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0. Introduction

The first step in the study of submanifolds of Euclidean spaces is to find
‘enough local invariants and their relations so that they determine the subman-
ifolds uniquely up to rigid motion. This is well known in classical differential
geometry [7]. In fact, the first fundamental form I, the second fundamental
form II and the induced normal connection are the basic local invariants, and
they are related by the Gauss, Codazzi and Ricci equations. The shape oper-
ator A, of an immersed submanifold M in R™ in the normal direction v at z
is the selfadjoint operator on T'M, corresponding to the second fundamental
form II - v. The eigenvalues of A, are called the principal curvatures of M in
the normal direction v. The Ricci equation implies that the normal curvature
(the curvature of the normal connection) (2 measures the commutativity of
the shape operators, i.e., 0¥(u,v) = [A,, A,]. So if the normal curvature
is zero, that is, if the normal bundle v(M) is flat, then {A,|v € v(M),} is
a commuting family of selfadjoint operators, and locally there exists a par-
allel orthonormal normal frame field on M. It follows that many results of
hypersurfaces can be generalized to submanifolds with flat normal bundles.

One natural type of problem is to determine all submanifolds of R™ which,
in various senses, have simple local invariants. As a by-product of such inves-
tigations one often obtains many geometrically interesting examples of Rie-
mannian manifolds. A special case of the above is the problem of finding all
isoparametric submanifolds ([31], [30], [9], [41]), i.e., submanifolds with zero
normal curvature and constant principal curvatures along any parallel normal
field. It is not surprising that group theory provides examples. In fact, the
principal orbits of the adjoint action of a simple Lie group on its Lie alge-
bra (or more generally the principal orbits of the isotropy representations of
symmetric spaces) are models for such manifolds. But they are still far from
being completely classified.
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Another type of natural question concerns special functions on M defined
by symmetric functions of the principal curvatures. Setting such functions
equal to zero gives geometrically natural partial differential equations (for
example the minimal submanifold equations and constant mean curvature
equations). Problems of this type often lead to interesting interplay between
geometry, analysis, and topology. Often submanifolds with local invariants
provide the most easily found solutions of such equations.

As is well known, the behavior of the shape operators and the homology of
M are closely related via the Morse inequalities and the Morse index theorem
[29]. For if f, denotes the Euclidean distance function on M (that is, f, is the
restriction of ||z —al|? to the submanifold M), then g is a critical point of f, if
and only if (a — g) is normal to TMg, and the Hessian of f, at a critical point
qis (I— A(g—g))- One beautiful application in this direction is the rich theory
of tight and taut immersions ([12], [27], [8], [11]). Once again isoparametric
submanifolds provide numerous examples of tight and taut immersions ([10],
(21)).

A Hilbert manifold is a differentiable manifold locally modeled on a Hilbert
space. The foundation work on Hilbert manifolds was done in the 1960’s. For
example, standard differential calculus works the same way as in the finite
dimension [28], Smale [40] developed the differential topology for Fredholm
maps between Banach manifolds, Palais and Smale ([33], [39]) developed the
Morse theory on Hilbert manifolds. Some basic notions of Riemannian geom-
etry for Hilbert manifolds could also be carried over from the finite dimension
theory, for example the Levi-Civita connection and the Riemann curvature
tensor are defined. But the main motivations at that time came from the
calculus of variations, and one applied the infinite dimensional theory mainly
to the manifolds of maps between finite dimensional Riemannian manifolds.

Probably the major reason that an independent theory of infinite dimen-
sional Riemannian geometry did not flourish in the 1960’s was a lack of ge-
ometrically interesting examples. One way to obtain such examples is to
find interesting submanifolds of Hilbert spaces. The three basic local invari-
ants and their related equations can be easily generalized to submanifolds
of Hilbert spaces. But the spectral theory of the shape operators is compli-
cated, and infinite dimensional differential topology and Morse theory cannot
be applied easily to these submanifolds without further restrictions. Thus in
order to generalize the above theory of submanifolds of R™ to submanifolds of
Hilbert space, one must find a suitable class of submanifolds to which infinite
dimensional differential topology and Morse theory can be applied.

A submanifold M of V is called proper Fredholm (PF) if the end point map
Y of M is Fredholm, and the restriction of Y to the unit disk normal bundle is
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a proper map. (Here Y is the map from v(M) to V defined by Y (v) = z + v,
if v € ¥(M);). The main purpose of this paper is to show that there is
a satisfactory generalization for the first and third type of questions raised
above for PF submanifolds of Hilbert space. Since the trace of a compact
operator need not be convergent, there are technical difficulties in making
sense of many questions of the second type. But we believe that these may
eventually be overcome.

In §1, we review the basic notions of Riemannian Hilbert manifolds and
submanifolds. In §2, we prove that a PF submanifold has a natural Fredholm
structure (induced from the immersion), and we show that the shape operators
are compact and that every Euclidean distance function f, satisfies Condition
C of Palais and Smale. In §3, we study the geometry of PF submanifolds M
with flat normal bundle, especially the focal structure of M, the curvature
distributions, and the curvature normals. In §4 we study a family of PF
submanifolds, which arise from infinite dimensional Lie theory. Let G be
a simple, connected, compact Lie group, and ¥ its Lie algebra. Let & be
the trivial principal G-bundle over S!, V = H?(S!,%) the space of H°-
connections of ¢, and G = H'(S!,G) the H! gauge group of £. Then G
acts isometrically on V' by gauge transformations. In §4 we describe in detail
the submanifold geometry of the principal orbits of G on V. In fact these
orbits are isoparametric, i.e., they have flat normal bundle, and the shape
operators along any parallel normal field are all conjugate. In §5 we extend the
definition of tautness to PF submanifolds. Starting from §6, we assume M is
isoparametric, and prove that the finite dimensional isoparametric theory can
be generalized to this infinite dimensional setting. Although an isoparametric
submanifold of a Hilbert space need not be an orbit of a group action, we
prove in §6 that we can associate to each isoparametric submanifold M a
marked affine Dynkin diagram, such that the corresponding affine Wey! group
W acts on M by diffeomorphisms, and on the normal plane ¢ + v(M), by
rigid motions. In §7 we prove that every nondegenerate Euclidean distance
function f, on M is a perfect Morse function, that M is taut, and that
the set of critical points of f, is a W-orbit. It follows that the homology
of M can be computed explicitly from its marked Dynkin diagram. In §8
we determine the possible marked affine Dynkin diagrams for isoparametric
submanifolds.

Given a parallel normal field v on M, we define the parallel set, M,, to be
{z +v(z)|z € M}. In §9, we show that each M, is a smooth PF submanifold
(its codimension may be larger than that of M), and the set F of parallel
sets of M forms a singular foliation of V. If f is a smooth function on V'
such that f is constant on each leaf of &, then f|(q + v(M),) is a smooth
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W -invariant function. In §10 we prove that the converse is true; this is the
geometric analogue of the Chevalley restriction theorem.

Finally in an appendix we review some basic facts concerning Coxeter
groups. We also prove a necessary and sufficient condition for a group of
rigid motions of R* generated by reflections in affine hyperplanes to be a
Coxeter group.

The author would like to thank Dick Palais for many helpful discussions
concerning the differential topology and Morse theory of infinite dimensional
Hilbert manifolds.

1. Basic properties of Riemannian Hilbert manifolds

Let M be a smooth infinite dimensional Hilbert manifold modeled on a
separable Hilbert space (V,(, )). The bracket operation for vector fields and
the exterior derivative for p-forms are defined to be the same as they are for
finite dimensional smooth manifolds [28]. Moreover for w € C® (AP T*M)
and Xo, -+, X, € C®°(TM), we have
(1) . A

do(Xo,- -, Xp) = Y (-1)'Xiw(Xo, -, Xi, -+, Xp)

+ 3 (-1)"™Mw((Xs, X5], Xo, 5 Xay o Xy, Xp).

1<)
A Riemannian metric for M is a smooth section g of S%(T* M) such that g(z)
is an inner product for TM, equivalent to the inner product ( , ) on V for
all z in M. Then (M,g) is called a Riemannian Hilbert manifold. It is well
known that there exists a unique torsion free connection V compatible with
the metric g, called the Levi-Civita connection. If M is of finite dimension,
then V is characterized by
@) 2(VxY,2)=X(Y,2)+Y(2,X)- Z(X,Y) + ([X,Y],2)

+ ([Z’X] ’Y) - ([Y, Z] vX)'
Note that the right-hand side of (2) defines a continuous linear functional
of the Hilbert space TM;. Since TM is isomorphic to TM; via the met-
ric g(z), (2) also defines a unique element in TM;, and the argument for a
unique compatible, torsion free connection is also valid for infinite dimensional
Riemannian Hilbert manifolds. Similarly the following definition of Riemann
curvature tensor is valid for the infinite dimensional case:

(3) (R(X,Y)(2),U) =((VxVy —= VyVx = Vixy))(Z),U).

Let M, X be Hilbert manifolds, g a Riemannian metric on X, and V the
Levi-Civita connection of g. A smooth map f: M — X is called an tmmersion
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(or M is called an immersed submanifold of X) if df is injective and df, (T M)
is a closed linear subspace of TX,. Next we define the two fundamental
forms and the normal connection for submanifolds. The restriction of g(z) to
dfz(T M) defines a Riemannian metric on M. This induced metric I on M
is called the first fundamental form of M. Let v(M) be the normal bundle
of M in X, ie, v(M) = (TM)+, and let v be a local cross section of v(M).
Then Ay () (u) = —(Vyv)(2)TM= defines a selfadjoint linear operator on T M,
and A,(;) only depends on v(x). A, is called the shape operator of M with
respect to the normal vector v. The second fundamental form Il of M is a
section of S2(T*M)®v(M) ~ L(S?*(TM),v(M)) defined by g(II(u;.us),v) =
9(Ay(u1),uz). The normal connection V¥ is the induced connection on v(M)
by V, i.e., V¥(v) = (Vu)*M), the orthogonal projection of Vv to v(M).

Next we want to use the method of moving frames to study the local
geometry of Riemannian Hilbert manifolds. Let {e;} be a local orthonormal
frame field on a Riemannian Hilbert manifold (X, g), i.e., the e; are smooth
vector fields defined on an open neighborhood U of X such that {e;(z)} is
an orthonormal basis for the Hilbert space (T X, g(z)) at each z in U. Let
{w;} denote the dual coframe of {e;}. Note that the bracket operation on vec-
tor fields, the exterior differentiations on differential forms, connections and
Riemann curvature are well defined on Hilbert manifolds, so we can express
them locally in terms of the frame field {e;} and coframe field {w;}. Suppose
lei, 5] = 3 cijkex. There exist uniquely one-forms w;; such that

Ve; = Zw,-j ® ej.
Then it follows from (1) and (2) that
(4) dw; = ZU),;]‘ Awj, Wi +wy; = 0.
In fact w;; is uniquely determined by (3), and
wij = Zrijkwk, where 2r;;5 = —cijk + Cjki + Ciij-
Using (1), (3) then becomes
(5) Quj = —dwij + ) wik Awe; = § Y Rigawk Awi,

where Rk = (Ve, Ve, — Ve, Ve, — Ve, i) (i), (€5). X has constant sectional
curvature c if

Qi]' =cw; Nwy, oOr equivalently Rijkl = c(éikéjl - 6,‘[6]';6).

It is easily seen that an infinite dimensional Hilbert space with the constant
metric has zero sectional curvature.
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The Levi-Civita connection V extends uniquely to any tensor bundles over
X by requiring that V commute with tensor products and contractions. For
example if
T = Z tijrie: ® €5 @ eg,
then VT = ) tijuw @ €; ® ¢; @ ek, where

Z tijiiwr = dbije + Z tmjkWmi + Z timkWmj + Z tijmWmk-

In particular if u: X — R is a smooth function, then du = Y u,w;, and the
Hessian of u

Vi = Euijwj, where Euijwj = du; + Z U Wi

Suppose M is an immersed submanifold of (X,g). Since locally f is an
embedding, in order to study the local submanifold geometry of M we may
identify z in M with f(z) in X. In this paper we will assume that all sub-
manifolds have finite codimension. Suppose M has codimension kg in X. Let
{eil? € N} be a local orthonormal frame field defined in a neighborhood U of
X such that, when restricted to M, {e;|t > ko} is a local tangent frame field
and {e;|t < ko} is a local normal frame field. Henceforth we will adopt the
following index convention:

1<o,8,7<ky, 1,75,k>ky, 1<AB,C<oo.

Let {wa} be the dual coframe of {e4}, wap the Levi-Civita connection, and
(2 the Riemann tensor of (X, g). Then we have

(6) de=ZwAB Awg,

(7) dwap =ZwAC Awes — QaB.
Restricting w, and dw, to M, we have

(8) wWa =0 and Zw‘“ Aw; =0.

Let wiq = Y higjw;. Then Y hiajwj Aw; =0, and since {w; Awjfi < 5} isa
basis for /\2 T*M, we have hio; = hjq;. So the first and second fundamental
forms of M in X are

I= Zw'i ®W’ia
7
II= Zwm Qw; = Z hmjwi Qw; ®eq-
2,0 1,7,

The shape operator A., is given by
Aea (6,‘) = Z hiajej.
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The spectrum of the shape operator A, will be called the principal curvature
spectrum of M at z in the normal direction v.

2. Proper Fredholm submanifolds of a Hilbert space

Although the elementary part of infinite dimensional Riemannian geometry
of submanifolds works in the same way as the finite dimension case, many of
the deeper results are not true in general. Recall that the spectral theory of
the shape operators and the Morse theory of the Euclidean distance functions
of submanifolds of R™ are closely related, and they play essential roles in the
study of the geometry and topology of submanifolds of R". But these theories
are not true without some restrictions in the infinite dimensional setting. One
of the main goals of this section is to find a class of submanifolds of Hilbert
spaces for which the techniques of infinite dimensional geometry and topology
can be applied. Roughly speaking we study submanifolds of a Hilbert space
with proper, Fredholm end point maps. In fact, properness of the end point
map allows us to apply the infinite dimensional Morse theory, and Fredholm
property implies that the shape operators are compact.

In the 1960’s Smale [40] developed the differential topology for Fredholm
maps between Banach manifolds. We will restrict ourselves to Hilbert mani-
folds. Let V,W be Hilbert spaces, and M, N Hilbert manifolds. A bounded
linear map T: V — W is Fredholm if ker T and coker T are of finite dimen-
sion. It is then a well-known, easy consequence of the closed graph theorem
that T(V) is closed in W. A differentiable map f: M — N is Fredholm if df;
is Fredholm for all z in M. Two bounded linear operators S: V — V and
T: W — W are orthogonally equivalent if there exists a linear isometry ¢
from V onto W such that § = o~ 1Tp.

2.1. Definition. Let V be a Hilbert space. The end point map Y of an
immersed submanifold f: M — V is the restriction of the exponential map
of V to v(M), ie, Y: v(M) — V with Y(z,e) = f(z) +e.

Suppose {eq} is an orthonormal normal frame field defined on an open
neighborhood U of M. Then it is easily seen that

U x R*¥ ~ y(M) | U, via (z,2) — (z, Zzaea(x)) ,
) Y=X+3 zaca,
dY(ge)(u,t) = (u — Ac(u),t + s(u)),

where s(u)q = Y 2pwga(u) and € = ) zq€x(z). So for a hypersurface we
have

(10) dY(z,E) (u’ t) = ((I - Ae)(u)’ t)'
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It follows from (9) that we have:

2.2. Proposition. The end point map Y of an immersed submanifold M
of V is Fredholm if and only if (1 — A,) is Fredholm for all normal vectors v
of M.

2.3. Definition. An immersed finite codimension submanifold M of V
is proper Fredholm (PF) if the restriction of the end point map Y to a disk
normal bundle of M of any radius r is proper and Fredholm.

2.4. Remark. If V = R", then an immersed submanifold M of V is PF
if and only if the immersion is proper.

2.5. Remark. If M is a PF submanifold of V, and M is contained in the
sphere of radius r with center z¢ in V, then v(z) = (2o — z) is a normal field
on M with length r, and Y(z,v(z)) = zo. Since Y is proper on the r-disk
normal bundle, M is compact. Hence M is of finite dimension.

2.6. Examples. Any finite codimension linear subspace of V is a PF
submanifold. The hypersurface M of V defined by {z € V|{p(z),z) = 1}
is PF if p: V — V is a selfadjoint, injective compact linear operator. To
see this we note that v(z) = ©(z)/||¢(z)| is a unit normal field to M, and
Ay(c)(w) = —(p(uw))T/|le(2)|| is a compact operator on TM;. So it follows
from (10) that the end point map Y is Fredholm. Next assume that z, €
M, \p(zy) is bounded, and (z, + Mp(zn)) — y. Then z, is bounded,
and (zZn + An®@(Zn),Zn) = ||zx||2 + An is bounded, which implies that A,
is bounded. Since ¢ is compact and {A,z,} is bounded, p(A,z,) has a
convergent subsequence. So {z,} has a convergent subsequence.

2.7. Proposition. Suppose M is a PF submanifold of V. Let x € M,
v € v(M);, and let A, denote the shaper operator with respect to v. Then:

(i) Ay has no residual spectrum,
(ii) the eigenspace corresponding to a nonzero eigenvalue of A, is of finite
dimension,

(iii) the only possible point in the continuous spectrum of A, 1s 0,

(iv) A, is compact.

Proof. Since A, is selfadjoint, it has no residual spectrum. Note that the
eigenspace of A, with respect to a nonzero eigenvalue X is

Ker(Ml — Ay) = Ker(I - (1/))Ay) = Ker(I-- A,,»).

So (ii) follows from Proposition 2.2. Now suppose A # 0, Ker(A, — A\I) =0,
and Im(A, — M) is dense in TM;. Then it follows again from Proposition
2.2 that A, — Ml is invertible, and (iii) is proved. To prove (iv) it suffices to
prove that if A; is a sequence of distinct real numbers in the discrete spectrum
of A, and A\; — A, then A = 0. But if A # 0, then the selfadjoint Fredholm
operator P = I — A,/ induces an isomorphism P on V/Ker(P). So P!
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is bounded. Letting § denote ||P~!||, we have |(1 — (A\;/A))~!| < 6. Hence
A — Ail/IA] = 1/6 > 0, which contradicts to the fact that A\; — A. q.e.d.

Recall that a Fredholm structure [16] of a manifold M consists of an open
cover {U,} of M and a smooth tangent frame field {e?} on each U, such that
for z € Uy N Up the linear operator gop(z) defined by gos(z)(eZ(z)) = e?(:c)
is of the form identity plus a compact operator. Then we have the following:

2.8. Proposition. An immersed PF submanifold of V has a natural
equivalence class of Fredholm structure given by the immersion.

Proof. Since TM is parallelizable [26], there exists a global tangent frame
field {&;}. It follows from (9) that (I — A,) is an isomorphism if and only if v
is a regular point of the end point map Y. Let .#” be the collection of local
normal fields v of M such that (z,v(z)) is a regular point for Y for all z in the
domain of v, and let U, be the domain of v in .#". Since (z,0) is regular for Y’
and the set of regular points of Y is open, {U,|v € #} is an open cover of M.
Then it follows from 2.7 that e} = (I — A,)(&;) gives a Fredholm structure.
Using the well-known theorem of Kuiper that GL(o0) is contractible [26], we
conclude that the equivalence class of Fredholm structure is independent of
the choice of &;. q.e.d.

In the rest of this section we explain the relations between the focal struc-
ture and the critical point theory of the Euclidean distance function of PF
submanifolds of a Hilbert space. It follows from (9) that (z,e) is a regular
point of Y (i.e., dY(; ) is an isomorphism) if and only if (I- A,) is an isomor-
phism. Moreover, the dimensions of Ker(I — A.) and Ker(dY(; )) are finite
and equal. Hence the definition of focal points and multiplicities [29] can be
generalized to PF submanifolds.

2.9. Definition. A point a = Y (z,¢) in V is called a nonfocal point for
a PF submanifold M of V' with respect to z if dY(; ) is an isomorphism. If
m = dim(ker(dY(;,))) > 0, then a is called a focal point of multiplicity m for
M with respect to 2. The focal set £ of M in V is the set of all critical values
of the end point map Y.

Applying the Sard-Smale transversality theorem [40] for Fredholm maps to
the end point map Y of M, we have:

2.10. Proposition. The set of nonfocal points of a PF submanifold M of
V is open and dense in V.

The structure of the focal set of M is closely related to the critical point
theory of the Euclidean distance functions by the following:

2.11. Proposition. Let M C V be a PF submanifold, a € V, and define
fa: M = R by fo(z) = ||z — a||?. Then we have

(i) Vfa(2) = 2(z—a)T, the projection of (t—a) onto TM, so in particular
To 18 a critical point of f, if and only if (zo — a) € V(M)4,,
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(i) $V2fa(z) =1— A(q—z) at the critical point z,

(iii) fq s nondegenerate if and only if a is a nonfocal point.

Suppose zg is a nondegenerate critical point of f,, and V), is the eigenspace
of Ag—z, With respect to eigenvalue A. Then

index(fy, zg) = Z{dim(V))|A > 1},

and from 2.11 we have

2.12. Corollary. Let M be a PF submanifold of V. Then the index of
any critical point of f, is finite.

2.13. Corollary (Morse Index Theorem). Let M be a PF submanifold of
a Hilbert space V,z € M, e € v(M),, and a = z+e. Then a is nonfocal with
respect to x if and only if = is a nondegenerate critical point of fo. Moreover,
the index f, at x is equal to the number of focal points of M with respect to
on the segment joining = to a, each counted with its multiplicity.

2.14. Corollary. If M is a PF submanifold of V, then f, is nondegenerate
for all a in an open dense subset of V.

Morse theory relates the homology of a smooth manifold to the critical
point structure of certain smooth functions. This theory was successfully
extended to infinite dimensional Hilbert manifolds in the 1960’s by Palais and
Smale ([33], [39]) for the class of smooth functions which satisfy the following
Condition C.

2.15. Definition. A smooth function f on a Riemannian Hilbert manifold
M satisfies Condition C if any sequence {z,} in M, such that ||f(z,)| is
bounded and that ||V f(z,)|| — 0, has a convergent subsequence in M.

2.16. Proposition. Let M be a PF submanifold of a Hilbert space V,
and a € V. Then the map f,: M — R defined by f.(z) = ||z — a||? satisfies
condition C.

Proof. We will write f for f,. Suppose |f(z,)| < cand ||V f(z,)| — 0. Let
un, be the orthogonal projection of (z, —a) onto TM,_, and v, the projection
of (z, — a) onto v(M),,,. Since ||z, — a||?> < ¢ and u, — 0, {v,} is bounded
(say by 7). So (zn,—vn) is a sequence in the r-disk normal bundle of M, and

Y(zp,—vp) =2n —vp =(zp —a) —vp +a=u, +a —a.

Since M is a PF submanifold, (z,, —v,) has a convergent subsequence, which
implies that z, has a convergent subsequence in M.

2.17. Remark. Let M be a submanifold of V' (not necessarily PF). Then
the condition that all f, satisfy Condition C is equivalent to the condition
that the restriction of the end point map to the unit disk normal bundle is
proper.
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The above statements (from 2.11 to 2.17) concerning the Euclidean distance
functions f, hold for a PF immersion ¢: M — V, where f, is defined by
Ja(z) = llp(z) - al®.

3. PF submanifolds with flat normal bundles

Let M be a PF submanifold in a Hilbert space V, and {e;|7 € N} a local
orthonormal frame field defined in a neighborhood U of V such that, when
restricted to M, {e;|t > ko} is a local tangent frame field and {eq|a < ko} is
a local normal frame field. We continue to use the following index convention:

lﬁa,ﬂ,’YSkO, iajak>k0a 1_<_A,B,C<OO

Let {wa} be the dual coframe of {e4}, and wap the Levi-Civita connection for
V. Since V has zero sectional curvature, (6) and (7) of §1 give the structure
equations for V:

(11) dws =) waB Aws,

(12) dwap =ZwAC AWCB.

Restricting e4 to M we have wy, = 0 and dwa = ) waj A w;. Let wiq =
Y hiajwj. Then the two fundamental forms are:

1= (w)?
II= Zwi“ Quw; ®eq = Ehiajwi Quw;j ®eq.
Restricting (11) to M we have
(13) dw; = Z wij A wy, wij +wyi =0,

i.e., (wi;) is the Levi-Civita connection for the induced metric of M, and

(14) dw;j = Z wik A wi; + Z Wia A\ Way,
(15) dwiq = Zwij A wja + Z wig A Wga,
(16) dwap = Zwa., Awyg + Ewai A wig.

(14)-(16) are called the Gauss, Codazzi, and Ricci equations, respectively. It
follows from (14) that the Riemann tensor ();; for the induced metric on M
is

Ay = Ewm A Wja = %Z&jk,wk Awi.
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Let V denote the Levi-Civita connection of V. Then the induced connection
on the normal bundle (M) is defined as follows:

V”e, = the orthogonal projection of Ve, onto v(M) = Zwaﬁ ® eg.

A normal field v is parallel if V¥v = 0. The normal curvature (155 of M in X
is the curvature of the normal connection V¥, i.e.,

—Qgp = dwap — Z“’M ANwyg = — Zw,-a Awig = —3 ZRgﬁklwk A wy.
Then (14)-(16) give

(17) Rij =Y _(hiakhjot — Bjakhiat),

(18) dwia = Zwij Awjo + wa A Wga,

(19) Yois = O (hkaihks; — hrashigpi).
Identifying TM* with TM via the metric, we can rewrite (19) as
(20) [Au, Av] = Q¥ (u,v),

i.e., the normal curvature of M measures the commutability of the shape
operators.

If Q¥ = 0, then dwap = Y wayAw~g. So locally there exists an orthonormal
parallel normal frame field é,,.

3.1. Definition. The normal bundle v(M) is flat if (2} 5 = 0, and v(M)
is globally flat if there exists a global orthonormal parallel normal frame field
on M.

As a consequence of the Ricci equation (20), we have

3.2. Proposition. Suppose M is a submanifold of a Hilbert space V and
v(M) is flat. Then for £ € M, all the shape operators at T of M commute.

Note that the proof of the fundamental theorem of hypersurfaces in R™ is
based on the Frobenius theorem [24], so it generalizes easily to arbitrary codi-
mension submanifolds of R”. The Frobenius theorem also holds for Hilbert
manifolds. So we have the following fundamental theorem:

3.3. Theorem. Let (M,g) be a Riemannian Hilbert manifold, V its
Levi-Civita connection, £ a trivial Hilbert vector bundle of rank k on M,
and A: §€ - L(TM,TM) a bundle morphism covering the identity map such
that {A(v)|v € &} consists of commuting, bounded selfadjoint operators. Let
{eili € I} be a local orthonormal tangent frame field defined on a neighborhood
U of M for the metric g, {w;|t € I} its dual coframe, and {ex|l < a < k}
an orthonormal frame field for . Let w;; be the Levi-Civita connection 1-
form determined by w;, and define wiq by A(eq) = Y wia ® €;. Set wap =0,
Wai = —Wiq. Then given zo in U and an orthogonal basis {u;} for the Hilbert
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space V., there exist a neighborhood @ of o in U and an immersion p: @ —V
such that g is the induced metric, £|@ is isomorphic to the normal bundle of
©(@) inV, o(@) has flat normal bundle, and A(v) is the shape operator with
respect to the normal vector v.

As a consequence of 2.7, 3.2 and the fact that compact operators have
eigen-decompositions, we have

3.4. Corollary. Suppose M is a PF submanifold with flat normal bundle
in V. Then locally there exist finite rank continuous distributions {E;|i € I'}
such that TM,; = @{Ei(z)|: € I} is a common eigen-decomposition of A, for
all v in v(M),.

Since A, is linear for v € V, there exist local continuous sections A; of
v(M)* such that

Av(ui) = )\,' (’U)’U,,' for all Uyg in E,‘.

Identifying v(M)* with v(M) by the induced inner product from V of the
fibers, we obtain continuous sections v; of v(M) such that

Ay(u;) = (v,v)u;  for all u; in E;.

These E;’s, \;’s, and v;’s are called the curvature distributions, principal cur-
vatures, and curvature normals for M respectively. Although they are not
smooth everywhere, they are smooth on an open dense subset of M.

3.5. Proposition. Let M be a PF submanifold in V with flat normal
bundle, and v; its curvature normals. Then given ¢ € M, there exists a
positive constant ¢ such that ||vi(q)|| < ¢ for alli.

Proof. Let F denote the continuous function defined on the unit sphere
Sk=1 of the normal plane v(M), by F(v) = ||4,]||. Since S¥~! is compact,
there is a constant ¢ > 0 such that F(v) < ¢. Since the eigenvalues of A, are
of the form (v, v;), we have |(v,v;)| < ¢ for all unit vectors v. q.e.d.

The set of focal points £ of PF submanifolds in general can be rather
complicated. However if M has flat normal bundle, then ¥ is rather simple.

3.6. Proposition. Let M be a PF submanifold of V with flat normal
bundle, vy the affine k-plane (q+v(M),) inV, and X4 the set of focal points
for M with respect to q. Then

(1) 24 = U{li(g)ls € I}, where l;(q) is the hyperplane in v, defined by
{g+vlv e v(M), and (v,vi(q)) = 1},

(i) Z = {li(q)|s € I} is locally finite, i.e., given any point p € v, there is
an open neighborhood U of p such that {i € I|l;(q) NU # T} 1is finite.

Proof. Since v(M) is flat, it follows from (9) that we have

dY(g,e)(u,2) = (u— Ae(u), 2).
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Hence z = (g +¢) € &, if and only if 1 is an eigenvalue of A.. So there
exists 1 € I such that 1 = (v;,e), i.e., z € ;(q). Since A, is compact and the
eigenvalues of A, are {(e,v;)|1 € I}, the set J(z) = {i € I|z € l;(q)} is finite
and there exists § > 0 such that |1 — (e, v;)| > 6 for all j ¢ J(z). Because
d(z,l;) = |1 — (e, v;)|/|lvjll > 6/c, where ¢ is the upper bound for ||v;]| as in
3.5, we conclude that B(z,8/c) meets only finitely many /;’s (in fact it only
intersects l;(q) for i € J(z)). q.e.d.

Using essentially the same argument as for submanifolds of R™ with flat
normal bundles [43], we have

3.7. Proposition. Let M be a PF submanifold of V with flat normal
bundle. If all the curvature distributions E; are smooth on an open subset U
of M, then the following hold.

(i) E; | U 1s integrable.

(ii) Suppose rank(E;) = m; > 1. Then the leaf S; of E; through x 1is
contained 1n a m;-plane if v; = 0, and in a standard m;-sphere of radius
1/||vsl| #f vi # 0.

(iii) The curvature normal v; is parallel on S;.

We note that if M has flat normal bundle and the multiplicities of the
shape operators A,(;) along any parallel normal field v are independent of
z € M, then the curvature distributions E; are smooth.

4. Examples

In this section we apply the submanifold geometry in §§2 and 3 to an
interesting family of PF submanifolds of a Hilbert space. They arise as the
principal orbits of the action of the gauge group of a trivial principal G-
bundle ¢ over S! on the space of connections of ¢. In fact we show that these
submanifolds have flat normal bundles, and the shape operators along any
parallel normal field are orthogonally equivalent. In particular they have zero
normal curvature and the principal spectrum along any parallel normal field
is discrete and constant.

First we review and set some terminology for the manifolds of maps. Let
(M, g) be a compact Riemannian manifold. Then, for all k,

(u,0)e = /M«I + A u(z),vo(z)) d

defines an inner product on C*°(M,R™). Let H¥(M,R™) denote the com-
pletion of C*°(M,R™) with respect to (, ). If N is a complete Riemannian
manifold isometrically embedded in the Euclidean space R™, then it is well
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known (see for example [34]) that
H*(M,N) = {u € H*(M,R™)|u(M) C N}

is a Hilbert manifold for 2k > n = dim(M). In particular, H*(S!,N) is a
Hilbert manifold if s > 1/2.

Let G be a simple compact connected Lie group, T a maximal torus of
G, and Z,7 the corresponding Lie algebras. Then the killing form makes
% a Euclidean space. Let £ denote the product principal G-bundle on S1.
The Hilbert group G = H'(S!,G) is the gauge group and the Hilbert space
V = H(S',%) is the space of H%-connections of £&. G acts on V by the gauge
transformations ¢ - u = gug~—! + ¢’g~!, which is an affine isometry of V. Let
% denote the constant map in H°(S!, %) with value z € &, and I° = {{|t €
I }. Given u € H(S1,2) it follows from the theory of ordinary differential
equations that there is a unique f € H!(S!,G) such that f(0) = e (the
identity in G), and u = f’f~1. We define the holonomy map ®: H°(S!, %) —
G by ®(u) = f(2r). The following three statements are proved by Segal [38]:

(i) Let s € G and a € J be such that s®(u)s~! = exp(27a), and let
h(t) = exp(ta)sf~1(t). Then h € H'(S!,G) (in fact h(0) = h(27) = s), and
h-u = &. Hence every G-orbit meets .77°.

(ii) ®(g-a) = g(0)®(u)g(0)~! for all g€ H!(S!,G) and a € F .

(iii) Let W be the Weyl group of G, and W(9°) = N(9°)/Z(F°), where
NI ={geGlg-T°c T° and Z2(T°) = {g € Glg-t = { for all
t € J} are the normalizer and centralizer of 0 respectively. Then V/G ~
TOW(T 0 ~ G/AA(G) ~ T/W, and W(T?) is the semidirect product of
W and the lattice group A = {t € 7| exp(t) = e} under the natural action of
W, i.e.,

(w1, A1) - (w2, A2) = (wrwz, A2 + w2 - A1)

for w; € W and \; € A. Moreover W (7 °) is the Coxeter group generated by
reflections in the hyperplanes a(t) +n =0 in 7 °, where « is a root of G and
ne€l.

In the following we study the geometry of a principal G-orbit M = G - iy
in V, where to € 9. If G is of rank k, then the codimension of M in V is k,

TM;, = {[u,fo] +u'|lue H'(S'.,%)} and v(M); =9°,
where [u, v] (0) = [u(f),v()]. Moreover
TM, 5, = gTM;g~" and v(M),;, = gu(M);,g™".
Given t € 7, we define

t(g - to) = dg;, (£) = glg™".
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Because M is a principal orbit, ¢ is a well-defined normal vector field on M.
By a direct computation, we have

df{o([u, fo] + u') = [u, f] .

Since [u, f] is perpendicular to 7°, we have V¥(f) = 0, i.e., t is a parallel
normal field, and the shape operator

A;([u, fo] +u')=- [u,t] .
But M is homogeneous, so we have
Aggio) (9([w, 0] +u)g™") = —g [u,{] g7,
i.e., Ay, and Ay ;) are orthogonally equivalent.
Next we claim that the shape operator A; is compact. To see this, let A+

denote the set of positive roots of Z. Then there exist z,, yo for all @ € At
such that

=9 & {Rz, ®Ry,la € At}
[h,zo] = @(h)Yas [hYa] = —a(h)zo forallh€.J and a € A™.

If rank(G) = k, and {t;, - ,tx} is a basis of J, then {4, Ya, ti, Za cosnb,
Tq sin 1, y, cos nb, y, sin nb, t; cos nb, t;sin nfla € AT, 1 <71 < k, n € N}
forms a separable basis for V. Moreover, the orbit M = G- to is principal
if and only if (a(to) + n) # 0 for all « € AT and n € Z. Using the above
separable bases of V, it is easily seen that A; is a compact operator whose
eigenvalues are (a(t)/(a(to) + n)) for @ € At, n € Z, with multiplicities 2.
This proves that the end point map Y of M in V is Fredholm.

It is easy to determine the focal set of M. A point {+i¢ in tg+v(M )i =7 0
is a focal point with respect to o if and only if 1 is an eigenvalue of A;,
i.e., there is an integer n such that —a(t)/(a(to) + n) = 1, or equivalently
a(t +tg) € Z. So the set of focal points with respect to £y is the union of the
reflection hyperplanes of W (7 °) in 0.

Next we will prove that the end point map Y of M restricted to the normal
disk bundle of radius r is proper. Suppose

Y (gn -zo,fn(gn -zg)) — u and f|fn|| <r.

Then {t,} is a bounded sequence in the k-dimensional Euclidean space 7,
so we may assume that ¢, — to for some to € 7 . Note that

Y(g - zo,t(g - 20)) = Y (g 2o, gtg™")
= (9209 ' +9'g7!) +gtg =g (z0 + 1)

So it suffices to prove that the G-action is proper, i.e., if g - un — v and
u, — u, then g, has a convergent subsequence in G. It follows from the

(21)
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assumption that g, - u — v, i.e., (gnug; ! + g,g,!) — v, which implies that
lu + g5 g% llo is bounded. Hence ||g;; g/ |lo is bounded. Since G is compact,
llgnllo is bounded. So ||gn|l1 is bounded. By Rellich’s lemma, the inclusion
map H'(S!,G) — H°(S',G) is compact, hence a subsequence (still denoted
by gn) converges to go in H°(S',G). But

llgnugn = ghgn® — vllo — 0,

80 ||gnu — gl, — vgnllo — 0. Therefore g, -— go in H*(S!,G).

Let M; denote the parallel set {z + #(z)|z € M}. It follows from (21) that
M; = G- t, i.e., the orbit foliation of G is the same as the parallel foliation of
M. In fact the G-orbit foliation is completely determined by a single principal
G-orbit.

To summarize, we have

4.1. Theorem. Let M = G - iy be a principal G-orbit of V. Then the
following hold.

(i) M is a PF submanifold.
(ii) The codimension of M inV is k = rank(G).
(iil) ¥(M) s globally flat.
(iv) Given any parallel normal field v on M, the shape operators Ay(s)
and Ay(y) are orthogonally equivalent.
(v) The curvature distribution E; are smooth, and rank(E;) = 2.
(vi) Associated to M there is a discrete Cozeter group W (I °) which is
generated by reflections in the focal hyperplanes l;(fo) in (to + v(M);,).
(vii) The parallel sets M,, are smooth submanifolds of V for any parallel
normal field on M, in fact, M, is a G-orbit.

(viii) If v and w are two parallel normal fields on M, then either M, = M,,
or M\yNM, =0.

4.2. Remark. Although the trace of the shape operator A, for the above
M is divergent, it is conditionally convergent and there is a natural way to
sum it, so the mean curvature and Ricci curvature of M can be formally
defined. For example, if G = SU(2), then the principal orbit M = G-ty is
a hypersurface of V', {\, = 1/(top + n)|n € Z} are the principal curvatures of
M, and each has multiplicity 2. Let {e;,e;} be a local orthonormal tangent
frame on M such that e; and e} are the principal directions for A;. Then
H = Y_2{)\|i € 7} is convergent if it is summed as ) 2{(\; + A\_;)|¢ € N}.
Moreover if tg = 1/2, then H = 0. Using (17), the Ricci curvature of M has
eigenvalues u; with multiplicity 2 and eigenvectors e;, €, where

i =1/(to+14)* +2to Y _{1/(t - n?)ln € N}.
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There are several natural metrics on a G-orbit M. The induced metric on
M as a submanifold of V' gives the H! metric. The restriction of the H metric
on V to the orthogonal complement of £° in V defines a G-invariant metric on
M, which is the H® metric. The H'/2 metric on M is a homogeneous Kahler
metric. The Riemannian curvature of these metrics and the characteristic
classes of the orbits have been studied by Freed in (18], [19].

5. Taut immersions

Let f: M — R™ be an immersed, compact submanifold, and v*(M) the
unit normal bundle of M. Then there is a natural volume element do on
v1(M). The total absolute curvature of M is

(M, f) = / » | det(A,)| do

Chern and Lashof [12] proved that 7(M, f) > b(M), where b(M) = >_ b;(M)
is the sum of Betti numbers of M. An immersion f is called tight if (M, f)
is equal to inf{7(M, p)|p: M — R™ is an immersion for some n}. It is a very
difficult and unsolved problem to determine what manifolds can have tight
immersions. An important step in this direction is Kuiper’s reformulation [25]
of the problem in terms of Morse theory for height functions. Banchoff [2]
began the program of finding all tight surfaces in spheres, and later this led
to the study of taut immersions by Carter and West [8]. There has been a lot
of beautiful theory developed for tight and taut immersions (cf. [11]). In this
section we generalize the definition and some of the basic properties of taut
immersions to PF submanifolds of Hilbert spaces.

Let M be a Riemannian Hilbert manifold. A smooth function f: M — R
is called a Morse function if f is nondegenerate, bounded from below and
satisfies Condition C. Let

M, (f) ={z € M|f(z) <r}.
Then it is easily seen that there are only finitely many critical points of f in

M,(f). Let

pr(f,r) = the number of critical points of index k on M,(f),
Bi(f,r,F) = dim(Hg(M,(f),F)) for a field F.

Then the weak Morse inequalities ([33], [39]) are ux(f,7) > Bi(f,r, F) for all
rand F.

5.1. Definition. A Morse function f: M — R is perfect if there exists a
field F such that uk(f,r) = Bk(f,r, F) for all r and k.
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5.2. Theorem. Let f be a Morse function. Then f is perfect if and only
if there exists a field F such that the induced map on the homology

iv: Ho(M,(f),F) —» H.(M, F)

of the inclusion of M,(f) in M is injective for all r.

5.3. Definition. An immersed PF submanifold M of a Hilbert space V is
taut if every nondegenerate Euclidean distance function f, on M is a perfect
Morse function.

5.4. Remark. If M is properly immersed in R™, then the above definition
is the same as in [8].

5.5. Remark. Unlike the finite dimensional theory of tautness, the unit
hypersphere S of an infinite dimensional Hilbert space is not taut. Since S is
not PF by 2.5, the nondegenerate distance function f, on S does not satisfy
Condition C. We will see later that, for a simple compact connected group G,
the orbits of the gauge group H'(S!,G), acting on the space of connections
HO(S!,%) by gauge transformations as in §4 are taut.

Let R(f) denote the set of all regular values of f, and let C(f) denote the
set of all critical points of f. The fact that the restriction of the end point
map to the unit disk normal bundle is proper gives a uniform Condition C for
the Euclidean distance functions as we see in the following two propositions.

5.6. Proposition. Let M be an immersed PF submanifold of V, and
a €V. Suppose r < s and [r,s] C R(f,). Then there exists 6 > 0 such that if
Ilb—a|l <6, then [r,s] C R(fp)-

Proof. If it is not true, then there exist a sequence {b,} in V and {z,}
in M such that b, — a, r < ||zn — bn|| < s, and z, is a critical point of
fv,.- So it follows from 2.11(i) that z, — by, is in v(M),, . Since the end point
map Y of M restricted to the disk normal bundle of radius s is proper and
Y (zn,bn — z) = b, — a, a subsequence of z,, converges to a point zo in M.
Then it is easily seen that r < ||z — a]| < s, and zo is a critical point of f,,
which is a contradiction.

5.7. Proposition. Let M be an immersed PF submanifold of V, and
a €V. Suppose r < s and [r,s] C R(fs). Then there exist 6 > 0,62 > 0 such
that if ||b— a|| < &1 and z € Ms(fo)\M;(fo), then ||V fi(2)]| = b2

Proof. By 5.6 there exists 6 > 0 such that [r,s] C R(fy) if ||b —a| < 6.
Suppose no such §; and &, exist. Then there exist sequences b, in V' and
Zn in M such that b, — a, zn € Ms(f5,)\M:(fs,.), and [|[V(fe,)(zs)|| — 0.
Moreover,

Y(Im —(zn - bn)u) =In — (xn - bn)u(M):" =bn + (zn - bn)T(M):" —a,

and ||z, — by|| < s. Since M is PF, z, has a subsequence converging to a
critical point zg of f, in Ms(f,)\M-(f.), a contradiction.
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5.8. Proposition. Let M be an immersed taut submanifold of V,a €V,
and r a real value of f,. Then the induced map on homology

in: Ho(M,(f,),F) = H.(M,F)

of the inclusion of M,.(f,) in M s injective.

Proof. If a is a nonfocal point (so f, is nondegenerate), then it follows from
the definition of tautness that 7. is an injection. Now suppose a is a focal
point. If (r,7'] C R(f,), then M,(f,) is a deformation retract of M (f,). So
we may assume that r € R(f,) and s > r such that [r,s] C R(fs). Choose
81 > 0and é; > 0 as in 5.7, and € > 0 such that € < min{é;,82, (s — r)/5}.
Since the set of nonfocal points of M in V is open and dense, there exists
a nonfocal point b such that ||b — a|| < €. Since f, is nondegenerate, it
follows from the definition of tautness that i.: H.(M:(fs), F) — H.(M,F)
is injective for all ¢. So it suffices to prove that M,(f,) is a deformation
retract of M,(fp). Since € < (s —r)/5, there exist r1,72,s; and s, such that
1 <81,T2 < 82,7 <711 —€<81+e<sandr; <rg—e<38 <8 +¢€< 3.
From triangle inequality we have

M82 (fb)\Mrz (fb) c Msl(fa)\Mrl(fa) c MS(fb)\Mr(fb)-

Note that ||V f,(z)|| > 6 if 2 € M(fo)\M;(fa), and |V fo(z)|| > 62 if z €
M (fo)\M,(fs). Since € < 62, (a—b)T is the shortest side of the triangle with
three sides (z—a)7, (z—b)T and (a—b)7 for all z in M;, (f2)\M;,(f.). Using
the cosine formula for the triangle we have

(Vfa(2), Vfo(z)) > (262 —€%)/2 > €%/2 for z in My, (fa)\M;, (fa)-

Hence the gradient flow of f, gives a deformation retract of M, (f,) to
M, (fo). If [r,s] C R(f), then M,(f) is a deformation retract of M(f)
for all ¢t € [r, s], which proves our claim.

5.9. Corollary. If M is connected and ¢: M — V s a taut immersion,
then © is an embedding.

Proof. Since M is PF, ¢ = Y|M X 0 is proper. So it suffices to prove that
 is one-to-one. Suppose p(p) = p(q) = a. If p # ¢, then there exists € > 0
such that (0,€) C R(f,), and p, q are in two different connected components
of M¢(f,). This contradicts the fact that ¢.: Ho(Mc(f2), F) — Ho(M, F) is
injective.
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5.10. Corollary. Suppose M s a taut submanifold of V and zo is an
indez O critical point of f,. Then

(i) fa(z) > fa(zo) for all z € M, t.e., fo(xo) is the absolute minimum of
fa,

(i) f'(fa(z0)) is connected; in particular for f7(fa(zo)) = {zo}, an
tsolated critical point zg.

6. Geometry of isoparametric submanifolds

In this section we will study the geometry of a special class of PF subman-
ifolds of Hilbert spaces having simple local invariants. Roughly speaking they
have zero normal curvature and constant curvature spectrum. The main re-
sult of this section is that there exists an affine Coxeter group (for definition,
see the appendix) acting on these submanifolds by diffeomorphism.

6.1. Definition. An immersed PF submanifold f: M — V of a Hilbert
space (V,(, )) is called isoparametric if

(i) codim(M) is finite,
(ii) ¥(M) is globally flat,

(iii) for any parallel normal field v on M, the shape operators A,(;) and
Ay (y) are orthogonally equivalent for all z and y in M.

The principal G-orbits of the Hilbert space HO(S',%) in §4 are isopara-
metric. Although an isoparametric submanifold of a Hilbert space need not
be an orbit of an affine isometric action, we will prove that they share many
properties of the samples in §4 as in 4.1.

6.2. Definition. An immersed submanifold f: M — V is full if f(M)
does not lie in a hyperplane of V.

6.3. Definition. A rank-k isoparametric submanifold of V' is a full, k-
codimensional isoparametric submanifold of V.

6.4. Remark. The above definitions are the same as in [41] if V = R".

6.5. Remark. It follows from 2.5 that if M is a full isoparametric sub-
manifold of V, and M is contained in the sphere of radius r centered at co,
then both M and V must be of finite dimension.

From the definition of isoparametric, we have:

6.6. Proposition. If M is isoparametric in V, then

(i) the curvature distributions E;’s are smooth,

(ii) the curvature normal fields v;’s are parallel and smooth.

Let I be the index set for the curvature distributions of M. We arrange
the indices in I so that vgp = 0 and v; # 0 for ¢ # 0. There exists an
orthonormal frame €4 such that {e4]1 < a < k} is a global parallel normal
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frame, and {e;|s > k} is a local tangent frame of M with E; spanned by
{em|tj—1 < m < (1+uy)}, where p; =k + Y {m;|i < 7}. Then we have

rank(E;) =m;, wap =0, wia = Aiaw;,
Aia = Nja, if Mj—1 <1< 1+ ,u]-), v; = anea.

It is easily seen that the proofs of most results in §1 of [41] generalize
directly to this infinite dimensional setting. Therefore we will restate them
without proof.

6.7. Proposition. An isoparametric immersion f: M — V 1is full if and
only if the curvature normals {v;|i € I} span v(M).

6.8. Proposition. Let Wiy = Zrijkwk. Then (/\ia - Aja)'r,;jk =
(Ma = Aka)Tiks. In particular if e;ex € E;\, e; € E;,, and i1 # 12, then
Tijk = 0.

6.9. Theorem. If M is an immersed isoparametric submanifold of V,
then the following hold:

(1) E; is integrable for alli € I.

(2) For 0# 1 €I, let Si(zo) denote the leaf of E; through zo. Then

(1) 4+ (vi(z)/||vil|?) = ¢; 1s a constant vector for all z in S;(zo),
(ii) Ei(z) ®Ru;(z) = &; 13 a fized (m; +1)-plane in V for all x € S;(zo),
(iii) Si(zo) is the standard sphere in c; + & centered at ¢; with radius
1/[jvall.

(3) The leaves of Eq are affine linear subspaces of V.

Proof. All the statements can be proved in the same manner as in 1.9 of
[41], except (2)(ii). To prove this we may assume that = 1 and m; = m. Let
Gr(m, V') denote the set of m-dimensional subspaces of V, and g: S;(z0) —
Gr(m, V') the map defined by

9(z) = (ex+1 Nekt2 A+ A ekrm Av1)().
Then

dg = Z{€k+1/\"'/\ei_1 /\w,-_,,-ej/\---/\ek+m/\v1|j<k+m}
1

+ Z ek+1 AN Ae—1 A /\mwieg A Aektm A Aa€a.
i,a,03
Using 6.8, we have w;; =0 for j > k +m on S;(z0). So dg =0.
6.10. Corollary. For 0 # ¢ € I, define ¢;: M — M by ¢i(q) = the
antipodal point of q in S;(q), where Si(q) s the leaf of E; through q. Then
¢2 =id. In particular we have

¢i(z) = z + 2vi(z)/||vi]|®
18 a diffeomorphism, which is called the involution associated to E;.
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6.11. Theorem. For i € I, let ¢, be the diffeomorphism associated to the
curvature distribution E; as in 6.10. Then the following hold:
(i) There exists a bijection o;: I — I such that 0;(7) =1 and E;(¢i(q)) =
E,,(j)(q) for all ¢ in M. In particular m; = m,,(;).
(i1) v, () () = (1 = 2({vs, v, () llval|*)) w5 (#4())-
(iii) Let R; be the reflection of v(M), in the linear hyperplane v;(q)*. Then
Ri(v5) = (1= 2({vi, vo, (1) / N1vill*)) ™ vo, () -
(iv) TMy = TMy,(q), § +v(M)q = ¢i(q) + v(M)g,(q) for all $; €W.
(v) 67 (E;) = Eo,(5)-
Let W be the subgroup of the group of diffeomorphisms of M generated
by {#:|¢ € I}. In the following we will prove that W is an affine Weyl group.
6.12. Theorem. Let M be an immersed isoparametric submanifold of V,
Vg =q+v(M),, and l;(q) the focal hyperplane of v, as in 3.6. Let p; denote
the reflection in v,. Then
(i) wi(q) = ¢:i(a),
(il) wi(l5(9) = lou(5)(9), t-e., i permutes Z = {l;(q)}i € I}.
Proof. We may assume that 0;(2) = 3. Let | be the hyperplane p;(l2).
We claim that [ = I3. It follows from 6.11(iii) that ! is parallel to I3, and

llo2l = IRy (v2) ]| = llosl|(1 — 2{vs, v3)/Ilwal|*) "

If Ri(ve) =rn with r > 0 and ||n|| = 1, then v3 = zn for some z € R. Let ¢*
be the point on [ which is the closest to q. To prove the claim it suffices to
show that v3/||vs|| = gg*, the vector joining g to ¢*. Let Z(uj,u2) denote the
angle from the vector u; to uz. Then there are the following three cases:

Case (1). l1 Ny # D and £(v1,v2) =7 — 6, where 0 < § < 7/2.

Let po € l; N iz, u be the vector joining ¢ to pg, /2 — @ = L(u,vs),
and L; be the line in /; passing through py and orthogonal to I; Nl;. Then
L(v1,n) = 6 and we claim that z > 0. For if z < 0, then Z(v;,v3) =7 —0, so

Ry(v2) = rn = (1 — 2(vy,v3)/|[v1]|*) "3
=z(1+ 2 cos 0||1)3||/||v1||)—1n.

But then r = z(1 + 2 cos 0||vs||/||v1]])~! is less than 0, which is a contradic-
tion. This proves that vs and gg* have the same direction, and Z(v1,v3) =
L(v1,n) = 6. It follows from (22) that

1/|[ve|l = (1 = 2 cos ]lvs||/[|vi|l)/llvs]l = 1/|jvs|| — 2 cos 8/[[va.
Using 6.9 we have

d(g,13) = 1/||vs|| = 1/llv2| + 2 cos 6/[|s ]|
= ||u|| sin a + 2||u|| cos 8 sin(d — &) = ||u|| sin(20 — o) = d(q, ).

(22)
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Therefore | = I3.

Case (2). Iy Nla # D and /(v1,v2) = 0, where 0 < 6 < /2.

Using the same notation as in Case (1), we claim that g¢* and vs again
have the same direction. By analytic geometry in R?, we see that if g¢* has
the opposite direction of n, then

(23) 2 cos 8/||v1] > 1/||v2]| = d(g,l2), i.e., (1/|lv2]l — 2 cos 8/|v1]]) <O.
If v3 = zn, z > 0, then /(v;,v3) =7 — 6, and
1/||v2|| = 1/z(1 + (2z cos 8/||v1||)) = 1/z + 2 cos 8/ ||v1].

Hence 1/||vz|| — 2 cos 8/||v1|| = 1/z is positive, which contradicts (23). This
implies that v3 = zn with z < 0. Similarly if g¢* has the same direction as n,
then gg¢* and v3 are in the same direction, and the proof that gg* = v3/||vs||
is similar to the first case.

Case (3). l1]|ls.

Let v denote gg*, and vz = zn. Suppose v; and v, have the opposite
directions. Then

va/llvall = —vi/llosll = m, v = (2/l|vall + 1/||v2])n.
Using (22), we have

Ry(v2) = (1 - 2(vy,v3)/[Jo1]|?) " v = (1 — 2z/||vs||) "*zn
= —vg = |lvg||n.

So 1/z — 2/||v1|| = 1/||v2]|, which implies that z > 0, and
d(g,13) = 1/ljvsll = 1/z = 1/|va2|| + 2/||va]| = d(g,1).

A similar proof works if v; and vy are in the same direction. q.e.d.

As a consequence of 3.6(ii) and the Theorem in the appendix, we have

6.13. Theorem. Let WY be the subgroup of the group of isometries of the
affine space vy = q + v(M), generated by reflections p; in l;(q). Then W9 is
an affine Weyl group. Moreover the parallel translation map 7y 4 : V(M)q —
v(M)y conjugates W9 to W®' for any q and ¢’ in M.

6.14. Corollary. Let M be an tsoparametric submanifold of V. Then the
subgroup W of diffeomorphisms of M generated by involutions {¢;|1 € N} is
an affine Weyl group, and W =~ W1 for all q. W 1s called the affine Weyl group
associated to the immersed isoparametric submanifold M of V. Moreover the
curvature normals {v;|i € I} form a root system for W. Since mj = mg,(j),
we have associated to M a marked Dynkin diagram.

6.15. Remark. If M is a principal G-orbit of HO(S!,%) as in §4, then
the associated affine Weyl group of 6.14 is W(9°) (as in §4), and all the
multiplicities m; = 2.



PROPER FREDHOLM SUBMANIFOLDS OF HILBERT SPACE 33

6.16. Remark. Let M be an isoparametric submanifold of a Hilbert space
V. If dim(V') is finite, then there are only finitely many E;’s, so W is a finite
Coxeter group (in fact W is crystallographic or a Weyl group). If dim(V)
is infinite, then there are infinitely many E;’s, so W is an infinite discrete
Coxeter group.

7. Homology of isoparametric submanifolds

In this section we use Morse theory to calculate the homology of isopara-
metric submanifolds of Hilbert spaces and prove that they are taut.

The results on Morse theory in §4 of [21] hold for functions satisfying Con-
dition C (for details see [36]). We have shown in 2.16 that the Euclidean
distance function f, satisfies Condition C, so we can apply the infinite dimen-
sional Morse theory to f,. Let f be a Morse function on M, and q a critical
point of f of index m. Recall that a pair (N, ) is called a Bott-Samelson
cycle for f at ¢ if N is a smooth m-dimensional manifold, and p: N — M is
a smooth map such that f o p has a unique and nondegenerate maximum at
Yo, where ©(yo) = q. (N, p) is FZ-orientable for a ring # if H"(N,#) = X#.
We say [ is of Bott-Samelson type with respect to & if every critical point of
f has an F-orientable Bott-Samelson cycle. Moreover if {g;|i € I} is the set
of critical points of f, and (INV;, ;) is an F-orientable Bott-Samelson cycle
for f at g; for 7 € I, then H.(N, %) is a free module over # generated by
the descending cells (;)«([Ni]), so that f is of linking type perfect. In [21]
we obtained the homology of the finite dimensional isoparametric submani-
folds by constructing the Bott-Samelson cycles for f,. The same construction
works here in the infinite dimensional setting, so we have:

7.1. Theorem. Let M be an immersed isoparametric submanifold in a
Hilbert space V with multiplicities m;, and a € V a nonfocal point of M. Then

(i) fa is of Bott-Samelson type with respect to the ring £ = I if all the
multiplicities m; > 1, and with respect to # = L, otherwise,

(ii) M s taut.

It follows from 5.9 that we have

7.2. Corollary. An immersed isoparametric submanifold of a Hilbert
space V is embedded.

To obtain more precise information concerning the homology groups of
isoparametric submanifolds, we need to know the structure of the set of critical
points of f,. When the isoparametric submanifold M is of finite dimension,
we used [41] the existence of isoparametric maps to show that if a is nonfocal,
and q is a critical point of f,, then the set of critical points of f, is W - g,
the W-orbit through q. Thus using 2.13, we can obtain H,.(M) explicitly.
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Although this proof does not work when M is of infinite dimension, we can
nevertheless use the tautness and some geometry to obtain similar results.
First from 2.11, 2.13 and 6.11 we have

7.3. Theorem. Let M C V be isoparametric, W its associated affine
Weyl group, and m; the associated multiplicities. Let a €V, fo: M — R be
the smooth function defined by f,(z) = ||z — a||%, and let C(f,) denote the set
of critical points of fo. Then the following hold:

(i) z € C(f,) if and only if (a — z) € v(M),.

(i) If z € C(fs), then W -2 C C(fa)-

(i) For z in C(f,) the indez of f at x s the sum of the m;’s such that
the open line segment (z,a) joining = to a meets l;(z).

The closure of a connected component of the complement of the focal hy-
perplanes l;(z) in v; = z + v(M), is called a Weyl chamber for the affine
Weyl group W-action on v,. A Weyl chamber is a simplex and a fundamental
domain for W. As a consequence of 7.3 and 5.10, we have

7.4. Proposition. Suppose M is isoparametric inV, and g € M. Let A,
be the Weyl chamber in vy = (¢ + v(M),) containing q, and a € A;. Then
q 18 a critical point of f, with index 0. Moreover if a is nonfocal with respect
to q, then fo(q) is the absolute minimum of f, and q is also the only point on
M assuming this value.

7.5. Theorem. Let M be an isoparametric submanifold of V, and a €
vg Nvg. Then a is nonfocal with respect to q if and only if a is nonfocal with
respect to ¢', and ¢ € W - q.

Proof. There arepe W -q, p' € W - ¢’ such that a € Ap and a € A, If
a is nonfocal with respect to g, then it follows from 5.10 and 7.4 that p = p/
and a is nonfocal with respect to p’. q.e.d.

Hence we have proved:

7.86. Corollary. Let M C V be isoparametric, and W its associated
affine Weyl group. Suppose a € V is nonfocal with respect to q in M. Then
C(fa) =W -q.

7.7. Corollary. Let M C V be isoparametric. Then H.(M, %) can be
computed ezplicitly in terms of the associated affine Weyl group W and its
multiplicities m;. Here & is Z if all m; > 1, and is Zy otherwise.

7.8. Corollary. A point a € V is nonfocal with respect to ¢ € M if and
only if a is W -regular with respect to the W -action on v,.

7.9. Corollary. If f, has one nondegenerate critical point, then f, is

nondegenerate, or equivalently if a € vy is nonfocal with respect to q, then a
18 nonfocal with respect to M.
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8. Slice theorem and marked Dynkin diagrams
for isoparametric submanifolds

In this section we determine the possible marked Dynkin diagrams of
isoparametric submanifolds of an infinite dimensional Hilbert space. By using
the classification of discrete Coxeter group ([14], [5]) we need only determine
the possible multiplicities. This can be determined by the finite dimension
theory, because we can prove an analogue of the “slice theorem”, and each
slice is a finite dimensional isoparametric submanifold.

Let v; = 2+ v(M),, and let A be a Weyl chamber in v,. For each simplex
of o of A, we define the following:

I(z,0) = {jlo Cl;(x)},
V(z,0) = [ {l;(@)lj € I(z,0)},

&(z,0) = the orthogonal complement of V(z, ) in v, through z,
n(z,0) = PIE;(2)ly € I(z,0)} @ &(z,0),

Mg o = Z{mjlj € I(z,0)},
W3z,o = the subgroup of W generated by the p; with 5 € I(z,0),
A; = the Weyl chamber containing z.

8.1. Slice Theorem. Let M be a rank-k isoparametric submanifold of V,
and W its associated affine Weyl group. Let o be a simplex of a Weyl chamber
A of vz, and let ig € 0. Then Ty = zo+v(zo) for some parallel normal field
v on M. Let & ,n,,m,, denote {(xo,0),n(T0,0), Mg, o respectively. Then
the following hold:

(i) The map I + v has finite corank (my + k), so M, = (I +v)(M) is an
immersed submanifold of V.

(if) The connected component of the fiber Ny, , of the submersion I + v
through zo is an m,-dimension isoparametric submanifold of the (my + k)-
dimensional Euclidean space v(My)z,, in fact, Ngyo» C No and is of rank
(k — dim(o)).

(i) The normal plane to Ny, tn s at g 13 &, the associated Weyl group
of Ng, o 18 the group W, generated by reflections in the hyperplanes l;(20) NEs
of & for j € I(zo,0), and respective multiplicities are m;.

(iv) If v* is another parallel normal field such that (zo + v*(z0)) € 0, then
Nzow = Nzy -, S0 we may also denote it by Ny, o

8.2. Corollary. With the same notation as in 8.1, let A be the Weyl
chamber in v, containing q, o a simplez of A, and a € 0. Then

(i) the nullity of f, at z € W - q is my o, and the critical submanifold at x
18 Nz g,
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(ii) fa(Ng,o) ts the unique minimum of M.

Proof. Let p be the orthogonal projection of z onto V(z,0). Then N;,
is contained in the sphere of radius ||z — p|| centered at p in the Euclidean
space 7(z,0). But (p — a) is perpendicular to n(z,0). So fa(y) = |ly —al|? is
constant on N, which proves (i). (ii) is a consequence of 7.4.

8.3. Corollary. Let M be a rank-k isoparametric submanifold of a Hilbert
space V,q€ M, and vy = q+v(M)q. Let u: M — vy X R be the map defined
by u(z) = (P(z),||z||?), where P is the orthogonal projection of V onto v,.
Let C denote the convez hull of {(z, ||z||?)|z € W - q}. Then

(i) u(M) C C,

(ii) the boundary of C, dC, is contained in u(M).

Proof. Let A denote the Weyl chamber of W containing ¢q. Then
U{9(A)|g € W} = v,. Let cvx(B) denote the convex hull of B. Then

U{cvx(Wa -9(q))lg € W and a is a vertex of g(A)} = v,.

Suppose u(z) = (t,s), i-e., s = ||z||? and z = t + w, where ¢ € v, and
w € (vg)*. Then there are g € W and a vertex of a of g(A) such that ¢ lies
in the convex hull of W, - g(¢q). Suppose r is the minimum of f,, then

fa(@) =z = a||* = ||z|]* - 2(z,a) + |la|® = s — 2(t,a) + [la]® > .

Since Ny(g),q is the minimum critical level of f5, and P(Ny(g),q) is a convex hull
of Wy -g(q) [42], u(Ng(q),q) is contained in the hyperplane s—2(t,a)+||a||?—r =
0, and (i) is thus proved.

It is easily seen that 0C = U{cvx(u(W, - 9(¢)))lg € W, a is a vertex of
g(A)}, and (ii) follows.

8.4. Remark. If dim(M) is finite, it is proved in [42] that u(M) = C. If
M is one of the homogeneous examples in §4, then it is proved by Atiyah and
Pressley [1] that u(M) = C. So it is natural to conjecture that u(M) = C if
M is any isoparametric submanifold of a Hilbert space.

8.5. Remark. Let {, ) denote the following nondegenerate bilinear form
onV=VoRoR:

((z,8,t),(z',8,t')) = (z,2') + st' + §'t.

Then H = {(z, 5,t)|||z||?+2st = —1} with the induced metric is a Riemannian
Hilbert manifold with constant sectional curvature —1, and ¢: V — H defined
by «(z) = (z,(]|z||> + 1)/2,—1) is an isometric embedding. In fact ¢(V) is
the intersection of H with the hyperplane defined by ¢t = —1 in V.IfMisa
submanifold of V, then the normal plane of .(M) in V at (g) can be naturally
identified as ¥ = v(M), ® R® R, and the map u in the above theorem is the
restriction of the projection map of V along & to M.
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8.6. Remark. Let C:' be a connected compact Lie group, ¥ its Lie algebr?.,
V = H°(S',Z), and V as above. Let ¢ = (0,1,0) and d = (0,0,1) € V.
Define

[c,v)=0 forallveV,
[d,u] =4/(8) forueV,
[u,v] (8) = [u(8),v(0)] foru,veEV.

Then V is the Lie algebra of the Kac-Moody group G, and (, ) is the Killing
form on V (i.e., Ad-invariant) ([22], [23]). Let £ € 70, |it| = 1, and M be
the H'(S!, G)-orbit through { in V. Then +(M) is the adjoint orbit of G on
V through (£,0,-1).

It follows from the classification of the discrete Coxeter groups, the slice
theorem, and the same proof as in the finite dimensional case [21] that we
have

8.7. Theorem. Let M be a rank-k isoparametric submanifold of V, and W
the associated affine Weyl group. Suppose W is irreductble; then the possible
marked Dynkin diagrams are as follows:

oo
~ o—o0

A
1 m; M2

A TSN m € {1,2,4},

m m m m

my, mg are arbitrary,

B, o (m1,mg3) and (mg, m3) satisfy (x),
my m2 M3

B
l 0_1__4) N = (m,my) satisfies (%),

Cl a—D—0 s s s 0—a—D (ml’m) and (m! m2) satisfy (*)’

Dy ] _rf_;h m e {1,2,4},
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m m m m m

Eg “__}—‘"—“
m m € {1,2,4},
m

m m m m m m m
E; o—o—w—I—o—+—4 m € {1,2,4},
m
m m m m m m m m

ES °—°—I—°—°—°——°'—° me {1a2a4}’
m

Fy (1) m; =1, mg € {1,2,4,8},
mi; mpmy mg Mo (11) me =1, m; € {1,2,4},
(lll) mp =mgqg = 2,

G2 o o= m € {1,2}.

m m m
The pair (my,mz) 1s said to satisfy () if we let ny = min{m;,ma} and
ng = max{my,ma}. Then (n1,n2) satisfies one of the following conditions:
(i) 2 divides (n1 + na + 1), where 2* = min{2%|n; < 2%, 0 € N},

(ii) if my is a power of 2, then 2n, divides (ng + 1) or 3n; = 2(ng + 1).

8.8. Remark. Every irreducible affine Weyl group occurs in the examples
of §4, and all the multiplicities of these examples are 2.

Let (V,(, )) be a Hilbert space. In the following we will give a necessary
and sufficient condition for an orbit of an affine isometric action on V' to be
isoparametric. A linear operator T: V — V is orthogonal if T preserves the
inner product (, ). A diffeomorphism ¢: V — V is an isometry if dyp, is
orthogonal for all z in V. It is easily seen that the group Iso(V') of isometries of
V is the semidirect product of the group O(V') of orthogonal transformations
and the group V of translations. In particular, if ¢: V — V is an isometry,
then there exist o € V and T € O(V) such that o(z) = to + T(z) for all
zeV.

8.9. Definition. Let G be a Hilbert Lie group. An affine representation
p: G — Iso(V) is called polar if

(i) the induced G-action on V is proper,
(ii) each orbit map G — V (mapping g — p(g)(z)) is Fredholm,
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(iil) the principal orbits have finite codimension,

(iv) the normal plane to a principal G-orbit in V meets every orbit orthog-
onally (such normal planes are called sections).

Using a similar argument as in [35], we have

8.10. Theorem. Let p: G — Iso(V') be a polar affine representation, and
M =G -z a principal orbit. Then

(i) M is isoparametric,

(ii) the associated Weyl group of M as an isoparametric submanifold is
N(Vzo)/Z(Vzo), where N(vg,) and Z(vg,) are the normalizer and centralizer
of vz, respectively, and vy, = zo + V(M)4,,

(ili) a point x in vy, is subregular (i.e., if an isotropy subgroup G, is con-
tained in G4, then G -y must be a principal orbit) if and only if = lies in one
and only one of the focal hyperplanes l;(zo) in vg,; moreover the multiplicity
m; 1s equal to dim(M) — dim(G - z).

8.11. Theorem. If an isoparametric submanifold M of V is a G-orbit for
an affine representation p: G — Iso(V'), then p is polar, and M is a principal
G-orbit.

8.12. Corollary. An orbit M of an affine representation p on V 1is
1soparametric if and only if p is polar, and M 1is a principal orbit.

Let T be the abelian group of all the translations of V. Then the natural
action of T on V is polar affine. A polar affine representation of this type
will be called of translation type. It follows from the geometric theory of
finite dimensional isoparametric submanifolds that every finite dimensional
polar affine representation can be written as the product of a polar affine
representation of translation type and a linear polar representation. Hence
it is completely classified by Dadok’s theorem [15] (they are essentially the
isotropy representations of symmetric spaces). However the only known infi-
nite dimensional examples are those given in §4. This suggests the following:

8.13. Open problems and questions. (i) Classification of polar affine
representations, and their marked Dynkin diagrams.

(ii) Is there an infinite dimensional isoparametric submanifold with irre-
ducible affine Weyl group that is not an orbit of some polar affine representa-
tion (i.e., nonhomogeneous)? Since there are many finite dimensional nonho-
mogeneous rank-2 isoparametric submanifolds ([32], [17]) and the product of
isoparametric submanifolds is isoparametric, there are many nonhomogeneous
examples with reducible Coxeter groups.
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9. Parallel foliations

Let M be a PF submanifold of V with flat normal bundle. In general
the parallel set M, = {Y(v(z)) = z + v(z), £ € M}, defined by a parallel
normal field v, may be a singular set, and & = {M,|v parallel normal field
on M} need not foliate V. The main result of this section is that if M is
isoparametric, then each M, is an embedded submanifold of V', and & gives
an orbit-like singular foliation on V.

In what follows M is an isoparametric submanifold of a Hilbert space V.
9.1. Proposition. M Ny, =W - q, where vy = (¢ + v(M),).

Proof. 1t is easily seen that W -q¢ C M Nv,. Now suppose that b € M Nv,.
Then b € v, Nvg. But b is nonfocal with respect to b, so it follows from 7.5
that we have b e W - q.

9.2. Proposition. Suppose o is a simplex of A,, and o’ is a simplex of
Agy. IfoNo' #O, theno =0 and Nyyo = Ny 5.

Proof. Suppose a € 0 No'. Then q and ¢’ are critical points of f, with
0 as index, mg o, Mg o as nullities, and Ny 5, Ny o as critical submanifolds
of fo at g and ¢’ respectively. So it follows from 5.10 that Ny, = Ny o. In
particular ¢’ € Ny ,. Using 8.1, N, is isoparametric in the Euclidean space
of dimension (my + k). It is a result of the finite dimensional isoparametric
theory that the normal parallel translation of Ny, transforms focal set ¥,
of Ny, to £y and conjugates the Weyl group W, to W,,. Applying this to
every subsimplex of o, we obtain ¢/ = 0.

9.3. Proposition. Let o be a simplex of a Weyl chamber in vy, p €W,
and N, as in 8.1. Then ©(Nyo) = Ny(g),0-

Proof. Let ¢; and o; be as in 6.11. Using 8.1, we see that N, , is the leaf
of the distribution @{E;|j € I(g,0)} through g, and Nyg), is the leaf of
the distribution @{E;|j € I(¢(g),0)} through ©(g). Then the proposition
follows from 6.11(i).

9.4. Theorem. Let M be an isoparametric submanifold of V, A the Weyl
chamber in v, containing q, and a € v, a focal point with respect to q. Then
fa 1s nondegenerate in the sense of Bott, and C(f,) = U{Nz 0|z €W - ¢}.

Proof. For £ € W - q it follows from 8.2 that z is a critical point of f,
with nullity m; , and N; , as the critical submanifold of f, through z. Hence
N:zs C C(fa). Conversely, if y € C(f,), then a € v,,. By 7.5, a is a focal
point with respect to y, so there exist ¢ € W such that ¢~!(y) = yo, and a
simplex ¢’ in Ay, such that a € o’. Then it follows from 9.2 that ¢ = ¢’ and
xq‘, = Ny,,0- Thus we have ©(Ng o) = Ny(g).o = ©(Nyo,o) = Np(yo)o =

y.0°
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9.5. Theorem. Let M be a codimension k isoparametric submanifold of
V, and v a parallel normal field of M. Then the following hold:

(i) The map I + v has constant, finite corank, so the image M, =
(I +v)(M) is always an immersed submanifold of V with finite codimension
(k + nullity(I — A,)). M, is called a parallel submanifold of M.

(i1) (I +v) is an immersion if and only if {v,v;) #1 for alli € I.

(iil) If (I +v) is an immersion, and ¢* = (I + v)(q), then M, is isopara-
metric, M, and M have the same normal planes, the same focal sets at q and
q*, and the same assoctated Weyl groups and multiplicities.

9.6. Theorem. Let M be an isoparametric submanifold in V, q € M,
and A, the Weyl chamber of W on v, containing q. Let v € v(M),, let v
denote the parallel normal vector field on M determined by ¥(q) = v, and let
M, denote the parallel submanifold M. Then the following hold:

(i) Ifv# w, and g+v and g+w are in Ay, then M, and M, are disjoint.

(i) Given anyy inV there exists a unique v € v(M), such that g+v € Ay
and y € M,.

Proof. Suppose (¢ + v),(¢ + w) are in Ay, and M, N M,, # . Let
a € M, N M,,. Then there exist z,y € M such that a = z + 9(z) = y + @ (y).
Since a € Ay and 0, w are parallel, a € A; and a € Ay. So z and y are
critical points of f, with index 0. If a is nonfocal, then z = y, which implies
that v = w. If a is focal (suppose a is in the simplex o), then the two critical
submanifolds N;, and Ny, are equal. In particular y € N;,. We note that
N: . is a finite dimensional isoparametric submanifold in 7(¢) C a + v(My),.
Let v = uy + ug, where us is the orthogonal projection of v along V(o).
Then N, , is contained in the sphere of radius ||u;|| and centered at z + u;.
So y + #1(y) = = + uy. Since V(o) is perpendicular to Ny o, t2(y) = uz.
Therefore we have y + 9(y) = z + 9(z) = a = y + @(y), which implies that
v=w.

9.7. Corollary. Let M be an isoparametric submanifold of V. Then
G = {M,|q+v € Ay} defines an orbit-like singular foliation onV , which will
be called the isoparametric foliation of M. The leaf space of & 1is isomorphic
to the orbit space vq /W .

9.8. Corollary. Ifa € 0 C A, and a = q + v, then the isoparametric
foliation of Ny, in (a +v(My),) 18 {MyN(a+v(My),)| My, € F}.

10. The Chevalley restriction theorem
A smooth map f = (f1, -, fx): R*t*¥ — RF is isoparametric if Af; and

(V fi, Vf;) are functions of fy,--- , fx, and [V f;, V f;] is a linear combination
of Vfi, -,V ([9], [41]). If M™ is isoparametric in R"*¥ with W as the
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associated Weyl group, then in [41] we proved an analogue of the Chevalley
restriction theorem [44] for the adjoint action of a compact Lie group on its Lie
algebra, i.e., if u is a W-invariant polynomial on the affine normal plane vy,
then u can be extended to a polynomial % on R®** such that % is constant on
every parallel submanifold of M. Since the ring of W-invariant polynomials
on vy, is a polynomial ring with k generators uy, - -+ , ug [13], f = (¥, ,Uk)
is an isoparametric polynomial map on R®**, M is a level set of f and each
level set of f is a parallel set of M.

For an infinite dimensional Hilbert space, the Laplace operator is not de-
fined, so the definition of isoparametric map cannot be easily generalized.
However the geometric analogue of Chevalley’s restriction theorem is still
true for the C*° category.

10.1. Theorem. Let M be a rank-k isoparametric submanifold of V, W
the associated affine Weyl group, and q € vq. Suppose f: vy — R is a smooth
W -invariant function. Then f can be extended uniquely to a smooth function
f onV such that f 18 constant on every parallel submanifold of M.

Proof. Given v € v(M),, we let ¥ denote the unique parallel normal field
on M such that 9(q) = v, and M, the parallel submanifold M;. Let A be the
Weyl chamber containing ¢, and A the interior of A. Since & = {M,lve A}
foliates V, f has a unique and well-defined extension f to V, i.e., f (z) = f(v)
if z € M,.

We claim that f is smooth at nonfocal points of M. To see this we note that
the map F: M x A° — V, defined by F(z,v) = z +9(z), is a diffeomorphism
from (M x A°) onto an open dense subset % = F(M x A®) (% is the set of
nonfocal points of M) of V, and F(M x {v}) = M,. So f is smooth on %.

Suppose a € A is a focal point. Then there are v € v(M), and a simplex
0 C A such that a = (g+v) € 0. We have shown that the parallel translation
with respect to the normal connection conjugates the W-actions on the affine
normal planes vz, and two points in v, lie in the same parallel submanifold M,
if and only if these two points lie in the same W-orbit. So f |vy is W-invariant
for any z € M. To prove the theorem, it suffices to prove that f is smooth
at a neighborhood of a. Although the foliation # does not necessarily come
from a group action, we can imitate the proof of the C* Chevalley restriction
theorem for the group actions with sections (as in [35]) by geometric means.
We proceed as follows:

(i) The map # = I +9: M — M, is a fibration, so there is a local cross
section s defined on an open subset U of a in M, such that s(a) = q.

(ii) Let 4 be the Banach space of selfadjoint compact operators on V,
and O(V') the Banach group of the orthogonal transformations. Let O(V)
act on .# by conjugation. Then all the isotropy subgroups are closed. Since
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TM; is a finite codimension closed subspace of V, we may view the shape
operator A, for u € ¥(M), as an element of .# . It follows from the definition
of isoparametric that Aj;) and A, lie in the same O(V')-orbit. From the
standard theory of transformation groups the orbit map p: O(V) — O(V)- A4,
is a fibration, so there is a local cross section « of p defined on a neighborhood
of A, such that p(A4,) = id.

(iii) Let Io = I(q,0),¢(z, Io) = D{Ei(z)|i € In}, and let Py : vqg — v; be
defined by P, (¢ + v) = z + 9(z). Then we have

v(My)a = v(M)q X (g, lo),
$(s(y), Io) = T(Ns(y),P,.(0))s(v)>
'7(As(y))(§(Qa o)) = ¢(s(y), lo)-

So the map

¥V My x v(M)g x ¢(q, Ip) — v(My)
(y,u,w) = 4(s(y)) + Y(As(y)) (w)

defines a vector bundle isomorphism, i.e., ¥ maps {y} x v(M), % ¢(q, Io)
isomorphically to v(M,),. The restriction of the isoparametric foliation & on
V to y+v(My)s(y) is the isoparametric foliation given by the slice Ny(y),p, . (o)
and 9 maps leaves of a + v(M,)q to y + v(My)s(y). Using the slice theorem
8.1, the Weyl group associated to Ny, in a + v(M,), is W,, and W, is of
rank ko = k — dim(o).

(iv) This theorem is true if M is of finite dimension, and f is a W-invariant
polynomial (Theorem C of [41]). By a theorem of Chevalley the ring of W,-
invariant polynomials on a + v(M,), is a polynomial ring of ko generators,
U1, " ,Uk,. Using a theorem of Schwarz [37], there exists a smooth func-
tion ¢: (a + v(My)a) — R such that fl(a + v(My)a) = o(u1, - ,uk,). So
fl(a + v(My)q) is smooth. Then it follows from (iii) that f is smooth in a
neighborhood of a in V. q.e.d.

As a consequence we obtain the following analogue of the Chevalley restric-
tion theorem:

10.2. Corollary. Let M be an isoparametric submanifold of V, W the
associated affine Weyl group, and ¢ € v,. Let C®(V)” denote the set
of smooth functions on V which are constant on each leaf of &, and let
C®(vg)W denote the set of all smooth W -invariant functions on v,. Let
®: C®(V)7 — C®(y, )V be the restriction map, i.e., ®(f) = flvg. Then @
18 an isomorphism.

Let M be a rank k isoparametric submanifold of V, and o a vertex of A,.
Then the isotropy subgroup W, is a finite Weyl group, and W is the semidirect
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product of W, and a rank-k lattice A in v,. Let C*(v,)" denote the space
of smooth W-invariant functions on v,. Then v,/A = T* is a k-dimensional
torus, and C®(T*)We ~ C®(v,)W. Since W, is a finite group acting on the
compact torus, there exist finitely many generators f1, f2, - , fm of C®(vg)"
such that {f;} separate orbits of W on v,. Therefore their extensions fi on
V defines M. Moreover let f = (f1, -, fm); then {f~1(c)|c € R™} is the
isoparametric foliation of M. However m may be larger than k.

Appendix. Discrete Coxeter groups

We will review the definitions of proper actions and Coxeter groups, and
give a characterization of Coxeter groups.

Definition. A G-action on M is called proper if gz, — y and z,, — z in
M imply that g, has a convergent subsequence in G. If G is a discrete group,
then a proper G-action is classically known as a properly discontinuous action.

Remark. A G-action on M is proper if and only if one of the following
conditions is satisfied:

(i) the map from G X M to M x M defined by (g,z) — (gz, z) is proper,

(ii) given any compact subsets K and L of M, the set {g € G|gK NL # &}
is compact.

Let Iso(R¥) denote the group of isometries of R¥, which is the semidirect
product of the group O(k) of orthogonal transformations and the group R*
of translations. In particular, if ¢: R¥ — R¥ is an isometry, then there exist
to € R¥ and T € O(RF) such that p(z) = to + T(z) for all z € RF.

Coxeter groups can be defined either algebraically in terms of generators
and relations or else geometrically [5]. We will use the geometric definition.

Definition. A subgroup W of Iso(R¥) generated by reflections in a finite
or countable set of hyperplanes # = {l;|v € I} is a Cozeter group if the
following conditions are satisfied:

) W(H)=Z,ie,g(l)e X forallle Z.
(ii) the induced topology of W from Iso(R¥) is discrete,

(iii) W acts on R* properly.

An infinite Coxeter group is also called an affine Weyl group.

It is well known [5] that if W is a Coxeter group, then /#Z is locally finite
(i.e., given any point z in R¥ there exists a neighborhood U of z such that
U intersects only finitely many of the /;). The converse is also true, but we
cannot find a proof in the literature, so we will give a proof here. First we
make the following definitions.

Definition. Let # = {I;|i € I'} be a family of hyperplanes in R¥, and v; a
unit normal vector of /;. Then the rank of #, denoted by rank(/#), is defined
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to be the maximal number of independent vectors in {v;|¢ € I'}. The rank of
the subgroup W generated by reflections in I; is defined to be the rank of #.

Lemma. Let Z = {l;|i € I} be a locally finite family of hyperplanes of
rankm < k in R¥, G the subgroup of Iso(R¥) generated by reflections in l;, and
v; the unit normal vector of l;. Suppose vy,--- , vy, are linearly independent.
Let V denote the linear subspace spanned by vy, -+ ,vm, p € ({L|i < m},
and E=p+V. Then

(i) g(E) C E,
(if) Z* = {l; = ;N E|i € I} is a locally finite family of hyperplanes in E,
and rank(Z*) = m,

(iil) the restriction map ®: G — Iso(E) given by ®(g) = g | E s injective,

(iv) ®(G), is generated by reflections in I;,

(V) ®(G)Z*)=F*if GX)=Z.

Proof. We may assume that p = 0, i.e., E = V. Since rank(#) = m
and vy, -, v, are linearly independent, we have v; € V, and ii =LNE
is a hyperplane of E for all « € I. The local finiteness of # implies that
{ii = l; N E|i € I} is locally finite. Let r; (resp. 7#;) denote the reflections
in I; (resp. I;) of R¥ (resp. E). Let s; denote the linear reflection of R* in
(vi)*. Since l; N E # @, there exists t; € E such that r;(z) = t; + s;(z) for
all z € R¥. Because v; € V, we have s; | V* is identity. Noting that r; is an
affine transformation, we have r;(y + z) = r;(y) + si(2). Given any z € Rk,
write £ = y + 2, where y € V,z € V+. Then r;(z) = #;(y) + 2, which implies
that g(z) = ®(g)(y) + 2, and #; = r; | E. Hence (i), (iii), (iv) and (v) follow.

Theorem. Let #Z = {l;|t € I} be a locally finite family of hyperplanes
in R*, and W the subgroup of Iso(R*) generated by reflections in l;. Suppose
W(#Z)=#. Then W is a Cozeter group.

Proof. 1t follows from the above lemma that we may assume that rank(#)
= k. Let v; be the unit normal vector of /; in R*. Then {v;,|1 < j < k} forms
a basis of R* if and only if N{l;,|1 < j < k} consists of a single point. Such
a point is called a vertex of #Z. Let 7~ denote the set of all vertices of #.
Then it follows from the local finiteness of #Z that 7 is a discrete subset of
Rk. Since W permutes hyperplanes in #, W permutes Z”. Now suppose that
gn € W and g, — id in Iso(R¥). Given p € 77, g.(p) — p is a convergent
sequence in the discrete set 7. So there exists ng such that g,(p) = p for all
n > ng. The local finiteness of # implies that J = {i € I|p € I;} is finite.
Since p is a vertex, the maximal number of independent vectors in {v;|j € J}
is k. Then G = {p € Iso(R¥)|o(p) = p, and for each j € J, p(I;) = I; for
some 1 € J} is a finite subgroup. In fact if |J| = m, then |G| < 2™(m!). It can
be easily seen that g, € G for n > ng. But g, — id, so there exists n; > ng
such that g, = id for all n > n;. This proves that W is discrete. 1t remains
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to prove that W acts on R* properly. Suppose g, € G, gnz — y and z, — <.
Then there exist ¢, € RF and T, € O(k) such that g, = t, + T,,. Since O(k)
is compact, there exist a subsequence Ty, and Tp € O(n) such that T, — To.
But we have gn,Zn, = tn, + Tn,Zn;, — ¥, Tn, — &, and T, zn, — Toz. So
tn, = to = (y — Tox), i€, gn, — go = to + To. Since g, (#) = # and Z is

locally finite, go(#') = Z, i.e., gn, — go. Because W is discrete, there exists
10 such that g, = go for all 7 > 1p.
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