(2-3) '7rW,120(3) =MW, ("'3)’

whenever either side is defined. Fix r € R, and set 4(s) = yw,(rs). Then
A(s) = ryw,c(rs), and so 7 satisfies

2 _ 9n2
Vi =2r%cT.
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Since 5(0) = rW, this shows that 7 = ~rw,r2¢, Which is (2.3). It follows
immediately that ¥ maps ow, to 7w, wherever it is defined.

Now choose a coordinate neighborhood N C M, with coordinates {z*} cen-
tered at ¢. Let {£’} be the fiber coordinates on TN given by ¢(V) = dz*(V)
for V.€ TN, and let T* = ¢*(T) denote the component functions of the
vector field 7. Let T¥; denote the Christoffel symbols of the pseudohermitian
connection in these coordinates, and define a vector field X on R x TN by

0 0
X(c,(a:,€)) = (0’ fk 9zF Fk ( )Ek‘sja_fk + 2CTk( )3€k)

Let &: Rx (RxTN) — Rx TN be the local flow determined by X, which by
standard ODE theory is defined and smooth in a neighborhood of the origin.
FixceRand W e H CTyN. If m: R x TN — N denotes the projection on
the second factor followed by the natural projection TN — N, then the curve
~(8) =7 o ®(s,¢,(0,W)) in N satisfies

54 (s) = —TH ()4 () (5) + 2T*((3)),
which is equivalent to (2.1). Since «(0) = g and 4(0) = W, by uniqueness we
must have v =, . Therefore

(2.4) Yo (8) = 70 B(5,¢, (0, W),

where either side is defined.

The theory of ordinary differential equations implies that there exists € > 0
such that ®(e, ¢, (0,W)) is defined for all (W,c) in a neighborhood of (0,0).
Therefore, by (2.3) and (2.4),

YW +cT) = ’YWc(l) = (6) =mo (e, 6/52) (0,W/e))

7W/€,c/€2
is defined and smooth for (W, ¢) in some smaller neighborhood of the origin.
To show that ¥ is a diffeomorphism near 0, we will show that its differential
¥, at 0 is the identity mapping on T,M. If W € H,, (2.3) implies
vy =4

d
) ¥ = %] =W

To compute ¥, (T), let s — 7(s) be the integral curve of T peginning at q.
Fix ¢ € R, and set 8(r) = 7(r2c). Then B(r) = 2rcTp(r) and B(0) = 0. Since
VT = 0, we have

5ﬂ(r) (2rc)T = 2T,

and thus by uniqueness ((r) = 7, c(r). Setting r = 1, we get v, (1) = 7(c),
and therefore ’

d d d
\IJ*(T) = %lo \II(ST) = a;lofyoys(l) = % 07(3) =T.
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Since TM = H & RT, this shows that ¥, is the identity. q.e.d.

For computational purposes, it will be convenient to have a holomorphic
frame in a neighborhood of ¢ which is parallel along each curve T Choose
any holomorphic frame {W,|,} at ¢, and extend it to a neighborhood of
g by parallel translation along the curves M. Since every point in some
punctured neighborhood of ¢ is on a unique curve T, this defines a frame
{Wa} uniquely near gq. The following lemma shows that the resulting frame
is smooth.

Lemma 2.2. Suppose X is a vector field defined in a neighborhood of q
in M which i3 parallel along each curve T, Then X s smooth near q.

Proof. Choose any coordinates {z'} centered at q and write X = X79/0z7.
Writing ¢7(s,W,c) = X’ (Y .(8)) for W € Hg and ¢ € R, the differential
equation V4 X = 0 becomes

9, ' .
=65, W,¢) = =Ty (3, ()3, (€' (s, W, ),

with the initial condition &’(0,W,c) = X7(0). Since solutions to ODE’s de-
pend smoothly on parameters, ¢’ is a smooth function of (s, W, c) where it is
defined. Therefore X7 o ¥(W + ¢cT) = X’ (N (1) = &7(1,W,c) is smooth in
a neighborhood of 0 € T, M, and hence X7 itself is smooth. q.e.d.

Since the pseudohermitian connection is compatible with the complex struc-
ture, if Wy |, € #Z, then the parallel extension W, is a section of #. Let {6*}
denote the dual admissible coframe to {W,}. Since VT = 0 it follows that
0“ is parallel along each T We can then write df = ih 56 A 65 for some
matrix of functions k3. Because V(df) = 0, h 5 is a consta.nt matrix for
this coframe.

Suppose M is strictly pseudoconvex. We define a special frame to be a
holomorphic frame {W,} which is parallel along each curve Y o and for
which h 7 = 265 (as on the Heisenberg group); we call the dual admxss1ble
coframe a special coframe. We summarize the preceding results as follows:

Proposition 2.3. Any holomorphic frame at ¢ € M for which haﬁ =
26,7 can be extended smoothly to a special frame {W,} in a neighborhood
of q. The dual special coframe {6*} is parallel along each curve T’ and

satisfies df = 210% A 6. Any two such extensions agree on their common
domain.

Now choose a special frame {W,} near g, and let {§*} be the dual special
coframe. The coframe determines an isomorphism A: T,M — H" by (2%,t) =
A(V) = (8%(V),8(V)). This in turn determines a coordinate chart \o¥~!ina
neighborhood of g. We call such a chart pseudohermitian normal coordinates
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determined by {W,}. It is clear from the definition that the set of all special
frames, and hence also the set of all such charts, is parametrized by the group
U(n). In the remainder of this section, we will show how to compute the Taylor
series of # and a special coframe {#*} in pseudohermitian normal coordinates.

Identifying a neighborhood of ¢ € M with an open set in H* by means
of a pseudohermitian normal coordinate chart, we can consider § and §“ as
one-forms on (a subset of) H”. If ¢ is any tensor field on H", let us denote
by ©(m) the part of its Taylor series that is homogeneous of degree m in
terms of the parabolic dilations. Thus () is a tensor field with polynomial
coefficients, and ¢ — ) ¢(m) can be made to vanish to arbitrarily high order
at 0. As mentioned above, each term ¢y, satisfies L ,o(m) = mp(m), and
therefore if ¢ is a differential form,

1 1
(2.5) oim) = —(LpP)m) = (P 1do + d(P 1)) (m)-

In order to use this relation to compute the homogeneous parts of # and
6%, we will need the following lemma. The simple relationship between the
vector field P and the forms {6, 0%, wg®} expressed in this lemma is the reason
why pseudohermitian normal coordinates are valuable for the computations
we plan to do in §§4 and 5.

Lemma 2.4. Let {W,} be a special frame near ¢ € M with dual special
coframe {0%}; let woP denote the associated Webster connection forms and
(2,t) the associated pseudohermitian normal coordinates. Let P be the vector
field defined in these coordinates by
o 0 0

+ 2t

8
— —_— -
Playy =255 +2 555 + 25,

Then
(a) 6(P) =2t; (b) 8%(P)=2% (c) wg*(P)=0.
In particular, P = 2°Wy + 2°Wx + 2tT'.

Proof. 1t suffices to show that (a)-(c) hold along each curve Vo Fix
W € H, and ¢ € R, and write W = w®W,|,. In these coordinates, the curve
T= Y is given explicitly by

(2%,t) = 7(s) = (sw?, s%¢).
Thus by explicit computation 4(s) = s‘lP.,(s) for s # 0. Along ~, since
V8 = 0, we have

L 0(3(5)) = 0(V3s)) = 0(26T) = 2.
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Since 6(+(0)) = 0, this implies 6((s)) = 2cs. Therefore (P) = 0(s%(s)) =
2s2¢ = 2¢, which proves (a). Similarly, using V40% = 0,

L0%(3(s)) = 0(V3(s)) = 0%(2eT) = 0,

At the origin we have 6%(%(0)) = §*(W) = w®, and so 0%((s)) = w® all
along ~. This implies §%(P) = 0*(s4(s)) = sw* = 2%, which is (b). To
prove (c), just note that Vp#* = sV,0* = 0 along ~, which is equivalent to
wp®(P)6P = 0. Since the forms ## are independent, (c) follows. q.e.d.

The following proposition will enable us to compute the homogeneous parts
of § and 6 inductively in terms of the pseudohermitian curvature and torsion
and their covariant derivatives at q.

Proposition 2.5. Let {W,} be a special frame and {6} the dual special
coframe. Then in pseudohermitian normal coordinates

(8) 82)=6; 03y =0; Om)=2Z(120% —i2%0%)(m), m>4;
(b) 6%, =de% 6% =0; 82, = L (Pug® +tAz50° — 1P Ag0)(my,
m > 3;
(€) wg'1y=0; wg'(m) = L(RP25(2P07 — 2707) + 1 Ay 5(276 — 2t07)
— LAgz 5(270 — 2t67) + i Agm(2P07 — 276)
—1Ap (270% = 2%07)) (), ™ >2.

Proof. Using h,5 = 26,5, the structure equation (1.3) for the pseudoher-

mitian connection can be written
dwg® — wg' Aw,® = R%50° A7 + 3 Apy a0 N0 — 5 Agw 07 A6
+1Ag50° AT — iAp,07 A 6°.

Inserting this into (2.5) and using Lemma 2.4 yield (c).
Similarly, using (1.2), equation (2.5) for §* becomes

Oy == (P1(0° ANwg + 3A550 A0°) + d(P 16%))(m)
= #(zﬁwﬁ“ + tAwaﬂ — %ZBA# + dz"‘)(m).
Comparing homogeneous terms of order 1, 2, and m > 3 gives (b). Finally,
O(m) = #(PJ (2i0a A 90_) + d(PJe))(m)
= 1(2i2%6% — 2i2%0* + 2dt)(m),
from which (a) follows. q.e.d.

Observe that the map which sends a pair of points (g1, g2) near the diagonal
in M x M to ¥4, (g2) is smooth in both arguments, since solutions to ordinary
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differential equations vary smoothly with parameters. Therefore Proposition
2.5 implies, in particular, that these pseudohermitian normal coordinates are
also normal coordinates in the sense of Folland and Stein [4]. Of course, the
coordinates defined here approximate M by H™ in a much more precise way
than required for Folland-Stein coordinates.

3. CR normal coordinates

To compute the asymptotic expansion of the CR Yamabe functional, we will
need to calculate the Taylor series of a contact form 6 and a special coframe
{6} to high order at a point ¢ € M in terms of the pseudohermitian curvature
and torsion. Since the problem is CR-invariant, we lose no generality by first
judiciously choosing the contact form 6 so as to simplify the curvature and
torsion. at ¢ as much as possible. In this section we determine exactly how
far these can be simplified by a choice of contact form. In particular, we
show that a certain tensor @ constructed from the pseudohermitian Ricci and
torsion tensors can be made to vanish at g, together with its symmetrized
covariant derivatives of all orders.

Let 6 be any contact form for M, and let (z,t) be pseudohermitian nor-
mal coordinates for 6 centered at q. Write Z, = 9/92* +12%9/dt in these
coordinates, and £ = —3(ZaZz + ZzZa).

The Heisenberg dilations in pseudohermitian normal coordinates give us a
notion of homogeneity of tensor (or vector) fields on M. For example, dz® is
homogeneous of degree 1, and Z, of degree —1. If ¢ is a smooth tensor field
defined in a neighborhood of ¢, we say ¢ € @, if all the terms in the Taylor
series of ¢ in normal coordinates are homogeneous tensors of degree > m. If
© € O is a differential form, then dp € @, as well. Thus if u is a function
in @, and V a vector field in &, then Vu = du(V') € Opk-

Although &, is defined in terms of a specific choice of coordinates, it is
easy to check that any other pseudohermitian normal coordinates (2, ) satisfy
7* € @, and t € @, and multiplication maps @, X G to Gk, so the-set
Oy, is actually CR-invariant.

We let %, denote the vector space of polynomials in (z,t) (considered
either as polynomials on H" or as functions on a neighborhood of ¢ in M)
that are homogeneous of degree m in terms of parabolic dilations.

Let {W,} be a special frame near g and {6} the dual special coframe. It
follows from Proposition 2.5 that in pseudohermitian normal coordinates

0

Wa=Za+ﬁ1, T='a—t

+ .
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We will have to deal with a number of complicated expressions involving
many derivatives. In order to bring some sense of order to the forest of indices,
we begin with a brief catalog of notation conventions.

Notation. We adopt the following index conventions:

a,ﬂ,%fs,é‘,ﬂ’ae {1, 1n},
a,bce{l,---,2n}, J, k1€ {0,---,2n}.

We write z = (¢, 2,%), with 20 = ¢, 2* = 2*, ¥ = 2@, and @ = o+ n. Denote
6° =0, Wy =T, and Zo = 8/0t. The order of j is defined to be o(j) = 2 if
7 =0, and o(y) = 1 otherwise. For a multi-index J = (51, -+ ,Js), we denote
#J = s, O(J) = O(Jhl) +-- 4+ O(js), ) = gh "':I:j‘, Zy = Zj, "'Zjn and
dy = 08°/0zde ... 9z,

The symmetrization of an r-tensor with components B; = Bj,...;, is the
symmetric tensor with components

By = ;1; Y. Bos,
o€S,
where S, denotes the symmetric group on r elements and 6J = (o1, " * , Jor)-
(The coefficient is chosen so that By = By if B is symmetric.)
Definition. On a pseudohermitian manifold (M, ), let Q = Q;x8” - 6%
denote the (real) symmetric tensor whose components with respect to any
admissible coframe are

Qop=Qz5 = (n+2)idap, Q,5=Qz,=R.5

—_— = 21
Qoo = Qoo = Qoz = Qao = 444" + - 1R,o,,
16 4

- Ba _ T
Qoo n Im Aap, n(n+1) Ao

The main result of this section is the following theorem.

Theorem 3.1. Let M be a strictly pseudoconvex CR manifold. For any
integer N > 2, there exists a choice of contact form 0 such that all symmetrized
covariant derivatives of Q with total order < N wvanish at q; that 1s,

(3.1) QikLy =0 ifo(jkL) < N.

Writing 0 = 2“8 for some fized contact form 8, the one-jet of u can be chosen
arbitrarily; once it is fized, the Taylor series of u at q is uniquely determined
by this condition.

We begin with a sequence of lemmas examining the way in which @ trans-
forms under a change of contact form.

R.
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Lemma 3.2. If p is a tensor in @, the components of its covariant
derivatives with respect to a special frame satisfy O k= zZ Py +Om—o(JK)+2-

Proof. Covariant derivatives of an r-tensor ¢ = ;0”7 are related to ordi-
nary derivatives by

(3:2) Pre= Wk‘PJ - Zwjil(Wk)¢.11"'ji-llji+1"'jr’

=1
where we understand (4)]" =Q0unless1 < j,l<norn+1<j,1<2n. Observe
that Wy = Zr + @2_ok) and Proposition 2.5 implies wj’ € @,. Moreover
p, € Om—o(J), and this remains true when j; is replaced by [ # 0; when [ = 0
the summand vanishes. For first derivatives therefore,
¢J,k = sto‘] + ﬁm—o(.]k)+2-
The general case follows easily by induction.
Lemma 3.3. With respect to a special frame, if u € Oy,

Uy =2,Z,u+0,, Au=LHu+0,,

(Apu) , = —Z,Z5Zgu+mZ, Zou+ G 1
o’ =32,Z525u+iZ,Zu+0, |,
Aju=ReZ;Z, ZzZu+n"Z Zgu+0,, _,,

u,aﬂﬁa = %Za_ZaZFZﬂu + %Za—ZaZO’U, + ﬁm—2'

Proof. These follow from Lemma 3.2 and the commutation relations for
{Z;}. qed. :

Next we wish to examine how covariant derivatives of a tensor transform
when we change the background pseudohermitian structure. Suppose we are
given a contact form 6, a holomorphic frame {W_}, and its dual admissible
coframe {#}. If § = €2%9 is another contact form, one can check easily that
the characteristic field transforms by

T = ¢™(T — 2w W, + 2iuWy),
and therefore the coframe {§* = §* + 2;u*§} is admissible for § and dual to
the original frame {W_}.

Lemma 3.4. Suppose 6 = %0 and let °, ~0~°‘ be as above. The pseudo-
hermitian connection forms &zﬁ" determined by 0 and 6 are

Wg* = wg” +2(u g0% — uwg) + 265u 107 +1(2u 5 + du gu + 465 u uw")0.
In particular, if u € @,,, then Of* = wz* +G,,.
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Proof. Consider the coframe {* = €*(8* + 2iw>0)}, which is also admis-
sible for 6. In [9], it was shown that the pseudohermitian connection forms
for {0,6%} are

g = wg" +2(u g0% — wg) + 65 (u 07 — w70,)
+i(w%s +u g + du guw® + 46gu ,u)0.
The transformation law for connection forms under a change of coframe shows
that G5* = &4* + 65 du. Using the facts that du = u 167 +u 567 + u 40 and
up® =u®y +iu g6 (cf. [19]), the lemma follows.

Lemma 3.5. Suppose 0 = e?“0 with u € 8,,, p is an s-tensor field, and
let V' and V" @ denote the rth pseudohermitian covariant derivatives of o,
computed with respect to 0 and 0, respectively. Let J and K be multi-indices
with #J = s and #K = r, and let - and gij denote the corresponding
components of Vo and VT in terms of the coframes {0,0%} and {0,6%}
defined above. Then

SaJ,K = ¢J,K + ﬁm—o(K)—l'
If J is a multi-index with no zero entries, then

SaJ,K = (pJ,K +ﬁm—o(K)‘

Proof. Consider first the case r = 0, and write ¢ = goJHJ = 3515*’ . Since
we are not changing W, it is clear that gEJ =p, = W, ,--- W, ) if J has
no zero entries. On the other hand, since T = T + &, T + &,,_,(W,,Ws),
the components of ¢ containing zero entries satisfy gEJ =p + Op—1-

For r = 1, Lemma 3.4 shows that replacing w,? by &/ in formula (3.2)
can make an error of order at most ﬁm_o( k)- Similarly, replacing W by Wk
and o, by @, results in an overall error of at most Om—o(k)—1 (0T Oy if
J has no zero entries). The lemma now follows by induction.

Lemma 3.6. With 0 = e*“0, u € @,,, m > 2, the pseudohermitian Ricci
and torsion tensors satisfy the following approximate transformation laws,
computed with respect to a fized special frame {W,} for 6 :

/iaﬁ = Ayp + 2iu 45 + O,
R5=R,5—(n+2)(uz+uz,) — (us +uh5+0C,,
R=R+2n+1)Au+0,,

Aaﬁ,ﬂ = Aup” +20u,5° + G,

Ans = Ay P + 2iu 057 + By,

R,a = R,a + 2(" + 1)(Abu),a + ﬁm—l’
AR = AR +2(n+ 1)AZu+6,_,.



318 DAVID JERISON & JOHN M. LEE

Proof. The first two formulas follow immediately from the transformation
laws for A,z and Rz given in Lemma 2.4 of [10}, and the third follows

from the second since h*# = ¢=2upoP 4 &,,. Now Lemma 3.5 shows that up
to errors of the order indicated, it makes no difference whether we compute
covariant derivatives with respect to @ or 6. Therefore the remaining formulas
follow from differentiating the first and third.

Lemma 3.7. Suppose 6 = e2%0 with u € @,., m > 2. The components
of the tensor Q, with respect to the fized special frame {W,}, transform as
follows:

Qo5 = Qup — (n+2)(Z,Z5u + Z5Z,u) + Zyuh 5 + O,
Qaﬂ = Qaﬂ - 2("’ + Z)Zazﬂu + y‘ma

QOa = QOa - 4(" + 2)ZOZau + ym—li
Qoo = Qoo — 8(n +2)ZyZyu + G, _,.

Proof. From the definition of  and Lemma 3.6,

Qup ~ Qup = ~(n+2)(u oz +up,) = (uz 7 +u,ho5+0,,
Qaﬁ - Qaﬂ = —2(71. + 2)u,aﬂ + ﬂmv

QOa - QOa = 8iu,aﬂﬁ + 4i(Abu),a +ﬁ -1

~ 16 8
Qoo ~ Qoo = - Re 2u 0p°* ~ ;Agu +Om—2

The result then follows from Lemma 3.3.

Lemma 3.8. Suppose 6 = €29, with u € &,,, m > 2. Let ¥ and ¥
denote the parabolic exponential maps at ¢ € M associated with § and 6,
respectively. Then ¥ — ¥ € Opnt1 (considered as functions on T, M with its
induced CR structure).

Proof. Let z = (t, z,Z) denote f-pseudohermitian normal coordinates near q
in M. Using the parabolic exponential map of 8 to identify a neighborhood of
0 € T, M with a neighborhood of ¢ € M, we can use the same coordinates on
T,M, so that ¥/(z) = 27. We can write ¥’(z) = 27 + f’(z) for some smooth
functions f°,-- -, f2*. Then f? € &,,,, if and only if, for any (W,¢c) € C" xR,
fi(s%c,sW,sW) = O(s™+!) as s — 0.

Fix such a (W,c), and let v(s) and 5(s) denote the solutions to V.4 =
2¢T and {75”'7 = 2¢T respectively, both with initial tangent vector wea, +
W%35 at q. Note that y(s) = (s2c,sW, sW) in z-coordinates, and 7/ (s) =
Wi (s2,c, sW,sW). It suffices therefore to show that 7/ (s) —47(s) = O(s™+1).
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Let T}, and f‘;k denote the coefficients of the connections V and V with
respect to z-coordinates. Then the curve o(s) = 4(s) — 7(s) satisfies

&s) = - fék(ﬁ(s))%’(s)%k(s) + Tl (1(9))47 (8)7* (s)
+2¢T*(3(s)) — 2¢T*(7(s)),
with initial conditions o(0) = 6(0) = 0. Therefore
164 (5)] < [P ()T () (5 () = 4 (9))]
+[E5(F() (¥ (8) = 7 (8))5¢(s)]
+ (T (1(3)) = The(3())F ()7 (s)
+ (T — i) (A(8)A (8)4% ()]
+ [2¢T* (7(s)) — 2¢T* (3(s))| + 12¢(T* = T*)(7(3))].
To estimate these terms, let us write

Bl =T —Thy = da'(V5,0; — V5,0y).

From Lemma 3.4 (and the fact that the difference between two connections
transforms as a tensor) it follows that for each k, [, the 1-form B} = B}, dz’
is in @,,,. Therefore

Bji(1())¥ (5) = Bi(%(s)) = O(s™1).
It is easy to verify that T — T € &,,_,, and so T' — T* € &,,_, and
(T = T)(+(s)) = O(s™ ).
Let ¢ denote the nonnegative function

e(s) = Y (107 ()1 +167(5)1%).
J

Using the above relations and Lipschitz estimates for f‘;k and T*, for small
8 > 0 we have

')l < C Y67 (s)| +C Y lo?(s)| + Cs™*
J J

< C(p(s)? +s™1).
Applying this to the smooth function ¢,
6l =12 (0767 +6967) < 2 lo?| 67| + C Y [67|(p"/* + 5™ 1)
J 7 3

< Clp+p'/2s™ ).
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One can check directly that the ordinary differential equation y =
C(y+y'/?s™~1) has a unique solution with initial value y(0) = 0, and this so-
lution satisfies y = O(s*™). Therefore, by a standard comparison theorem for
ordinary differential equations, we conclude that ¢ = O(s?™). In particular,
this means that 67 = O(s™), and therefore ¢/ = O(s™*!). q.e.d.

We remark that the above estimates can be refined somewhat to show that
t=t+0,,,,. We will not need this additional information, so we do not
prove it here.

Now let P = Z*9, + 2%95 + 2t3, be the infinitesimal generator of the
parabolic dilations in pseudohermitian normal coordinates. To prove Theorem
3.1, we introduce the auxiliary scalar function S, defined near g by

S =Q(P —tT,P—tT).

It is easy to see that S is determined by the pseudohermitian structure and
the point ¢, independently of choice of frame. With respect to a special frame
and pseudohermitian normal coordinates, P —tT = 7 W, by Lemma 2.4, and

so this can be written
S = Z I] szjk'
j!k
We will compute the transformation law for S under a change in contact form
6 = €29, where u € £,,, m > 2.
_ By Lemma 3.8, the pseudohermitian normal coordinates Z associated with
0, considered as functions of the original pseudohermitian normal coordinates,
satisfy #(z) = 2 + &, ,,, and thus P = P+ @,,_, and {T = tT + &,,_,.
Therefore, since Q € &,
S=Q(P—-iT,P—iT) = Q(P —tT,P —tT) + O,
= Z zjszjk + ﬁm+1
j!k
From Lemma 3.7, therefore, it follows that S(m) satisfies
5'(,") = S(m) + 4|2)2.Lu—2(n+2)(z°2°Z, Zyu +42°2° Zy Z,u + 42°2° Z Z,u).
Since u € £, Pu = mu and
m?u = P?u = (2°Z, + 22°Z,)?%u
= 1°2Z, Zyu + 42°2° Z Z,u + 42°2° 2 Zyu + 23° Zyu + Pu.

Thus, writing L,, = 4|2|2.% + 4(n + 2)z°Z, — 2(n + 2)m(m — 1), we have

The following lemma shows when the operator L,, is solvable.



INTRINSIC CR NORMAL COORDINATES 321

Lemma 3.9. Let L, = 4|2|>.% + 4(n + 2)2°Z, — 2(n 4+ 2)m(m — 1).
If m > 3, L, is invertible on £,,. On &,, L, has one-dimensional kernel
spanned by the function u(2,t) =t, and is invertible on the subspace consisting
of polynomials independent of t.

Proof. Let %, C %, denote the subspace consisting of polynomials inde-
pendent of t. &, decomposes as follows:

'?m = '%m ® t‘ggm-—Z ® -0 tk‘%m—ﬂ:’

where k = [m/2]. Let wy: &, — t°Z,,_o, denote the projection onto the sth
term. If u € Z%,,, then 4L u(z,t) = —49,0zu(z) = Agu(z), where A is the
Euclidean Laplacian on C". It is easy to verify (see Lemma 5.4 of [11]) that
|2|2A, has no positive eigenvalues on %,,,.

On A#,, L, = |2|2Ay — 4(n + 2) is invertible. On the other hand, direct
calculation shows that Lyt = 0. Since %, = %, ® Rt, this proves the lemma
in the case m = 2.

For m > 3, suppose L,,u = 0 for some nontrivial v € &,,. Let s be the
largest integer such that m u # 0, and write m,u(2,t) = t°v(2), v € F,,_q,-
Then a straightforward computation shows that

0= m,Lu(zt) = |2|*t°Agv(2) + 4(n + 2)st®v(2) — 2(n + 2)m(m — 1)t°v(2)
=t°(]2]2A¢ + (n + 2)(4s — 2m(m — 1)))v(2).

Since s < m/2, this implies that v = 0, which is a contradiction. Thus L,, is
invertible on &%,,,. q.e.d.

Next we will relate the function S to the symmetrized covariant derivatives
of @. In order to do so, we will need the following version of Taylor’s theorem
for pseudohermitian normal coordinates.

Lemma 3.10. Let F be a smooth function defined near q. Then in pseu-
dohermitian normal coordinates, for any m,

1
(34) Fimy(2)= Y WzKZKF(Q)'
o(K)=m
Proof. By the classical version of Taylor’s theorem,

1
Fi (z) = ——1K9,F(q).
(m)( ) o(}ém (#K)'
Consider the operator Zy. Since Z, = d, commutes with Z; for all j, we
can factor out the 0-derivatives and write Zx = Z{Z, = 85Z,, where A is a
multi-index with no zero entries. Therefore it suffices to prove that
Y. 2, F(@)= ) 2#04F(q)
#A=m #A=m
for all m. This is proved by induction on m.



322 DAVID JERISON & JOHN M. LEE

For m = 1, we just compute:
Y 2°Z,F(g) = Y 2%(9, +12700)F(q) + ) _ 2%(35 — i2*3p) F(q)
a o a
=Y 2%9,F(q).
a

Suppose m > 1. By direct computation (07, Z,] = —[0,, Z5] = 16,50,, and
[0as Zg] = [0, Z5] = 0. It follows that

Z z°2%9,2,F(q) = Z z°2°Z,0,F(q)-
a,b a,b

Using the inductive hypothesis and this relation, we have

> A2, F(g)=) 2 Y. 2PZ5(Z,F)(q)

#A=m a #B=m—1

Yozt Y 2Pog(Z,F)(g)

a #B=m-—1

Y. ) 2°Z,(95F)(g)

#B=m—1 a

= > 2P 1°9,(85F)(q)
#B=m—1 a
Z z40,F(q). qed.
#A=m

Now applying this lemma to Q,, we can write the mth order homogeneous
part of S as

Smy(z) = 2 2¥ 2 Z,Q ().
(m) o(ﬂ§=m (#L)! L% jk

If = 2“0 with u € &, then by Lemma 3.5 the covariant derivative Q]- kL(a)
for o(jkL) = m can be computed with respect to the connection determined
by 8 instead of 6, since the error is at worst of order &, _,1)_, and therefore

vanishes at q. By Lemma 3.2, since Q — Q € O
Qjk.1(@ — Q.1 (@) = Z.Q,x(9) — Z1Q;(9),

and so using (3.3) we have

o(jkL)=m

#L ),zjz zL(QJk FACIES Q;,kL(Q))

The main ingredient in the proof of Theorem 3.1 is the following lemma.
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Lemma 3.11. Let g€ M, let  be any contact form on M, and let (2,t)
be pseudohermitian normal coordz'natesjor 0 at q. For any m > 2, there is a
polynomial u € %, in (z,t) such that 0 = €2*0 satisfies

(3.6) Q(jk,L) (9) =0 ifo(jkL)=m.

If m > 3, u is unique. If m = 2, there is a unique choice of u € %,.
Proof. By Lemma 3.9, if m > 3 there exists a unique u € &, such that

1.
Lyu=- Z (—mﬂxkzLij,L(Q)-
o(jkL)=m
If m = 2, note that the right-hand side above i§ independent of ¢; thus there
is a unique such u € %#,. Therefore if we put § = e2“0, from (3.5) it follows
that

1 ) ~

o'zFzlQ k,L(g) =0.
of jl%:m (#L)! I

For any fixed multi-index jkL of order m, the coefficient of z7z*zL in this

polynomial is a multiple of Q(jk, £)(g), so this choice of u satisfies the conclu-

sion of the lemma. q.e.d.

Proof of Theorem 3.1. Simply apply the preceding Lemma repeatedly,
noting that when § = €20 with u € Z,., the same argument shows that
Q~(J~k’ £)(9) = Q(jk,1y(g) is unchanged when o(jkL) < m. If the one-jet of u
is chosen arbitrarily, this construction then inductively determines the higher
terms in the Taylor series of u uniquely. q.e.d.

For our application of Theorem 3.1 in the next section, we will need to
know what the normalization (3.1) means explicitly up to order 4.

Proposition 3.12. Suppose 8 is a contact form satisfying (3.1) for N =
4. Then the following relations hold at q :

(a) R=0; R,z=0; Ayz=0;
(®) A, =0;
() Ra=Aup’=Rz =0,
(d) R5* =4, =AR=R,=0.
Proof. First we note the following Bianchi identities satisfied by the pseu-
dohermitian Ricci and torsion [10]:
3.7) Aupy = Ao ps
(3.8) Ro—R5P =(n—1)iAy,”°,
(3.9) Ro=Agp?* + Az P



324 DAVID JERISON & JOHN M. LEE

Differentiating (3.8), contracting, and adding to its conjugate, we obtain
(3.10) ~AR—2ReR 5%% = —2(n—1)Im A,, **.

Writing out the symmetrized derivatives of @) at ¢, we have for m = 2:
0=0Q,5=R,3 0= Qs = (n+2)iA,p,

which is (a). For m = 3,

2zR

(3.11) 0= Qoo = 445" + = Ras

(312) 0= Qaﬂ,’y’ + Qﬁ,a + Qﬁa,ﬂ = (n + 2)iAaﬁ,71 + Rﬂﬁ,a + Raﬁ,ﬁ’

(8.13) 0=Qupy +Qpy,at Qyap = (n+2)i(Ags .+ Agy o+ Arap)

Together with (3.7), this proves (b). Contracting (3.12) on the indices 3,7

yields

(3.14) 0=(n+2)idgs? +Ro+ Rz °.

Combining (3.8), (3.11), and (3.14), we obtain (c).
Finally, for m = 4,

_4

n(n+1)

(3.16) 0= Qax,0*+ Qoas + Qovy,a

(3.15) 0=Qqy = .15’_ ImA,g P> - AR,

0=Qapzy + Qap5s + @708 + .60 + Qapo5 + Qap78
+Qo,55 T Qomps + Qppar + Qopra T Qpvap + Qpmpar
Contracting (3.16), we get
0=Qs% 0+ Qoa, *+Qoz, *
= Ro+4405 " +44557 + -
1-n
— B
= 1 n ’n,R’O + SRGAQB, a.
Combining this with (3.9), we obtain Ry = Re A, ”* = 0.
Finally, contracting (3.17) on the indices a, 7 and again on 3,7, we get
(3.18) . B _ _
0= ZQagyﬂa + 2Qﬁ”7p + 2Qaa, A + 2Qaa5‘7 + 2Qa5‘a‘7 + 2Qaﬁ,7a
= (n+2)i(Aa5"* — Az ") +2(R 3% + R5 D)
+2(Ry5 ®7 + Ro5®)
=-2(n+2)ImA,z%* - 2A,R + 4Re Rz ™.

(3.17)
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Combining (3.10), (3.15), and (3.18) yields A,R = Re R,z 7* =Im A,z ?* =
0. The proof is completed by applying the commutation relation for second
covariant derivatives of R~ (cf. [10]):

ImR,-7* = %(R

a7y,

Joe _ R

ay, a'y)

1, o= - ——
= Ti(lhavRaﬁ,o + Rp_’iRap‘Ya - Raﬁ 7{)0‘"{) = '2'R,0 =0. qed

Now let G denote the group of CR automorphisms of the sphere $2n+!
that fix a point (see [3] or [2]). By means of the Cayley transform, we can
think of G as a group of local CR automorphisms of H™ that fix the origin.
The group G decomposes as a semidirect product G = U(n) x Rt x H®,
where U(n) is the unitary group acting in the z variables, R* is the group of
parabolic dilations, and H® is isomorphic to the Heisenberg group, acting as
“translations at infinity”. The group G acts simply transitively on the set of
CR normal coordinate charts at ¢ € M in the following way. If we choose a
normal coordinate chart and use it to identify a neighborhood of ¢ € M with
a neighborhood of 0 € H™, then each element of G induces a local diffeomor-
phism of M fixing q. These are not in general CR automorphisms; however, it
is easy to check that the action by an element of G is a CR automorphism of
M to first order. The subgroup U(n) changes the orthonormal frame for 7,
and Rt multiplies the contact form 6 at q by a scale factor. The subgroup
Rt x H® acts transitively on the set of one-jets of contact forms 6 for M at
q. Since a CR normal coordinate chart is determined uniquely by fixing the
one-jet of a contact form 6 and then choosing a #-orthonormal frame for )7; ,
each element of G in this way uniquely determines a new normal coordinate
chart. Thus the set of intrinsic CR normal coordinate charts defined here is
parametrized by G, just as are the extrinsic normal coordinates defined by
Chern and Moser [3].

4. The asymptotic expansion of the Yamabe functional

Let %), given by (1.1), denote the Yamabe functional on a (2n + 1)-
dimensional strictly pseudoconvex CR manifold M. As shown in [7], if we fix
a background contact form 6, the Yamabe invariant A(M) can be expressed
as the infimum of
- (pldf|3 + Rf?)0 A do™
%411 = Sy (1720) = 2

(foy 70 A dom)?/P

over nonnegative functions f € C®(M), where |df|? = faf B4 I3 fﬁ =
2fsf A, In this section we will construct a family of test functions f¢ for
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%,, by transplanting extremal functions from the Heisenberg group to M by
means of the normal coordinates developed in §§2 and 3.

It was shown in [8] that the function ®(2,t) = |w+i|~" (where w = t+1|2|2)
is an extremal for the Yamabe functional %g on the Heisenberg group. For
each € > 0, ¢ = ¢ "8}, ® = e"|w +4€?|™" is also an extremal, normalized
so that [, |€[P6 A dB" is a constant independent of . This mass of |®¢|P
is concentrated closer and closer to the origin as ¢ tends to 0.

Suppose that (z,t) are pseudohermitian normal coordinates for some con-
tact form 6 near ¢ € M, defined for |w| < 2k for some £ > 0. Define a test
function

f€(z,t) = P(w)@(2, 1),
where ¥ € C§°(C) is supported in the set {|w| < 2«}, and 9(w) = 1 for
|w| < k. Our goal is the following theorem, from which Theorem A follows as
in the introduction.

Theorem 4.1. Let 6 be a contact form near ¢ € M which satisfies the
normalization of Proposition 3.12. As e — 0, %(f€) satisfies the asymptotic

formula
. pnm(1 - c(n)|S(q)|%e*) + O(€®) forn >3,
%) = { pn?r(1 —c(2)|S(q)|%e* log 1) + O(e?) forn=2,
with c¢(n) > 0. Thus if the Chern tensor S does not vanish at g, there exists

€ > 0 such that Z,(f¢) < A = pn®n, and the CR Yamabe problem can be
solved on M.

The first step is to prove
Proposition 4.2. With the notations of Theorem 4.1, there are dimen-
stonal constants a;(n), b, (n) such that for n > 3,

(4.1) /M |df€[26 A d8™ = ay(n) + a,(n)|S(q)[%* + O(%),
(4.2) / R|f¢|20 A d6™ = O(&"),

M
(4.3) /M |FEIP0 A d8™ = by (n) + b,(n)|S(@)[?€* + O(Y).

For n = 2, we have instead
(4.4) [ 17136 A db? = ay(2) + a, (2)|S(q) e log % +0(e%),
M
(4.5) / RIf€[0 A d6? = O(e%),
M

(4.6) /M |£€1P6 A d6? = by(2) + O(?).
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Once we have shown that the expansions take the form shown in (4.1)
through (4.6), we will see that we can ignore many terms when we make the
explicit calculations of the constants. These calculations will be carried out
in §5. (The constant c(n) is of course readily expressed in terms of a,(n) and
be(n).)

All of the Taylor expansions we will need are expressed in terms of the ones
given in Proposition 2.5. Thus let {W_} be a special frame and {6*} the dual
special coframe. In addition to 6 and 6, we will need to examine the Taylor
series of Wj, which we write as

(4.7) W, =52, =02, + £ 25+ 22,

(Here as in §3 we write W, = T, Z, = 0/0t, @ = o+ n, and sum k =
0,1,---,2n.) Taking terms of homogeneous degree < —o(j) in (4.7) and
recalling that W, _,) = Z, and W, _,) = Z,, we find

(48) a(O) (S 38(0) = 1,
(4.9) 80(0) = Sa(O) = Sg(l) =0.

If we apply 6’ to (4.7) and consider terms of homogeneity m + o(l) — o()
for m > 0, we obtain

(4.10) S mto()-o(3)) = = D_ Sm+otk)—o()—) 0o +) (Ze):
i>2
(Note that the sum begins with 7 = 2, because 020(,) +1)=0)

Terms in these expansions can be assigned a weight as follows. Suppose
that F is a homogeneous polynomial in z = (t,2,Z) whose coefficients are
polynomial expressions of curvature, torsion, and their covariant derivatives
at ¢, and of the Levi form at q. We define the weight w(F') recursively as
follows:

(8  w(A,,5(9) =w(R,5,5,(2) =2+0(J),
(b) w(F, F) =w(F1)-_|—-w(F2),
(©)  wlhyz(q)) =w(r*(q)) = w(c) =0,

(d) i w(F,;) =mforall J, then w()_ F,z’) =

Here ¢ denotes a constant independent of the choice of pseudohermitian struc-
ture. For consistency in part (d) we need to use the convention that the con-
stant 0 has weight m for every m. Note that we have not defined and will
never need to consider the weight of a sum of two terms of different weights.
In particular, R=(q) = h*?(q)R,5,-(¢) and R(q) = h**(q)h*7(q)R,5,5(a)
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have weight 2, whereas A, ,(q)z*2® and Rz ﬁ(q)R"ﬁ’ﬁ(q) have weight 4.
This last expression will concern us the most.

According to Webster’s formula [15, (3.8)] the Chern tensor Sj,%<(q) equals
R4 =(q) provided R, 5(q) = 0. Thus if § is normalized as in Proposition 3.12,
the square of the Chern tensor at g is given by

(4.11) S(@)I? = R,5,-(a)R*P7(q).

By classical invariant theory for the unitary group, the only pseudo-
hermitian-invariant scalars of weight < 4 must be complete contractions of
tensor products of the pseudohermitian curvature and torsion and their co-
variant derivatives at q. Since all the indices must be contracted in pairs,
there are no such invariants of odd weight. It is easy to verify that the only
invariants of weight 0 and 2 are dimensional constants and multiples of the
scalar curvature R(q), respectively. When the weight is 4, the pseudohermi-
tian curvature or torsion can be differentiated at most by order 2; thus the
curvature tensor can only appear squared, as in R 3 P;Y.(q)Raﬂﬁ(q) =1S(q)|?,

or with at least one pair of indices contracted, as in RQE’B *(q) or Ry(q). 1f 6
satisfies the normalization of Proposition 3.12, however, the torsion and Ricci
tensors vanish at ¢, as do all scalars formed by complete contraction of their
second derivatives; thus |S(g)|? is the only nontrivial invariant of weight < 4.

We can extend the notion of weight to tensors by saying that a tensor is of
weight m if its components relative to the bases {0,dz*,dz%}, {Z,, Z,,, Z5}
are polynomials of weight m.

Lemma 4.3. 0,,,, and db,,) have weight m—2; W .., has weight m+1;
R,y has weight m + 2.

Proof. We will prove by induction on k that the following all have weight
k:

Oeray Bsy i1y way Witk—oti)»
s ‘ A R - _ .
j(k+o(l)—o(5))° af,J(k—2—0(J))’ aBpo,J(k—-2—0(J))

The induction hypothesis follows immediately from Proposition 2.5, (4.8), and
(4.9) for k < 0. Suppose that it is true for all k < m. Proposition 2.5 and
formula (4.10) show that when k = m + 1 it is valid for 6, %, w/f, and s’.
Since df = 2i6* A 6% and W; is given by (4.7), we also find that df,
and Wj( k=0)(5)) have weight k for £k < m + 1. It remains only to check the
induction step for curvature and torsion.

We begin with A, ;. We need to show that A,4,,_;) has weight m + 1;
using Lemma 3.10, it suffices to show Z;A,;(q) has weight m + 1 for all
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multi-indices J such that o(J) = m — 1. Denote

Popaj = wa W))Ayp 5 +wg” (W;)A

T
!
+ 25 W) Ang sy stz

for J = (5;,---,3,). For any subset A = (i;,---,7,) C {1,---,r}, denote
J[A] = (4;,»- -+ »J;,)- Formula (3.2) implies

ay,F
(4.12)

(4'13) AaB,Jg WJAaﬁ J - aﬂ AN

By induction on #J, we can then deduce that

(4.14) Agg s =WiAu— Y a4p W i141Pap,218),510)
A,B,C

where the sum runs over all disjoint partitions A, B,C of {1,---,#J} with
#C = 1. The coefficients a, p - are constants of weight 0.
For any k < m + 1, consider

(415)  [wa'(W;)A,g 5] (k=o0(15)-2) = > [wa? (W)l (k1) Ang, s (k2)-
k1+k2=k—0(Jj)—2

Notice that the summand is zero unless k; > 0. Thus k, < k —o(Jj) —2 <

m — o(J) — 2. Therefore, by the induction hypothesis, 4.5 J(ks) has weight

k, +o(J) + 2. Similarly, k, > 0 implies k;, < k —o(Jj) —2 < m —1—-o(Jj).

Now
[wa’y(wj)](kl)z Z Wo” (h J(lz))
Li+l2=k;

and !; > 1 implies I, < k;, —1 < m —2 - o(J) — o(j), so by the induction
hypothesis W, has welght l, + o(j). Since l, > —o(5), |, < k; +0(5) <
m—1-o(J ) hence w, ", has weight [, . Thus [wa? (W) ] (k1) has weight
ly+1l,+0(5) =k, +o(j) and (4.15) has weight (kg +o(J)+2)+(k,+0(j)) = k.
Almost identical reasoning on the other terms (with the extra observation that

= 0 for | = 0) shows that P, B,J,5(k—0(J7)—2) has weight k for all k < m+1.

If we evaluate (4.14) at g with o(J) = m — 1, we see that W ;A 4(q) =
A, ;(q) plus a sum of terms of weight m+1. (This is because the expansions
of W and P, 1.j in homogeneous terms have appropriate weight k for & <
m+1 ) Moreover, op,s(@) has weight m + 1 by definition, so W ;A ,4(q) has
weight m + 1. Next,

Aop(@) = ZyA0p@+ Do Witk Wi (ko) Aapio)

ko++k, =0
ko<m-—1

(The term Z; A, 5(g) would appear in the sum if we allowed k, =m — 1, k;, =
—o(g;), ¢ = 1,---,r.) The limitations k; > —o(j;), ¢ = 1,---,7, and ky > 0
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imply k; < m —1 —o(j,), so that the induction hypothesis applies to each
summand. It follows that Z; A ,;(q) has weight m+1 whenever o(J) = m—1.
Therefore we have proved the induction step for 4,;. The induction step for
A,p ; now follows by a routine induction on o(J) using (4.13). The proof
of the induction step for Raﬁp&', ; is similar, and this concludes the proof of
Lemma 4.3.

Proof of Proposition 4.2. Lemma 4.3 implies that
Jrreponden = [ P8P+ o+ vy +vy+ v, + OO NdE™,
M H»

where v;isa homogeneous polynomial of degree j and weight 7. By changing

to polar coordinates in the z variable, it is easy to check that if || < CF(p)

then
b
/ POANdO™ =0 (/ F(p)p*nt! dp) .
a<p<b a

Thus if we replace (z,t) by 6,(2,t) = (e2,€2t) and note that §;®¢ = ™",
620 AdO™ = e*t20 A dO", and ® < C(1 + p)~2", we find

/ |f51PO A df™ = / |B|P(1 4 ev, + - - + etv, + O(e50°))O A dO™
M p<k/e

+0 ( / BP0 A d6">
k/e<p<2k/e

= / |®|P(1+evy + - +e'v,)O A dO™
Hn"
o 4
+0 (/ Zezpt(l + p)—4n—4p2n+l dp)
K./E =0
Kk/e
+0 /0 €5P5(1 +p)-4n—4p2n+l dp
2k /e
+0 / (1 +p)—4n—4p2n+1 dp
Kk/e
- / B (L + v, + - + £10,)0 A dO™ + O(&%)
Hn
for all n > 2.

The coefficient of €7, |<I>|”'uj6/\d6", is a pseudohermitian-invariant scalar
of weight j. However, as mentioned above, |S(q)|? is the only nontrivial scalar
of weight < 4. This proves (4.3) and (4.6).
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For (4.1) and (4.4), observe that |df¢|2 = 2(f€),3(f5)'ﬂ = W fWzf¢ =
sZs;‘—,Zj f¢Z, f¢. Thus Lemma 4.3 implies

/M ldregonde™ = [ (ufF +--- +vi* + 0(p*T°0%))) 2,85 2, 8°6 A dO™

p<kK

+0 (/ (12;9°)12,9°| + |2,;9°| |@°| + |<I)512)8/\d6"),
Kk<p<2k

where

Jk — J k
= ) Fp(m1+0(s) 1) “Bmato(k)-1)

mi+ma=m
is a homogeneous polynomial of degree m+o0(jk) — 2 and weight m. Now note
that §7(Z;¢) = e~ "°() Z,® and |Z;®| < C(1+p)~2"°0), j =0,1,-- , 2n.
Changing variables, we have

4
/ |dfe(20 A do™ = f Y ™Ik Z,92,96 AdO"
M P<K/€ ymi—o

k/e 4 )
/ 265 3+1 1+p)—4n—zp2n+1 dp

2/c/€ 4
+O( 262 z(1+p)—4n % 2n+1dp)

=0
When n > 3, the last two integrals are O(¢%). Hence

/ |dfe|20 A dO™ = / Z e™vikZ, 92,90 A dO™
M H"

+0 </ Zempm+i—2(l + p)—4n—ip2n+l dp) }
K/

m=0 =2
+ 0(6

/ Z e™¥ 2,02, 80 A dO™ + O(&®),
" m=0

and (4.1) now follows in the same way as (4.2).
When n = 2, we have instead

/ |dfé|20 A do™ = / Z eMVINZ,BZ, DO A dO°

m=0

+ / '} 2,822,906 A d6? + O(c*).
p<k/e
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Note that vZijQZk(P =F +0(p~7) as p — oo, where F is a homogeneous
function of degree —6. Let ¢ be coordinates on the set S = {(z,t) : p = 1}.
Lebesgue measure can be written in “polar coordinates” as p°dpdo(s) for
some measure do on S, and hence

. k/e
/ ui’“zj@zkw Ad6? = / Fdo / p~ldp+0(1)
p<KE S 1

= / Fdologl + O(1).
S €

We can then deduce (4.4) in a way similar to (4.1) and (4.3).
Finally,

/ R|f¢|%0 A dO™
M

=/H (Rigy + Rpyy + Bigy + O(6%)) (1 + vy + v, +0(s%))| /26 A d6™,

where v, is as above and R ;) is a homogeneous polynomial of degree k and
weight k + 2. The same reasoning as above implies that for n > 3,

/ R|fE120 A dO™ = ¢, + a3 + c,e* + O(EP),
M
with

Cy = /‘Hn R(0)|¢|2e A de”, C3 = /Hn (R(l) + R(O)Ul)|¢|2e A de",

Cy = /Hn(Rm + R(l)v1 + R(O)U2)|<I>|28 A dO".

The only coefficient that can be nonzero is the term c, of weight 4. Our
normalization implies R gy = R(;y = 0 by Proposition 3.12. Note that R, =
32°2°Z,Z,R(q) by Lemma 3.10, and Z, Z,R(q) = R ,,(q) by Lemma 3.3. But
the only scalars that can be formed from R ,,(q) by contraction are R ((g)
and A,R(q), which are also zero. In all, ¢, = ¢; = ¢, = 0 and we have
proved (4.2). Similarly, when n = 2 the coefficients in the expansion on &2,
€3, e*log L vanish, proving (4.5) and completing the proof of Proposition 4.2.

We close this section by remarking that Lemma 4.3 also permits us to give
a geometric characterization of the pseudohermitian scalar curvature in terms
of the volumes of balls. We define the ball B(q, s) of radius s centered at g as
the image under the parabolic exponential map ¥: M — M of a natural
ball {p < s} on T M.

Proposition 4.4. There are positive dimensional constants a, and b,
such that as s tends to 0,

/ OAdO™ = ans2n+2 _ bnR(q)s2n+4 + 0(82"+5).
B(q,s)
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Proof. In pseudohermitian normal coordinates (z,t), B(q,s) = {|z|* +t% <
s*}. With v; as above,

/ 0/\d0"=/ (1+ v, + v, +0(p?))O6 A dO™
|z|4+t2<94 |z|4+t2<s4
— COS2n+2 + cls2n+3 + c282n+4 4 O(S2n+5),

where ¢; is a scalar of weight j. Since there are no scalars of weight 1, and
constant multiples of R(q) are the only scalars of weight 2, we have ¢, = 0
and ¢, = b, R(q). It is a routine matter to calculate these constants. Denote

1 n+1 2

By Corollary 5.4 applied to the characteristic function of B(q, s), we have
/ O AdO™ = (4m)"B(n)s*"+2,
|z|4+t2< g4

The calculation in §5 (see (5.2) and Lemma 5.1) implies

0@ AdO™ = (0 AdO™) (5,4 4) = —3R,5(9)272°O AdO™ + torsion terms.

Because there are no scalar invariants of weight 2 involving torsion, the torsion
terms must have mean value zero. Thus using Proposition 5.3 for m = 1 and
(5.3), we obtain

/ 1,0 AdO™ = .- / R_5(9)272P6 A dO™

|z|4+t2<s4 |z[4+t2<s4

2R(q)(4m)"B(n + 1)s2n+4

3(n+1) '
Thus a, = (47)"B(n) and b, = 2(4m)"B(n +1)/3(n + 1).

5. Explicit evaluation of constants

Because the asymptotic expansion involves only the square of the curva-
ture tensor, we know that no terms involving A4 g, Raﬂ, R or any of their
derivatives, and no terms involving derivatives of Raﬂ o5 contribute to the
computation of the constants in (4.1)-(4.6). We will use the notation A = B
to signify equality of A and B modulo terms of this kind and modulo terms

of weight > 4. We will also use the notations

E= Raﬁpa( )R

D, Ra pa(q) oy ﬂe( )z‘:’z‘-"ﬁzE

D,=R, pa( )R5 W(q)z’ a8,

Y 5z(a )27 2122 2P 20 27,



334 DAVID JERISON & JOHN M. LEE

We begin with an algebraic lemma. _ _
Lemma 5.1. Let w =m,dz* A dzf + 2um 5dz% A d2f + m;b-dza/\ dz?
be a real two-form. Denote Trw = 6Bm of- Then ifn>2,

nOAwAdO" ! = (Trw)e A de™",
-2 _ B ¢ p5 T cpB
n(n—1)0 Aw? AdO™2 = [(6*P6°° — 6"“'tS”‘B)mO‘Empc-r
+ %(6"56”? - 6"‘36ﬁ5)maﬂmw]9 AdO™.
Proof. The first formula is left to the reader. For the second observe that
dO? = —4dz® A dZ® Ad2® AdZP
has n(n — 1) nonzero terms — the ones for which a # 8. Now fix @ and S,
a # f. Since the n(n — 1) terms in the sum above are similar to each other,
—4n(n—1)0 Adz* AdZ® Ad2? AdzP AdO"2 = O AdO™,
where in this line only we are not using the summation convention. It follows
that
—4n(n —1)6 Ac,g,-d2% A dzP NdzP Ad2® AdO™?

(5.1) s o amers )
_ (S _ £0T£p, _
= (897697 — §°760P)c 5 _© A dO™.

Finally, the only terms of w? that can contribute to © A w? A dO"~2 are ones
with an equal number of barred and unbarred indices, so

AW AdO™ 2 =6 A (—4m zm zdz* A d2P Ad2? Ad2”

+2m, gmzdz® A dzP Adz® Ad27) Ade" 2.

If we now use (5.1) we obtain the second formula in the lemma.
Lemma 5.2. If f¢ is the test function of §4 and 6, denotes a parabolic
dilation in the normal coordinates of §3, then

(a) 82(|f61PO AdO™) = (629)P|w + 4|72 2(1 — §%54(D1 +D,))B AdE™.
(b)
82 (dfe150 A d6™) = n® (8 9)?(|2*|w + 42" ~2
— 50€*(Dy + Dy)l2?|w + 1] 72" ~2
+ 25t Ejw + 1|70 A dO".
Proof. Let E4, EF, E% denote any tensors satisfying Eﬁzﬁ = g‘zazﬂ =

E%‘zazﬁ = E. The tensor EF in one occurrence may be different from that
in another. We also denote

Us = R.255(9)272° 2% = Ry%;5(q) 2727 2°.
Note that UyUz = E.
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Let us continue with the calculations begun in Proposition 2.5. Recall that
0?1) = dza, 0(2) = 6; Wﬂa(l) = O, 0(&2) = 0, 0(3) == 0.
We have

1 — -
im = RS Py~ 7O, ], m22,
1
= _,B
(m) = 52 9% mmry M 23,
2 .
Oim) = a[zzae‘("m_l) —12%0(,_y)); m > 4.

Thus,
w®(9) = 3Rs® i5(a)(2Pd2" — 27d2P),
& = $2° R 5(q) (29 d2" — 27d2P), 0.4y = §(U,d2° — Uzd2°);
wﬂ“(a) =0, 02’4) =0, 0(5) = 0;
wile) = 31 Rz(0)[2° Re%55(9) 25 (27d2° — 2°d2T7)
—-2°R* s5(2)%° (2°d27 — 27d2%)],
0% = %zﬂwﬂ““), b(6) = &5 (Ezdz® — E, dz®).
Also, since df = 2i6* A §%, we have
By =db,  df =0,
df 4y = 2id2* A O3y + 2163 A dz*
= mgpdz* A d2? + 2im 5dz* A d2? + mﬁdza AdZP,
with m, 5 = R 5(q)2527, and m,z = —%R,,ﬁ +z(2)272%. Finally,
5y =0,  df ) = 2d2* AO(s) + 2063 Adz" + 2063 A6y

Clearly (0Ad6™) 5y, 42) = OAdO™. Only even-degree terms in § are nonzero;
therefore the terms in 6 A df™ of degree 2n + 3 and 2n + 5 are equivalent to
zero. Moreover

(0 A dan)(2n+4) = 0(4) A de" + ne A d0(4) A de"_l.

Now 64 A dO™ = 0 because 04 contains no dt term. Lemma 5.1 and
(5.2) Tr(df ) = —36°PR.S (0)272% = —1R ;(q)2"2" =

imply n® A df 4 A de"~1 =0. Thus (6 A d8"™) (2n+4) = O-
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Now we must examine

(0 Ad8™) (30 46) = 0() A O™ + nf 4y Adl 4y AdO™ ! +nO A df ) AdO™ !

+3n(n—1)0 A (d6?(4))2 Ade™2,
Because 0(4), d0( ne de, and 0(6) have no dt term, the first two terms in the
sum are equivalent to 0. It is easy to check that

Tr220(3) /\0(3) = 3=(D, — D,),
Tr 2dz* A 63 = Tr 26, Adz® = 5(D; + D,).

Hence, Trdf 4, = D D Lemma 5.1 then gives

=3
n® Adb g AdO™" '=(&D, - &D,)0 AdO",
n(n—-16 A (d0(4)) ANdO" % =-1D 6 AdO™.
In all, (6 A db) 5,16y = —35(Dy + Dy)© A dO™. Therefore
620 Adf) = e**?(1 - &e*(D, + D,))O AdO™.
Also, 62|®€|P = e 2"~ 2|w 4 4|~2"~2. This proves Lemma 5.2(a).
From (4.8)-(4.10) we have
sBo) =85 9B = %Bo) = %) = By = %) = %) = O
35(2) = —0(5)(Z5) = “zqRqag—(Q)Za,
55(2) = —03)(Z5) = — 52" Ry 56(9)2";
8%(3) = 0, 3'3(3) =0.
It is easy to check that

[

0%)(Zp) = 65 B8, 53200 (Z,) = —36Ef,  35(2)003)(Z5) = —36 B
Hence
854y = —(0(5)(Z5) + 53(2)0(5)(Z,) + 35(2)9(3 (Z5) = 155 E5 -

Similarly, s;":( 9 = — 155 E5. Finally,

58 = ~00)(Zs) = ~§Us  3ha) = ~05)(Za) =
33(5) = ~(55(2)04)(Z,) + 832)04) (Z5) +06)(Z5)) = — R B
Recalling that ® = |w + ¢|~" and ®° = e™|w + 12|, we have
622, ®° = —ine " Huw + |7 (@ —9)77,

82 Z,®° = —nte~" 2w + 1| "2
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Thus
62 (W f€) =67 (s§2, /¢ + 3251 + s32,f°)
= (6;v)6: (s52,9° + sﬁZ—<I>€ + sﬂZ %)
= (679)5 (zﬂ<1>€ +53(2) Za®® + 53(2) Za®°
+ 83(3) Z0®° + 55(4) 2, ®° + 554y 25D + 55(5) 2, D°)
= (629)[~ine " w +i| "2 (@ —9)F
+ e LR %55(9) 2% (—in)|w + 1| T2 (w,) 2
— gl 1z" - pﬂ(q)z”(m)lw +4| 7" 2 (w +7)2®
+ e (= 2U,) (—nt)|w + 4|72
+€‘"+31%0E°( in)|lw+ 1|72 (W —0) 2~
- e'"+3%Eﬁ (@n)|w + 1|72 (w 4 1)2®
—e "R UE (—nt)|w +1|7" 77
= —in(829)|w + 4| """ 2" (W — §)2P + 36U, + 35e*tEg).
Hence,

82 (1df°15) = &; (W fW5f*)
=n2(829)2e 22|22 w + 4722 + §e2t2zﬂUﬂ|w +4|72n—4
+ Ta t?Elw + 1|72,

Multiplying this by the earlier formula for 6} (§ Ad6™) we find the formula in
Lemma 5.2(b). The term 22U 3 does not contribute to the final result because
its integral only gives rise to the scalar R(q) of weight 2, which is zero. (We
have already implicitly ruled out this term on more general grounds since it
contributes to the coefficient on €% in (4.1).) q.e.d.

Let du denote Lebesgue measure on C™. Let dv be the uniform measure
on §2"~1 = {7z € C": |z| = 1}, normalized so that if z = r¢, ¢ € S22,
represent polar coordinates for z € C", then du(z) = r2*~!drdv(c). Since

O AdO™ = dt A (2id2™ A d2®)" = 2™nldt A (idz! AdzY) A --- A (id2™ A d2™)
=4"nldt Adz' Ady* A--- Adz™ Ady”,

we have

(5.3) / o(2,t)O NdO™ = 4"n!/ /oo o(z,t) dt du(z),
H» nJ—o0

whenever o is integrable.
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Proposition 5.3. Let A = (a,,---,0,,), B = (8, --,0,,) be multi-
indices with 1 < a;, < n, 1 < B, < n. Let 6(A,B) =14 A= B and 0
otherwise. Then

5 3 27n
‘/2 B zal...zamzﬁl...zﬁmdy(z) m Z 6AUB)
S2n 0ESm

Proof. Denote ¢y 1 = [ r2k+1e=r" dr Tt is easy to check by integration
by parts that ¢y, = k!/2. Let p(z) be a homogeneous polynomial on C™ of
even degree 2d. Then

[ @ duta) //S plrs)e™"" du(s)r"~ dr

= Cagrancs [, POILS).

Moreover,
/‘; |z1(2m1‘ |znl2m,.e—|z[ d/'l' /|Z1l2m_,e |27]? du(z-’)
n
n 0o
= 27r/ mitle™"" dr
j=1 70
n
= (2m) chm y1=mmyl-om,!
Jj=1
Hence

a*my!---m !
S QP (g dus) = T

Cod+2n—1
2m"m,!---m,)!
(n+m1+ “+m, —1)I'

Observe that if m = m; + --- 4+ m,, and the entries of A and B both have
exactly m; entries equal to 7, then

> 6(A,0B)=m,! - m,!

0ESm

and the proposition is proved.
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Corollary 5.4. Suppose that ¢ is a function of |z| and t. Then the
following formulas hold whenever either side is integrable:

oo oo
/ ©O AdO™ = (47r)"2n/ / o(r, t)r?"=1 dr dt,

)2
/ ©D, O AdO™ = (47 )"8|S(q | / / (r,t)r*+3 dr dt,
/ oD, 9/\d6"—2/ ©D,8 Ade™,
Hn
Ik
/ eEO ANdO™ = (47)" ———————— 1615(a)| / / o(r, t)r*"*S dr dt.

(n+1)(n+2)

Proof. These follow from (5.3) and Proposition 5.3 in the cases m = 0, 2, 2,
and 3, respectively, along with the observation that

4S(q))* =R/ ((I)Raﬁﬁ,,(q). q.ed.

« po
Denote

Ny (0, 7) = T(3(B+ 1))l (a—7—38- PTG+ (F(e - 1-1)
i 2T(a—~v—1)T(a/2)

(We will only consider this function in the range where all the arguments of
the gamma function are positive.) Let § = 2a — 2y — 3 — 3 > 0. Because

I'(1+ 2) = 2T(2),
lim 6T 4 = lim 2T 1+§ =2.
§—0+ 2 §—0+ 2
It follows that if o — o, B8 — B, 7 — 7, in such a way that § — 0%, then
N2(a0’ Bo> '70) = 612»%1+ 6N, (a,8,7)

exists and

_ T((Bo + 1)/2)T (v + /2T (2 — % = 1)/2)
Ng(ao,ﬂo, '70) = 0 F(Oto __070 — I)F(QO/OQ) 0 .

Lemma 5.5. Suppose that a, v+ 1, 8+1, and a —y— 1 are positive real

numbers.
(a) If 20 — 2y — B > 3, then

o0 o0
/ / it + (14 r2)[~2rB|e] dr dt = N, (o, B, 7).
—00 J0 ;
(b) If 20 — 2y — B = 3, then as e — 0T,

1
/ It + (1 +r2)|~ 2P|t dr dt = N, (a, B, ) log ~ + O(1).
rétt2<e- €
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Consequently, if v is the cut-off function in the definition of f€, then
/0:0 /Oco (e (t +13r?))|t +i(1 +72)|~*rP|t|" drdt = N, (e, B,7)log % +0(1).
Proof. Euler’s formula [16, p. 254] implies
/0 l g™ (1 - z)¥1dz = T(k)['(m)/T(m + k)

for all positive real numbers k and m. We deduce that

(5.4) /Ooo b7 (a? + b%) /2 db = M((v+ 1)/3)&5;72)— v- l)/2)a"“°‘+1.

In fact, let b= as and z = (1 + s%)~. Then s = z~'/2(1 — z)1/2 and

oo oo
/ b"(a2+b2)'“/2db=a"'°+l/ (1 +5%)7*2 ds
0 0

1
= %a’r—aﬂ / 2(@=1-3/2(1 _ £)(1=1/2 gy
0

and Euler’s formula gives (5.4). Next substituting a = 2 + 1 and b = |¢| in
(5.4) gives

(o o] [ o]
/ / |t 4+ 4(1 + r2)|~2rP|t|" dr dt
—-00J0
_T((v+1)/2)((a = v-1)/2) /°° 2\y—a+1,8
= T(a/2) A (147%) rP dr,
and a second application of (5.4) with a = 1, b = r yields Lemma 5.5(a).

For part (b) consider polar coordinates p = (r* +2)!/4 and s a parameter
on the curve S = {(r,t): r*+t2 = 1}. Let dv(s) be the measure on S such that
drdt = p*dv(s)dp. Suppose that F(p, s) is a family of functions satisfying

Fo(s)p™370 +0(p™*) for p>1,
Fpo)={ 2
o) for0<p<1,
uniformly for 0 < 6§ < 1. Then as § — 0,

| [EGaaeids=[" [ e =do+om
0 S 1 S

=61 /S Fy(s) du(s) + O(1).

Also as ¢ — 0T,
/05 /SFO(p, s)dv(s)p?dp = /le /SFO(s) dv(s)p~tdp +O(1)
= (log %) /sFo(s) dv(s) + O(1).
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Let 6 = 2a — 2y — § — 3. It is easy to see that the integrand in (a) satisfies

the hypothesis on Fy(p, s) and part (b) follows. q.e.d.
From Lemma 5.2, Corollary 5.4, and Lemma 5.5, it follows that

4
/|f5|"0/\d0" = /H» |w + 4|72 —2 <1 - §6(D1 +D2)> O AdO™ + O(e%)
= (4m)" [Zn / / |t +3(1+7%)| 727221 gr gt

4|S —2n-2 2'n+3
lan) / / It +4(1+r2)| dr dt

+0(¢e%)
= (47)"(2n)N,(2n + 2,2n — 1,0)
2 4 2 1 Ni(2n+2,2n+3,0) 5
'[1 15¢ 150 n(n+1) N,(2n +2,2n — 1,0) +O(e)-

Note that N,(2n+2,2n 4+ 3,0)/N,(2n+2,2n—1,0) = (n+1)/(n—1). It is
also easy to check by induction that

N,(2n+2,2n —1,0) =47"7/(2n).

Thus
2
€|P n _ -n+tl - & 2.4 5
/|f|0/\d0 m (1 lsn(n_l)IS(q)|€)+0(e),

( / 175176 A d0"> g (1 + M—f)(Tl)'S(")lze4) +0(s%).

We also have
(5.5)
/ |df€]20 A d6™
(o o] o0
= n?(47)" [2n/ / Y(etw)|t +1(1 + r2)|"""'_2r2"'*’1 drdt
—00 JO

2 00 oo
- E%E;Irls—-(:)ll_e‘l / / Y(E®w)|t +i(1 +7?)| 727220 dr dt

17 16|S(g)|? / / 2\|-2n—4,2 2n+5 ]
P\ ¢ t 1+ t°r drdt
180 (n+ 1)(n +2) v(Efw)le+ 51+ %)
{ O(¢%) whenn >3,

O(e*) whenn=2.
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When n > 3, we can replace the factor ¥ (¢2w) by 1 with an error of magnitude
O(e9%), so

/ |df<[20 A do™

2 |S(g)|> Ny(2n+2,2n+5,0)
— m2 n _“ 1 4
=n*(47)"2nN,(2n + 2,2n + 1,0) [ B+ 1) N1(2n+2,2n+1,0)6
34  |S(@))* N, (2n+4,2n+5,2) 4]

45n(n+1)(n+2) N,(2n +2,2n + 1,0)

+ O(e®)

2 n+l 2(n +2)|S(q)I? 17|S(g)?

=nient [1 T Bn(n—1)(n— 2)64 t BT Dan-Dn=2) 54] +0()
— 2 n+ (6n° + 18n — 5)|S(q)|?
=ntn"t [l T B+ D)n(n—1)(n- 2)64 +0(e).

Therefore, for all n > 3,

Z,(f%) = pn’n1 - ¢(n)|S(q)*e*] + O(e®)

with ¢(n) = (30n — 5)/[45(n + 1)n(n — 1)(n — 2)].

In the case n = 2, we conclude from (5.5) and Lemma 5.5 that we can
evaluate the constant in the asymptotic expansion as ¢ — 0 by taking the
limit as n — 2% and treating n as a continuous variable. In fact, if § = 2n —4,
the coefficients arising from (5.5) are

lim 8N, (2n+2,2n+5,0) = N,(6,9,0),
linzl+ 0N (2n +4,2n+5,2) = N,(8,9,2).
n—

It follows that

(2n — 4)c(n) = -;—;,

%(77) = 120 (1= cIS(@Pet g £ ) + O(e

when n = 2. Thus Theorem A is proved.

c(2) =

lim
n—2+
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