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NEW APPLICATIONS OF MAPPING DEGREES
TO MINIMAL SURFACE THEORY

BRIAN WHITE

In [21], Tomi and Tromba showed how it was possible to use the degree
theory of Smale [19] to solve the long open problem of proving that every
smooth embedded curve in the boundary of a convex subset of R 3 must bound
an embedded minimal disk. Later Almgren and Simon [4] and Meeks and Yau
[15] gave different proofs. In this paper we give other applications of degree
theory to minimal surfaces. In particular, we show:

(1) If Φ is an even constant coefficient parametric elliptic functional in
R 3 and η is a smooth embedded curve on the boundary of a strictly convex
subset of R 3, then η bounds an embedded Φ-stationary and Φ-stable disk.
Furthermore, a generic such curve bounds an odd number of embedded Φ-
stationary disks and an even number of embedded Φ-stationary surfaces of
each other topological type.

(2) Let TV be a smooth Riemannian 3-manifold with strictly mean convex
boundary diffeomorphic to the 2-sphere. Suppose either that N is not dif-
feomorphic to the 3-ball, or else that N contains a compact minimal surface
without boundary. Then there exists a sequence Di of embedded minimal
disks in N such that dDi C 9JV, dDi converges to a smooth embedded curve
7, and the area of Di tends to infinity.

(3) There exists a complete minimal hypersurface M in R n such that M is
singular, M is not a cone, and M is asymptotic at oo to an area minimizing
cone C that is regular except at the origin.

(4) There exists a complete area minimizing hypersurface M in R n such
that M is asymptotic to an area minimizing cone C that is regular except
at the origin, but M is not congruent to any leaf of the foliation of minimal
hypersurfaces associated with C.

These results are proved in §§2, 3, 4, and δ, respectively. All depend on the
preliminaries in §1, and §5 Is a continuation of §4, but otherwise the sections
are independent of each other. §6 discusses examples.
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Concerning (1), in 1961 Morrey [16] proved the existence of H1 maps of
disks that minimize such functionals Φ subject to prescribed boundary values.
But still no regularity is known for such maps. On the other hand, there also
exist surfaces that minimize Φ among all surfaces, of arbitrary topological
type, having a prescribed boundary; such surfaces are known to be smooth
away from the boundary [3].

Statement (2) shows that the method of proving (1), which requires an a
priori bound on area, breaks down in a serious way in manifolds.

Statement (3) partially answers the question, raised by R. Hardt [6,1.6],
of whether there exists a complete area minimizing hypersurface which is
singular but not a cone. Note that such a hypersurface cannot be constructed
by perturbing a cone by a small vectorfield since by monotonicity the tangent
cone at infinity must be different from the tangent cone at the singularity.

Statements (3) and (4) also show (see §6) that the recent classification, due
to Simon and Solomon [18], of complete minimal hypersurfaces asymptotic at
infinity to quadratic cones fails for all other known cones.

I would like to thank Mario Micallef and Bruce Solomon for helpful discus-
sions related to §§4, 5, and 6, and the Centre for Mathematical Analysis for
their hospitality during the preparation of this paper.

1. Preliminaries

In this section we summarize those results of [24] which we will use. Analo-
gous results were proved earlier for the special case of two dimensional minimal
disks in R n; cf. [5], [22], [21]. Let M be a compact connected m-dimensional
Riemannian manifold with nonempty boundary, and let TV be an (m + 1)-
dimensional Riemannian manifold with strictly mean-convex boundary. We
regard two maps f,g:M-+N&s being equivalent if / .= g o u for some dif-
feomorphism u.M —• M such that u(x) — x for x G dM. Let [/] denote the
equivalence class of /.

Theorem A [24, 3.3]. Let Jt = {[/]:/ e C2'Q(M,7V) is a minimal
immersion with f{dM) C dN}. Then J£ is a smooth Banach manifold and

is a smooth Fredholm map of Fredholm index 0.

In some situations it is possible to assign a mapping degree to Π:
Theorem B [24, 5]. Let Jί1 and W be open subsets of -Jf and

C2'a(dM,dN), respectively, such that W is connected and Πie/#' —• W is
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proper. Then there is an integer d = d(^# ; , W) such that for generic 7 G W,

( - l ) i n d e x ί f l = d.

In particular, this holds for each 7 G W such that every [/] G Π~1(7) ΠJ?'

has no nontrivial Jacobi fields that vanish on dM. Furthermore, if d φ 0,

then Π~1(7) Π ^ # ' is nonempty for every 7 G W.

Corollary 1. For generic η EW, the number of elements ofU~1(η)Γ)^/

is congruent to d modulo 2.

Corollary 2. For generic 7 G W, the number of stable surfaces in Π~1(7)

Π </#' is less than or equal to d plus the number of unstable surfaces.

Whereas Theorem A is quite general. Theorem B is severely restricted

by the hypothesis of properness. The following gives a useful criterion for

properness.

Theorem C. Let,//' and W be open subsets of .£ and C2 a(dM,dN),

respectively, with n ( . # ' ) C W. Then Π : ^ ' —» W is proper if the following

hold:

(1) Jΐ1 is a closed subset ofU~1(W).

(2) If K CW is compact and [/] G Π " 1 ^ ) Π^f ;, then the area and the

curvatures of f(M) are bounded above by a constant depending on K.

Proof. Let [fτ] G Π " 1 ^ ) Π . # ' . Then by (2), it is fairly easy to show

(cf. [23, 3]) that a subsequence [fi(j)} must converge to some regular minimal

surface [/]. But by (1). [/] G Λ Γ . q.e.d.

In the applications to follow, we use Theorems B and C as follows. First

we choose Jf' and W so that (1) of Theorem C holds. Then we either prove

(2) and conclude that d exists, or else show that d does not exist and conclude

that (2) is false.

2. Embedded stationary surfaces in R3

Let Φ: dB3 —• (0, +00) be a smooth function. Then Φ defines a functional

on C1 surfaces in R 3 by

Φ(5)= ί
Jxxes

where n(x) is a unit normal to S at x, and the integration is with respect

to surface area on S. We shall assume that Φ is elliptic, i.e., that for some

λ > 0, the function

x~\x\(Φ(x/\x\)-\)
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is a convex function of x G R 3. We shall also assume that Φ is even, i.e., that
Φ(v) = Φ(-v). Then the theorems of §1 remain true if we replace "minimal"
by "Φ-stationary". (If Φ(v) = \v\, then Φ defines the area functional, and S
is Φ-stationary if and only if S is minimal.)

2.1 Theorem. Let N be a compact subset o/R 3 with smooth, strictly
convex boundary, M a surface such that dM is connected, and dί the Banach
manifold of Theorem A corresponding to Φ. Let W be the set ofC2>a embed-
dings ofdM into dN and Jt1 = {[/] G Π " 1 ^ ) : / is an embedding }. Then
Yl.Jίί' —• C2'a(dM,dN) is proper and

{ 1 if M is a disk,

0 if not.

Corollaries. (1) Every η G W bounds an embedded Φ-stationary disk.

(2) A generic η G W bounds an odd number of embedded Φ-stationary disks.
(3) // g φ 0, then a generic η G W bounds an even number of embedded

Φ-stationary surfaces of genus g.

Proof. Since Φ is even, the strong maximum principle implies that if [/]
is a limit of Φ-stationary embeddings such that /1 dM is an embedding, then
f(M) is embedded. Thus Jί1 is closed in Π~1(H/).

One can show with the first variation formula, applied to radial deforma-
tions, that the area of f{M) is bounded in terms of the length of /1 dM. Also,
the principal curvatures of f(M) are bounded in terms of /1 dM, the area
of f(M), and the genus of M. (See [23] for a precise statement and proof.)
Thus by Theorems B and C, Yi.Jlί1 —• W is proper and has a degree d.

Now let η(dM) be the intersection of dN with a plane P. Then by the
maximum principle, applied to the planes parallel to P, the only Φ-stationary
surface bounded by 7 is P Π N. Since P Π N is strictly stable (and therefore
has no nontrivial Jacobi fields which vanish on dM), this means that d = 1 if
M is a disk and d = 0 if not.

2.2. Theorem. Let N and Φ be as in Theorem 2.1. If ηo w a smooth
embedded curve in dN, then ηo bounds an embedded Φ-stable disk.

Remark. The author discovered this theorem by a different method. The
proof here is a modification of a proof for the area functional shown by Bill
Meeks. This argument was discovered independently by F. H. Lin [13].

Proof. Let 70 be a smooth embedded curve in dN. Let S be the union
of all Φ-stationary surfaces bounded by 70, Ω one of the two components of
dN ~ (70), and M the unit 2-disk. Then the set of C 2 ' α embeddings of dM
into Ω has two connected components; let W be one of them. Let

JT = {[/] e Π " 1 ^ ) : / is an embedding and f{M) n S = 0}.
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Then Jί1 is an open and closed subset of ^ by the maximum principle [29],

and Π : ^ ' —• W is proper as in Theorem 2.1. Thus H.Jί' —• W has a degree

d, and, as in Theorem 2.1, d = 1.

Now let 7; G VK be a sequence of generic curves such that \\ηi — 7o||2,<* —* 0.

Then each 7̂  bounds an embedded Φ-stationary disk Di with D{ Γ\S = 0 . By

[23, 3], a sequence of ZVs converges to an embedded Φ-stationary disk D with

dD = 7o Note that D lies on one side of S. We claim that D is "one-sided

Φ-minimizing", i.e., that if V is a surface of any genus with dV = 70 and

i n t F C the component of TV ~ D containing Ω, then Φ(V) > Φ{D). For if

not, then there is a surface (integral current) V which minimizes Φ subject to

those conditions. Since Φ{V) < Φ{D), V ψ D. In particular, D is between V

and 5. But by definition of S, V C 5, a contradiction. Finally, note that the

one-sided minimizing property implies stability.

Corollary. There exist embedded Φ-stable disks D and Df such that

dD = dD' = 70 and such that every Φ-stationary surface embedded or im-

mersed and of any topological type lies between D and D'. In particular, if^o

bounds more than one Φ-stationary surface, then D φ D1.

2.3. Theorem. Let M be a compact connected surface with more than

one boundary component. Let Jί' and W be as in Theorem 2.1. Then

Π:^' —• W is proper and the degree d = 0.

Proof Properness is exactly as before. To see that d = 0, for simplicity

suppose that dM has exactly two boundary components, Γi and Γ2. Let

7i € W be a sequence such that

7i(Γi)-+Pi, 7*(Γ2)

We claim that for sufficiently large z, Π " 1 ^ ) Γ\Jί' is empty. For suppose

Si G U~1(ηi) Π ^ # ' . Since Si is connected, there is a point Xi in Si with

,dSi) > r = | | p i — p 2 | -

By [22, Theorem 3], a subsequence of the S< converges to a surface 5 with

isolated singularities. But by (*), area(S ) —• 0 as i —> 00. The contradiction

shows that for large i, 5» does not exist. Thus d = 0.

3. Disks of arbitrarily large area

Theorem. Let N be a compact connected smooth Riemannian manifold

whose boundary is strictly mean convex and diffeomorphic to the two-sphere

S2. Suppose that
(1) N is not diffeomorphic to the 3-ball B3, or that
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(2) TV contains a compact minimal surface Σ without boundary.

Then there exists a sequence of embedded minimal disks Ό{ in TV such that

(3) dDi C dN,

(4) dDi converges to a smooth embedded curve T,

(5) area(A) —• oc.

Proof Case (1) reduces to case (2) as follows. If TV is not diffeomorphic

to B3, then we can minimize area in the class of all embedded spheres in TV

that do not bound balls in TV. The result is a compact minimal sphere Σ C TV

[14].

Thus for simplicity let TV be the unit ball in R 3 equipped with a smooth

Riemannian metric such that dN is strictly mean-convex and such that (2)

holds. Now apply Theorems A and B with M = the unit 2-disk. Let W

be the space of C 2 ' α embeddings of dM into dTV, and let J[' be the set of

[/] G Π - ^W) such that / is an embedding and such that for some open

subset Ω of TV:

dΩnint(TV) = /( intM),

f(M) has the orientation induced by Ω.

By the maximum principle, Λ ? 7 is open and closed in U~1(W).

For - 1 < t < 1, let

Now we claim (see below) that for t sufficiently near - 1 , Γ t bounds a unique

minimal surface St. This St is a strictly stable embedded disk which is or is

not in Λf1 according to which way we orient Tt. It follows that cί, if it existed,

would have to be both 1 and 0. Thus d does not exist, and Π is not proper by

Theorem B. By Theorem C, this means there exists a sequence of embedded

minimal disks D{ satisfying (3) and (4) and such that the area and/or the

principal curvatures of the Dτ tend to infinity. But the curvatures of such a

disk D are bounded in terms of dD and the area of D [23]. Thus in fact the

area of Ό{ must go to infinity.

To establish the claim, note that there is a neighborhood U C TV of

(0,0,-1) that is foliated by strictly stable embedded minimal disks 5* with

dSt = Tt. (This is proved by the implicit function theorem as in, for example,

the appendix to [23].) Now let R{ be a sequence of minimal surfaces in TV

with dRi = Γt(i), where t(i) —• —1 as i —• oo. Let Ti be a disk that minimizes
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area subject to

Ti C RiU {the component of TV ~ Ri not containing (0,0, -1)}.

Then Ti is an embedded minimal disk [15]. Clearly area(T^) < area(cW).
Unless

(6) area(Ti) -+ 0,
thus by [23, 3(3)] the Ti (or a subsequence) would converge to a minimal
surface T with dT = (0,0,-1), and T is regular away from (0,0,-1). But
then (by [23, 2], for example) T would be regular everywhere, contradicting
the maximum principle since dN is mean-convex and dN Π T is nonempty.
Hence (6) holds. By the lower density bound for minimal surfaces, this means
that for large z, Ti must be near dTi = Tt^ and therefore in U. Thus Ri is
also in U. But then by the maximum principle applied to Ri and the leaves
S t ϊ Ri — St(i) This completes the proof.

4. Complete minimal hypersurfaces.
Throughout this section and the next, Br will denote the ball of radius r in

R m + 1 centered at the origin, and Σ will be regular (m — 1)-dimensional min-
imal submanifold of the unit m-sphere dB\ such that the cone C = {rx:x G
Σ, r > 0} is area minimizing. Let Ω+ and Ω~ be the two connected compo-
nents of dB\ ~ Σ, and for x G Σ let n(x) be the unit vector that is normal
to Σ, tangent to dB\, and that points away from Ω~. If u: Σ —• R, we define
u\ Σ -+ dBi by

u(x) = (x + u{x)n(x))/(l + u(x

We let \\u\\o, \\u\\kiOt, and \u\ denote the C° , C f c ' α , and =S^2 norms, respec-

tively, of u.
According to [10], R m + 1 has a foliation SF of area minimizing hypersur-

faces, one of the leaves of ^ is C and the other leaves of SF are all regular.
If Lt is a leaf near C, then Lt Π dB\ = ί t(Σ) for some lt:Σ —• R. Here Lt

denotes the leaf such that

infZt if ί > 0,

sup lt if t < 0.

In particular, L o = C.
We begin with an easy application of Theorem B that is interesting in its

own right.

4.1. Theorem. There is a δ = 6(Σ) > 0 such that if

(1) C is area minimizing,

(2) there is no isotopy in Bλ from Ω to Ω leaving Σ fixed,

•{
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(3) ut (0 < t < 1) is a path in C2>a(Σ) such that for some ε < δ, UQ = lε,
uι = l-ε, and ||ι*t||2,α < 6 for all t,
then there is a t € (0,1) such that ύt(Έ) bounds a singular minimal surface.

Remark. Note that if (2) does not hold, then dB\ is topologically the
double of Ω . This implies (by, for instance, the Meier-Vietoris sequence for
dB\ = Ω U Ω ) that Σ is a homology sphere. In other words, (2) holds
unless Σ is a homology sphere.

Proof Suppose not. Then there are a constant c and a neighborhood W
of {ut: 0 < t < 1} in C 2 'α(Σ) such that if u e W and T is a regular minimal
surface with dT = ύ(Σ), then the curvatures of T are bounded by c. (For if
not, there would be a t E [0,1] and a sequence T{ of regular minimal surfaces
such that

dTi^ύt{Σ) i n C 2 ' α ,
v J max(curvature of T{ at x) —• oo.

But a subsequence of the Ti would converge to some minimal surface T with
dT = ύt(Σ). By hypothesis, T is regular. But that contradicts Allard's
regularity theorem [1], [2].)

Now let M be the closure of Ω+, TV the unit ball Z?j, arid Jΐ the Banach
manifold of minimal surfaces given by Theorem A. Lot ,y#; be the; connected
component of Π " 1 ^ ) that contains LtΓ\Bι, where W = {u:u € W}. Then
Jί1 does not contain L-εΓ\Bι, since any path in Jf from Le ΠB\ to L-εΠBχ
would be an isotopy violating (2). (By [10, 2.1], (x,ί) -> (1 - t)x + t(x/\x\)
(0 < t < 1) defines isotopies from Le to L-ε to Ω+ and Ω~, respectively.)

The areas of surfaces in Jί1 are bounded by the isoperimetric inequality,
and we have already mentioned that their curvatures are bounded. Thus
H.Jt1 —• W is proper and has a degree d. Now by the maximum principle
applied to the leaves of.!?", L, Π li\ is \\w only minimal surface bounded by
ZC(Σ). Also, it is strictly stable since L< is minimizing and therefore stable.
Thus d = 1. Likewise L_e Π B\ is the only minimal surface bounded by
Z_ε(Σ). Since L-ε Π B\ £ Jί1, d = 0, a contradiction. q.e.d.

If /: [α, 6] x Σ —• R, then / determines a surface S(f) = S(f; α, b) by

S(f) = {r(x + /(r, x)n(x))/(l + /(r, a:)2)1/2: r € [α,6], x € Σ}.

Thus S(/) is minimal if and only if / satisfies the appropriate Euler-Lagrange
equation which we will call the "minimal surface equation". This equation is
a divergence-form quasilinear elliptic equation whose linearization at 0 is

Jti(r, x) = r ί — J u{r, x) + (m + 1) ̂ ( r , x) + -JΣ,u{r, x),
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where J Σ is the Jacobi or second variation operator on Σ C dB\ :

JΈu(x) = (Δ + \A(x)\2 + (m - l))tι(x),

and A(x) is the second fundamental form of Σ (as a submanifold of dB\)
at x. Let λi < λ2 < be the eigenvalues of J Σ , and VΊ, Vb, be the
corresponding eigenspaces:

J^u = — \\u if and only if u €Ξ V*.

4.2. Lemma. // iz ώ a solution of Ju = 0 on (α, 6) x Σ, then u has the
form

u(r,x)= Σ am{x)r^-™V\
|t|>0

lί Aere δ(i) = (z'/|z|)(m2 +4λ|i |) 1/ 2 and ψi G Vj»|. //u is a positive solution on
(0,6) x Σ, then a; = 0 /or ΐ < —1. If u is a positive solution on (0, oo) x Σ,
then cίi = 0 unless \i\ = 1.

Remark. If for some i, m2 + 4Â  = 0, then δ(i) = 0 and the term
a-np-i{x)r~mί2 in the above formula should be replaced by

The presence of the log(r) factor does not affect any of the arguments in this
section.

Proof. The first statement is proved by separation of variables. To prove
the second, note that by the Harnack inequality on (r/2,2r) x Σ,

inf u{r, •) > ci supιt(r, •) > c2||tι(r, Olb,

(where c\ and c2 do not depend on r) and thus

<pι(x)u{r,x) >c2^i(a;)||ti(r, )||2 > c3||tx(r, ) | | 2 ,

since φ\ > 0. Integration over Σ gives

1*1=1

or (after division by

Letting r —+ 0 shows that α* = 0 for i < — 1 by noting that δ(i) < δ(j) for
i < j . Similarly, letting r —• oo, in case u is defined on (0, oo) x Σ, shows that
di = 0 for i > 1.
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4.3. Lemma. Unless Σ is a totally geodesic (ra — 1)-sphere, Xi = 1 — ra

and (δ(i) — ra)/2 = —1 for some i > 2, and Xj = (δ(j) - ra)/2 = 0 for some

i > 3 .

Proof If i> G R m + 1 and Ϊ ^ O , then a: ι—• v n(x) is an eigenfunction with

eigenvalue Xi = 1 — m. Unless Σ is totally geodesic, this function changes sign,

so i > 2. If P is an antisymmetric (ra + 1) x (ra + 1) matrix and P φ 0, then

x \—• Fx n(x) is an eigenfunction with eigenvalue λ̂  = 0. Since 0 > 1 — ra,

j>i> 2, so j > 3.

4.4. Proposition. For even/ <S G (0,1/4), Mere is a θ > 0 such that ifT

is a [possibly singular) compact minimal surface with dT = ΰ(Σ), ||w||2,α ^ θ,

then

(1) Mere is a function f: [ί, 1] x Σ -> R suc/i that /(l,x) = w(x), ||/||2,α <

Furthermore

Proof Suppose (1) is false. Then for every n there exist Tn and un satis-

fying the hypotheses with θ = 1/n but not satisfying (1). By the maximum

principle, Tn lies between Lχ/n and L_i/n. Hence as n —• oo, Tn —• C Π Bi.

Also, the area of Tn is not greater than the area of the cone over ΰ n (Σ), so

area(Tn) —• area(C Γ\Bι). It follows from Allard's regularity theorem [1], [2]

that (1) holds.

Now let lt be the function / of (1) corresponding to T = Lt Π B\. Note in

fact that lt extends to a solution of the minimal surface equation on [<$, oo) x Σ

so that

Lt~dBδ = S(lt;δ,oo).
To prove (2) and (3), let s = \\u\\0. Then ύ(Σ) and therefore, by the

maximum principle, T lie between L_ s and Ls. Hence l-s < f < /s. Now ls

is a positive solution to the minimal surface equation on [£, oo) x Σ, so by the

Harnack inequality

sup(/β|[2tf,l] x Σ) < Cδwϊ(la\[2δ,ϊ\ x Σ) < Cδin£la(lr) <

and likewise for /_ s. Thus

Now since / is a solution of the minimal surface equation, (2) and (3) follow

from standard elliptic regularity, by using the fact [9,10.4] that / = / - 0

satisfies a homogeneous linear elliptic equation.

4.5. Proposition. Letπk αndπf

k be the orthogonal projections of*S?2(Σ)

onto V\-\ h Vjfc and (Vχ-\ h Vk)^, respectively. Suppose (δ{2) - ra)/2 <

p < q < (δ{3) - ra)/2. Then there exist R G (0,1/2) and θ G (0,i?2) with
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the following properties. IfT is a compact minimal surface with dT = ύ(Σ),

IM|2,α < θ, then there is an f: [Λ3,1] x Σ -+ R such that

(1) T~BR3=S(f',R\l).

Furthermore, if

then for R2 <t<R,

(2)

(3)

Proof. The existence of / satisfying (1) is just Proposition 4.4. To prove

(2), fix an R and suppose that it fails. Then there exist sequences Tn, /„, and

tn e [R2,R] satisfying (1) and

(4) ||/«(l, ) l | 3 ,α<l/n,

(5)

(6)

Let s(n) = | |/n(l? *)llo By the maximum principle, Tn lies between L_s(n)

and I θ ( n ) , so

(7) l-s{n)/s(n) < fn/s(n) < ls{n)/s{n).

By the Harnack inequality and the estimates of Proposition 4.4, a subsequence

of ls(n)/s{n) converges smoothly on compact subsets of (0, oo) x Σ to a positive

limit L which is a solution of the linearized minimal surface equation. By

Lemma 4.2, L has the form

(8) L = ^(zXαr^ 1)-™)/ 2 +br^δ^-m^2) (α,6 > 0).

Likewise (5) and (7) imply that (a further subsequence of) fn/s(n) converges

uniformly in C 2 ' α / 2 on compact subsets of (0,1] x Σ and in C 2 ' α on compact

subsets of (0,1) x Σ to a solution F of the linearized minimal surface equation.

By (7), L - F > 0 on (0,1] x Σ, so by Lemma 4.2,

L-F=

Combining this with (8), we see that F has the form

(9) F=
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By (6), |τr2(F(*, )l < * P M F ( 1 , ))| for some t <E [R2,R], i.e.,

l/2

Since (5(i) — m)/2 < p for i < 2, this implies that

(10) α_i = αi = α2 = 0.

But by (5),

1, •))lkα<liminf | |πi(/ n (l, .)Mn)) | | 2 t β

< liminf |π 2 (/ n ( l , -)/s(n))\ = |π 2(F(l, )|.

Thus by (10), F(l, •) = 0. But by construction, | |F(1, )||o = 1. This contra-
diction proves (2).

Now suppose (3) is false. Then there exist sequences Tn, /n, and tn E
[R2,R] satisfying (4), (5), and

Thus, exactly as above, we get a nonzero solution F to the linearized minimal
surface equation of the form (9), and a t € [R2, R] such that

(11)

(12) Ib
Now F3: (r, x) »—• (?Γ2(F(r, ))(z) is a solution of the linearized minimal surface
equation, so by standard elliptic theory [9, Chapter 8],

Jt/2 JΈt/2<

(where C does not depend on t or F)
1/2

(since 2t < 1)

= tq
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(by (11)). Now if R has been chosen small enough that the term in parentheses

is < 1, then we get a contradiction with (12).

Corollary. // Σ is not α totally geodesic sphere, and T is a compact

minimal surface with dT = ύ(Σ), 0 < ||u||2,α < θ, and HTΓ^IOIKΛ —

then there exist a p < 1 and a function f: [p, 1] x Σ H> R such that

) l k β = * > | | / ( r , ) l k α ( P < r < ί ) ,

and forte [p/R, 1],

«, 0)1,

Proof Note that if / is a solution of the minimal surface equation, then so

is (r, x) »-• f{μr, x). Now apply the proposition to /(/2nr, z), n = 0,1,2, ,

until the first p such that | |/(p, )lkα = θ.

(Note there must be such a p > 0, since otherwise | |/(r, )||o grows like r p

as r —• 0, and by Lemma 4.3, p < 0.)

Theorem 4.6. //

(1) C is area minimizing,

(2) there is no isotopy in B\ from Ω+ to Ω~ leaving Σ fixed,

(3) A2<(l-m),

ίften there exists a complete singular minimal surface [without boundary) that

is asymptotic to C at oo but is not a cone.

Remark. By Lemma 4.3, \i = 1 - m and (δ(i) - m)/2 = - 1 for some i.

Hypothesis (3) states that i > 3, which implies that the p and q of Proposition

4.5 are less than - 1 since δ(j) < δ(i) for j < i.

Proof Let θ be as in the corollary to Proposition 4.5. Let

Mx) = fcoβ(πt)ff(z) + ε <p2(x) sin(τrt),

where ε <θ. Note that ut (0 < t < 1) is a path in C 2 ' α (Σ) from lε to Z_ε. By

Theorem 4.1, there is a t € (0,1) such that ύt(Σ) bounds a singular minimal

surface T = Te. By the corollary to Proposition 4.5, there are a p = p(ε) and

a function fε: [p, 1] x Σ —• R such that

(4) | |/.(ft )ll2fα = β > HΛ(r, )lb,rt (P < r < 1),
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(5) |πa(Λ(r, ))| > Rp\τr2(f(r/R, 0)1 (P < r < Λ),

(6) | | ^ ( / ( r , 0)| | 2 fα < |π a(/(r, 0)1 (P < r < R).

Note that p(ε) —> 0 as ε -» 0. Now let F e be obtained by dilating Tε by

the factor 1/p. Then Vc = S(ge;l,l/p), where 0ε(r,z) = fε{ρr,x). By (4)

and Proposition 4.4, there is a sequence of ε's tending to 0 such that the gε

converge smoothly on compact subsets of [1, oo) x Σ to a function g. Thus the

corresponding VVs converge to a minimal surface V with V ~ B\ = S(g; 1, oo).

Since the Vε are all singular, so is V. By (4), V Φ C. Since p < - 1 , by (5)

and (6) we have

\\9(r,-)\\2,a=&(rp) = o(r-1),

which implies that V is not a cone.

5. Complete area minimizing hypersurfaces

In the last section, we produced a complete minimal hypersurface V asymp-

totic to an area minimizing cone C at oo such that V is not congruent to any

leaf of the foliation associated to C. This V is singular, but the proof does not

tell us whether or not it is minimizing or even stable. In this section, under

slightly different hypotheses on C, we prove that there is such a V which is

minimizing, but we do not know whether or not it is singular.

5.1. Theorem. Suppose Σ is a regular minimal hypersurface of the unit

m-sphere dBx C R m + 1 such that

( l ) A 2 < ( l - m ) ,

(2) C is strictly stable and strictly minimizing.

Then there exists a complete area minimizing hypersurface V that is asymp-

totic to C at oo but is not congruent to any leaf of the foliation associated

with C.

Remark. Recall that C is stable if and only if λi > —m2/4, and strictly

stable if and only if λi > — ra2/4. By Lemma 4.2,

Jim Γιlt{r,x) = (αr(«(D-m)/2 + br(-δ(i)-m)/2^ . φi(χy

The assumption of strict minimality means that b = 0.

Definition. If /: [α, 6] x Σ -> R, let

/ f(r9x)φi(x)dx) .
xeM /

5.2. Proposition. Suppose Σ is strictly stable. Then there is a μ > 0

such that if fi'. [1/16,1] x Σ —• R (i = 1,2) are solutions of the minimal surface
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equation with \\fi\\2,a < μ and fx - f2 = g > 0, and ifY{g, 1/4) > Y(g, 1/2),

thenY(g,l/8)>Y(g,l/4).

Furthermore, if g{l, •) = 0, then Y(g,r/2) > Y{g,r) for 1/4 < r < 1.

Proof Suppose the first conclusion of the proposition is not true. Then

there exist sequences of solutions /f, f% such that

(1) Il/Γlk* < 1/n,

(2) /Γ - /2

n = gn > 0,

(3) Y(gn,1/4) >Y(gn,1/2),

(4) y ( β M / 8 ) < y( f f M/4).

Because the minimal surface equation is quasilinear, gn satisfies a homoge-

neous linear elliptic equation, the coefficients of which are expressions involv-

ing /? and /f (cf. the proof of [9, 10.4] or the appendix of [23]). Let

s{n) = sup gn \ [1/8,1/2] x Σ.

Then it is standard (by the Harnack inequality, for example) that a subse-

quence of gn/s(n) converges uniformly on compact subsets of (1/16,1) x Σ

to a function G that is a solution of the linearized minimal surface equation.

Thus by Lemma 4.2

(5) τri(G(r, •)) = (αr*-

so that

Taking the limit of (3) and (4) we have

α V ( i ) + b2r-δ^ > α2(2τf ( 1 )

α2r6(l) + b2r-6(l) > α 2 ( r / 2 ) 6(l)

where r — 1/4. Adding these inequalities gives

which implies that a = 6 = 0. This is impossible since G > 0 and

supG|[l/8,1/2] xΣ = 1. Hence the first conclusion is proved.

To prove the second conclusion, suppose it fails. Then there exist sequences

/f and /y of solutions satisfying (1), (2), and

(6) <?n(l, ) = 0 , n < Λ r n / 2 ) < Y(gn,rn)
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for some rn e [1/4,1]. Thus, as above, a subsequence of gn/s(n) converges

to a nonzero limit G satisfying (5). Since G(l, •) = 0 , b = - α . Furthermore,

G is nonnegative and not identically zero, so \a\ > 0. Letting n —> oo in (6)

gives y(G,r/2)< Y(G,r) or

α 2 ( ( r / 2 ) 6( i ) + ( r / 2 )-β( i ) _ 2 ) < α V ( 1 ) + ^ " δ ( 1 ) " 2),

which is false (since r < 1 and 5(1) > 0 by strict stability).

Proof of Theorem 5.1. Fix a small ε > 0 and let

u t : Σ -• R, txt(x) =ε(vPi(x)cos(πί) + v^2(^)sin(πί)).

Note that (by the maximum principle) the area minimizing surfaces bounded

by ΰo(Σ) lie on one side of C, and those bounded by ϋ\ (Σ) lie on the opposite

side of C. Thus there exists some t € (0,1) such that either

, v ώt(Σ) bounds an area minimizing surface Tε which passes

through the origin,

or

, , ώt(Σ) bounds two area minimizing surfaces T/ and 7̂ ? such

that the origin lies in the region between Tε

x and T*.

We consider only case (2), since case (1) becomes a special case of case (2)

by allowing T* = Tε

2 in (2).

Now apply the corollary to Proposition 4.5 to get p = p(ε), R € (0,1/2),
and functions j \ < f* on [p(ε), 1] x (Σ) such that

< « < l),

_ (p<t<R),

SUp ||/*(Λ ) l k * = β > SUp ||/*(t, )lkα
i=l,2 t=l,2

Furthermore, by Proposition 5.2 applied inductively to f\{2n , •), n = 0,

1,2, ,

^(/l - fe, 0 > v(Λa - Λ1,20 (P < t < 1/2).

Now scale Ύ\ by l/p.(ε) and pass to a subsequence of ε —• 0 to get limits T*

(i = 1,2) with

T - Bx = S(Γ; l,oo), r ( r ,x ) = lim/j(p(ε)r,x).

Then for 1 < r < oo

(3) ' v 1 2
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W sup
t=l,2 t=l,2

Without loss of generality,

(5) | |/2(l, )lkα = 0> sup|Lf(r, )lkα.
z=l,2

Also, for i?" 1 < r < oo,

Now we claim that either /* or f2 must change sign (i.e., take on both
positive and negative values). For suppose not, since the origin lies between
T 1 and T 2 we then have

f\r,x) < 0 < /2(r,x) (1 < r < oo).

Thus T 1 and T 2 must be leaves of the foliation & [10, 2.1], so by the strict
minimality of C,

lim fi{nr,x)/s(n) = <px(x) c ^ ^ 1 ) " ^ / 2 , C l < 0 < c2,
n—•(»

where s(n) = maxfU/^n-, ) | |O:Ϊ = 1,2}. Hence by (3),

which is a contradiction.
Thus one of the /*, say / 2 , changes sign, so that T 2 is neither C nor any

leaf of the foliation ^. Now suppose C is a cone with C ψ C (C could be
a translate of C, for example). Then

(7) lim Dist(C; Π dBr, C Π 9S r ) > 0,
r—•oo

where Dist( , •) is the Hausdorff distance. Furthermore, if L is a leaf of the
minimal foliation associated with C", then

lim Dist(L Π dBr, C Π dBr) = 0,
r—^00

by [10, 2.1], so

(8) lim Όist{LΠdBr) > 0.
r—>oo

On the other hand, (4) and (6) imply that

Dist(T2 Π dBr, C Π dBr) = +1
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The hypothesis on λ2 implies that p < - 1 (see the remark after Theorem

4.6), so that

lim DistίT2 Π dBr, C Π dBr) = 0.
r—>>oo

Thus (by (7) and (8)) T2 is neither a cone nor any leaf of the foliation asso-
ciated with a cone.

6. Concluding remarks

In this section we show that the hypotheses of §§4 and 5 are satisfied for
most of the known examples of area minimizing cones. Every Σ for which C
is known to be area minimizing is isoparametric, that is, the set of principal
curvatures κι(x), - , κ,m-ι(x) of Σ at x does not depend on x. In particular,
this is the case for the examples in Lawson's list [12] and for the examples
constructed by Ferus, Karcher, and Mύnzner from Clifford algebras [8]. For
such cones Σ, the functions x *-• v x (υ E R n + 1 ) are eigenfunctions of J Σ
with eigenvalue λi where λi < λ; < 1 — m. Furthermore, λ{ = 1 — m if and
only if Σ is S™"1 or Sp x Sm~1~p. (See the last section of [18] for a discussion
of these facts about isoparametric Σ.) Also, the only isoparametric Σ that
is a homology sphere is the totally geodesic S"2"1 (cf. [11, 6.4(2)] or [17]).
Thus except for Sm~ι and Sp x 5 m ~ 1 ~ p , every isoparametric Σ such that C
is minimizing satisfies the hypotheses of Theorem 4.6.

Strict stability and strict minimality are not well understood in general,
but they hold for all the (minimizing) examples in Lawson's list [12] except S2

(see [10, 3.3]). Also, for every isoparametric Σ except S2, if C is stable, then
it is strictly stable. (This follows from the fact that λi = #(1 — m), where g
is the number of distinct principal curvatures of Σ [18].) Bruce Solomon has
observed that the examples of Ferus, Karcher, and Munzner [8] are all strictly
minimizing. (The proof in [7], [6] that they are minimizing actually shows
that they are strictly minimizing, because the inequalities there are strict.)
Thus except for S171'1 and Sp x Sm~1~p

y the hypotheses in §5 are satisfied
for every Σ in Lawson's list [12] such that C is minimizing and for all the
examples of Ferus, Karcher, and Munzner [8].

On the other hand, if Σ = S™'1 C 5 m , then by monotonicity every
minimal hypersurface asymptotic to C at oo is congruent to C. And if Σ =
Sp x Sm~1~p and C is minimizing, Leon Simon and Bruce Solomon [18] have
shown that every minimal hypersurface asymptotic to C at oo is congruent
to C or to a leaf of the foliation associated with C.

We conclude this paper with two open questions. Is there a complete
hypersurface V asymptotic to C at oo but not congruent to C, such that V
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is both singular and area minimizing? Can one classify all complete minimal
(or minimizing) hypersurfaces asymptotic to C? The first question would be
settled affirmatively if one could show that for small ||τ/||2,α, ^(Σ) bounds a
unique area minimizing surface. The second question seems very difficult.
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