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0. Introduction

The first step in the study of submanifolds of Euclidean spaces is to find
enough local invariants and their relations so that they determine the subman-
ifolds uniquely up to rigid motion. This is well known in classical differential
geometry [7]. In fact, the first fundamental form I, the second fundamental
form II and the induced normal connection are the basic local invariants, and
they are related by the Gauss, Codazzi and Ricci equations. The shape oper-
ator Av of an immersed submanifold M in Rn in the normal direction v at x
is the selfadjoint operator on TMX corresponding to the second fundamental
form II v. The eigenvalues of Av are called the principal curvatures of M in
the normal direction v. The Ricci equation implies that the normal curvature
(the curvature of the normal connection) Ω" measures the commutativity of
the shape operators, i.e., W{u,v) = [Au,Aυ]. So if the normal curvature
is zero, that is, if the normal bundle v{M) is flat, then {Aυ\υ e v{M)x} is
a commuting family of selfadjoint operators, and locally there exists a par-
allel orthonormal normal frame field on M. It follows that many results of
hypersurfaces can be generalized to submanifolds with flat normal bundles.

One natural type of problem is to determine all submanifolds of Rn which,
in various senses, have simple local invariants. As a by-product of such inves-
tigations one often obtains many geometrically interesting examples of Rie-
mannian manifolds. A special case of the above is the problem of finding all
isoparametric submanifolds ([31], [30], [9], [41]), i.e., submanifolds with zero
normal curvature and constant principal curvatures along any parallel normal
field. It is not surprising that group theory provides examples. In fact, the
principal orbits of the adjoint action of a simple Lie group on its Lie alge-
bra (or more generally the principal orbits of the isotropy representations of
symmetric spaces) are models for such manifolds. But they are still far from
being completely classified.
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Another type of natural question concerns special functions on M defined
by symmetric functions of the principal curvatures. Setting such functions
equal to zero gives geometrically natural partial differential equations (for
example the minimal submanifold equations and constant mean curvature
equations). Problems of this type often lead to interesting interplay between
geometry, analysis, and topology. Often submanifolds with local invariants
provide the most easily found solutions of such equations.

As is well known, the behavior of the shape operators and the homology of
M are closely related via the Morse inequalities and the Morse index theorem
[29]. For if fa denotes the Euclidean distance function on M (that is, fa is the
restriction of | | x-α | | 2 to the submanifold M), then q is a critical point of fa if
and only if (a — q) is normal to TMq, and the Hessian of fa at a critical point
g is (I — A(α_ς)). One beautiful application in this direction is the rich theory
of tight and taut immersions ([12], [27], [8], [11]). Once again isoparametric
submanifolds provide numerous examples of tight and taut immersions ([10],

A Hubert manifold is a differentiate manifold locally modeled on a Hubert
space. The foundation work on Hubert manifolds was done in the 1960's. For
example, standard differential calculus works the same way as in the finite
dimension [28], Smale [40] developed the differential topology for Fredholm
maps between Banach manifolds, Palais and Smale ([33], [39]) developed the
Morse theory on Hubert manifolds. Some basic notions of Riemannian geom-
etry for Hubert manifolds could also be carried over from the finite dimension
theory, for example the Levi-Civita connection and the Riemann curvature
tensor are defined. But the main motivations at that time came from the
calculus of variations, and one applied the infinite dimensional theory mainly
to the manifolds of maps between finite dimensional Riemannian manifolds.

Probably the major reason that an independent theory of infinite dimen-
sional Riemannian geometry did not flourish in the 1960's was a lack of ge-
ometrically interesting examples. One way to obtain such examples is to
find interesting submanifolds of Hubert spaces. The three basic local invari-
ants and their related equations can be easily generalized to submanifolds
of Hubert spaces. But the spectral theory of the shape operators is compli-
cated, and infinite dimensional differential topology and Morse theory cannot
be applied easily to these submanifolds without further restrictions. Thus in
order to generalize the above theory of submanifolds of Rn to submanifolds of
Hubert space, one must find a suitable class of submanifolds to which infinite
dimensional differential topology and Morse theory can be applied.

A submanifold M of V is called proper Fredholm (PF) if the end point map
Y of M is Fredholm, and the restriction of Y to the unit disk normal bundle is
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a proper map. (Here Y is the map from v{M) to V defined by Y (v) = x + v,
if v G v(M)x). The main purpose of this paper is to show that there is
a satisfactory generalization for the first and third type of questions raised
above for PF submanifolds of Hubert space. Since the trace of a compact
operator need not be convergent, there are technical difficulties in making
sense of many questions of the second type. But we believe that these may
eventually be overcome.

In §1, we review the basic notions of Riemannian Hubert manifolds and
submanifolds. In §2, we prove that a PF submanifold has a natural Fredholm
structure (induced from the immersion), and we show that the shape operators
are compact and that every Euclidean distance function fa satisfies Condition
C of Palais and Smale. In §3, we study the geometry of PF submanifolds M
with flat normal bundle, especially the focal structure of M, the curvature
distributions, and the curvature normals. In §4 we study a family of PF
submanifolds, which arise from infinite dimensional Lie theory. Let G be
a simple, connected, compact Lie group, and & its Lie algebra. Let ξ be
the trivial principal G-bundle over S1, V = H°(S\^) the space of H°-
connections of ζ, and G = if 1 (5 1 ,G) the H1 gauge group of ζ. Then G
acts isometrically on V by gauge transformations. In §4 we describe in detail
the submanifold geometry of the principal orbits of G on V. In fact these
orbits are isoparametric, i.e., they have flat normal bundle, and the shape
operators along any parallel normal field are all conjugate. In §5 we extend the
definition of tautness to PF submanifolds. Starting from §6, we assume M is
isoparametric, and prove that the finite dimensional isoparametric theory can
be generalized to this infinite dimensional setting. Although an isoparametric
submanifold of a Hubert space need not be an orbit of a group action, we
prove in §6 that we can associate to each isoparametric submanifold M a
marked affine Dynkin diagram, such that the corresponding affine Weyl group
W acts on M by diffeomorphisms, and on the normal plane q + v(M)q by
rigid motions. In §7 we prove that every nondegenerate Euclidean distance
function fa on M is a perfect Morse function, that M is taut, and that
the set of critical points of fa is a W-orbit. It follows that the homology
of M can be computed explicitly from its marked Dynkin diagram. In §8
we determine the possible marked affine Dynkin diagrams for isoparametric
submanifolds.

Given a parallel normal field v on M, we define the parallel set, Λfv, to be
{x + v(x)\x G M}. In §9, we show that each Mv is a smooth PF submanifold
(its codimension may be larger than that of M), and the set S^ of parallel
sets of M forms a singular foliation of V. If / is a smooth function on V
such that / is constant on each leaf of J?~, then f\(q + v{M)q) is a smooth
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VF-invariant function. In §10 we prove that the converse is true; this is the
geometric analogue of the Chevalley restriction theorem.

Finally in an appendix we review some basic facts concerning Coxeter
groups. We also prove a necessary and sufficient condition for a group of
rigid motions of Rk generated by reflections in affine hyperplanes to be a
Coxeter group.

The author would like to thank Dick Palais for many helpful discussions
concerning the differential topology and Morse theory of infinite dimensional
Hubert manifolds.

1. Basic properties of Riemannian Hubert manifolds

Let M be a smooth infinite dimensional Hubert manifold modeled on a
separable Hubert space (F, ( , )). The bracket operation for vector fields and
the exterior derivative for p-forms are defined to be the same as they are for
finite dimensional smooth manifolds [28]. Moreover for ω G C°°(/\PT*M)
and Xo, , Xp e C°°{TM), we have
(1)

dw(X0, ,Xp)

A Riemannian metric for M is a smooth section g of S2(T*M) such that g(x)
is an inner product for TMX equivalent to the inner product ( , ) on V for
all x in M. Then (Λf, g) is called a Riemannian Hubert manifold. It is well
known that there exists a unique torsion free connection V compatible with
the metric g, called the Levi-Civita connection. If M is of finite dimension,
then V is characterized by

2(VXY, Z) = X(Y, Z) + Y(Z, X) - Z(X, Y) + ([X, Y], Z)

+ ([Z,X],Y)-({Y,Z],X).

Note that the right-hand side of (2) defines a continuous linear functional
of the Hubert space TMX. Since TM* is isomorphic to TMX via the met-
ric g{x), (2) also defines a unique element in TMX, and the argument for a
unique compatible, torsion free connection is also valid for infinite dimensional
Riemannian Hubert manifolds. Similarly the following definition of Riemann
curvature tensor is valid for the infinite dimensional case:

(3) (R(X, Y)(Z), U) = ((VxVy - Vy VX - V[X,y,)(Z), U).

Let M, X be Hubert manifolds, g a Riemannian metric on X, and V the
Levi-Civita connection of g. A smooth map / : M —• X is called an immersion
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(or M is called an immersed submanifoldof X) Ίϊdfx is injective and dfx(TMx)
is a closed linear subspace of TXX. Next we define the two fundamental
forms and the normal connection for submanifolds. The restriction of g(x) to
dfx(TMx) defines a Riemannian metric on M. This induced metric I on M
is called the first fundamental form of M. Let v(M) be the normal bundle
of M in X, i.e., u{M) — (TM)-1, and let v be a local cross section of v(M).
Then Aυ(x)(u) = — {Vuv)(x)TMχ defines a selfadjoint linear operator on TMX,
and Aυ(x) only depends on v(x). Av is called the shape operator of M with
respect to the normal vector υ. The second fundamental form II of M is a
section of S2{T*M)®v(M) « L{S2(TM),v{M)) defined by g{ll{u1.u2),v) =
g(Av(u\),U2). The normal connection V is the induced connection on v{M)
by V, i.e., Vv{v) = (VιO" ( M ), the orthogonal projection of Vv to i/(Af).

Next we want to use the method of moving frames to study the local
geometry of Riemannian Hubert manifolds. Let {ê } be a local orthonormal
frame field on a Riemannian Hubert manifold (X, #), i.e., the e{ are smooth
vector fields defined on an open neighborhood U of X such that {et(x)} is
an orthonormal basis for the Hubert space (TXx,g(x)) at each x in U. Let
{w{} denote the dual coframe of {e }̂. Note that the bracket operation on vec-
tor fields, the exterior differentiations on differential forms, connections and
Riemann curvature are well defined on Hubert manifolds, so we can express
them locally in terms of the frame field {ê } and coframe field {ω{}. Suppose

. There exist uniquely one-forms ω%j such that

Then it follows from (1) and (2) that

(4) dωi = Σωij Λ ωji ωij + ωji = °

In fact ωij is uniquely determined by (3), and

ωv = Σ r*ifcω*' w h e r e 2rW = ~cm + cjki + ckij.

Using (1), (3) then becomes

(5) Ωij = -dωij + Σω* Λ ω ^ i = lHftjwwfc Λωu

where β^fc/ = (Vβfc Ve, - Vβ | Vefc - V [ e f c, e /])(^), (e>). X has constant sectional
curvature c if

Ωty = cωi Λ cjj, or equivalently Rijki = c(δikδji - δu

It is easily seen that an infinite dimensional Hubert space with the constant
metric has zero sectional curvature.
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The Levi-Civita connection V extends uniquely to any tensor bundles over

X by requiring that V commute with tensor products and contractions. For

example if

then VT = ^ tijkiooi <8> e* ® ey 0 e/c, where

In particular if u: X —• i? is a smooth function, then dtt = X^uza;i, and the

Hessian of u

ijϋjj, where ^ Wtj^ = dι^ +

Suppose M is an immersed submanifold of (X, g). Since locally / is an

embedding, in order to study the local submanifold geometry of M we may

identify x in M with f(x) in X. In this paper we will assume that all sub-

manifolds have finite codimension. Suppose M has codimension ko in X. Let

{ei\i G N} be a local orthonormal frame field defined in a neighborhood U of

X such that, when restricted to M, {e{\i > ko} is a local tangent frame field

and {ei\i < ko} is a local normal frame field. Henceforth we will adopt the

following index convention:

1 < α,/?,7< &o, i,j,k>ko, 1 < A, B, C < 00.

Let {CJΛ} be the dual coframe of {e^}, ^AB the Levi-Civita connection, and

Ω the Riemann tensor of (X, g). Then we have

(6) dωA = Σ ωAB Λ ωB>

(7) dωAB = Σ ωAC Λ ωCB

Restricting ωa and dωa to M, we have

(8) ωa = 0 and ^ P ωαΐ Λ ^ = 0.

Let u;^ = Σ hiajUj. Then J^ hiajωj Λωj=0, and since {ω; Λ ωj\i < j} is a
basis for /\2 T*M, we have hiaj — hjai. So the first and second fundamental

forms of M in X are

I = y]c j t φαJti

II = 2_^α;^ 0 ^ i = 2 ^ hiajϋJi <S> ωj <S> ea.

The 5/ιαpe operator Aea is given by
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The spectrum of the shape operator Av will be called the principal curvature

spectrum of M at x in the normal direction v.

2. Proper Fredholm submanifolds of a Hubert space

Although the elementary part of infinite dimensional Riemannian geometry

of submanifolds works in the same way as the finite dimension case, many of

the deeper results are not true in general. Recall that the spectral theory of

the shape operators and the Morse theory of the Euclidean distance functions

of submanifolds of Rn are closely related, and they play essential roles in the

study of the geometry and topology of submanifolds of Rn. But these theories

are not true without some restrictions in the infinite dimensional setting. One

of the main goals of this section is to find a class of submanifolds of Hubert

spaces for which the techniques of infinite dimensional geometry and topology

can be applied. Roughly speaking we study submanifolds of a Hubert space

with proper, Fredholm end point maps. In fact, properness of the end point

map allows us to apply the infinite dimensional Morse theory, and Fredholm

property implies that the shape operators are compact.

In the 1960's Smale [40] developed the differential topology for Fredholm

maps between Banach manifolds. We will restrict ourselves to Hubert mani-

folds. Let V, W be Hubert spaces, and M, N Hubert manifolds. A bounded

linear map T: V —• W is Fredholm if ker T and cokerT are of finite dimen-

sion. It is then a well-known, easy consequence of the closed graph theorem

that T(V) is closed in W. A differentiate map / : Λf —> iV is Fredholm if dfx

is Fredholm for all x in M. Two bounded linear operators S: V —• V and

T: W —• W are orthogonally equivalent if there exists a linear isometry <p

from V onto W such that S = φ~xTφ.

2.1. Definition. Let V be a Hubert space. The end point map Y of an

immersed submanifold / : M —• V is the restriction of the exponential map

of V to v(M), i.e., Y: v(M) -> V with Y(x, e) = f(x) + e.

Suppose {ea} is an orthonormal normal frame field defined on an open

neighborhood U of M. Then it is easily seen that

U x Rko ~ i/(M) t U, via (x,s)

dY{x,e)(u, t) = {u - Ae{u),t + β(tι)),

where s{u)a = Σzβωβa(μ) and e = Y,zaea(x). So for a hypersurface we

have

(10) % e )(M) = ((i-4)W,ί).
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It follows from (9) that we have:
2.2. Proposition. The end point map Y of an immersed submanifold M

ofV is Fredholm if and only if (I — Av) is Fredholm for all normal vectors v
ofM.

2.3. Definition. An immersed finite codimension submanifold M of V
is proper Fredholm (PF) if the restriction of the end point map Y to a disk
normal bundle of M of any radius r is proper and Fredholm.

2.4. Remark. If V = Un, then an immersed submanifold M of V is PF
if and only if the immersion is proper.

2.5. Remark. If M is a PF submanifold of V, and M is contained in the
sphere of radius r with center xo in V, then v(x) = (xo — a;) is a normal field
on M with length r, and Y(x,v(x)) = xo Since Y is proper on the r-disk
normal bundle, M is compact. Hence M is of finite dimension.

2.6. Examples. Any finite codimension linear subspace of V is a PF
submanifold. The hypersurface M of V defined by {x £ V\(<p(x),x) = 1}
is PF if <p: V —• V is a selfadjoint, injective compact linear operator. To
see this we note that υ(x) — φ(x)/\\(p(x)\\ is a unit normal field to M, and
Av(χ){u) = —{φ{u))τl\\φ>(x)\\ is a compact operator on TMX. So it follows
from (10) that the end point map Y is Fredholm. Next assume that xn G
M, λn<p(xn) is bounded, and (xn + An<p(xn)) —• y. Then xn is bounded,
and (xn + λn£>(:rn)?2;n) = | |xn | |2 + λn is bounded, which implies that λn

is bounded. Since <p is compact and {Xnxn} is bounded, φ{λnxn) has a
convergent subsequence. So {xn} has a convergent subsequence.

2.7. Proposition. Suppose M is a PF submanifold ofV. Let x G M,
v G v(M)x, and let Av denote the shaper operator with respect to v. Then:

(i) Av has no residual spectrum,
(ii) the eigenspace corresponding to a nonzero eigenvalue of Av is of finite

dimension,
(iii) the only possible point in the continuous spectrum of Av is 0,
(iv) Av is compact
Proof. Since Av is selfadjoint, it has no residual spectrum. Note that the

eigenspace of Av with respect to a nonzero eigenvalue λ is

Ker(λl - Ay) = Ker(I - (1/X)AV) = Ker(I -- Av/X).

So (ii) follows from Proposition 2.2. Now suppose λ φ 0, Ker(Aυ — XI) = 0,
and Im(Av — λl) is dense in TMX. Then it follows again from Proposition
2.2 that Av — λl is invertible, and (iii) is proved. To prove (iv) it suffices to
prove that if λ̂  is a sequence of distinct real numbers in the discrete spectrum
of Av and λ̂  —• λ, then λ = 0. But if λ ψ 0, then the selfadjoint Fredholm
operator P = I - Aυ/χ induces an isomorphism P on V/Ker(P). So P " 1
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is bounded. Letting δ denote HP" 1 ! !, we have |(1 — (λ^/λ))""11 < δ. Hence

|λ — λ̂  I/I AI > 1/δ > 0, which contradicts to the fact that λ̂  —• λ. q.e.d.

Recall that a Fredholm structure [16] of a manifold M consists of an open

cover {Ua} of M and a smooth tangent frame field {ef } on each UQ such that

for x £UaΠUβ the linear operator gap(x) defined by gaβ(x)(ef (x)) = ef (x)

is of the form identity plus a compact operator. Then we have the following:

2.8. Proposition. An immersed PF submanifold of V has a natural

equivalence class of Fredholm structure given by the immersion.

Proof Since TM is parallelizable [26], there exists a global tangent frame

field {ξi}. It follows from (9) that (I — Av) is an isomorphism if and only if v

is a regular point of the end point map Y. Let Jif be the collection of local

normal fields v of M such that (x, v{x)) is a regular point for Y for all x in the

domain of u, and let Uυ be the domain of v in Jf. Since (x, 0) is regular for Y

and the set of regular points of Y is open, {Uv\v € J^} is an open cover of M.
Then it follows from 2.7 that e\ — (I - Av)(ξi) gives a Fredholm structure.

Using the well-known theorem of Kuiper that GL(oo) is contractible [26], we

conclude that the equivalence class of Fredholm structure is independent of

the choice of &• q.e.d.

In the rest of this section we explain the relations between the focal struc-

ture and the critical point theory of the Euclidean distance function of PF

submanifolds of a Hubert space. It follows from (9) that (x, e) is a regular

point of Y (i.e., dY^x^ is an isomorphism) if and only if (I — Ae) is an isomor-

phism. Moreover, the dimensions of Ker(I — Ae) and Ker(cfY(X)e)) are finite

and equal. Hence the definition of focal points and multiplicities [29] can be

generalized to PF submanifolds.

2.9. Definition. A point a = Y(x, e) in V is called a nonfocal point for

a PF submanifold M of V with respect to x if dY(x?e) is an isomorphism. If

m = dim(ker(dy(a:je))) > 0, then a is called a focal point of multiplicity m for

M with respect to x. The focal set Σ of M in V is the set of all critical values

of the end point map Y.

Applying the Sard-Smale transversality theorem [40] for Fredholm maps to

the end point map Y of M, we have:

2.10. Proposition. The set of nonfocal points of a PF submanifold M of

V is open and dense in V.

The structure of the focal set of M is closely related to the critical point

theory of the Euclidean distance functions by the following:

2.11. Proposition. Let M C V be a PF submanifold, a € V, and define

fa: M - > R by fa{x) = | | x - o | | 2 . Then we have

(i) V/α(x) = 2(x-α) τ , the projection of{x-a) ontoTMx, so in particular

xo is a critical point of fa if and only if (XQ — o) G v(M)XQ,
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(ii) | V 2 / α ( x ) = I — ̂ 4(α_x) at the critical point x,

(iii) fa is nondegenerate if and only if a is a nonfocal point.

Suppose x 0 is a nondegenerate critical point of /α, and V\ is the eigenspace

of Aa-XQ with respect to eigenvalue λ. Then

index(/α,x0) = Σ{dim(Fλ)|A > 1},

and from 2.11 we have

2.12. Corollary. Let M be a PF submanifold ofV. Then the index of

any critical point of fa is finite.

2.13. Corollary (Morse Index Theorem). Let M be a PF submanifold of

a Hilbert space V, x G M, e E v(M)x, and a — xΛ-e. Then a is nonfocal with

respect to x if and only if x is a nondegenerate critical point of fa. Moreover,

the index fa at x is equal to the number of focal points of M with respect to x

on the segment joining x to a, each counted with its multiplicity.

2.14. Corollary. If M is a PF submanifold ofV, then fa is nondegenerate

for all a in an open dense subset ofV.

Morse theory relates the homology of a smooth manifold to the critical

point structure of certain smooth functions. This theory was successfully

extended to infinite dimensional Hilbert manifolds in the 1960's by Palais and

Smale ([33], [39]) for the class of smooth functions which satisfy the following

Condition C.

2.15. Definition. A smooth function / on a Riemannian Hilbert manifold

M satisfies Condition C if any sequence {xn} in M, such that | | / (x n ) | | is

bounded and that | |V/(x n ) | | —• 0, has a convergent subsequence in M.

2.16. Proposition. Let M be a PF submanifold of a Hilbert space V,

and a € V. Then the map fa: M —• R defined by /α(x) = ||x — α| | 2 satisfies

condition C.

Proof. We will write / for fa. Suppose | / ( x n ) | < c and | |V/(x n) | | -> 0. Let

un be the orthogonal projection of (xn - α) onto TMXn, and υn the projection

of (xn — a) onto ι/(M)Xn. Since \\xn — a\\2 < c and un —• 0, {vn} is bounded

(say by r). So (xn, —vn) is a sequence in the r-disk normal bundle of M, and

^(xn, -vn) = Zn-vn = (xn - α) - vn + α = tιn + α -> α.

Since M is a PF submanifold, (xn, — vn) has a convergent subsequence, which

implies that xn has a convergent subsequence in M.

2.17. Remark. Let M be a submanifold of V (not necessarily PF). Then

the condition that all fa satisfy Condition C is equivalent to the condition

that the restriction of the end point map to the unit disk normal bundle is

proper.
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The above statements (from 2.11 to 2.17) concerning the Euclidean distance
functions fa hold for a PF immersion φ\ M —• V, where fa is defined by

3. PF submanifolds with flat normal bundles

Let M be a PF submanifold in a Hubert space V, and {βi\i G N} a local
orthonormal frame field defined in a neighborhood U of V such that, when
restricted to M, {βi\i > fco} is a local tangent frame field and {ea\a < fco} is
a local normal frame field. We continue to use the following index convention:

1 < α,/?,7 < fco, hJΛ>ko, 1 < A,B,C < oo.

Let {CJΛ} be the dual coframe of {e^}, and ωAB the Levi-Civita connection for
V. Since V has zero sectional curvature, (6) and (7) of §1 give the structure
equations for V:

(11) dωA = y

(12) dωAB = Σ ωAC

Restricting eA to M we have ωa = 0 and dα;α = ^ u;αj Λ u)j. Let

iocjUj. Then the two fundamental forms are:

Restricting (11) to M we have

(13) dωi = ^^ ωij Λ ωo'-> ωij + ωji — Ô

i.e., (ωjj) is the Levi-Civita connection for the induced metric of M, and

(14) du>ij = γ^ωikAωkj

(15) du^α = J ^ Wij Λ u>ja

(16) dα;α/9

(14)-(16) are called the Gauss, Codazzi, and Ricci equations, respectively. It
follows from (14) that the Riemann tensor Ω^ for the induced metric on M
is

Ωij = ^ ωia A ωja = \ ^ Rijki^k Λ ωj.
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Let V denote the Levi-Civita connection of V. Then the induced connection

on the normal bundle v{M) is defined as follows:

V e α = the orthogonal projection of Veα onto v{M) — ̂  ωaβ ® eβ.

A normal field v is parallel if V v = 0. The normal curvature Ω ^ of M in X

is the curvature of the normal connection V , i.e.,

α 7 7/? ] * α Λ ω,-/? = - f ^ Kβkiωk Λ

Then (14)-(16) give

(17)

(18) dω;α = ̂  u ^ Λ ωja + J ^ w</? Λ a;/?ai

(19)

Identifying TM* with Γ M via the metric, we can rewrite (19) as

(20) [Au,Av]=W(u,v),

i.e., the normal curvature of M measures the commutability of the shape

operators.

If Ω" = 0, then dωaβ — J2ωaΊAωΊβ. So locally there exists an orthonormal

parallel normal frame field ea.

3.1. Definition. The normal bundle i/(Af) is flat if Vtu

aβ = 0, and i/(M)

is globally flat if there exists a global orthonormal parallel normal frame field

on M.

As a consequence of the Ricci equation (20), we have

3.2. Proposition. Suppose M is a submanifold of a Hilbert space V and

i/(M) is flat. Then for x G M, all the shape operators at x of M commute.

Note that the proof of the fundamental theorem of hypersurfaces in Rn is

based on the Frobenius theorem [24], so it generalizes easily to arbitrary codi-

mension submanifolds of Rn. The Frobenius theorem also holds for Hilbert

manifolds. So we have the following fundamental theorem:

3.3. Theorem. Let (M,g) be a Riemannian Hilbert manifold, V its

Levi-Civita connection, ξ a trivial Hilbert vector bundle of rank k on M,

and A: ζ —• L(TM,TM) a bundle morphism covering the identity map such

that {A(v)\v € ζx} consists of commuting, bounded self adjoint operators. Let

{ei\i € 1} be a local orthonormal tangent frame field defined on a neighborhood
U of M for the metric g, {ui\i E / } its dual coframe, and {ea\l < a < k}
an orthonormal frame field for ξ. Let ω^ be the Levi-Civita connection 1-

form determined by u>i, and define ωia by A(ea) = Σωia ® e{. Set ωaβ = 0,

Uai = — u)ia. Then given XQ in U and an orthogonal basis {ui} for the Hilbert
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space V, there exist a neighborhood (f ofxo in U and an immersion <p: @ —> V

such that g is the induced metric, ζ\(f is isomorphic to the normal bundle of

<p((f) in V, <p{&) has flat normal bundle, and A(v) is the shape operator with

respect to the normal vector v.

As a consequence of 2.7, 3.2 and the fact that compact operators have

eigen-decompositions, we have

3.4. Corollary. Suppose M is a PF submanifold with flat normal bundle

in V. Then locally there exist finite rank continuous distributions {Ei\i G /}

such that TMX = ®{Ei(x)\i G /} is a common eigen-decomposition of Aυ for

all v in v(M)x.

Since Av is linear for υ G V, there exist local continuous sections λ̂  of

v(M)* such that

Aυ(ui) = Xi(υ)ui for all Ui in E%.

Identifying v(M)* with v{M) by the induced inner product from V of the

fibers, we obtain continuous sections V{ of u{M) such that

Aυ(uχ) = (υ,Vi)ui for all Ui in E{.

These JSj's, A '̂s, and v^s are called the curvature distributions, principal cur-

vatures, and curvature normals for M respectively. Although they are not

smooth everywhere, they are smooth on an open dense subset of M.

3.5. Proposition. Let M be a PF submanifold in V with flat normal

bundle, and V{ its curvature normals. Then given q G M, there exists a

positive constant c such that \\vi{q)\\ < c for all i.

Proof. Let F denote the continuous function defined on the unit sphere

Sk~ι of the normal plane v(M)q by F(υ) = ||-AV||. Since Sk~x is compact,

there is a constant c > 0 such that F(υ) < c. Since the eigenvalues of Aυ are

of the form (v,Vi), we have |(v, v»)| < c for all unit vectors v. q.e.d.

The set of focal points Σ of PF submanifolds in general can be rather

complicated. However if M has flat normal bundle, then Σ is rather simple.

3.6. Proposition. Let M be a PF submanifold of V with flat normal

bundle, vq the affine k-plane (q + ι/(M)q) in V, and Σq the set of focal points

for M with respect to q. Then

(i) Σq = \J{h{q)\i G /}, where h(q) is the hyperplane in vq defined by

{q + υ\υ G v{M)q and {v, Vi{q)) = 1},

(ϋ) %? = {li(q)\i G /} is locally finite, i.e., given any point p G vq there is

an open neighborhood U of p such that {i G I\l%{q) Γ)U φ<Z>) is finite.

Proof Since v(M) is flat, it follows from (9) that we have

dY{qte)(u,z) = {u-Ae(u),z).
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Hence x = (q + e) G Σq if and only if 1 is an eigenvalue of Ae. So there
exists i G I such that 1 = (^ ,e), i.e., x G k(q). Since Ae is compact and the
eigenvalues of Ae are {(e, vt )|i G /}, the set J(x) = {i G I\x G /;(?)} is finite
and there exists δ > 0 such that |1 - (e,Vi)\ > δ for all j $ J(x). Because
d(x,lj) = |1 - (6,̂ )1/11^11 > δ/c, where c is the upper bound for \\vi\\ as in
3.5, we conclude that B(x,δ/c) meets only finitely many Ẑ 's (in fact it only
intersects k{q) for i G J{x)). q.e.d.

Using essentially the same argument as for submanifolds of Rn with flat
normal bundles [43], we have

3.7. Proposition. Let M be a PF submanίfold of V with flat normal
bundle. If all the curvature distributions E{ are smooth on an open subset U
of M", then the following hold.

(i) Ei \ U is integrable.

(ii) Suppose rank(i^) = m» > 1. Then the leaf S{ of Ei through x is
contained in a rrii-plane if V{ = 0, and in a standard nii-sphere of radius
lβviWifviφO.

(iii) The curvature normal Vi is parallel on Si.

We note that if M has flat normal bundle and the multiplicities of the
shape operators Aυ^ along any parallel normal field v are independent of
x G Λf, then the curvature distributions E{ are smooth.

4. Examples

In this section we apply the submanifold geometry in §§2 and 3 to an
interesting family of PF submanifolds of a Hubert space. They arise as the
principal orbits of the action of the gauge group of a trivial principal G-
bundle ζ over S1 on the space of connections of ξ. In fact we show that these
submanifolds have flat normal bundles, and the shape operators along any
parallel normal field are orthogonally equivalent. In particular they have zero
normal curvature and the principal spectrum along any parallel normal field
is discrete and constant.

First we review and set some terminology for the manifolds of maps. Let
(M, g) be a compact Riemannian manifold. Then, for all A:,

(tι,t;)fc= ί (
JM

defines an inner product on C°°(M,Rm). Let Hk(M,Rm) denote the com-
pletion of C°°(M, Um) with respect to ( , )*. If TV is a complete Riemannian
manifold isometrically embedded in the Euclidean space Rm, then it is well
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known (see for example [34]) that

Hk{M,N) = {ue # f c (M,R m )MM) C N}

is a Hubert manifold for 2k > n = dim(M). In particular, HS(S1,N) is a
Hubert manifold if s > 1/2.

Let G be a simple compact connected Lie group, T a maximal torus of
G, and &^ the corresponding Lie algebras. Then the killing form makes
& a Euclidean space. Let ξ denote the product principal G-bundle on S1.
The Hubert group G = i/ 1(5 1,G) is the gauge group and the Hubert space
V = H0^1, &) is the space of i/°-connections of f. G acts on V by the gauge
transformations g u = gug~x -f g'g~~ι, which is an affine isometry of V. Let
x denote the constant map in H°{Sι,&) with value x G ̂ , and £Γ° = {i\t G
y}. Given M€ίf°(S1,^7) it follows from the theory of ordinary differential
equations that there is a unique / G i/ 1(S 1,G) such that /(0) = e (the
identity in G), and w = / 7 " 1 . We define the holonomy map Φ: H°(Sι,&) ->
G by Φ(^) = /(2τr). The following three statements are proved by Segal [38]:

(i) Let s G G and α G ^ be such that sΦ(n)s~1 = exp(2πα), and let
h{t) = e x p ^ φ / " 1 ^ ) . Then h G H1^1^) (in fact ft(0) = Λ(2π) = s), and
h u = a. Hence every G-orbit meets <^°.

(ii) Φ(^ α) = ^(θiφ(tι)^(O)-1 for all ^ G ff^SSG) and ae^.
(iii) Let VK be the Weyl group of G, and W(J~°) = ΛΓ(^°)/Z(^"0), where

= {̂  G G|tf 5 r 0 C y ° } and Z ^ 0 ) = {g G G|^ < = t for all
are the normalizer and centralizer of J7"° respectively. Then V/G «

w G/Ad(G) w T/W, and IV(57"0) is the semidirect product of
W and the lattice group A = {t G «7~| exp(ί) = e} under the natural action of
W, i.e.,

for Wi E W and λ̂  G A. Moreover W{^°) is the Coxeter group generated by
reflections in the hyperplanes a(t) + n = 0 in «7"°, where o: is a root of G and
nel.

In the following we study the geometry of a principal G-orbit M = G to
in V, where to G «^\ If G is of rank fc, then the codimension of M in V is A:,

TMi^faiol+u'freHHS1,?)} and i/(M)£o=y"°,

where [w, v] (θ) — [u(θ),v(θ)\. Moreover

g-1 and 1

Given £ G «Ŝ~, we define
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Because M is a principal orbit, t is a well-defined normal vector field on M.

By a direct computation, we have

d * i o ( [ M o ] + t i ' ) = [M*].

Since [u,i] is perpendicular to <ίΓ0, we have V ( £ ) = 0, i.e., t is a parallel

normal field, and the shape operator

But M is homogeneous, so we have

<r\
i.e., ^4f(x) and ^(g.aΛ are orthogonally equivalent.

Next we claim that the shape operator A$ is compact. To see this, let Δ +

denote the set of positive roots of &. Then there exist xα, ya for all a G Δ +

such that

JT = EΓ © {Rxa φ Ry α |α G

[ft,xQ] = a{h)ya, [h,ya] = —a(h)xa for all h G ̂  and α G Δ + .

If rank (G) = A:, and {ίi, , έfc} is a basis of ^ , then {xa,ya,ti,xa cos nθ,

xa sin n^, ya cos n^, 2/α sin nθ, t{ cos n0, ίi sin nθ\a G Δ + , 1 < i < fc, n G N}

forms a separable basis for V. Moreover, the orbit M = G to is principal

if and only if (a(to) + n) φ 0 for all α G Δ+ and n G T. Using the above

separable bases of V, it is easily seen that ^£ is a compact operator whose

eigenvalues are (a(t)/(a(to) + n)) for a G Δ + , n G Z, with multiplicities 2.

This proves that the end point map Y of M in F is Fredholm.

It is easy to determine the focal set of M. A point ί-Ko m ^o+KΛf )£0 = ^ °

is a focal point with respect to to if and only if 1 is an eigenvalue of A$,

i.e., there is an integer n such that — a(t)/(a(to) + n) = 1, or equivalently

Όί(t -f- ίo) £ Z. So the set of focal points with respect to to is the union of the

reflection hyperplanes of W{^°) in ^ ° .

Next we will prove that the end point map Y of M restricted to the normal

disk bundle of radius r is proper. Suppose

Y(gn xo,tn{9n -xo)) -+u and | | ίn | | < r.

Then {tn} is a bounded sequence in the A -dimensional Euclidean space 5 r ,

so we may assume that tn -• t0 for some t0 G ̂ . Note that

Y{g x0, t(g xo)) = 7{g - x0, ^ P " 1 )

= (0XO0"1 4- ^ / ^" 1 ) + ^ί^" 1 = 9 (zo + ί)

So it suffices to prove that the G-action is proper, i.e., if gn un —• v and

u n —• u, then £ n has a convergent subsequence in G. It follows from the
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assumption that gn u —• v, i.e., {gnugΰ1 + 9n9n *) ~~* υi which implies that

llw + tfή^πllo is bounded. Hence H^n^ήllo is bounded. Since G is compact,

||<7n||o is bounded. So ||<7n||i is bounded. By Rellich's lemma, the inclusion

map H1(S1,G) <-• H0^1^) is compact, hence a subsequence (still denoted

by gn) converges to g0 in i / 0 ^ 1 , * ? ) . But

\\9nug-1 - g^g-1 - v\\0 ^ 0,

so ll^nti - g'n- vgn\\o —• 0. Therefore gn —• g0 in / / ^ ( S ^ G ) .

Let Mt~ denote the parallel set {x + t(x)\x G M}. It follows from (21) that

Mi = G t, i.e., the orbit foliation of G is the same as the parallel foliation of

M. In fact the G-orbit foliation is completely determined by a single principal

G-orbit.

To summarize, we have

4.1. Theorem. Let M = G io be a principal G-orbit ofV. Then the

following hold.

(i) M is a PF submanifold.

(ii) The codimension of M in V is k = rank(G).

(iii) v(M) is globally flat.

(iv) Given any parallel normal field v on M, the shape operators Aυ^

and Av(y) are orthogonally equivalent.

(v) The curvature distribution E{ are smooth, and rank(ί^) = 2.

(vi) Associated to M there is a discrete Coxeter group W{3rQ) which is

generated by reflections in the focal hyperplanes li(io) in (to + v(M)ιQ).

(vii) The parallel sets Mv are smooth submanifolds of V for any parallel

normal field on M, in fact, Mυ is a G-orbit.

(viii) Ifv and w are two parallel normal fields on M, then either Mv = Mw

or Mυ Π Mw = 0 .

4.2. Remark. Although the trace of the shape operator Aυ for the above

M is divergent, it is conditionally convergent and there is a natural way to

sum it, so the mean curvature and Ricci curvature of M can be formally

defined. For example, if G = SU(2), then the principal orbit M = G to is

a hypersurface of V, {λn = l/( ί 0 + n)\n G 2} are the principal curvatures of

M, and each has multiplicity 2. Let {e^e^} be a local orthonormal tangent

frame on M such that ez and e[ are the principal directions for λ{. Then

H = Σ 2 { λ * K € z ) is convergent if it is summed as E 2 { ( λ * + Λ-*)K e N )

Moreover if t0 = 1/2, then H = 0. Using (17), the Ricci curvature of M has

eigenvalues μ* with multiplicity 2 and eigenvectors e^e^, where

i = l/(<o + 0 2 + 2'o Σ{l/(ίg " n2)\n G N}.
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There are several natural metrics on a G-orbit M. The induced metric on
M as a submanifold of V gives the H1 metric. The restriction of the H° metric
on V to the orthogonal complement of &° in V defines a G-invariant metric on
M, which is the H° metric. The i/1//2 metric on M is a homogeneous Kahler
metric. The Riemannian curvature of these metrics and the characteristic
classes of the orbits have been studied by Freed in [18], [19].

5. Taut immersions

Let / : M —* Rn be an immersed, compact submanifold, and vι{M) the
unit normal bundle of M. Then there is a natural volume element dσ on
vι(M). The total absolute curvature of M is

τ{MJ)= / \det(Av)\dσ.
Jvι(M)

Chern and Lashof [12] proved that τ{M,f) > 6(M), where b(M) = Σ>;(M)
is the sum of Betti numbers of M. An immersion / is called tight if τ(M, f)
is equal to inf{τ(M, <p)\<p: M —• Rn is an immersion for some n}. It is a very
difficult and unsolved problem to determine what manifolds can have tight
immersions. An important step in this direction is Kuiper's reformulation [25]
of the problem in terms of Morse theory for height functions. Banchoff [2]
began the program of finding all tight surfaces in spheres, and later this led
to the study of taut immersions by Carter and West [8]. There has been a lot
of beautiful theory developed for tight and taut immersions (cf. [11]). In this
section we generalize the definition and some of the basic properties of taut
immersions to PF submanifolds of Hubert spaces.

Let M be a Riemannian Hubert manifold. A smooth function / : M —» R
is called a Morse function if / is nondegenerate, bounded from below and
satisfies Condition C. Let

Mr{f) = {xG M\f(x) < r}.

Then it is easily seen that there are only finitely many critical points of / in
Mr{f). Let

VkU, r) = the number of critical points of index k on M r(/),

/?fc(/,r,F) = dim(#fc(Mr(/),F)) for a field F

Then the weak Morse inequalities ([33], [39]) are /ijk(/,r) > βk(f,r,F) for all
r and F.

5.1. Definition. A Morse function / : M —• R is perfect if there exists a
field F such that /xfc(/,r) = βk(f,r,F) for all r and k.
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5.2. Theorem. Let f be a Morse function. Then f is perfect if and only

if there exists a field F such that the induced map on the homology

ΰ:H*{Mr(f),F)-+H*(M,F)

of the inclusion of Mr(f) in M is injective for all r.

5.3. Definition. An immersed PF submanifold M of a Hubert space V is

taut if every nondegenerate Euclidean distance function fa on M is a perfect

Morse function.

5.4. Remark. If M is properly immersed in Rn, then the above definition

is the same as in [8].

5.5. Remark. Unlike the finite dimensional theory of tautness, the unit

hypersphere S of an infinite dimensional Hubert space is not taut. Since S is

not PF by 2.5, the nondegenerate distance function fa on S does not satisfy

Condition C. We will see later that, for a simple compact connected group G,

the orbits of the gauge group / ί 1 (5 1 ,G), acting on the space of connections

H°{Sι,&) by gauge transformations as in §4 are taut.

Let R(f) denote the set of all regular values of /, and let C(f) denote the

set of all critical points of /. The fact that the restriction of the end point

map to the unit disk normal bundle is proper gives a uniform Condition C for

the Euclidean distance functions as we see in the following two propositions.

5.6. Proposition. Let M be an immersed PF submanifold of V, and

a € V. Suppose r < s and [r, s] C R{fa)- Then there exists 6 > 0 such that if
\\b-a\\ <δ, then[r,s]cR{fb).

Proof. If it is not true, then there exist a sequence {bn} in V and {xn}

in M such that bn —> α, r < \\xn - bn\\ < s, and xn is a critical point of

fbn. So it follows from 2.11(i) that xn - bn is in v(M)Xn. Since the end point

map Y of M restricted to the disk normal bundle of radius s is proper and

Y{xn, K - Xn) = bn —> α, a subsequence of xn converges to a point x0 in M.

Then it is easily seen that r < ||x0 - α|| < «, and Xo is a critical point of /α,

which is a contradiction.

5.7. Proposition. Let M be an immersed PF submanifold of V, and

aeV. Suppose r < s and [r, s] C R{fa) Then there exist 6χ > O,<52 > 0 such

that if \\b - a\\ < δ1 and x e Afβ(/6)\M r(/6), then \\Vfh{x)\\ > δ2.

Proof. By 5.6 there exists δ > 0 such that [r,s] C R(fb) if ||6 - a\\ < δ.

Suppose no such δ\ and δ2 exist. Then there exist sequences bn in V and

xn in M such that bn - α, xn G M s (/ 6 n )\M r (/ f e n ), and | |V(/ 6 n)(xn)| | - 0.

Moreover,

Y(xn, -(Xn - bn)v) = Xn~ {Xn " bn)^M^ = bn + (xn - bn)
TM*« - β,

and \\xn — bn\\ < s. Since M is PF, xn has a subsequence converging to a

critical point x0 of fa in M s (/ α )\M r (/ α ), a contradiction.
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5.8. Proposition. Let M be an immersed taut submanifold ofV, a £ V,
and r a real value of fa. Then the induced map on homology

of the inclusion of Mr(fa) in M is injective.

Proof. If a is a nonfocal point (so fa is nondegenerate), then it follows from
the definition of tautness that ΰ is an injection. Now suppose a is a focal
point. If (r,rf] c iZ(/α), then Mr(fa) is a deformation retract of M r(/α). So
we may assume that r G R{fa) and s > r such that [r, s] C R(fa) Choose
δι > 0 and <52 > 0 as in 5.7, and ε > 0 such that ε < min{<$i, <$2, (s — r)/5}
Since the set of nonfocal points of M in V is open and dense, there exists
a nonfocal point b such that ||6 — a\\ < ε. Since fo is nondegenerate, it
follows from the definition of tautness that ή : H*(Mt(fb),F) —• ff*(M,F)
is injective for all ί. So it suffices to prove that Mr(fa) is a deformation
retract of Mr(fb). Since ε < (5 — r)/5, there exist ri,Γ2,si and $2 such that
ri < 8χ,r2 < S2,r < r\ - ε < si + ε < s and ri < r2 - ε < s2 < s2 + ε < 8χ.
From triangle inequality we have

Ma2{fb)\MrΛfb) C Mβι(fa)\Mrι{fa) C Ms(fb)\Mr(fb).

Note that ||V/β(x)|| > δ2 if x G M5(/α)\M r(/α), and ||V/6(z)|| > <52 if x G
M3(fb)\Mr(fι)). Since ε < O2, (α —6)Γ is the shortest side of the triangle with
three sides (x-a)τ,(x-b)τ and {a-b)τ for all x in MSl(fa)\Mri(fa). Using
the cosine formula for the triangle we have

<V/α(z), V/6(x)> > (2ί | - ε2)/2 > ε2/2 for x in MS l (/α)\MΓl (/β).

Hence the gradient flow of fa gives a deformation retract of MSl(fa) to
MS2{fb)> If [r,s] C i2(/), then Mr(f) is a deformation retract of Mt(f)
for all t G [r, 5], which proves our claim.

5.9. Corollary. If M is connected and φ\ M -+V is a taut immersion,
then φ is an embedding.

Proof. Since M is PF, φ = Y\M x 0 is proper. So it suffices to prove that
φ is one-to-one. Suppose <p(p) = φ(q) —a. If p Φ q, then there exists ε > 0
such that (0, ε) C i?(/α), and p,q are in two different connected components
of Mε(fa). This contradicts the fact that ΰ: H0{Mε(fa),F) -+ H0{M,F) is
injective.
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5.10. Corollary. Suppose M is a taut submanifold ofV and x0 is an
index 0 critical point of fa. Then

(i) fa(x) > fa{xo) for all x € M, i.e., fa{xo) ώ the absolute minimum of
fa,

(ϋ) fά1(fa{^o)) is connected; in particular for fa~
1{fa{xo)) =

isolated critical point XQ.

6. Geometry of isoparametric submanifolds

In this section we will study the geometry of a special class of PF subman-
ifolds of Hubert spaces having simple local invariants. Roughly speaking they
have zero normal curvature and constant curvature spectrum. The main re-
sult of this section is that there exists an affine Coxeter group (for definition,
see the appendix) acting on these submanifolds by diffeomorphism.

6.1. Definition. An immersed PF submanifold /: M —• V of a Hubert
space (V, ( , )) is called isoparametric if

(i) codim(M) is finite,
(ii) v(M) is globally flat,

(iii) for any parallel normal field v on M, the shape operators Aυ(x) and
Aυ(y) are orthogonally equivalent for all x and y in M.

The principal G-orbits of the Hubert space H°(Sι,2?) in §4 are isopara-
metric. Although an isoparametric submanifold of a Hubert space need not
be an orbit of an affine isometric action, we will prove that they share many
properties of the samples in §4 as in 4.1.

6.2. Definition. An immersed submanifold / : M —• V is full if /(M)
does not lie in a hyperplane of V.

6.3. Definition. A rank-k isoparametric submanifold of V is a full, fc-
codimensional isoparametric submanifold of V.

6.4. Remark. The above definitions are the same as in [41] if V = Rn.
6.5. Remark. It follows from 2.5 that if M is a full isoparametric sub-

manifold of V, and M is contained in the sphere of radius r centered at Co,
then both M and V must be of finite dimension.

From the definition of isoparametric, we have:
6.6. Proposition. If M is isoparametric in V, then
(i) the curvature distributions E% 's are smooth,

(ii) the curvature normal fields Vi 's are parallel and smooth.
Let / be the index set for the curvature distributions of M. We arrange

the indices in / so that v0 = 0 and Vi φ 0 for i φ 0. There exists an
orthonormal frame eA such that {ea\l < a < k} is a global parallel normal
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frame, and {ei\i > k} is a local tangent frame of M with Ej spanned by

{em\μj-ι < m < (1 + u3 )}, where μ0 = k + Σ{πii\i < j). Then we have

rank(-Bt ) = m t , ωaβ - 0, ωia = Xia^i,

λiα = Πja, if μj-l < i < (1 + Mj)> υi = Σniaea

It is easily seen that the proofs of most results in §1 of [41] generalize

directly to this infinite dimensional setting. Therefore we will restate them

without proof.

6.7. Proposition. An isoparametric immersion f:M-+Vis full if and

only if the curvature normals {vi\i E 1} span v(M).

6.8. Proposition. Let ω^ = Y^r^u^. Then (λ;α - Xja)rijk =

(λiQ - λka)fikj' In particular if e^e^ E Ei19 e3 e E{2, and %χ φ i2, then

rijk = 0.

6.9. Theorem. // M is an immersed isoparametric submanifold of V,

then the following hold:

(1) E{ is integrable for all i G /.

(2) For Qφiel, let S, (xo) denote the leaf of Ei through x0. Then

(i) x + (vi(x)/[|vt||2) = ci is a constant vector for all x in Si(xo),

(ii) Ei(x) φRvi(x) = ξi is a fixed (rrii + l)-plane in V for all x G S t (xo),

(iii) Si(xo) is the standard sphere in Ci + ζi centered at Ci with radius

i/MI
(3) The leaves of Eo are affine linear subspaces ofV.

Proof. All the statements can be proved in the same manner as in 1.9 of

[41], except (2)(ii)- To prove this we may assume that i = 1 and rrii = m. Let

Gr(ra,F) denote the set of m-dimensional subspaces of V, and g: Si(xo) —>

Gr(ra, V) the map defined by

ΰ{x) = (e*+i Λ ek+2 Λ Λ ek+m Λ t>i)(x).

Then

dg = ^{βfc+i Λ Λ e<-i Λ ω^ej Λ Λ ek+m Λ υχ\j < k + m}

' " ' Λ e *- i Λ λipωiββ Λ Λ

Using 6.8, we have ωij = 0 for j > k + m on Si(xo). So dg = 0.

6.10. Corollary. For 0 φ i G /, rfe/ine φi'. M ^ M by φi(q) = ίΛe

antipodal point of q in Si(q), where S{(q) is the leaf of E{ through q. Then

Φi = id. In particular we have

φi(x) = x + 2vi(x)/\\vi\\2

is a diffeomorphism, which is called the involution associated to E^.
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6.11. Theorem. For i G /, let φi be the diffeomorphism associated to the

curvature distribution E{ as in 6.10. Then the following hold:

(i) There exists a bijection σ2: / —• / such that σi{i) = i and Ej(φi(q)) =

Eσi(j)(q) for all q in M. In particular m3 = rnσi^y

(ii) vσiU)(q) = (1 - 2((υi,υσiU))/\\υi\\*))υj(φi(q)).

(iii) Let Ri be the reflection of v(M)q in the linear hyperplane v^q)1-. Then

KM = (1 - 2((vi,vσtU)}/\\vi\\*)Γ1υσi{j}.

(iv) TMq = TMφi{q), q + v{M)q = φi{q) + v{M)φi(q) for all 0, € W.

(v)φ*(Ej) = EσiU).

Let W be the subgroup of the group of diffeomorphisms of M generated

by {Φi \i £ /}• In the following we will prove that W is an afBne Weyl group.

6.12. Theorem. Let M be an immersed isoparametric submanifold ofV,

vq — q + v(M)q, and U(q) the focal hyperplane of vq as in 3.6. Let ψi denote

the reflection in vq. Then

(i) <Pi{q) = Φi{q),

(ii) (pi{lj{q)) = lσi{j){q), i-e-> Ψi permutes %? = {h{q)\i G /}.

Proof We may assume that σ"i(2) = 3. Let / be the hyperplane φiih)-

We claim that 1 = 1$. It follows from 6.11 (iii) that / is parallel to Z3, and

INII = | |Λi(t*) | | - | | « 3 | | ( l - 2 ( t ; 1 ) « 3 > / | | t ; 1 | | a ) - 1 .

If R\(v2) = rn with r > 0 and | |n| | = 1, then V3 = xn for some x G R. Let q*

be the point on I which is the closest to q. To prove the claim it suffices to

show that V3/HV3II = φi*, the vector joining q to q*. Let Z(^i, U2) denote the

angle from the vector u\ to 1*2- Then there are the following three cases:

Case (1). h Π l2 φ 0 and Z(vi, v2) = TΓ - 0, where 0 < θ < τr/2.

Let Po € h Γ\ Z2, u be the vector joining q to po? π/2 — a = L(u, V2),

and Li be the line in U passing through po and orthogonal to l\ Π l^. Then

l(vi,n) = θ and we claim that x > 0. For if x < 0, then Z(^i, V3) = π — 0, so

Kxiva) = rn = (1 - 2<vl9 v 3 > / | | v i H 2 ) " 1 ^

= x(l + 2cos0||V3 | |/IK||)-1n.

But then r = x(l + 2 cos ^H^sll/l^iH)"1 is less than 0, which is a contradic-

tion. This proves that v% and ^q* have the same direction, and /.(υi^vs) =

Z(vi,n) = 0. It follows from (22) that

l/IMI = (l - 2 cos 0||^||/||^i||)/||^3|| = Vll^ll - 2 cos

Using 6.9 we have

= ||ti|| sin a + 2||tι|| cos θ sin(0 - a) = ||tx|| sin(20 - α) = d(q, I).
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Therefore / = Z3.

Case (2). h Πl2 φ 0 and L{vuv2) = 0, where 0 < θ < τr/2.

Using the same notation as in Case (1), we claim that qq* and vs again

have the same direction. By analytic geometry in R2, we see that if qq* has

the opposite direction of n, then

(23) 2 cos 0/lhU > 1/IMI = d(qj2), i.e., (1/ |M| - 2 cos tf/|M|) < 0.

If ^3 = xn, x > 0, then Z(ι>i, v$) = π — 0, and

1/IMI = l/x(l + (2x cos 0/IMD) = 1/x + 2 cos 0/|M|.

Hence l/||ι>2|| — 2 cos #/||vi|| = 1/x is positive, which contradicts (23). This

implies that vs = xn with x < 0. Similarly if 7ϊq* has the same direction as n,

then ψϊ* and V3 are in the same direction, and the proof that qq* = ̂ 3/||^3||

is similar to the first case.

Case (3). h\\l2_

Let υ denote qq*, and V3 = xn. Suppose v\ and υ2 have the opposite

directions. Then

«a/IM| = -«i/| |t;i | | = n, t; = (2/ | | V l | | +

Using (22), we have

Rx{v2) = (1 - 2(V

=-v2 = \\v2\\n.

So 1/x — 2/Hvill = l/||ι>2||, which implies that x > 0, and

d(q,h) = l/\\v3\\ = 1/x = 1/IM + 2/IKH = d(q,l).

A similar proof works if v\ and v2 are in the same direction. q.e.d.

As a consequence of 3.6(ii) and the Theorem in the appendix, we have

6.13. Theorem. Let Wq be the subgroup of the group of isometήes of the

affine space uq = q + v(M)q generated by reflections ψi in li(q). Then Wq is

an affine Weyl group. Moreover the parallel translation map πqA>: v(M)q —•

i/(M)ρ/ conjugates Wq to Wq> for any q and q' in M.

6.14. Corollary. Let M be an isoparametric submanifold ofV. Then the

subgroup W of diffeomorphisms of M generated by involutions {φi\i G N} is

an affine Weyl group, and W w Wq for allq. W is called the affine Weyl group

associated to the immersed isoparametric submanifold M ofV. Moreover the

curvature normals {v{\i E /} form a root system for W. Since πij = mσi(j),

we have associated to M a marked Dynkin diagram.

6.15. Remark. If M is a principal G-orbit of H°(Sι,&) as in §4, then

the associated affine Weyl group of 6.14 is W{^°) (as in §4), and all the

multiplicities rrii = 2.
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6.16. Remark. Let M be an isoparametric submanifold of a Hubert space
V. If dim(F) is finite, then there are only finitely many 2^'s, so W is a finite
Coxeter group (in fact W is crystallographic or a Weyl group). If dim(F)
is infinite, then there are infinitely many Ei% so W is an infinite discrete
Coxeter group.

7. Homology of isoparametric submanifolds

In this section we use Morse theory to calculate the homology of isopara-
metric submanifolds of Hubert spaces and prove that they are taut.

The results on Morse theory in §4 of [21] hold for functions satisfying Con-
dition C (for details see [36]). We have shown in 2.16 that the Euclidean
distance function fa satisfies Condition C, so we can apply the infinite dimen-
sional Morse theory to /α. Let / be a Morse function on M, and q a critical
point of / of index ra. Recall that a pair (ΛΓ, φ) is called a Bott-Samelson
cycle for / at q if N is a smooth m-dimensional manifold, and φ: N —• M is
a smooth map such that / o <p has a unique and nondegenerate maximum at
2/o, where <p(yQ) = q. (TV, <p) is ^-orientable for a ring 3ί if Hm{N,3ί) = 31.
We say / is of Bott-Samelson type with respect to 31 if every critical point of
/ has an ^-orientable Bott-Samelson cycle. Moreover if {qi\i £ 1} is the set
of critical points of /, and (ΛΓt ,̂ >t ) is an ^-orientable Bott-Samelson cycle
for / at qi for i G /, then H*(N,3l) is a free module over 3ί generated by
the descending cells (£>*)*([Ni]), so that / is of linking type perfect. In [21]
we obtained the homology of the finite dimensional isoparametric submani-
folds by constructing the Bott-Samelson cycles for fa. The same construction
works here in the infinite dimensional setting, so we have:

7.1. Theorem. Let M be an immersed isoparametric submanifold in a
Hilbert space V with multiplicities rrii, and a GV a nonfocal point ofM. Then

(i) fa is of Bott-Samelson type with respect to the ring 3ί — Z if all the
multiplicities m%> 1, and with respect to 31 = 1% otherwise,

(ii) M is taut.
It follows from 5.9 that we have

7.2. Corollary. An immersed isoparametric submanifold of a Hilbert

space V is embedded.
To obtain more precise information concerning the homology groups of

isoparametric submanifolds, we need to know the structure of the set of critical
points of fa- When the isoparametric submanifold M is of finite dimension,
we used [41] the existence of isoparametric maps to show that if a is nonfocal,
and q is a critical point of /α, then the set of critical points of fa is W g,
the VΓ-orbit through q. Thus using 2.13, we can obtain H*(M) explicitly.
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Although this proof does not work when M is of infinite dimension, we can
nevertheless use the tautness and some geometry to obtain similar results.
First from 2.11, 2.13 and 6.11 we have

7.3. Theorem. Let M C V be isoparametric, W its associated affine
Weyl group, and πij the associated multiplicities. Let a EV, fa- M —> R be
the smooth function defined by /α(x) = \\x — a\\2, and let C(fa) denote the set
of critical points of fa. Then the following hold:

(i) x G C(fa) if and only if (a - x) E v{M)x.

(ii) IfxE C(fa), then WxC C{fa).

(iii) For x in C(fa) the index of f at x is the sum of the rrij 's such that
the open line segment (x,α) joining x to a meets lj{x)

The closure of a connected component of the complement of the focal hy-
perplanes l{(x) in vx = x + ι/(M)x is called a Weyl chamber for the afδne
Weyl group W-action on vx. A Weyl chamber is a simplex and a fundamental
domain for W. As a consequence of 7.3 and 5.10, we have

7.4. Proposition. Suppose M is isoparametric in V, and q G M. Let Aq

be the Weyl chamber in vq = (q + v(M)q) containing q, and a G Δq. Then
q is a critical point of fa with index 0. Moreover if a is nonfocal with respect
to q, then fa{q) is the absolute minimum of f, and q is also the only point on
M assuming this value.

7.5. Theorem. Let M be an isoparametric submanifold of V, and a G
vq Π vqι. Then a is nonfocal with respect to q if and only if a is nonfocal with
respect to q', and q' E\V q.

Proof. There are p G W - q, p' G W qf such that a G Δ p and a G Ap>. If
a is nonfocal with respect to ς, then it follows from 5.10 and 7.4 that p = pi
and a is nonfocal with respect to p'. q.e.d.

Hence we have proved:

7.6. Corollary. Let M C V be isoparametric, and W its associated
affine Weyl group. Suppose a EV is nonfocal with respect to q in M. Then
C{fa)=W.q.

7.7. Corollary. Let M c V be isoparametric. Then H*(M,&) can be
computed explicitly in terms of the associated affine Weyl group W and its
multiplicities rrii. Here & is Έ if all rrii > 1, and is Z2 otherwise.

7.8. Corollary. A point a EV is nonfocal with respect to q E M if and
only if a is W-regular with respect to the W-action on vq.

7.9. Corollary. // fa has one nondegenerate critical point, then fa is
nondegenerate, or equivalently if a E vq is nonfocal with respect to q, then a
is nonfocal with respect to M.
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8. Slice theorem and marked Dynkin diagrams

for isoparametric submanifolds

In this section we determine the possible marked Dynkin diagrams of

isoparametric submanifolds of an infinite dimensional Hubert space. By using

the classification of discrete Coxeter group ([14], [5]) we need only determine

the possible multiplicities. This can be determined by the finite dimension

theory, because we can prove an analogue of the "slice theorem", and each

slice is a finite dimensional isoparametric submanifold.

Let vx — x + v{M)x, and let Δ be a Weyl chamber in vx. For each simplex

of σ of Δ, we define the following:

I(x,σ) = {j\σdj(x)},

ξ{x,σ) = the orthogonal complement of V(x,σ) in vx through x,

;(s)|j € /(*,*)} Θ £(z,σ),

Wx,σ — the subgroup of W generated by the <pj with j G J(z,σ),

Δ x = the Weyl chamber containing x.

8.1. Slice Theorem. Let M be a rank-k isoparametric submanifold ofV,

and W its associated affine Weyl group. Let σ be a simplex of a Weyl chamber

Δ of vXo, and let x$ G σ. Then ϊo = xo~\-v(xo) for some parallel normal field

v on M. Let ξσ,ησ,mσ, denote ξ,{xo,σ),η(xo,σ),mXo,σ respectively. Then

the following hold:

(i) The map I + υ has finite corank (mσ + k), so Mυ — (I + v)(M) is an

immersed submanifold ofV.

(ii) The connected component of the fiber NXo,υ of the submersion I + v

through XQ is an mσ -dimension isoparametric submanifold of the (mσ + fc)-

dimensional Euclidean space v(Mυ)XQ, in fact, NXθiV C ησ and is of rank

(k — dim(σ)).

(iii) The normal plane to NXθiV in ησ at x0 is ζσ, the associated Weyl group

of NXQ^σ is the group Wσ generated by reflections in the hyperplanes lj{xo)Γ\ζσ

°f ζσ for j £ I(xo,σ), and respective multiplicities are nij.

(iv) Ifυ* is another parallel normal field such that (xo + v*{xo)) € 0"? then
NXo,v = NXθiV*, so we may also denote it by NXQ,σ.

8.2. Corollary. With the same notation as in 8.1, let Δ be the Weyl

chamber in vq containing q, σ a simplex o/Δ, and a G σ. Then

(i) the nullity of fa atxeW q is mx,σ, and the critical submanifold at x
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(ii) fa{NQy(T) is the unique minimum of M.

Proof. Let p be the orthogonal projection of x onto V(x,σ). Then NXi(r

is contained in the sphere of radius ||x - p\\ centered at p in the Euclidean
space η(x,σ). But (p — a) is perpendicular to r/(x,σ). So fa{y) = \\y — α||2 is
constant on NXi<n which proves (i). (ii) is a consequence of 7.4.

8.3. Corollary. Lei M be a rank-k isoparametric submanifold of a Hilbert
space V", q€ M, and vq = g + i/(Λf)ς. Letu:M^n/qxRbe the map defined
by u(x) = (P(x), | |x| |2), where P is the orthogonal projection ofV onto vq.
Let C denote the convex hull of {{x, \\x\\2)\x € W q}. Then

(i) u(M) C C,
(ii) the boundary of C, dC, is contained in u{M).
Proof Let Δ denote the Weyl chamber of W containing q. Then

\J{g(Δ)\g e W} = ιsq. Let cvx(B) denote the convex hull of B. Then

M{cvx(Wα g(q))\g 6 W and a is a vertex of g{Δ)} = vq.

Suppose u(x) = (ί,s), i.e., s = ||x||2 and x = t + w, where t G vq and
w € {vq)

± Then there are g £ W and a vertex of a of ^(Δ) such that t lies
in the convex hull of Wa - g{q)> Suppose r is the minimum of /α, then

fa(x) = \\x - α||2 = | |z| |2 - 2(i, a) + | |a| |2 = s - 2(ί, a) + | |a| |2 > r.

Since Ng(q)i(ι is the minimum critical level of /α, and P{^g(q),a) is a convex hull
of Wa-g(q) [42], u(Ng(q^a) is contained in the hyperplane s—2(£,α) + | |α| |2— r =
0, and (i) is thus proved.

It is easily seen that dC = U{ c v x (^(^α 9{<l)))\g € W, a is a vertex of
g(Δ)}, and (ii) follows.

8.4. Remark. If dim(M) is finite, it is proved in [42] that u{M) = C. If
M is one of the homogeneous examples in §4, then it is proved by Atiyah and
Pressley [1] that u(M) = C. So it is natural to conjecture that u(M) = C if
M is any isoparametric submanifold of a Hilbert space.

8.5. Remark. Let ( , ) denote the following nondegenerate bilinear form
on V = V Θ R Θ R:

((x, 5, ί), (x;, s', 0 ) = fa x') + ̂ ' + s't.

Then H = {(x, 5, ί)|||x||2-h25ί = —1} with the induced metric is a Riemannian
Hilbert manifold with constant sectional curvature —1, and t: V —• H defined
by L(X) = (z, (||x||2 -h l)/2, —1) is an isometric embedding. In fact L(V) is
the intersection of H with the hyperplane defined by t = - 1 in V. If M is a
submanifold of V, then the normal plane of t(M) in F at ί(q) can be naturally
identified as v = v{M)q Θ R φ R, and the map u in the above theorem is the
restriction of the projection map of V along v to M.
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8.6. Remark. Let G be a connected compact Lie group, *§ its Lie algebra,

V = H°{S\^), and V as above. Let c = (0,1,0) and d = (0,0,1) <E V.

Define

[c,v]=0 for all v G ^ ,

[d,u]=u'(θ) ϊoruGV,

= [u{θ),υ{θ)] ΐoru.υeV.

Then V is the Lie algebra of the Kac-Moody group (5, and ( , ) is the Killing

form on V (i.e., Ad-invariant) ([22], [23]). Let i e F°', | |t | | = 1, and M be

the Jff
1(51,G)-orbit through i in F. Then t(M) is the adjoint orbit of G on

V through (ί,0,-l).

It follows from the classification of the discrete Coxeter groups, the slice

theorem, and the same proof as in the finite dimensional case [21] that we

have

8.7. Theorem. LetM be a rank-k isoparametric submanifold ofV, andW

the associated affine Weyl group. Suppose W is irreducible; then the possible

marked Dynkin diagrams are as follows:

oo

A\ mi,m2 are arbitrary,

M ^ ^ ^ ^ ^ m€{l,2,4},
m m m m

B<ι ( ^ 1 , ^ 2 ) and (1712,1713) satisfy (*),

mi 7Π2 1713

m

(m,mi) satisfies (*),

m m m m m\

Cι α=D—-o - . . ( H H = D {™>ι,m) and (m,m2) satisfy (*),
m\ mm mm m<ι

m m

. . i ^ me {1,2,4},
mm m
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m m m m m

me {1,2,4},

m m m m m m m

Eη o o o o o—o o m e {1, 2, 4},

A m

m m m m m m mm

Es o—o—o—o—o—o—o—o m e {1,2,4},

F4 (i) mi = 1, m2e {1,2,4,8},

mi mi mi m2 m2 (ii) m2 = 1, mi € {1,2,4},
(iii) mi = m2 = 2,

G2 Λ mG {1,2}.

m m m

The pair {mι,m2) is said to satisfy (*) if we let ni = min{mi,m2} and

n2 = max{mi,m2} Then (ni,ri2) satisfies one of the following conditions:

(i) 2U divides (m + n 2 + 1), where 2U = min{2σ |ni < 2σ, σ e N},

(ii) if mi is a power of 2, then 2n\ divides (n2 4-1) or 3ni = 2(ri2 4-1).

8.8. Remark. Every irreducible affine Weyl group occurs in the examples

of §4, and all the multiplicities of these examples are 2.

Let (V, ( , )) be a Hubert space. In the following we will give a necessary

and sufficient condition for an orbit of an affine isometric action on V to be

isoparametric. A linear operator T: V —• V is orthogonal if T preserves the

inner product ( , ). A diffeomorphism φ\ V —» V is an isometry if dφx is

orthogonal for all x in V. It is easily seen that the group Iso(V) of isometries of

V is the semidirect product of the group O(V) of orthogonal transformations

and the group V of translations. In particular, if φ\ V —• V is an isometry,

then there exist t0 € V and T G O(V) such that <p(x) = t0 + T(x) for all
xeV.

8.9. Definition. Let G be a Hubert Lie group. An affine representation
p: G -> Iso(V) is called polar if

(i) the induced G-action on V is proper,
(ii) each orbit map G —• V (mapping g —* ρ(g)(x)) is Fredholm,
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(iii) the principal orbits have finite codimension,

(iv) the normal plane to a principal G-orbit in V meets every orbit orthog-
onally (such normal planes are called sections).

Using a similar argument as in [35], we have

8.10. Theorem. Let p: G —> Iso(V) be a polar affine representation, and
M = G - Xo a principal orbit. Then

(i) M is isoparametric,

(ii) the associated Weyl group of M as an isoparametric submanifold is
N{vXQ)/Z{vXQ), where N(vXo) and Z{vXQ) are the normalizer and centralizer
of vXo respectively, and vXQ = x0 + v{M)XQ,

(iii) a point x in vXQ is subregular {i.e., if an isotropy subgroup Gy is con-
tained in Gx, then G y must be a principal orbit) if and only if x lies in one
and only one of the focal hyperplanes U(xo) in vXo\ moreover the multiplicity
mi is equal to dim(M) — dim(G x).

8.11. Theorem. If an isoparametric submanifold M ofV is a G-orbit for
an affine representation p: G —• Iso(V), then p is polar, and M is a principal
G-orbit.

8.12. Corollary. An orbit M of an affine representation p on V is
isoparametric if and only if p is polar, and M is a principal orbit.

Let T be the abelian group of all the translations of V. Then the natural
action of T on V is polar affine. A polar affine representation of this type
will be called of translation type. It follows from the geometric theory of
finite dimensional isoparametric submanifolds that every finite dimensional
polar affine representation can be written as the product of a polar affine
representation of translation type and a linear polar representation. Hence
it is completely classified by Dadok's theorem [15] (they are essentially the
isotropy representations of symmetric spaces). However the only known infi-
nite dimensional examples are those given in §4. This suggests the following:

8.13. Open problems and questions, (i) Classification of polar affine
representations, and their marked Dynkin diagrams.

(ii) Is there an infinite dimensional isoparametric submanifold with irre-
ducible affine Weyl group that is not an orbit of some polar affine representa-
tion (i.e., nonhomogeneous)? Since there are many finite dimensional nonho-
mogeneous rank-2 isoparametric submanifolds ([32], [17]) and the product of
isoparametric submanifolds is isoparametric, there are many nonhomogeneous
examples with reducible Coxeter groups.
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9. Parallel foliations

Let M be a P F submanifold of V with flat normal bundle. In general

the parallel set Mυ = {Y(v(x)) = x + v(x), x E M}, defined by a parallel

normal field t>, may be a singular set, and & — {Mv\υ parallel normal field

on M} need not foliate V. The main result of this section is that if M is

isoparametric, then each Mv is an embedded submanifold of V, and & gives

an orbit-like singular foliation on V.

In what follows M is an isoparametric submanifold of a Hubert space V.

9.1. Proposition. M Γ\uq — W q, where vq = (q + v{M)q).

Proof. It is easily seen that W q C M Π v q . Now suppose that 6 E MC\vq.

Then b E i/bΓWq. But 6 is nonfocal with respect to 6, so it follows from 7.5

that we have b e W q.

9.2. Proposition. Suppose σ is a simplex of Δq, and σf is a simplex of

Aq>. IfσΠσ' φ 0 , then σ — σ1 and Nq,σ = Nq^σ.

Proof Suppose a € σ Πσf. Then q and q' are critical points of fa with

0 as index, mq,σ,mq>,σ' as nullities, and Nq,σ,Nqι,σ> as critical submanifolds

of fa at q and q' respectively. So it follows from 5.10 that NQi<T = Nq^σ>. In

particular q' € Nqi<τ. Using 8.1, Nq,σ is isoparametric in the Euclidean space

of dimension (mσ + k). It is a result of the finite dimensional isoparametric

theory that the normal parallel translation of Nq,σ transforms focal set Σq

of Nq,σ to Σq> and conjugates the Weyl group Wσ to Wσ>. Applying this to

every subsimplex of σ, we obtain σ' = σ.

9.3. Proposition. Let σ be a simplex of a Weyl chamber in vqy φ E W,

and Nx,σ as in 8.1. Then φ{Nq,σ) = Nφ(<q)^.

Proof Let φi and θ{ be as in 6.11. Using 8.1, we see that Nq,σ is the leaf

of the distribution @{Ej\j E I(q,σ)} through q, and Nφ^q^σ is the leaf of

the distribution @{Ej\j E I(<p(q),σ)} through <p(q). Then the proposition

follows from 6.11(i).

9.4. Theorem. Let M be an isoparametric submanifold ofV', Δ the Weyl

chamber in vq containing q, and a Evq a focal point with respect to q. Then

fa is nondegenerate in the sense of Bott, and C(fa) = \J{NXt(r\x EW q).

Proof For x E W q it follows from 8.2 that x is a critical point of fa

with nullity mx,σ and NXi(T as the critical submanifold of fa through x. Hence

NXi(T C C(fa). Conversely, if y E C(fa), then a E vy. By 7.5, a is a focal

point with respect to y, so there exist <p E W such that <p~1{y) = t/o? and a

simplex σ' in Δ ^ such that aEσ'. Then it follows from 9.2 that σ — σ' and
NQ,σ = Nyo^σ. Thus we have <p{Nq,σ) = Nφ(q)tσ = v{NyOi<J) = Λ^ ( 3 / o ) , σ =
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9.5. Theorem. Let M be a codimension k isoparametric submanifold of

V, and v a parallel normal field of M. Then the following hold:

(i) The map I + υ has constant, finite corank, so the image Mυ =

(7 + υ)(M) is always an immersed submanifold ofV with finite codimension

(k + nullity(7 — Av)). Mv is called a parallel submanifold of M.

(ii) (/ + v) is an immersion if and only if (v^Vi) φ 1 for all i € I.
(iii) / / (/ + v) is an immersion, and q* = (I + υ)(q), then Mv is isopara-

metric, Mυ and M have the same normal planes, the same focal sets at q and

q*, and the same associated Weyl groups and multiplicities.

9.6. Theorem. Let M be an isoparametric submanifold in V, q G M,

and Aq the Weyl chamber ofW on vq containing q. Let υ G v(M)q, let v

denote the parallel normal vector field on M determined by v(q) = v, and let

Mυ denote the parallel submanifold My. Then the following hold:

(i) Ifvφw, andq-\-v andq + w are in Δq, then Mυ and Mw are disjoint.

(ii) Given any y in V there exists a unique v G v{M)q such that q + υ G Δ q

and y G Mv.

Proof Suppose (q -I- v), (q + w) are in ΔQ, and Mv Π Mw φ 0 . Let

a G Mv Π Mw. Then there exist x,y G M such that a = x -f v(x) = y + w(y).

Since a G ΔQ and v,w are parallel, a G Δ^ and a G Ay. So x and y are

critical points of fa with index 0. If a is nonfocal, then x — y^ which implies

that υ = w. If a is focal (suppose a is in the simplex σ), then the two critical

submanifolds NXi<τ and Ny,σ are equal. In particular y G NXi<r. We note that

NXt<r is a finite dimensional isoparametric submanifold in η(σ) C a + v{Mv)a.

Let v = u\ 4- ι*2, where u<ι is the orthogonal projection of v along V(σ).

Then Nx,σ is contained in the sphere of radius | |ui | | and centered at x + u\.

So y + u\(y) = x + u\. Since V(σ) is perpendicular to ΛΓXjσ, ί^Q/) = t ^

Therefore we have y + £(?/) = x + v(x) = a = y + w(y), which implies that

υ = w.

9.7. Corollary. Lei M be an isoparametric submanifold of V. Then

9~ = {Mv\q + v G Δq} defines an orbit-like singular foliation on V, which will

be called the isoparametric foliation of M. The leaf space of ̂  is isomorphic

to the orbit space vq/W.

9.8. Corollary. // a G σ C Δ 9 and a = q + v, then the isoparametric

foliation of Nq,σ in (α + ι/(Afv)α) is {Mu Γ\{a + v(Mu)a)\Mu G 9Γ).

10. The Chevalley restriction theorem

A smooth map / = (/i, ' J j k ) : R n + f c —• RΛ is isoparametric if Δ/j and

/t, Vfj) are functions of / i , • , /*, and [V/<, V/y] is a linear combination

of V/i, , V/fc ([9], [41]). If Mn is isoparametric in Rn+k with W as the
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associated Weyl group, then in [41] we proved an analogue of the Chevalley
restriction theorem [44] for the adjoint action of a compact Lie group on its Lie
algebra, i.e., if u is a ^-invariant polynomial on the affine normal plane ι/Xo,
then u can be extended to a polynomial ΰ on Rn+fc such that u is constant on
every parallel submanifold of M. Since the ring of VF-invariant polynomials
on vXo is a polynomial ring with k generators u\, , Uk [13], / = (ΰi, , ΰk)
is an isoparametric polynomial map on Rn+fc, M is a level set of / and each
level set of / is a parallel set of M.

For an infinite dimensional Hubert space, the Laplace operator is not de-
fined, so the definition of isoparametric map cannot be easily generalized.
However the geometric analogue of Chevalley's restriction theorem is still
true for the C°° category.

10.1. Theorem. Let M be a rank-k isoparametric submanifold ofV, W
the associated affine Weyl group, and q G vq. Suppose f: vq —• R is a smooth
W-invariant function. Then f can be extended uniquely to a smooth function
f onV such that f is constant on every parallel submanifold of M.

Proof Given v G v(M)q, we let v denote the unique parallel normal field
on M such that v{q) = v, and Mv the parallel submanifold My. Let Δ be the
Weyl chamber containing q, and Δ° the interior of Δ. Since & = {Mv\v G Δ}
foliates V, f has a unique and well-defined extension / to V, i.e., f(x) = f(v)
ΊϊxeMy.

We claim that / is smooth at nonfocal points of M. To see this we note that
the map F: M x Δ° —• V, defined by F(x, v) = x + v(x), is a diffeomorphism
from (M x Δ°) onto an open dense subset % — F(M x Δ°) ( ^ is the set of
nonfocal points of M) of V, and F(M x {v}) = Mv. So / is smooth on %.

Suppose a G Δ is a focal point. Then there are v G v{M)q and a simplex
σ C Δ such that a = {q + v) G σ. We have shown that the parallel translation
with respect to the normal connection conjugates the W -̂actions on the affine
normal planes vx, and two points in ux lie in the same parallel submanifold Mv

if and only if these two points lie in the same W-orbit. So f\ux is W-invariant
for any x G M. To prove the theorem, it suffices to prove that / is smooth
at a neighborhood of a. Although the foliation & does not necessarily come
from a group action, we can imitate the proof of the C°° Chevalley restriction
theorem for the group actions with sections (as in [35]) by geometric means.
We proceed as follows:

(i) The map π = / + v: M —• Mv is a fibration, so there is a local cross
section s defined on an open subset U of a in Mv such that s(a) = q.

(ii) Let Jί be the Banach space of selfadjoint compact operators on V',
and O(V) the Banach group of the orthogonal transformations. Let O(V)
act on Jΐ by conjugation. Then all the isotropy subgroups are closed. Since
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TMX is a finite codimension closed subspace of V, we may view the shape
operator Au for u G v{M)x as an element of Jί. It follows from the definition
of isoparametric that Ay^ and Av lie in the same O(F)-orbit. From the
standard theory of transformation groups the orbit map p: O(V) —• O(V) Av

is a fibration, so there is a local cross section 7 of p defined on a neighborhood
of Av such that p{Av) = id.

(iii) Let Io = l\q,σ),ς(xjo) = φ{Ei(x)\i G Jo}, and let Pq,x: vq — vx be
defined by Pq,x{q + v) = x + ϋ(x). Then we have

Φ(y)> Jo) =

So the map

φ: Mv x i/(

(y, ti, w) -* fi(β(»)) + η{As{y)){w)

defines a vector bundle isomorphism, i.e., φ maps {y} x ^(M) g x c(^?^o)
isomorphically to ι/(Mv)y. The restriction of the isoparametric foliation & on
V to 2/+^(Mv)5(y) is the isoparametric foliation given by the slice Ns(y^Pq z ( σ ),
and φ maps leaves of α + i/(Mυ)α to y + v(Mv)s(yy Using the slice theorem
8.1, the Weyl group associated to Nq,σ in a + ι/(Mυ)α is Wσ, and Wσ is of
rank ko = k — dim(σ).

(iv) This theorem is true if M is of finite dimension, and / is a VK-invariant
polynomial (Theorem C of [41]). By a theorem of Chevalley the ring of Wσ-
invariant polynomials ono + v{Mυ)a is a polynomial ring of fco generators,
Mi> ,v>ic0. Using a theorem of Schwarz [37], there exists a smooth func-
tion <p: (a + v{Mυ)a) -> R such that f\(a + v(Mυ)a) = φ{u\, ,uko). So
/|(α + ι/(Mυ)α) is smooth. Then it follows from (iii) that / is smooth in a
neighborhood of a in V. q.e.d.

As a consequence we obtain the following analogue of the Chevalley restric-
tion theorem:

10.2. Corollary. Let M be an isoparametric submanifold of V, W the
associated affine Weyl group, and q G vq. Let CCO(V)'9' denote the set
of smooth functions on V which are constant on each leaf of ^, and let
C°°(yq)

w denote the set of all smooth W-invariant functions on vq. Let
Φ: C°°{V)T - C°°{uq)

w be the restriction map, i.e., Φ(/) = f\vq. Then Φ
tθ an isomorphism.

Let M be a rank k isoparametric submanifold of V, and σ a vertex of ΔQ.
Then the isotropy subgroup Wσ is a finite Weyl group, and W is the semidirect
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product of Wσ and a rank-fc lattice Λ in ι/q. Let C°°(vq)
w denote the space

of smooth VF-invariant functions on vq. Then ^g/Λ = Tk is a fc-dimensional

torus, and C°°(Tk)Wσ « C°°(ι/q)w. Since Wσ is a finite group acting on the

compact torus, there exist finitely many generators /i , /2, * * ? fm oϊC°°(jyq)
w

such that {fi} separate orbits of W on vq. Therefore their extensions fi on

V defines M. Moreover let / = (fu , / m ) ; then {/~1(c)|c G R m } is the

isoparametric foliation of M. However m may be larger than k.

Appendix. Discrete Coxeter groups

We will review the definitions of proper actions and Coxeter groups, and

give a characterization of Coxeter groups.

Definition. A G-action on M is called proper if gnxn —> y and xn —• x in

M imply that gn has a convergent subsequence in G. If G is a discrete group,

then a proper G-action is classically known as a properly discontinuous action.

Remark. A G-action on M is proper if and only if one of the following

conditions is satisfied:

(i) the map from G x M to M x M defined by (g, x) —• (gx, x) is proper,

(ii) given any compact subsets K and L of M, the set {g € G\gKΓ\L φ 0 }

is compact.

Let Iso(Rfc) denote the group of isometries of Rfc, which is the semidirect

product of the group O(fc) of orthogonal transformations and the group Rk

of translations. In particular, if φ: Rk —• Rk is an isometry, then there exist

to e Rk and T e O(Rfc) such that φ{x) =to + T{x) for all x e Rk.

Coxeter groups can be defined either algebraically in terms of generators

and relations or else geometrically [5]. We will use the geometric definition.

Definition. A subgroup W of Iso(RΛ) generated by reflections in a finite

or countable set of hyperplanes %? — {l{\i G /} is a Coxeter group if the

following conditions are satisfied:

(i) W(&) = JT, i.e., g(l) G XT for all I G JT.

(ii) the induced topology of W from Iso(Rfc) is discrete,

(iii) W acts on R* properly.

An infinite Coxeter group is also called an affine Weyl group.

It is well known [5] that if W is a Coxeter group, then βίf is locally finite

(i.e., given any point x in Rk there exists a neighborhood U of x such that

U intersects only finitely many of the U). The converse is also true, but we

cannot find a proof in the literature, so we will give a proof here. First we

make the following definitions.

Definition. Let %* = {li\i G /} be a family of hyperplanes in RΛ, and Vi a

unit normal vector of Z, . Then the rank of ^ , denoted by r a n k ( ^ ) , is defined
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to be the maximal number of independent vectors in {vi\i G /}. The rank of

the subgroup W generated by reflections in U is defined to be the rank of %?.

L e m m a . Let %? — {k\i G /} be a locally finite family of hyperplanes of

rankm < k in Rk, G the subgroup of Iso(Rk) generated by reflections in U, and

Vi the unit normal vector of li. Suppose v\, , ι>m are linearly independent.

Let V denote the linear subspace spanned by vi, ,vm, p G ΠO»K — m}>

and E = p + V. Then

(i) 0(E) C E,

(ii) J^* = {li = lif]E\i G /} is a locally finite family of hyperplanes in E,

and rank(^*) = ra,
(iii) the restriction map Φ: G —• Iso(E) given by Φ(g) = g \ E is injective,

(iv) Φ(G), is generated by reflections in U,

(v) Φ(G)(;r ) = T̂* ifGφ) = &.
Proof. We may assume that p = 0, i.e., E = V. Since r a n k ( ^ ) = m

and vi, , υ m are linearly independent, we have V{ G V, and /̂  = li Π E

is a hyperplane of £ for all i G /. The local finiteness of %? implies that

{li = ljΠ £7|i G /} is locally finite. Let r; (resp. f») denote the reflections

in li (resp. /t ) of RΛ (resp. JE). Let 5t denote the linear reflection of Rk in

(υ^)-1-. Since 1{Γ\E φ 0 , there exists ti E E such that r»(x) = it + ^(x) for

all x G Rλ. Because ^ € V, we have «» Γ ^"L is identity. Noting that r» is an

affine transformation, we have ri(y + z) = ri(y) -f SiW Given any a: G Rfc,

write x = y + z, where y £V,z £ V1-. Then Γt(x) = fi(y) + z, which implies

that #(x) = Φ((/)(2/) + ^, and ri—ri \ E. Hence (i), (iii), (iv) and (v) follow.

Theorem. Let %? = {li\i £ 1} be a locally finite family of hyperplanes

in Rfc, and W the subgroup o/Iso(Rfc) generated by reflections in U. Suppose

W(<%*) = %?. Then W is a Coxeter group.

Proof It follows from the above lemma that we may assume that r a n k ( ^ )

= k. Let Vi be the unit normal vector of li in Rk. Then {υ^.\1 < j < k} forms

a basis of R* if and only if p|{/^ |1 < j < k} consists of a single point. Such

a point is called a vertex of %?. Let Ψ' denote the set of all vertices of %?.

Then it follows from the local finiteness of %? that Ψ' is a discrete subset of

Rk. Since W permutes hyperplanes in ^ , W permutes Ψ'. Now suppose that

gn G W and gn —• id in Iso(R*). Given p G ^ , gn(p) —• p is a convergent

sequence in the discrete set <Pr. So there exists no such that gn{p) = P for all

n> ΠQ. The local finiteness of βf implies that J = {i G I\p G U) is finite.

Since p is a vertex, the maximal number of independent vectors in {vj\j G J}

is k. Then G = {φ e lso(Rk)\(p(p) = p, and for each j G J , <p(lj) = h for

some i G J} is a finite subgroup. In fact if \J\ = m, then \G\ < 2 m (m!). It can

be easily seen that gn G G for n > no- But # n -> id, so there exists ni > no

such that gn = id for all n > n\. This proves that VK is discrete. It remains
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to prove that W acts on Rk properly. Suppose gn G G, gnx —• y and xn —• x.

Then there exist tn e Rk and Tn G O(fc) such that gn = tn + Γ n . Since O(fc)

is compact, there exist a subsequence T n i and To G O(n) such that T n . —• To.

But we have gnixni = tn. + T n i x n i -+ y, χn. -> z, and T n i x n i -> Tox. So

in, -• to = (y - Tox), i.e., gn. -> g0 = tQ + To. Since gUi{^) = & and %* is

locally finite, QQ{^) = ^ , i.e., # n ι —• ̂ o Because W is discrete, there exists

z'o such that yn i = <?o for all i > ΪQ.
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