NEW APPLICATIONS OF MAPPING DEGREES TO MINIMAL SURFACE THEORY

BRIAN WHITE

In [21], Tomi and Tromba showed how it was possible to use the degree theory of Smale [19] to solve the long open problem of proving that every smooth embedded curve in the boundary of a convex subset of \mathbf{R}^{3} must bound an embedded minimal disk. Later Almgren and Simon [4] and Meeks and Yau [15] gave different proofs. In this paper we give other applications of degree theory to minimal surfaces. In particular, we show:
(1) If Φ is an even constant coefficient parametric elliptic functional in \mathbf{R}^{3} and γ is a smooth embedded curve on the boundary of a strictly convex subset of \mathbf{R}^{3}, then γ bounds an embedded Φ-stationary and Φ-stable disk. Furthermore, a generic such curve bounds an odd number of embedded Φ stationary disks and an even number of embedded Φ-stationary surfaces of each other topological type.
(2) Let N be a smooth Riemannian 3-manifold with strictly mean convex boundary diffeomorphic to the 2 -sphere. Suppose either that N is not diffeomorphic to the 3 -ball, or else that N contains a compact minimal surface without boundary. Then there exists a sequence D_{i} of embedded minimal disks in N such that $\partial D_{i} \subset \partial N, \partial D_{i}$ converges to a smooth embedded curve γ, and the area of D_{i} tends to infinity.
(3) There exists a complete minimal hypersurface M in \mathbf{R}^{n} such that M is singular, M is not a cone, and M is asymptotic at ∞ to an area minimizing cone C that is regular except at the origin.
(4) There exists a complete area minimizing hypersurface M in \mathbf{R}^{n} such that M is asymptotic to an area minimizing cone C that is regular except at the origin, but M is not congruent to any leaf of the foliation of minimal hypersurfaces associated with C.

These results are proved in $\S \S 2,3,4$, and 5 , respectively. All depend on the preliminaries in $\S 1$, and $\S 5^{\circ}$ is a continuation of $\S 4$, but otherwise the sections are independent of each other. $\S 6$ discusses examples.

[^0]Concerning (1), in 1961 Morrey [16] proved the existence of H^{1} maps of disks that minimize such functionals Φ subject to prescribed boundary values. But still no regularity is known for such maps. On the other hand, there also exist surfaces that minimize Φ among all surfaces, of arbitrary topological type, having a prescribed boundary; such surfaces are known to be smooth away from the boundary [3].

Statement (2) shows that the method of proving (1), which requires an a priori bound on area, breaks down in a serious way in manifolds.

Statement (3) partially answers the question, raised by R. Hardt [6,1.6], of whether there exists a complete area minimizing hypersurface which is singular but not a cone. Note that such a hypersurface cannot be constructed by perturbing a cone by a small vectorfield since by monotonicity the tangent cone at infinity must be different from the tangent cone at the singularity.

Statements (3) and (4) also show (see $\S 6$) that the recent classification, due to Simon and Solomon [18], of complete minimal hypersurfaces asymptotic at infinity to quadratic cones fails for all other known cones.

I would like to thank Mario Micallef and Bruce Solomon for helpful discussions related to $\S \S 4,5$, and 6 , and the Centre for Mathematical Analysis for their hospitality during the preparation of this paper.

1. Preliminaries

In this section we summarize those results of [24] which we will use. Analogous results were proved earlier for the special case of two dimensional minimal disks in \mathbf{R}^{n}; cf. [5], [22], [21]. Let M be a compact connected m-dimensional Riemannian manifold with nonempty boundary, and let N be an $(m+1)$ dimensional Riemannian manifold with strictly mean-convex boundary. We regard two maps $f, g: M \rightarrow N$ as being equivalent if $f=g \circ u$ for some diffeomorphism $u: M \rightarrow M$ such that $u(x)=x$ for $x \in \partial M$. Let $[f]$ denote the equivalence class of f.

Theorem $\mathbf{A}[24,3.3]$. Let $\mathscr{M}=\left\{[f]: f \in C^{2, \alpha}(M, N)\right.$ is a minimal immersion with $f(\partial M) \subset \partial N\}$. Then \mathscr{M} is a smooth Banach manifold and

$$
\begin{gathered}
\Pi: \mathscr{M} \rightarrow C^{2, \alpha}(\partial M, \partial N) \\
\Pi([f])=f \mid \partial M
\end{gathered}
$$

is a smooth Fredholm map of Fredholm index 0.
In some situations it is possible to assign a mapping degree to Π :
Theorem B [24, 5]. Let \mathscr{M}^{\prime} and W be open subsets of \mathscr{M} and $C^{2, \alpha}(\partial M, \partial N)$, respectively, such that W is connected and $\Pi: \mathscr{M}^{\prime} \rightarrow W$ is
proper. Then there is an integer $d=d\left(\mathscr{M}^{\prime}, W\right)$ such that for generic $\gamma \in W$,

$$
\sum_{[f] \in \Pi^{-1}(\gamma) \cap \mathscr{K}^{\prime}}(-1)^{\text {index }[f]}=d
$$

In particular, this holds for each $\gamma \in W$ such that every $[f] \in \Pi^{-1}(\gamma) \cap \mathscr{M}^{\prime}$ has no nontrivial Jacobi fields that vanish on ∂M. Furthermore, if $d \neq 0$, then $\Pi^{-1}(\gamma) \cap \mathscr{M}^{\prime}$ is nonempty for every $\gamma \in W$.

Corollary 1. For generic $\gamma \in W$, the number of elements of $\Pi^{-1}(\gamma) \cap \mathscr{M}^{\prime}$ is congruent to d modulo 2 .

Corollary 2. For generic $\gamma \in W$, the number of stable surfaces in $\Pi^{-1}(\gamma)$ $\cap \mathscr{M}^{\prime}$ is less than or equal to d plus the number of unstable surfaces.

Whereas Theorem A is quite general. Theorem B is severely restricted by the hypothesis of properness. The following gives a useful criterion for properness.

Theorem C. Let. \mathscr{I}^{\prime} and W be open subsets of \mathscr{I} and $C^{2, \alpha}(\partial M, \partial N)$, respectively, with $\Pi\left(\cdot \mathscr{U}^{\prime}\right) \subset W$. Then $\Pi: \mathscr{M}^{\prime} \rightarrow W$ is proper if the following hold:
(1) \mathscr{M}^{\prime} is a closed subset of $\Pi^{-1}(W)$.
(2) If $K \subset W$ is compact and $[f] \in \Pi^{-1}(K) \cap \mathscr{M}^{\prime}$, then the area and the curvatures of $f(M)$ are bounded above by a constant depending on K.

Proof. Let $\left[f_{i}\right] \in \Pi^{-1}(K) \cap \mathscr{M}^{\prime}$. Then by (2), it is fairly easy to show (cf. $[23,3]$) that a subsequence $\left[f_{i(j)}\right]$ must converge to some regular minimal surface $[f]$. But by (1). $[f] \in \mathscr{M}^{\prime}$. q.e.d.

In the applications to follow, we use Theorems B and C as follows. First we choose \mathscr{M}^{\prime} and W so that (1) of Theorem C holds. Then we either prove (2) and conclude that d exists, or else show that d does not exist and conclude that (2) is false.

2. Embedded stationary surfaces in \mathbf{R}^{3}

Let $\Phi: \partial B^{3} \rightarrow(0,+\infty)$ be a smooth function. Then Φ defines a functional on C^{1} surfaces in \mathbf{R}^{3} by

$$
\Phi(S)=\int_{x \in S} \Phi(\vec{n}(x)) d x
$$

where $\vec{n}(x)$ is a unit normal to S at x, and the integration is with respect to surface area on S. We shall assume that Φ is elliptic, i.e., that for some $\lambda>0$, the function

$$
x \mapsto|x|(\Phi(x /|x|)-\lambda)
$$

is a convex function of $x \in \mathbf{R}^{3}$. We shall also assume that Φ is even, i.e., that $\Phi(v) \equiv \Phi(-v)$. Then the theorems of $\S 1$ remain true if we replace "minimal" by " Φ-stationary". (If $\Phi(v) \equiv|v|$, then Φ defines the area functional, and S is Φ-stationary if and only if S is minimal.)
2.1 Theorem. Let N be a compact subset of \mathbf{R}^{3} with smooth, strictly convex boundary, M a surface such that ∂M is connected, and \mathscr{M} the Banach manifold of Theorem A corresponding to Φ. Let W be the set of $C^{2, \alpha}$ embeddings of ∂M into ∂N and $\mathscr{M}^{\prime}=\left\{[f] \in \Pi^{-1}(W): f\right.$ is an embedding $\}$. Then $\Pi: \mathscr{M}^{\prime} \rightarrow C^{2, \alpha}(\partial M, \partial N)$ is proper and

$$
d= \begin{cases}1 & \text { if } M \text { is a disk } \\ 0 & \text { if not. }\end{cases}
$$

Corollaries. (1) Every $\gamma \in W$ bounds an embedded Φ-stationary disk.
(2) A generic $\gamma \in W$ bounds an odd number of embedded Φ-stationary disks.
(3) If $g \neq 0$, then a generic $\gamma \in W$ bounds an even number of embedded Φ-stationary surfaces of genus g.

Proof. Since Φ is even, the strong maximum principle implies that if $[f]$ is a limit of Φ-stationary embeddings such that $f \mid \partial M$ is an embedding, then $f(M)$ is embedded. Thus \mathscr{M}^{\prime} is closed in $\Pi^{-1}(W)$.

One can show with the first variation formula, applied to radial deformations, that the area of $f(M)$ is bounded in terms of the length of $f \mid \partial M$. Also, the principal curvatures of $f(M)$ are bounded in terms of $f \mid \partial M$, the area of $f(M)$, and the genus of M. (See [23] for a precise statement and proof.) Thus by Theorems B and C, $\Pi: \mathscr{M}^{\prime} \rightarrow W$ is proper and has a degree d.

Now let $\gamma(\partial M)$ be the intersection of ∂N with a plane P. Then by the maximum principle, applied to the planes parallel to P, the only Φ-stationary surface bounded by γ is $P \cap N$. Since $P \cap N$ is strictly stable (and therefore has no nontrivial Jacobi fields which vanish on ∂M), this means that $d=1$ if M is a disk and $d=0$ if not.
2.2. Theorem. Let N and Φ be as in Theorem 2.1. If γ_{0} is a smooth embedded curve in ∂N, then γ_{0} bounds an embedded Φ-stable disk.

Remark. The author discovered this theorem by a different method. The proof here is a modification of a proof for the area functional shown by Bill Meeks. This argument was discovered independently by F. H. Lin [13].

Proof. Let γ_{0} be a smooth embedded curve in ∂N. Let S be the union of all Φ-stationary surfaces bounded by γ_{0}, Ω one of the two components of $\partial N \sim\left(\gamma_{0}\right)$, and M the unit 2-disk. Then the set of $C^{2, \alpha}$ embeddings of ∂M into Ω has two connected components; let W be one of them. Let

$$
\mathscr{M}^{\prime}=\left\{[f] \in \Pi^{-1}(W): f \text { is an embedding and } f(M) \cap S=\varnothing\right\}
$$

Then \mathscr{M}^{\prime} is an open and closed subset of \mathscr{M} by the maximum principle [29], and $\Pi: \mathscr{M}^{\prime} \rightarrow W$ is proper as in Theorem 2.1. Thus $\Pi: \mathscr{M}^{\prime} \rightarrow W$ has a degree d, and, as in Theorem 2.1, $d=1$.

Now let $\gamma_{i} \in W$ be a sequence of generic curves such that $\left\|\gamma_{i}-\gamma_{0}\right\|_{2, \alpha} \rightarrow 0$. Then each γ_{i} bounds an embedded Φ-stationary disk D_{i} with $D_{i} \cap S=\varnothing$. By $[23,3]$. a sequence of D_{i} 's converges to an embedded Φ-stationary disk D with $\partial D=\gamma_{0}$. Note that D lies on one side of S. We claim that D is "one-sided Φ-minimizing", i.e., that if V is a surface of any genus with $\partial V=\gamma_{0}$ and int $V \subset$ the component of $N \sim D$ containing Ω, then $\Phi(V) \geq \Phi(D)$. For if not, then there is a surface (integral current) V which minimizes Φ subject to those conditions. Since $\Phi(V)<\Phi(D), V \neq D$. In particular, D is between V and S. But by definition of $S, V \subset S$, a contradiction. Finally, note that the one-sided minimizing property implies stability.

Corollary. There exist embedded Φ-stable disks D and D^{\prime} such that $\partial D=\partial D^{\prime}=\gamma_{0}$ and such that every Φ-stationary surface embedded or immersed and of any topological type lies between D and D^{\prime}. In particular, if γ_{0} bounds more than one Φ-stationary surface, then $D \neq D^{\prime}$.
2.3. Theorem. Let M be a compact connected surface with more than one boundary component. Let \mathscr{M}^{\prime} and W be as in Theorem 2.1. Then $\Pi: \mathscr{M}^{\prime} \rightarrow W$ is proper and the degree $d=0$.

Proof. Properness is exactly as before. To see that $d=0$, for simplicity suppose that ∂M has exactly two boundary components, Γ_{1} and Γ_{2}. Let $\gamma_{i} \in W$ be a sequence such that

\[

\]

We claim that for sufficiently large $i, \Pi^{-1}\left(\gamma_{i}\right) \cap \mathscr{M}^{\prime}$ is empty. For suppose $S_{i} \in \Pi^{-1}\left(\gamma_{i}\right) \cap \mathscr{M}^{\prime}$. Since S_{i} is connected, there is a point x_{i} in S_{i} with

$$
\operatorname{dist}\left(x_{i}, \partial S_{i}\right) \geq r=\frac{1}{3}\left|p_{1}-p_{2}\right|
$$

By [22, Theorem 3], a subsequence of the S_{i} converges to a surface S with isolated singularities. But by $(*)$, area $\left(S_{i}\right) \rightarrow 0$ as $i \rightarrow \infty$. The contradiction shows that for large i, S_{i} does not exist. Thus $d=0$.

3. Disks of arbitrarily large area

Theorem. Let N be a compact connected smooth Riemannian manifold whose boundary is strictly mean convex and diffeomorphic to the two-sphere S^{2}. Suppose that
(1) N is not diffeomorphic to the 3 -ball B^{3}, or that
(2) N contains a compact minimal surface Σ without boundary.

Then there exists a sequence of embedded minimal disks D_{i} in N such that
(3) $\partial D_{i} \subset \partial N$,
(4) ∂D_{i} converges to a smooth embedded curve Γ,
(5) $\operatorname{area}\left(D_{i}\right) \rightarrow \infty$.

Proof. Case (1) reduces to case (2) as follows. If N is not diffeomorphic to B^{3}, then we can minimize area in the class of all embedded spheres in N that do not bound balls in N. The result is a compact minimal sphere $\Sigma \subset N$ [14].

Thus for simplicity let N be the unit ball in \mathbf{R}^{3} equipped with a smooth Riemannian metric such that ∂N is strictly mean-convex and such that (2) holds. Now apply Theorems A and B with $M=$ the unit 2-disk. Let W be the space of $C^{2, \alpha}$ embeddings of ∂M into ∂N, and let \mathscr{M}^{\prime} be the set of $[f] \in \Pi^{-1}(W)$ such that f is an embedding and such that for some open subset Ω of N :

$$
\begin{gathered}
\Omega \cap \Sigma=\varnothing \\
\partial \Omega \cap \operatorname{int}(N)=f(\operatorname{int} M), \\
f(M) \text { has the orientation induced by } \Omega .
\end{gathered}
$$

By the maximum principle, \mathscr{M}^{\prime} is open and closed in $\Pi^{-1}(W)$.
For $-1<t<1$, let

$$
\Gamma_{t}=\partial B^{3} \cap\{(x, y, z): z=t\} .
$$

Now we claim (see below) that for t sufficiently near $-1, \Gamma_{t}$ bounds a unique minimal surface S_{t}. This S_{t} is a strictly stable embedded disk which is or is not in \mathscr{M}^{\prime} according to which way we orient Γ_{t}. It follows that d, if it existed, would have to be both 1 and 0 . Thus d does not exist, and Π is not proper by Theorem B. By Theorem C, this means there exists a sequence of embedded minimal disks D_{i} satisfying (3) and (4) and such that the area and/or the principal curvatures of the D_{i} tend to infinity. But the curvatures of such a disk D are bounded in terms of ∂D and the area of D [23]. Thus in fact the area of D_{i} must go to infinity.

To establish the claim, note that there is a neighborhood $U \subset N$ of $(0,0,-1)$ that is foliated by strictly stable embedded minimal disks S_{t} with $\partial S_{t}=\Gamma_{t}$. (This is proved by the implicit function theorem as in, for example, the appendix to [23].) Now let R_{i} be a sequence of minimal surfaces in N with $\partial R_{i}=\Gamma_{t(i)}$, where $t(i) \rightarrow-1$ as $i \rightarrow \infty$. Let T_{i} be a disk that minimizes
area subject to

$$
\partial T_{i}=\Gamma_{t(i)},
$$

$T_{i} \subset R_{i} \cup\left\{\right.$ the component of $N \sim R_{i}$ not containing $\left.(0,0,-1)\right\}$.
Then T_{i} is an embedded minimal disk [15]. Clearly area $\left(T_{i}\right) \leq \operatorname{area}(\partial N)$. Unless
(6) $\operatorname{area}\left(T_{i}\right) \rightarrow 0$,
thus by $[23,3(3)]$ the T_{i} (or a subsequence) would converge to a minimal surface T with $\partial T=(0,0,-1)$, and T is regular away from $(0,0,-1)$. But then (by [23, 2], for example) T would be regular everywhere, contradicting the maximum principle since ∂N is mean-convex and $\partial N \cap T$ is nonempty. Hence (6) holds. By the lower density bound for minimal surfaces, this means that for large i, T_{i} must be near $\partial T_{i}=\Gamma_{t(i)}$ and therefore in U. Thus R_{i} is also in U. But then by the maximum principle applied to R_{i} and the leaves $S_{t}, R_{i}=S_{t(i)}$. This completes the proof.
4. Complete minimal hypersurfaces.

Throughout this section and the next, B_{r} will denote the ball of radius r in \mathbf{R}^{m+1} centered at the origin, and Σ will be regular ($m-1$)-dimensional minimal submanifold of the unit m-sphere ∂B_{1} such that the cone $C=\{r x$: $x \in$ $\Sigma, r \geq 0\}$ is area minimizing. Let Ω^{+}and Ω^{-}be the two connected components of $\partial B_{1} \sim \Sigma$, and for $x \in \Sigma$ let $n(x)$ be the unit vector that is normal to Σ, tangent to ∂B_{1}, and that points away from Ω^{-}. If $u: \Sigma \rightarrow \mathbf{R}$, we define $\tilde{u}: \Sigma \rightarrow \partial B_{1}$ by

$$
\tilde{u}(x)=(x+u(x) n(x)) /\left(1+u(x)^{2}\right)^{1 / 2}
$$

We let $\|u\|_{0},\|u\|_{k, \alpha}$, and $|u|$ denote the $C^{0}, C^{k, \alpha}$, and \mathscr{L}^{2} norms, respectively, of u.

According to [10], \mathbf{R}^{m+1} has a foliation \mathscr{F} of area minimizing hypersurfaces, one of the leaves of \mathscr{F} is C and the other leaves of \mathscr{F} are all regular. If L_{t} is a leaf near C, then $L_{t} \cap \partial B_{1}=\tilde{l}_{t}(\Sigma)$ for some $l_{t}: \Sigma \rightarrow \mathbf{R}$. Here L_{t} denotes the leaf such that

$$
t= \begin{cases}\inf l_{t} & \text { if } t>0 \\ \sup l_{t} & \text { if } t<0\end{cases}
$$

In particular, $L_{0}=C$.
We begin with an easy application of Theorem B that is interesting in its own right.
4.1. Theorem. There is a $\delta=\delta(\Sigma)>0$ such that if
(1) C is area minimizing,
(2) there is no isotopy in B_{1} from $\bar{\Omega}^{+}$to $\bar{\Omega}^{-}$leaving Σ fixed,
(3) $u_{t}(0 \leq t \leq 1)$ is a path in $C^{2, \alpha}(\Sigma)$ such that for some $\varepsilon<\delta, u_{0}=l_{\varepsilon}$, $u_{1}=l_{-\varepsilon}$, and $\left\|u_{t}\right\|_{2, \alpha}<\delta$ for all t,
then there is a $t \in(0,1)$ such that $\tilde{u}_{t}(\Sigma)$ bounds a singular minimal surface.
Remark. Note that if (2) does not hold, then ∂B_{1} is topologically the double of $\bar{\Omega}^{+}$. This implies (by, for instance, the Meier-Vietoris sequence for $\partial B_{1}=\bar{\Omega}^{+} \cup \bar{\Omega}^{-}$) that Σ is a homology sphere. In other words, (2) holds unless Σ is a homology sphere.

Proof. Suppose not. Then there are a constant c and a neighborhood W of $\left\{u_{t}: 0 \leq t \leq 1\right\}$ in $C^{2, \alpha}(\Sigma)$ such that if $u \in W$ and T is a regular minimal surface with $\partial T=\tilde{u}(\Sigma)$, then the curvatures of T are bounded by c. (For if not, there would be a $t \in[0,1]$ and a sequence T_{i} of regular minimal surfaces such that

$$
\begin{gather*}
\partial T_{i} \rightarrow \tilde{u}_{t}(\Sigma) \quad \text { in } C^{2, \alpha}, \\
\max _{x \in T_{i}}\left(\text { curvature of } T_{i} \text { at } x\right) \rightarrow \infty . \tag{}
\end{gather*}
$$

But a subsequence of the T_{i} would converge to some minimal surface T with $\partial T=\tilde{u}_{t}(\Sigma)$. By hypothesis, T is regular. But that contradicts Allard's regularity theorem [1], [2].)

Now let M be the closure of Ω^{+}, N the unit ball B_{1}, and \mathscr{M} the Banach manifold of minimal surfaces given by Theorem A. Let \mathscr{M}^{\prime} be the connected component of $\Pi^{-1}(\tilde{W})$ that contains $L_{\epsilon} \cap B_{1}$, where $\tilde{W}=\{\tilde{u}: u \in W\}$. Then \mathscr{M}^{\prime} does not contain $L_{-\varepsilon} \cap B_{1}$, since any path in \mathscr{M}^{\prime} from $L_{\epsilon} \cap B_{1}$ to $L_{-\varepsilon} \cap B_{1}$ would be an isotopy violating (2). (By [10, 2.1], $(x, t) \rightarrow(1-t) x+t(x /|x|)$ ($0 \leq t \leq 1$) defines isotopies from L_{ϵ} to $L_{-\varepsilon}$ to Ω^{+}and Ω^{-}, respectively.)

The areas of surfaces in \mathscr{M}^{\prime} are bounded by the isoperimetric inequality, and we have already mentioned that their curvatures are bounded. Thus $\Pi: \mathscr{M}^{\prime} \rightarrow \tilde{W}$ is proper and has a degree d. Now by the maximum principle applied to the leaves of $\mathscr{F}, L, \cap B_{1}$ is the only minimal surface bounded by $\tilde{l}_{\epsilon}(\Sigma)$. Also, it is strictly stable since L, is minimizing and therefore stable. Thus $d=1$. Likewise $L_{-\varepsilon} \cap B_{1}$ is the only minimal surface bounded by $\tilde{l}_{-\varepsilon}(\Sigma)$. Since $L_{-\varepsilon} \cap B_{1} \notin \mathscr{M}^{\prime}, d=0$, a contradiction. q.e.d.

If $f:[a, b] \times \Sigma \rightarrow \mathbf{R}$, then f determines a surface $S(f)=S(f ; a, b)$ by

$$
S(f)=\left\{r(x+f(r, x) n(x)) /\left(1+f(r, x)^{2}\right)^{1 / 2}: r \in[a, b], x \in \Sigma\right\}
$$

Thus $S(f)$ is minimal if and only if f satisfies the appropriate Euler-Lagrange equation which we will call the "minimal surface equation". This equation is a divergence-form quasilinear elliptic equation whose linearization at 0 is

$$
J u(r, x)=r\left(\frac{\partial}{\partial r}\right)^{2} u(r, x)+(m+1) \frac{\partial}{\partial r} u(r, x)+\frac{1}{r} J_{\Sigma} u(r, x),
$$

where J_{Σ} is the Jacobi or second variation operator on $\Sigma \subset \partial B_{1}$:

$$
J_{\Sigma} u(x)=\left(\Delta+|A(x)|^{2}+(m-1)\right) u(x)
$$

and $A(x)$ is the second fundamental form of Σ (as a submanifold of ∂B_{1}) at x. Let $\lambda_{1}<\lambda_{2}<\cdots$ be the eigenvalues of J_{Σ}, and V_{1}, V_{2}, \cdots be the corresponding eigenspaces:

$$
J_{\Sigma} u=-\lambda_{1} u \quad \text { if and only if } u \in V_{i}
$$

4.2. Lemma. If u is a solution of $J u=0$ on $(a, b) \times \Sigma$, then u has the form

$$
u(r, x)=\sum_{|i|>0} a_{i} \varphi_{i}(x) r^{(\delta(i)-m) / 2}
$$

where $\delta(i)=(i /|i|)\left(m^{2}+4 \lambda_{|i|}\right)^{1 / 2}$ and $\varphi_{i} \in V_{|i|}$. If u is a positive solution on $(0, b) \times \Sigma$, then $a_{i}=0$ for $i<-1$. If u is a positive solution on $(0, \infty) \times \Sigma$, then $a_{i}=0$ unless $|i|=1$.

Remark. If for some $i, m^{2}+4 \lambda_{i}=0$, then $\delta(i)=0$ and the term $a_{-i} \varphi_{-i}(x) r^{-m / 2}$ in the above formula should be replaced by

$$
a_{-i} \varphi_{-i}(x) r^{-m / 2} \log (r)
$$

The presence of the $\log (r)$ factor does not affect any of the arguments in this section.

Proof. The first statement is proved by separation of variables. To prove the second, note that by the Harnack inequality on $(r / 2,2 r) \times \Sigma$,

$$
\inf u(r, \cdot) \geq c_{1} \sup u(r, \cdot) \geq c_{2}\|u(r, \cdot)\|_{2}
$$

(where c_{1} and c_{2} do not depend on r) and thus

$$
\varphi_{1}(x) u(r, x) \geq c_{2} \varphi_{1}(x)\|u(r, \cdot)\|_{2} \geq c_{3}\|u(r, \cdot)\|_{2}
$$

since $\varphi_{1}>0$. Integration over Σ gives

$$
\sum_{|i|=1} a_{i} r^{(\delta(i)-m) / 2} \geq c_{4}\left(\sum_{|i|>0} a_{i}^{2} r^{\delta(i)-m}\right)^{1 / 2}
$$

or (after division by $r^{(\delta(-1)-m) / 2}$)

$$
\left(a_{-1}+a_{1}\right) r^{(\delta(1)-\delta(-1)) / 2} \geq c_{5}\left(\sum_{|i|>0} a_{i}^{2} r^{\delta(i)-\delta(-1)}\right)^{1 / 2}
$$

Letting $r \rightarrow 0$ shows that $a_{i}=0$ for $i<-1$ by noting that $\delta(i)<\delta(j)$ for $i<j$. Similarly, letting $r \rightarrow \infty$, in case u is defined on $(0, \infty) \times \Sigma$, shows that $a_{i}=0$ for $i>1$.
4.3. Lemma. Unless Σ is a totally geodesic $(m-1)$-sphere, $\lambda_{i}=1-m$ and $(\delta(i)-m) / 2=-1$ for some $i \geq 2$, and $\lambda_{j}=(\delta(j)-m) / 2=0$ for some $j \geq 3$.

Proof. If $v \in \mathbf{R}^{m+1}$ and $v \neq 0$, then $x \mapsto v \cdot n(x)$ is an eigenfunction with eigenvalue $\lambda_{i}=1-m$. Unless Σ is totally geodesic, this function changes sign, so $i \geq 2$. If P is an antisymmetric $(m+1) \times(m+1)$ matrix and $P \neq 0$, then $x \mapsto P x \cdot n(x)$ is an eigenfunction with eigenvalue $\lambda_{j}=0$. Since $0>1-m$, $j>i \geq 2$, so $j \geq 3$.
4.4. Proposition. For every $\delta \in(0,1 / 4)$, there is a $\theta>0$ such that if T is a (possibly singular) compact minimal surface with $\partial T=\tilde{u}(\Sigma),\|u\|_{2, \alpha} \leq \theta$, then
(1) there is a function $f:[\delta, 1] \times \Sigma \rightarrow \mathbf{R}$ such that $f(1, x)=u(x),\|f\|_{2, \alpha}<$ δ, and $T \sim B_{\delta}=S(f ; \delta, 1)$.

Furthermore
(2) $\|f \mid[3 \delta, 1-\delta] \times \Sigma\|_{3, \alpha} \leq C_{\delta}\|f(1, \cdot)\|_{0}$,
(3) $\|f \mid[3 \delta, 1] \times \Sigma\|_{2, \alpha} \leq C_{\delta}\|f(1, \cdot)\|_{2, \alpha}$.

Proof. Suppose (1) is false. Then for every n there exist T_{n} and u_{n} satisfying the hypotheses with $\theta=1 / n$ but not satisfying (1). By the maximum principle, T_{n} lies between $L_{1 / n}$ and $L_{-1 / n}$. Hence as $n \rightarrow \infty, T_{n} \rightarrow C \cap B_{1}$. Also, the area of T_{n} is not greater than the area of the cone over $\tilde{u}_{n}(\Sigma)$, so $\operatorname{area}\left(T_{n}\right) \rightarrow \operatorname{area}\left(C \cap B_{1}\right)$. It follows from Allard's regularity theorem [1], [2] that (1) holds.

Now let l_{t} be the function f of (1) corresponding to $T=L_{t} \cap B_{1}$. Note in fact that l_{t} extends to a solution of the minimal surface equation on $[\delta, \infty) \times \Sigma$ so that

$$
L_{t} \sim \partial B_{\delta}=S\left(l_{t} ; \delta, \infty\right)
$$

To prove (2) and (3), let $s=\|u\|_{0}$. Then $\tilde{u}(\Sigma)$ and therefore, by the maximum principle, T lie between L_{-s} and L_{s}. Hence $l_{-s} \leq f \leq l_{s}$. Now l_{s} is a positive solution to the minimal surface equation on $[\delta, \infty) \times \Sigma$, so by the Harnack inequality

$$
\sup \left(l_{s} \mid[2 \delta, 1] \times \Sigma\right) \leq C_{\delta} \inf \left(l_{s} \mid[2 \delta, 1] \times \Sigma\right) \leq C_{\delta} \inf l_{s}(1, \cdot) \leq C_{\delta}\|f(1, \cdot)\|_{0}
$$

and likewise for l_{-s}. Thus

$$
\|f \mid[2 \delta, 1] \times \Sigma\|_{0} \leq C_{\delta}\|f(1, \cdot)\|_{0}
$$

Now since f is a solution of the minimal surface equation, (2) and (3) follow from standard elliptic regularity, by using the fact $[9,10.4]$ that $f=f-0$ satisfies a homogeneous linear elliptic equation.
4.5. Proposition. Let π_{k} and π_{k}^{\prime} be the orthogonal projections of $\mathscr{L}^{2}(\Sigma)$ onto $V_{1}+\cdots+V_{k}$ and $\left(V_{1}+\cdots+V_{k}\right)^{\perp}$, respectively. Suppose $(\delta(2)-m) / 2<$ $p<q<(\delta(3)-m) / 2$. Then there exist $R \in(0,1 / 2)$ and $\theta \in\left(0, R^{2}\right)$ with
the following properties. If T is a compact minimal surface with $\partial T=\tilde{u}(\Sigma)$, $\|u\|_{2, \alpha} \leq \theta$, then there is an $f:\left[R^{3}, 1\right] \times \Sigma \rightarrow \mathbf{R}$ such that

$$
\begin{equation*}
T \sim B_{R^{3}}=S\left(f ; R^{3}, 1\right) \tag{1}
\end{equation*}
$$

Furthermore, if

$$
\left\|\pi_{2}^{\prime}(f(1, \cdot))\right\|_{2, \alpha} \leq\left|\pi_{2}(f(1, \cdot))\right|
$$

then for $R^{2} \leq t \leq R$,

$$
\begin{gather*}
\mid \pi_{2}\left(f(t, \cdot)\left|\geq t^{p}\right| \pi_{2}(f(1, \cdot)) \mid\right. \tag{2}\\
\left\|\pi_{2}^{\prime}(f(t, \cdot))\right\|_{2, \alpha} \leq t^{q}\left|\pi_{2}(f(1, \cdot))\right| \tag{3}
\end{gather*}
$$

Proof. The existence of f satisfying (1) is just Proposition 4.4. To prove (2), fix an R and suppose that it fails. Then there exist sequences T_{n}, f_{n}, and $t_{n} \in\left[R^{2}, R\right]$ satisfying (1) and

$$
\begin{gather*}
\left\|f_{n}(1, \cdot)\right\|_{2, \alpha} \leq 1 / n \tag{4}\\
\left\|\pi_{2}^{\prime}\left(f_{n}(1, \cdot)\right)\right\|_{2, \alpha} \leq \mid \pi_{2}(f(1, \cdot) \mid
\end{gather*}
$$

$$
\begin{equation*}
\left|\pi_{2}\left(f_{n}\left(t_{n}, \cdot\right)\right)\right|<t_{n}^{p}\left|\pi_{2}(f(1, \cdot))\right| \tag{6}
\end{equation*}
$$

Let $s(n)=\left\|f_{n}(1, \cdot)\right\|_{0}$. By the maximum principle, T_{n} lies between $L_{-s(n)}$ and $L_{s(n)}$, so

$$
\begin{equation*}
l_{-s(n)} / s(n) \leq f_{n} / s(n) \leq l_{s(n)} / s(n) \tag{7}
\end{equation*}
$$

By the Harnack inequality and the estimates of Proposition 4.4, a subsequence of $l_{s(n)} / s(n)$ converges smoothly on compact subsets of $(0, \infty) \times \Sigma$ to a positive limit L which is a solution of the linearized minimal surface equation. By Lemma 4.2, L has the form

$$
\begin{equation*}
L=\varphi_{1}(x)\left(a r^{(\delta(1)-m) / 2}+b r^{(-\delta(1)-m) / 2}\right) \quad(a, b \geq 0) \tag{8}
\end{equation*}
$$

Likewise (5) and (7) imply that (a further subsequence of) $f_{n} / s(n)$ converges uniformly in $C^{2, \alpha / 2}$ on compact subsets of $(0,1] \times \Sigma$ and in $C^{2, \alpha}$ on compact subsets of $(0,1) \times \Sigma$ to a solution F of the linearized minimal surface equation. By (7), $L-F \geq 0$ on $(0,1] \times \Sigma$, so by Lemma 4.2,

$$
L-F=\sum_{i \geq-1, i \neq 0} b_{i} \varphi_{i}(x) r^{(\delta(i)-m) / 2}
$$

Combining this with (8), we see that F has the form

$$
\begin{equation*}
F=\sum_{i \geq-1, i \neq 0} a_{i} \varphi_{i}(x) r^{(\delta(i)-m) / 2} \tag{9}
\end{equation*}
$$

By (6), $\mid \pi_{2}\left(F(t, \cdot)\left|\leq t^{p}\right| \pi_{2}(F(1, \cdot)) \mid\right.$ for some $t \in\left[R^{2}, R\right]$, i.e.,

$$
\left(\sum_{i=-1,1,2} a_{i}^{2} t^{(\delta(i)-m)}\right)^{1 / 2} \leq t^{p}\left(\sum_{i=-1,1,2} a_{i}^{2}\right)^{1 / 2}
$$

Since $(\delta(i)-m) / 2<p$ for $i \leq 2$, this implies that

$$
\begin{equation*}
a_{-1}=a_{1}=a_{2}=0 \tag{10}
\end{equation*}
$$

But by (5),

$$
\begin{aligned}
\left\|\pi_{2}^{\prime}(F(1, \cdot))\right\|_{2, \alpha} & \leq \liminf \left\|\pi_{2}^{\prime}\left(f_{n}(1, \cdot) / s(n)\right)\right\|_{2, \alpha} \\
& \leq \liminf \left|\pi_{2}\left(f_{n}(1, \cdot) / s(n)\right)\right|=\mid \pi_{2}(F(1, \cdot) \mid .
\end{aligned}
$$

Thus by (10), $F(1, \cdot)=0$. But by construction, $\|F(1, \cdot)\|_{0}=1$. This contradiction proves (2).

Now suppose (3) is false. Then there exist sequences T_{n}, f_{n}, and $t_{n} \in$ [$\left.R^{2}, R\right]$ satisfying (4), (5), and

$$
\left\|\pi_{2}^{\prime}\left(f_{n}\left(t_{n}, \cdot\right)\right)\right\|_{2, \alpha}>t_{n}^{q}\left|\pi_{2}\left(f_{n}(1, \cdot)\right)\right| .
$$

Thus, exactly as above, we get a nonzero solution F to the linearized minimal surface equation of the form (9), and a $t \in\left[R^{2}, R\right]$ such that

$$
\begin{gather*}
\left\|\pi_{2}^{\prime}(F(1, \cdot))\right\|_{2, \alpha} \leq \mid \pi_{2}(F(1, \cdot) \mid \neq 0 \tag{11}\\
\left\|\pi_{2}^{\prime}(F(t, \cdot))\right\|_{2, \alpha} \geq t^{q}\left|\pi_{2}(F(1, \cdot))\right| \tag{12}
\end{gather*}
$$

Now $F_{3}:(r, x) \mapsto\left(\pi_{2}^{\prime}(F(r, \cdot))(x)\right.$ is a solution of the linearized minimal surface equation, so by standard elliptic theory [9, Chapter 8],

$$
\left\|F_{e}(t, \cdot)\right\|_{2, \alpha} \leq C\left(t^{-1} \int_{t / 2}^{2 t} \int_{\Sigma} F_{3}(s, x)^{2} d x d s\right)^{1 / 2}
$$

(where C does not depend on t or F)

$$
\begin{aligned}
& =C\left(t^{-1} \int_{t / 2}^{2 t} \sum_{i \geq 3} a_{i}^{2} s^{\delta(i)-m}\right)^{1 / 2} \\
& \leq C\left(t^{-1} \int_{t / 2}^{2 t} \sum_{i \geq 3} a_{i}^{2} s^{\delta(3)-m} d s\right)^{1 / 2}
\end{aligned}
$$

(since $2 t \leq 1$)

$$
\begin{aligned}
& \leq C^{\prime}\left(\sum_{i \geq 3} a_{i}^{2} t^{\delta(3)-m}\right)^{1 / 2} \\
& =t^{q} \cdot t^{(\delta(3)-m) / 2-q} \cdot C^{\prime}\left|\pi_{2}^{\prime}(F(1, \cdot))\right| \\
& \leq t^{q} \cdot\left(R^{(\delta(3)-m) / 2-q} \cdot C^{\prime \prime}\right)\left|\pi_{2}(F(1, \cdot))\right|
\end{aligned}
$$

(by (11)). Now if R has been chosen small enough that the term in parentheses is <1, then we get a contradiction with (12).

Corollary. If Σ is not a totally geodesic sphere, and T is a compact minimal surface with $\partial T=\tilde{u}(\Sigma), 0<\|u\|_{2, \alpha} \leq \theta$, and $\left\|\pi_{2}^{\prime}(u)\right\|_{2, \alpha} \leq\left|\pi_{2}(u)\right|$, then there exist a $\rho<1$ and a function $f:[\rho, 1] \times \Sigma \mapsto \mathbf{R}$ such that

$$
\begin{gathered}
T \sim B_{\rho}=S(f ; \rho, 1) \\
\|f(\rho, \cdot)\|_{2, \alpha}=\theta>\|f(r, \cdot)\|_{2, \alpha} \quad(\rho<r \leq 1)
\end{gathered}
$$

and for $t \in[\rho / R, 1]$,

$$
\begin{gathered}
\left|\pi_{2}(f(R t, \cdot))\right| \geq R^{p}\left|\pi_{2}(f(t, \cdot))\right|, \\
\left\|\pi_{2}^{\prime}(f(R t, \cdot))\right\|_{2, \alpha} \leq R^{q} \mid \pi_{2}(f(t, \cdot) \mid .
\end{gathered}
$$

Proof. Note that if f is a solution of the minimal surface equation, then so is $(r, x) \mapsto f(\mu r, x)$. Now apply the proposition to $f\left(R^{n} r, x\right), n=0,1,2, \cdots$, until the first ρ such that $\|f(\rho, \cdot)\|_{2, \alpha}=\theta$.
(Note there must be such a $\rho>0$, since otherwise $\|f(r, \cdot)\|_{0}$ grows like r^{p} as $r \rightarrow 0$, and by Lemma 4.3, $p<0$.)

Theorem 4.6. If

$$
\begin{equation*}
C \text { is area minimizing, } \tag{1}
\end{equation*}
$$

there is no isotopy in B_{1} from $\bar{\Omega}^{+}$to $\bar{\Omega}^{-}$leaving Σ fixed,

$$
\begin{equation*}
\lambda_{2}<(1-m) \tag{2}
\end{equation*}
$$

then there exists a complete singular minimal surface (without boundary) that is asymptotic to C at ∞ but is not a cone.

Remark. By Lemma 4.3, $\lambda_{i}=1-m$ and $(\delta(i)-m) / 2=-1$ for some i. Hypothesis (3) states that $i \geq 3$, which implies that the p and q of Proposition 4.5 are less than -1 since $\delta(j)<\delta(i)$ for $j<i$.

Proof. Let θ be as in the corollary to Proposition 4.5. Let

$$
u_{t}(x)=l_{\cos (\pi t) \varepsilon}(x)+\varepsilon \cdot \varphi_{2}(x) \sin (\pi t),
$$

where $\varepsilon<\theta$. Note that $u_{t}(0 \leq t \leq 1)$ is a path in $C^{2, \alpha}(\Sigma)$ from l_{ε} to $l_{-\varepsilon}$. By Theorem 4.1, there is a $t \in(0,1)$ such that $\tilde{u}_{t}(\Sigma)$ bounds a singular minimal surface $T=T_{\varepsilon}$. By the corollary to Proposition 4.5, there are a $\rho=\rho(\varepsilon)$ and a function $f_{\varepsilon}:[\rho, 1] \times \Sigma \rightarrow \mathbf{R}$ such that

$$
T_{\varepsilon} \sim B_{\rho}=S\left(f_{\varepsilon} ; \rho, 1\right)
$$

$$
\begin{equation*}
\left\|f_{\varepsilon}(\rho, \cdot)\right\|_{2, \alpha}=\theta>\left\|f_{\varepsilon}(r, \cdot)\right\|_{2, \alpha} \quad(\rho<r \leq 1), \tag{4}
\end{equation*}
$$

$$
\begin{array}{cc}
\left|\pi_{2}\left(f_{\varepsilon}(r, \cdot)\right)\right| \geq R^{p}\left|\pi_{2}(f(r / R, \cdot))\right| & (\rho \leq r \leq R) \\
\left\|\pi_{2}^{\prime}(f(r, \cdot))\right\|_{2, \alpha} \leq\left|\pi_{2}(f(r, \cdot))\right| & (\rho \leq r \leq R) \tag{6}
\end{array}
$$

Note that $\rho(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$. Now let V_{ε} be obtained by dilating T_{ε} by the factor $1 / \rho$. Then $V_{\varepsilon}=S\left(g_{\varepsilon} ; 1,1 / \rho\right)$, where $g_{\varepsilon}(r, x)=f_{\varepsilon}(\rho r, x)$. By (4) and Proposition 4.4, there is a sequence of ε 's tending to 0 such that the g_{ε} converge smoothly on compact subsets of $[1, \infty) \times \Sigma$ to a function g. Thus the corresponding V_{ε} 's converge to a minimal surface V with $V \sim B_{1}=S(g ; 1, \infty)$. Since the V_{ε} are all singular, so is V. By (4), $V \neq C$. Since $p<-1$, by (5) and (6) we have

$$
\|g(r, \cdot)\|_{2, \alpha}=\mathscr{O}\left(r^{p}\right)=o\left(r^{-1}\right),
$$

which implies that V is not a cone.

5. Complete area minimizing hypersurfaces

In the last section, we produced a complete minimal hypersurface V asymptotic to an area minimizing cone C at ∞ such that V is not congruent to any leaf of the foliation associated to C. This V is singular, but the proof does not tell us whether or not it is minimizing or even stable. In this section, under slightly different hypotheses on C, we prove that there is such a V which is minimizing, but we do not know whether or not it is singular.
5.1. Theorem. Suppose Σ is a regular minimal hypersurface of the unit m-sphere $\partial B_{1} \subset \mathbf{R}^{m+1}$ such that
(1) $\lambda_{2}<(1-m)$,
(2) C is strictly stable and strictly minimizing.

Then there exists a complete area minimizing hypersurface V that is asymptotic to C at ∞ but is not congruent to any leaf of the foliation associated with C.

Remark. Recall that C is stable if and only if $\lambda_{1} \geq-m^{2} / 4$, and strictly stable if and only if $\lambda_{1}>-m^{2} / 4$. By Lemma 4.2,

$$
\lim _{t \rightarrow 0} t^{-1} l_{t}(r, x)=\left(a r^{(\delta(1)-m) / 2}+b r^{(-\delta(1)-m) / 2}\right) \cdot \varphi_{1}(x)
$$

The assumption of strict minimality means that $b=0$.
Definition. If $f:[a, b] \times \Sigma \rightarrow \mathbf{R}$, let

$$
Y(f, r)=r^{m}\left|\pi_{1}(f(r, \cdot))\right|^{2}=r^{m}\left(\int_{x \in M} f(r, x) \varphi_{1}(x) d x\right)^{2}
$$

5.2. Proposition. Suppose Σ is strictly stable. Then there is a $\mu>0$ such that if $f_{i}:[1 / 16,1] \times \Sigma \rightarrow \mathbf{R}(i=1,2)$ are solutions of the minimal surface
equation with $\left\|f_{i}\right\|_{2, \alpha} \leq \mu$ and $f_{1}-f_{2}=g \geq 0$, and if $Y(g, 1 / 4) \geq Y(g, 1 / 2)$, then $Y(g, 1 / 8) \geq Y(g, 1 / 4)$.

Furthermore, if $g(1, \cdot) \equiv 0$, then $Y(g, r / 2) \geq Y(g, r)$ for $1 / 4 \leq r \leq 1$.
Proof. Suppose the first conclusion of the proposition is not true. Then there exist sequences of solutions f_{1}^{n}, f_{2}^{n} such that

$$
\begin{gather*}
\left\|f_{i}^{n}\right\|_{2, \alpha} \leq 1 / n \tag{1}\\
f_{1}^{n}-f_{2}^{n}=g^{n} \geq 0 \tag{2}\\
Y\left(g^{n}, 1 / 4\right) \geq Y\left(g^{n}, 1 / 2\right), \tag{3}\\
Y\left(g^{n}, 1 / 8\right)<Y\left(g^{n}, 1 / 4\right) . \tag{4}
\end{gather*}
$$

Because the minimal surface equation is quasilinear, g^{n} satisfies a homogeneous linear elliptic equation, the coefficients of which are expressions involving f_{1}^{n} and f_{2}^{n} (cf. the proof of $[9,10.4]$ or the appendix of [23]). Let

$$
s(n)=\sup g^{n} \mid[1 / 8,1 / 2] \times \Sigma
$$

Then it is standard (by the Harnack inequality, for example) that a subsequence of $g^{n} / s(n)$ converges uniformly on compact subsets of $(1 / 16,1) \times \Sigma$ to a function G that is a solution of the linearized minimal surface equation. Thus by Lemma 4.2

$$
\begin{equation*}
\pi_{1}(G(r, \cdot))=\left(a r^{(-m+\delta(1)) / 2}+b r^{(-m-\delta(1)) / 2}\right) \cdot \varphi_{1}(\cdot) \tag{5}
\end{equation*}
$$

so that

$$
Y(G, r)=a^{2} r^{\delta(1)}+2 a b+b^{2} r^{-\delta(1)}
$$

Taking the limit of (3) and (4) we have

$$
\begin{gathered}
a^{2} r^{\delta(1)}+b^{2} r^{-\delta(1)} \geq a^{2}(2 r)^{\delta(1)}+b^{2}(2 r)^{-\delta(1)} \\
a^{2} r^{\delta(1)}+b^{2} r^{-\delta(1)} \geq a^{2}(r / 2)^{\delta(1)}+b^{2}(r / 2)^{-\delta(1)}
\end{gathered}
$$

where $r=1 / 4$. Adding these inequalities gives

$$
2\left(a^{2} r^{\delta(1)}+b^{2} r^{-\delta(1)}\right) \geq\left(a^{2} r^{\delta(1)}+b^{2} r^{-\delta(1)}\right)\left(2^{\delta(1)}+2^{-\delta(1)}\right)
$$

which implies that $a=b=0$. This is impossible since $G \geq 0$ and $\sup G \mid[1 / 8,1 / 2] \times \Sigma=1$. Hence the first conclusion is proved.

To prove the second conclusion, suppose it fails. Then there exist sequences f_{1}^{n} and f_{2}^{n} of solutions satisfying (1), (2), and

$$
\begin{equation*}
g^{n}(1, \cdot) \equiv 0, \quad Y\left(g^{n}, r_{n} / 2\right)<Y\left(g^{n}, r_{n}\right) \tag{6}
\end{equation*}
$$

for some $r_{n} \in[1 / 4,1]$. Thus, as above, a subsequence of $g^{n} / s(n)$ converges to a nonzero limit G satisfying (5). Since $G(1, \cdot)=0, b=-a$. Furthermore, G is nonnegative and not identically zero, so $|a|>0$. Letting $n \rightarrow \infty$ in (6) gives $Y(G, r / 2) \leq Y(G, r)$ or

$$
a^{2}\left((r / 2)^{\delta(1)}+(r / 2)^{-\delta(1)}-2\right) \leq a^{2}\left(r^{\delta(1)}+r^{-\delta(1)}-2\right)
$$

which is false (since $r \leq 1$ and $\delta(1)>0$ by strict stability).
Proof of Theorem 5.1. Fix a small $\varepsilon>0$ and let

$$
u_{t}: \Sigma \rightarrow \mathbf{R}, \quad u_{t}(x)=\varepsilon\left(\varphi_{1}(x) \cos (\pi t)+\varphi_{2}(x) \sin (\pi t)\right)
$$

Note that (by the maximum principle) the area minimizing surfaces bounded by $\tilde{u}_{0}(\Sigma)$ lie on one side of C, and those bounded by $\tilde{u}_{1}(\Sigma)$ lie on the opposite side of C. Thus there exists some $t \in(0,1)$ such that either
$\tilde{u}_{t}(\Sigma)$ bounds an area minimizing surface T_{ε} which passes through the origin,
or

$$
\begin{equation*}
\tilde{u}_{t}(\Sigma) \text { bounds two area minimizing surfaces } T_{\varepsilon}^{1} \text { and } T_{\varepsilon}^{2} \text { such } \tag{2}
\end{equation*}
$$ that the origin lies in the region between T_{ε}^{1} and T_{ε}^{2}.

We consider only case (2), since case (1) becomes a special case of case (2) by allowing $T_{\varepsilon}^{1}=T_{\varepsilon}^{2}$ in (2).

Now apply the corollary to Proposition 4.5 to get $\rho=\rho(\varepsilon), R \in(0,1 / 2)$, and functions $f_{\varepsilon}^{1} \leq f_{\varepsilon}^{2}$ on $[\rho(\varepsilon), 1] \times(\Sigma)$ such that

$$
\begin{gathered}
T_{\varepsilon}^{i} \sim B_{\rho}=S\left(f_{\varepsilon}^{i}, \rho, 1\right) \\
\mid \pi_{2}\left(f _ { \varepsilon } ^ { i } (R t , \cdot) | \geq R ^ { p } | \pi _ { 2 } \left(f_{\varepsilon}^{i}(t, \cdot) \mid \quad(\rho / R \leq t \leq 1)\right.\right. \\
\| \pi_{2}^{\prime}\left(f_{\varepsilon}^{i}(t, \cdot) \|_{2, \alpha} \leq \mid \pi_{2}\left(f_{\varepsilon}^{i}(t, \cdot) \mid \quad(\rho \leq t \leq R)\right.\right. \\
\sup _{i=1,2}\left\|f_{\varepsilon}^{i}(\rho, \cdot)\right\|_{2, \alpha}=\theta>\sup _{i=1,2}\left\|f_{\varepsilon}^{i}(t, \cdot)\right\|_{2, \alpha}
\end{gathered}
$$

Furthermore, by Proposition 5.2 applied inductively to $f_{\varepsilon}^{i}\left(2^{n} \cdot, \cdot\right), n=0$, $1,2, \cdots$,

$$
Y\left(f_{\varepsilon}^{2}-f_{\varepsilon}^{1}, t\right) \geq Y\left(f_{\varepsilon}^{2}-f_{\varepsilon}^{1}, 2 t\right) \quad(\rho \leq t \leq 1 / 2)
$$

Now scale T_{ε}^{i} by $1 / \rho(\varepsilon)$ and pass to a subsequence of $\varepsilon \rightarrow 0$ to get limits T^{i} ($i=1,2$) with

$$
T^{i} \sim B_{1}=S\left(f^{i} ; 1, \infty\right), \quad f^{i}(r, x)=\lim _{\varepsilon \rightarrow 0} f_{\varepsilon}^{i}(\rho(\varepsilon) r, x)
$$

Then for $1 \leq r<\infty$

$$
\begin{equation*}
Y\left(f^{1}-f^{2}, r\right) \geq Y\left(f^{1}-f^{2}, 2 r\right) \tag{3}
\end{equation*}
$$

$$
\begin{gather*}
\| \pi_{2}^{\prime}\left(f^{i}(r, \cdot) \|_{2, \alpha} \leq \mid \pi_{2}\left(f^{i}(r, \cdot) \mid\right.\right. \\
\sup _{i=1,2}\left\|f^{i}(1, \cdot)\right\|_{2, \alpha}=\theta \geq \sup _{i=1,2}\left\|f^{i}(r, \cdot)\right\|_{2, \alpha} \tag{4}
\end{gather*}
$$

Without loss of generality,

$$
\begin{equation*}
\left\|f^{2}(1, \cdot)\right\|_{2, \alpha}=\theta \geq \sup _{i=1,2}\left\|f^{i}(r, \cdot)\right\|_{2, \alpha} \tag{5}
\end{equation*}
$$

Also, for $R^{-1} \leq r<\infty$,

$$
\begin{equation*}
\mid \pi_{2}\left(f ^ { i } (1 , \cdot) | \geq r ^ { p } | \pi _ { 2 } \left(f^{i}(r, \cdot) \mid .\right.\right. \tag{6}
\end{equation*}
$$

Now we claim that either f^{1} or f^{2} must change sign (i.e., take on both positive and negative values). For suppose not, since the origin lies between T^{1} and T^{2} we then have

$$
f^{1}(r, x) \leq 0<f^{2}(r, x) \quad(1 \leq r<\infty)
$$

Thus T^{1} and T^{2} must be leaves of the foliation $\mathscr{F}[10,2.1]$, so by the strict minimality of C,

$$
\lim _{n \rightarrow \infty} f^{i}(n r, x) / s(n)=\varphi_{1}(x) \cdot c_{i} r^{(\delta(1)-m) / 2}, \quad c_{1} \leq 0<c_{2}
$$

where $s(n)=\max \left\{\left\|f^{i}(n \cdot, \cdot)\right\|_{0}: i=1,2\right\}$. Hence by (3),

$$
\left(c_{2}-c_{1}\right)^{2} \cdot 1^{\delta(1)} \geq\left(c_{2}-c_{1}\right)^{2} \cdot 2^{\delta(1)}
$$

which is a contradiction.
Thus one of the f^{i}, say f^{2}, changes sign, so that T^{2} is neither C nor any leaf of the foliation \mathscr{F}. Now suppose C^{\prime} is a cone with $C^{\prime} \neq C$ (C^{\prime} could be a translate of C, for example). Then

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \operatorname{Dist}\left(C^{\prime} \cap \partial B_{r}, C^{\prime} \cap \partial B_{r}\right)>0 \tag{7}
\end{equation*}
$$

where $\operatorname{Dist}(\cdot, \cdot)$ is the Hausdorff distance. Furthermore, if L is a leaf of the minimal foliation associated with C^{\prime}, then

$$
\lim _{r \rightarrow \infty} \operatorname{Dist}\left(L \cap \partial B_{r}, C^{\prime} \cap \partial B_{r}\right)=0
$$

by $[10,2.1]$, so

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \operatorname{Dist}\left(L \cap \partial B_{r}\right)>0 \tag{8}
\end{equation*}
$$

On the other hand, (4) and (6) imply that

$$
\operatorname{Dist}\left(T^{2} \cap \partial B_{r}, C \cap \partial B_{r}\right)=\mathscr{O}\left(r^{p+1}\right)
$$

The hypothesis on λ_{2} implies that $p<-1$ (see the remark after Theorem 4.6), so that

$$
\lim _{r \rightarrow \infty} \operatorname{Dist}\left(T^{2} \cap \partial B_{r}, C \cap \partial B_{r}\right)=0
$$

Thus (by (7) and (8)) T^{2} is neither a cone nor any leaf of the foliation associated with a cone.

6. Concluding remarks

In this section we show that the hypotheses of $\S \S 4$ and 5 are satisfied for most of the known examples of area minimizing cones. Every Σ for which C is known to be area minimizing is isoparametric, that is, the set of principal curvatures $\kappa_{1}(x), \cdots, \kappa_{m-1}(x)$ of Σ at x does not depend on x. In particular, this is the case for the examples in Lawson's list [12] and for the examples constructed by Ferus, Karcher, and Münzner from Clifford algebras [8]. For such cones Σ, the functions $x \mapsto v \cdot x\left(v \in \mathbf{R}^{n+1}\right)$ are eigenfunctions of J_{Σ} with eigenvalue λ_{i} where $\lambda_{1}<\lambda_{i} \leq 1-m$. Furthermore, $\lambda_{i}=1-m$ if and only if Σ is S^{m-1} or $S^{p} \times S^{m-1-p}$. (See the last section of [18] for a discussion of these facts about isoparametric Σ.) Also, the only isoparametric Σ that is a homology sphere is the totally geodesic S^{m-1} (cf. [11, 6.4(2)] or [17]). Thus except for S^{m-1} and $S^{p} \times S^{m-1-p}$, every isoparametric Σ such that C is minimizing satisfies the hypotheses of Theorem 4.6.

Strict stability and strict minimality are not well understood in general, but they hold for all the (minimizing) examples in Lawson's list [12] except S^{2} (see [10, 3.3]). Also, for every isoparametric Σ except S^{2}, if C is stable, then it is strictly stable. (This follows from the fact that $\lambda_{1}=g(1-m)$, where g is the number of distinct principal curvatures of Σ [18].) Bruce Solomon has observed that the examples of Ferus, Karcher, and Munzner [8] are all strictly minimizing. (The proof in [7], [6] that they are minimizing actually shows that they are strictly minimizing, because the inequalities there are strict.) Thus except for S^{m-1} and $S^{p} \times S^{m-1-p}$, the hypotheses in $\S 5$ are satisfied for every Σ in Lawson's list [12] such that C is minimizing and for all the examples of Ferus, Karcher, and Munzner [8].

On the other hand, if $\Sigma=S^{m-1} \subset S^{m}$, then by monotonicity every minimal hypersurface asymptotic to C at ∞ is congruent to C. And if $\Sigma=$ $S^{p} \times S^{m-1-p}$ and C is minimizing, Leon Simon and Bruce Solomon [18] have shown that every minimal hypersurface asymptotic to C at ∞ is congruent to C or to a leaf of the foliation associated with C.

We conclude this paper with two open questions. Is there a complete hypersurface V asymptotic to C at ∞ but not congruent to C, such that V
is both singular and area minimizing? Can one classify all complete minimal (or minimizing) hypersurfaces asymptotic to C ? The first question would be settled affirmatively if one could show that for small $\|u\|_{2, \alpha}, \tilde{u}(\Sigma)$ bounds a unique area minimizing surface. The second question seems very difficult.

References

[1] W. K. Allard, First variation of a varifold, Ann. of Math. (2) 95 (1972) 417-491.
[2] ___, First variation of a varifold: boundary behavior, Ann. of Math. (2) 101 (1975) 418-446.
[3] F. J. Almgren, Jr., R. Schoen \& L. Simon, Regularity and singularity estimates on hypersurfaces minimizing parametric elliptic variation integrals, Acta Math. 139 (1977) 217-265.
[4] F. J. Almgren, Jr. \& L. Simon, Existence of embedded solutions to Plateau © problem, Ann. Scuola Norm. Sup. Pisa 6 (1979) 447-495.
[5] R. Böhme \& A. J. Tromba, The index theorem for classical minimal surfaces, Ann. of Math. (2) 113 (1981) 447-499.
[6] J. Brothers (ed.), Some open problems in geometric measure theory, Proc. Sympos. Pure Math., Vol. 44, Amer. Math. Soc., Providence, RI, 1985, 441-464.
[7] D. Ferus \& H. Karcher, Non-rotational minimal spheres and minimizing cones, Comment. Math. Helv. 60 (1985) 247-269.
[8] D. Ferus, H. Karcher \& H.-F. Münzner, Cliffordalgerbren und neue isoparametrische Hyperflachen, Math. Z. 177 (1981) 479-502.
[9] D. Gilbarg \& N. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Springer, Berlin, 1983.
[10] R. Hardt \& L. Simon, Area minimizing hypersurfaces with isolated singularities, J. Reine Angew. Math. 362 (1985) 102-129.
[11] W. Y. Hsiang, R. S. Palais \& C. L. Terng, The topology of isoparametric submanifolds, J. Differential Geometry 27 (1988) 423-460.
[12] H. B. Lawson, Jr., The equivariant Plateau problem and interior regularity, Trans. Amer. Math. Soc. 173 (1972) 231-249.
[13] F. H. Lin, Existence and regularity of embedded disks, J. Differential Geometry 27 (1988) 553-560.
[14] W. H. Meeks, III, L. Simon \& S. T. Yau, Embedded minimal surfaces, exotic spheres, and manifolds with positive ricci curvature, Ann. of Math. (2) 116 (1982) 621-659.
[15] W. H. Meeks, III \& S. T. Yau, The classical Plateau problem and the topology of 3manifolds, Topology 21 (1982) 409-442.
[16] C. B. Morrey, The parametric variational problem for double integrals, Comm. Pure Appl. Math. 14 (1961) 569-575.
[17] H.-F. Münzner, Isoparametrische Hyperflachen in Spharen. I, II, Math. Ann. 251 (1980) 57-71: 256 (1981) 215-232.
[18] L. Simon \& B. Solomon, Minimal hypersurfaces asymptotic to quadratic cones in \mathbf{R}^{n+1}, Invent. Math. 86 (1986) 535-551.
[19] S. Smale, An infinite dimensional version of Sard's theorem, Amer. J. Math. 87 (1965) 861-866.
[20] B. Solomon \& B. White, A strong maximum principal for hypersurfaces that are minimal with respect to parametric elliptic functionals, in preparation.
[21] F. Tomi \& A. J. Tromba, Extreme curves bound embedded minimal surfaces of the type of the disk, Math. Z. 158 (1978) 137-145.
[22] A. J. Tromba, Degree theory on oriented infinite dimensional varieties and the Morse number of minimal surfaces spanning a curve in \mathbf{R}^{n}. Part I: $n \geq 4$. Trans. Amer. Math. Soc. 290 (1985) 385-413.
[23] B. White, Curvature estimates and compactness theorems in 3-manifolds for surfaces that are stationary for parametric elliptic functionals, Invent. Math. 88 (1987) 243-257.
[24] __, The space of m-dimensional surfaces that are stationary for a parametric elliptic functional, Indiana Univ. Math. J. 36 (1987) 567-602.

Stanford University

[^0]: Received February 27, 1987 and, in revised form, November 30, 1987. Research supported by NFS grants DMS-8611574 and DMS-8553231.

