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REPRESENTATIONS OF SURFACE GROUPS
IN COMPLEX HYPERBOLIC SPACE

DOMINGO TOLEDO

Introduction

Let S be a closed Riemann surface of genus g > 1 and let p: τri(S) —>
PSU(l,n) be a representation of its fundamental group in the group of mo-
tions of complex hyperbolic n-space. There is a natural characteristic number
associated with p, which can be defined as follows. Let D denote the hyper-
bolic plane (i.e., the universal cover of S), and let Bn denote the unit ball
in C n with its Bergmann metric (complex hyperbolic n-space) and Kahler
form ω. The representation p determines a flat bundle over S with fiber Bn.
Since Bn is contractible this bundle has a section, which is equivalent to an
equivariant mapping

f:D-^Bn, f(ix) = p(l)f(x) for all 7 ^ ( 5 ) .

The form f*ω is invariant under the action of τri(S') on D, hence descends to
a form on S that will still be denoted by f*ω. The characteristic number in
question is

c(p) = ί f*ω.
Js

Since Bn is contractible, any two equivariant maps are equivariantly homo-
topic, so the value of c(p) is independent of the choice of /. Using the tech-
niques of bounded cohomology, it is proved in [2] that this characteristic
number satisfies the inequality \c(p)\ < 4π(g - 1).

The purpose of this paper is to prove the following theorem, which com-
pletely characterizes the case in which equality holds.

Theorem. // \c(p)\ = 4π(g — 1), then the image of p leaves a complex
line in Bn invariant

Observe that a complex line in Bn is the same as a complex totally geodesic
subspace (with respect to the Bergmann metric) of complex dimension one.

If we think of SU(1, n) as the subgroup of SL(n-h 1, C) that leaves invariant
the Hermitian form |^o|2 — \zχ\2 |zn|2

5 and PSU(l,n) as SU(l,n) modulo
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its center (a cyclic group of order n + 1), any subgroup that leaves a complex
line invariant is conjugate to the subgroup of all matrices of the form

"J ° V A E 1/(1,1), BeU(n- 1), det(Λ) det(B) = 1.
U .o /

From p we thus obtain a representation p\ into PSU(1,1) namely by restricting
to the invariant line (the matrices A in the above decomposition), and p\ also
has characteristic number of absolute value 4π(g — 1) since the Kahler class
of Bn restricts to that of the invariant line. Now the representations of ττi(5)
in PSU(1,1) = PSL(2,R) with maximum characteristic number have been
classified by W. Goldman in his thesis [3]: these are precisely the Fuchsian
representations, i.e., the faithful representations with discrete and co-compact
image. Goldman's theorem and some simple considerations give the following
corollary:

Corollary. If\c(p)\ = 4π(g— 1), then there exist representations p\: τri(ί>)
—• PSU(1,1) and P2: ττi(S') —• U(n— 1), with p\ Fuchsian, such that p is con-
jugate to

( ( d e t Ό 2 ) 1/2 I
From this corollary one concludes easily that the set of isomorphism classes

of flat PSU(l,n)-bundles over S with c(p) = 4π(g — 1) forms a component
of the space of all flat PSU(l,n)-bundles over S, and that this component is
homeomorphic to the Cartesian product of the Teichmuller space of S with the
space of isomorphism classes of flat U(n - l)-bundles over S (cf. [4, Theorem
6]).

The proof of the Theorem is motivated by the proof presented by Thurston
of the "strict version of Gromov's theorem" [8, Theorem 6.4]. We show that
the equivariant map / as above has a measurable extension to the boundary
of D. Then we show that the image of the boundary of D is the boundary
of a complex line in Bn, and that this line is invariant under p. The referee
points out that the existence of the boundary map follows from a quite general
theorem of Zimmer [10, Theorem 4.3.9], but, since some of the details of the
construction given here are needed for the proof, the arguments cannot really
be shortened by appealing to this general principle.

The above Theorem was the motivation for the work of Goldman and
Millson on the local rigidity of "Fuchsian" representations of SU(l,n) in
SU(l,n + k) [5], and for their conjecture on the global rigidity of such rep-
resentations. Their rigidity conjecture has been proved recently, for n > 1,
by K; Corlette [1]. He establishes the existence of a harmonic section of the
corresponding flat bundle and then applies Siu's rigidity technique [7]. Thus
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the present paper, combined with [1], shows that the rigidity result desired

by Goldman and Millson holds for all n and k. We refer to [5] for the precise

meaning of rigidity.

We remark that our Theorem can also be proved by using Corlette's ex-

istence theorem of a harmonic section and then applying word for word the

arguments used to prove the main theorem of [9], which is the special case

of the present theorem in which the image of p is a co-compact discrete sub-

group. In fact our motivation in writing [9] was to prove the present theorem,

but the existence of a harmonic section was not available at that time. The

relation between these two approaches is, heuristically speaking, that here we

construct the boundary values (at infinity) of the harmonic section without

constructing the section itself.

The author is grateful to W. Goldman, M. Gromov and J. Millson for

several helpful conversations on this subject, and to the referee for suggesting

several improvements of the presentation.

1. Bounded cohomology

For the proof of the Theorem we assume some familiarity with the tech-

niques of bounded cohomology as presented in [6, Chapter 2]. We will com-

pute the cohomology of S by the complex of "straight cochains". This is

the complex of Borel measurable functions o n D x x D - ^ R which are

invariant under the action of Γ = πχ(S): c(ηxo, , ηxp) = c(xo, , xp) for

all η G Γ and all XOΓ' ->XV ^ D. Straight fc-cochains are therefore func-

tions on T\Dk+λ, and the points of Γ\Z? fc+1 are in one-to-one correspondence

with the geodesic singular fc-simplices on 5, hence the terminology straight

cochain. The coboundary operator in this complex is defined by the usual

formula δc{x0, , z p +i) = XK(-l)*c(a;o, Λύ ''' , Xp+i)-

Finite linear combinations of points of Γ\D / c + 1 are called straight chains,

and finite Borel (signed) measures on Γ\Dk+* are called (straight) measure

chains. Either of these two complexes of chains computes the homology of S.

The differential on the complex of measure chains is defined by duality. In

other words, the boundary of a measure cycle μ is uniquely characterized by

the requirement that dμ(c) = μ{δc) for all continuous straight cochains c. This

definition agrees with the usual definition of boundary on the subcomplex of

straight chains, i.e., the measures that are finite linear combinations of Dirac

masses.
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The characteristic number in question is represented by the straight 2-
cochain, denoted /*ω, defined by the formula

*ω(xQ,xι,x2) = ω,
J (fxojxi,fx2)

where (fxo, fxi,fx2) denotes a geodesic triangle in Bn with vertices fxo, fx\,
fx2, and f:D-+Bnis the equivariant map as in the introduction. Observe
that since Bn does not have constant curvature, the vertices fxi do not de-
termine a unique geodesic triangle. For the purpose of the above formula, by
a geodesic triangle we mean any two-simplex whose edges are the geodesic
segments joining the vertices fxi. Since ω is an exact form on J5n, its integral
over a triangle depends only on the boundary, hence the value of the integral
is independent of the choice of triangle filling in the edges. If a particular
choice of a spanning triangle is desired, the center of gravity construction in
[2, p. 462] is a natural choice.

In [2] it is proved that for all 2/0,2/1,2/2 e Bn, \ S{yo,yuy2)
ω\ < π> h e n c e

f*ω represents a bounded cohomology class on S with sup norm at most π.
The proof was based on the following formula, which is a special case of the
proposition in §2 of [2]. We assume that 2/0 = 0. Then

(l l) / <*> = arg((l - 2/1 2/2)/(l - 2/1 2/2)),
J (0,2/1,2/2)

where the dot denotes the sum of products of the components of the corre-
sponding vectors in C n .

We observe that this formula has the following geometric interpretation.
Let [2/0,2/1] denote the intersection with Bn of the complex line in C n through
2/0 and 2/1, and let π: Bn —• [2/0,2/1] be the orthogonal projection along
geodesies (which, when 2/0 = 0, is easily checked to agree with the orthog-
onal projection with respect to the Hermitian inner product in C n ) . Then

(1.2) f ω = I ω.
, y 1,8/2) J (2/0,2/1^2/2)

This formula can be easily proved, independently of (1.1), as follows. Since
ω is an exact form on Bn, its integral over the boundary of the tetrahedron
(2/0,2/i,2/2,7Γ2/2) vanishes. Therefore, if we can show that the integral of ω over
each of the faces (2/0,2/2,̂ 2/2) and (2/1,2/2,̂ 2/2) vanishes, then the vanishing of
the integral over the boundary would be equivalent to (1.2).

To this end, consider the face (2/0,2/2,̂ 2/2)- It is formed by geodesies from
the vertex 2/2 and orthogonal not just to the edge (2/0,̂ 2/2), but also to the
whole complex line [2/0,2/1] which is the complexification of this edge. From
this it is easy to see that this face is a totally real submanifold of Bn, hence
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the restriction of ω to it is identically zero. The same reasoning applies to the

face (2/1,2/2,7Γ2/2), thereby completing the proof of formula (1.2).

Observe that formula (1.2) holds also when any of the yi lie in the boundary

of β n , so we may let the ^ be arbitrary points in the closed ball Bn.

Lemma (1.3). For all 2/0,2/i,2/2 € Bn, l/(!/0,yi4,2)<*>l < π, and equality

holds if and only if there is a complex line in C n so that 2/0,2/1,2/2 He in the

intersection of this line with the boundary of Bn.

Proof. The inequality is clear from (1.2), since (2/0,2/1,71"^) is a triangle

in the hyperbolic plane [2/0,2/1]- If equality holds, 2/o,2/i,π2/2 must all belong

to the boundary of [2/0,2/1]- But, by the strict convexity of the boundary of

J5n, if 7Γ2/2 belongs to the boundary of [2/0,2/1], s o must 2/2, and the proof is

complete.

With this lemma we get a geometric proof of the bound for c(p), inde-

pendent of the computations with the potential for the Bergmann metric in

[2]:
Proposition (1.4). \c(p)\ < 4π(g - 1).
Proof The number c(p) is the evaluation on [5], the fundamental cycle of

5, of the straight cochain f*ω. By Lemma (1.3), the sup norm of this cochain

is at most π: ||/*α;||oo < τr But the value of the L1 norm of [S] is well known:

II [S] | |i = 4(0 — 1), and a proof of this fact can be found in [8, Theorem 6.2],

or, by a more elementary argument, in the introduction to [6]. By the duality

between the Lι and Z/°°-norms,

IΦ)| = \rω(is}) < ιιrω|iooii[s]iii = ̂ (9 -1),

which completes the proof of the proposition.

The case of equality in Lemma (1.3) strongly suggests that if equality holds

in this proposition then p must leave a complex line invariant. In order to

make this precise we will need the following estimate for the sides of a geodesic

triangle in Bn so that the integral of ω is very nearly maximal:

Lemma (1.5). // (2/0,2/1,2/2) is a geodesic triangle in Bn such that

l/<yo,vi,!/2>ωl =π-e~x, x > 0, then d(j/t,J/j) > x>
Proof We may assume that 2/0 = 0 and that /(O,?/1,2/2> ̂  > 0. By (1.2),

/ ω = / ω = ω\
J{0,yι,y2) J(0,yι,πy2) J (0,r,z)

where r = |yi|, πy2 = zyu \z\ < 1, Re(z) > 0, and ω' is the Kahler form of

the hyperbolic plane |jδr| < 1. Applying (1.1) to this hyperbolic plane we get

ω' = arg((l - rz)/(l - rz)).
(0,r,z)
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Fix a positive angle θ < π, and let L be the ray in the upper half-plane of
the complex variable z that starts at the point z = 1 and makes an angle 0/2
with the interval [0,1]. Then arg((l - rz)/(l — rz)) = θ precisely when rz lies
in the intersection of L with the unit disk. The minimum value of r\z\ occurs
when the segment from 0 to rz makes a right angle with L, and in this case
r\z\ = cos(π/2-0/2). Therefore for all r, z such that aτg((l-rz)/{l-rz)) = θ
we have the inequality

r\z\ >cos(π/2-0/2).

Now let θ = π — e~x. Then for all r, z under consideration we have the
inequality

r > r\z\ > cos(e"72) > 1 - e~2x/8.

Substituting this inequality in the formula for the distance d(yo,yι):

dBn (2/o,2/i) = d{|*|<i}(0,r) = log((l + r)/(l - r)),

we get the desired inequality for d(2/o,2/i):

d(yo,Vi) > log((2 - e- 2 78)/(e" 2 78)) > 2x - C> x

for x ^ 0 and for some positive constant C. Since we can apply the same
argument replacing 2/0 and 2/1 by any two vertices of the triangle, we get
d{yi,yj) > x, as desired.

2. Proof of the Theorem

To prove the theorem we make use of measure cycles, as in [6], [8], to
represent the fundamental cycle of S. We start by reviewing this technique.

We write G for the group of isometries of D; it has two components, the
identity component being PSL(2, R). Let X denote the quotient space Γ\G
and let μ denote Haar measure on G, normalized so that μ{X) = Area(S) =
4π(g — 1). We let σi be a fixed equilateral triangle in D with sides of length
z, and A(σi) denotes its area. Finally we let Z{ denote the measure cycle
consisting of all G-translates of σi each weighted with coefficient 1/A(σi). By
this we mean that Zi is the linear functional on straight two-cochains on S
whose value on the cochain c is given by the formula

= / A(σi)~1c(gσi)dμ(g).
Jx

This generalized chain is actually a generalized cycle because each edge in its
boundary belongs to precisely two translates of σ2 with opposite orientations.
To compute the homology class it represents we evaluate it on the area form
dA of S:

dA(Zi) = μ(X) = 4π(g - 1) = dA{[S]),
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therefore Zi represents the fundamental cycle [S\.
From this it follows that, if p is a representation with maximum character-

istic number, then

(f*ω){Zi)= f A(σiΓ
1(r

Jx

or equivalently,

(2.1) ί ί ωdμ = A(σi)μ(X),
JX Jst(fgσi)

where st(fgσi) denotes the geodesic triangle in Bn with vertices /(vertices
of gσi). This formula, which makes sense by itself without any reference to
measure cycles and bounded cohomology, is actually the only place where we
make any essential use of these techniques. We will now follow Thurston [8] in
showing that (2.1) implies that / extends to a measurable map f:D—*Bn,
and that the extended / maps the boundary of D to the boundary of Bn.
Our Theorem will follow easily from the existence of this extension. First we
need some lemmas.

Lemma (2.2). π - Afa) ~ 6e~*/2 as i -+ oo.
Proof. From the hyperbolic law of cosines,

cosh C = cosh A cosh B — cos 7 sinh A sinh B,

applied to our equilateral triangle σt, it follows that 1 — cos7 ~ 1/coshz as
i —> 00, therefore 7 ~ 2e~*/2. Since A(σ{) = π — 37, we get the lemma.

Lemma (2.3). Let u = π - ;4(σt ), and letY = {geX: \ fatygσi) ω| <
A{σi) - i2ei}. Then μ{Y) < μ{X)/i2.

Proof. Let φ(g) = fst{fgσi) ω. Since φ(g) > A{σi)-i2ti on 7, and φ(g) <
A(σ{) + €i = π on ΛΓ, it follows from (2.1) that

A(σi)μ(X) = ί φ(g) dμ < A(σi)μ(X) 4- €<(μ(X - Y) - i2μ(Y)),
Jx

therefore μ(X) - i2μ{Y) > μ{X - Y) - i2μ{Y) > 0, in other words, μ{Y) <
μ(X)/z2, as desired.

Proposition (2.4). For every x G D and for almost every geodesic
ray 7 with 7(0) = x, limi—oo f{η{i)) exists and belongs to the boundary of
Bn. Moreover, if y E 3D is the endpoint of such a ray, then the value of
limz_>oo f{l(i)) depends only on y.

Proof. Let F be the interior of a fundamental domain for the action of
Γ o n D . The set of all geodesic triangles gσi with first vertex in F has full
measure in the set of all triangles forming the cycle Zi, and from now on it will
be sufficient to consider only such triangles. By Lemma (2.3), for any io we
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have that for all gσ{, except those in a set of measure at most μ{X) Σ™ 1/i2,
the inequality

/
7Γ -

holds for all i > IQ. In particular for all triangles except those in the small
exceptional set, |/ s t /r σ \u\ converges exponentially fast to TΓ as i —• oo.
Therefore, by Lemma (1.5), the length of each edge converges linearly to
infinity. Letting io —• oo we obtain that for almost all triangles gσi, with
the first vertex in F, the length of the edges of st(fgσi) converge linearly to
infinity as i —* oo.

There exists then a point xo £ F so that for almost all triangles gσ^ with
first vertex x0, the lengths of the edges of st(fgσi) converge linearly to in-
finity. These triangles are in 2-1 correspondence with their first edges. Thus
we get, in particular, that for almost all geodesies 7 with 7(0) = xo, the
distance d(f(η(0)),f(η(i))) converges linearly to infinity. Since / is a Lips-
chitz map, d(f(η(i),f(η(i + 1))) is bounded, therefore, since Bn has negative
curvature, bounded away from zero, by standard angle comparison theorems
the angles at /(7(0)) between the geodesic segments (/(7(0)), 7(7(2))) and
(/(7(0))Ϊ/(7( Z < + 1))) f ° r m a n exponentially decreasing function of i. There-
fore, the sequence of angles formed by the geodesic segments (/(7(0)), /(7OO))
with a fixed direction at /(7(0)) is a Cauchy sequence, hence the sequence of
directions of these segments is convergent. But this means precisely that the
sequence f{η{i)) converges, in the topology of Bn, to a point in the boundary
oiBn.

Finally, if x is an arbitrary point of D, then every geodesic ray from x is
asymptotic to a geodesic ray from XQ. Since / is a Lipschitz map, the limits
obtained from rays starting at x must also exist for almost all rays and give
the same limit as the corresponding ones from XQ, thereby concluding the
proof of the proposition.

We can now conclude the proof of the Theorem. Proposition (2.4) provides
us with a measurable extension of /, still denoted by /, and / : dD —> dBn.
Taking the limit as i —• 00 in (2.1), it is clear that / maps almost every triple
of points in dD to the vertices of an ideal triangle in Bn for which fω assumes
its maximum value π. By Lemma (1.3), the vertices of each such simplex lie
in the intersection of dBn with a complex line in C n . Since a complex line
is determined by two points, this complex line must be the same for almost
all triple of points in dD. Since the set of geodesies joining the ideal vertices
is invariant under /?(Γ), this complex line is invariant under />(Γ), thereby
completing the proof of the Theorem.
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