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ON THE MEAN EXIT TIME
FROM A MINIMAL SUBMANIFOLD

STEEN MARKVORSEN

Abstract

Let M™ be an immersed minimal submanifold of a Riemannian manifold
N™, and consider the Brownian motion on a regular ball Qg C M
with exterior radius R. The mean exit time for the motion from a
point z € Qg is called Eg(z). In this paper we find sharp support
functions for Er(z) in the following distinct cases. The support is from
below if the sectional curvatures of N are bounded from below by a
nonnegative constant and the support is from above if the sectional
curvatures of N are bounded from above by a nonpositive constant. It
follows that the minimal submanifolds of R™ all have the same mean
exit time function and we show that this function actually characterizes
the minimal hypersurfaces in the set of all hypersurfaces of R".

1. Introduction

Let M™ be an immersed (not necessarily minimal) submanifold of a com-
plete Riemannian manifold N™. The distance function on N is denoted by
r so that disty(p, z) = rp(z) for all p,z in N. We now fix p € M C N and
define a regular domain Qg(p) C M to be a smooth connected component of
Bgr(p) N M™ which contains p. Here Bg(p) is the geodesic R-ball around p
in N subject to the usual restriction that R < min{in(p), m\/x}, where « is
the supremum of the sectional curvatures of N, and iy (p) is the injectivity
radius of N from p.

We now consider the Brownian motion on the domain Qg (cf. [4]) and
denote by Er(z) the mean time of first exit from Qg for a Brownian particle
starting-at £ € (0. We want to compare Fr(z) with the mean exit time
function Eﬁz(i) on the space form R-ball B (5) of dimension m = dim M
and constant curvature b € R. Since ER has maximal isotropy at the center
P, we have that Er only depends on the distance of Z from p. Hence we may,
and do, write E%(%) = &3(r5(%)) = &2(r). In order to compare E and E we
transplant E to Qg by the following definition:

El}t: Qr — R; E%(z) = (é},g orp)(z).

Our main result can now be formulated as follows.
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Theorem 1. Let M™ be a minimally immersed submanifold of N™ and
let Qr(p) be a regular domain on M.

(i) If the sectional curvatures Ky of N satisfy Ky > b > 0, then Eg(z) >
Eﬂ’?(z) for allz € Qp.
(ii) If Ky < b <0, then Eg(z) < E%(z) for all z € Qg.

Remark. This type of theorem was first proved by Debiard, Gaveau and
Mazet in [3] where they used techniques different from ours to obtain bounds
on the mean exit times from codimension-0 domains of N. The setting in
Theorem 1 is more general in the sense that we have no a priori control on
the sectional curvatures of the domains {2 in question.

A fundamental observation of Dynkin (cf. [4, vol. 2, p. 51]) states that the
function Er(z) satisfies the Poisson equation on g with Dirichlet boundary
data, i.e.,

(11) AgEg = -1, ERIGQR =0,

where Agq is the induced Laplacian on {1r defined by Aq = divqogradg =
traceq o Hessq.

If we let G(z,y) denote the Green’s functions with Dirichlet boundary
conditions on (1g, then every smooth function f on {1y satisfies

f(z) = - /n Gl(z,y)Af(y) dy - /a ) %x,y)f(y)dy.

In particular, if we set f = Ep we get by (1.1)
Eg(z) = / G(z,y) dy.
Qr
On the other hand, the Green’s functions are given by
Glz,y) = / #(z,9,0)dt,
0
where # is the Dirichlet heat kernel on Q. Thus
[o o]
(1.2) Eg(z) = / / Z(z,y,t)dtdy,
arJo
and similarly
~ oo ~
B@)= [ [ B@i0dd
Br JO
In [8] we showed that under the assumptions of Theorem 1(ii) we have

(1.3) Z(p,y,t) < F2(rp(y), 1),

and also

(1.4) T (p,y,1) < ZR(rp(y), 1),
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where % and % are the Neumann heat kernels on Q2 r(p) and Bg(p) respec-
tively. From these latter kernels one may extract the volumes of the respective
domains (cf. [2]) and obtain

(1.5) dy> | dy.

Qr Br
It is now natural to ask for situations where inequalities of type (1.3) and
(1.5) balance each other so as to give
(%) Eg(z) = E%(z) for all z € Qp.
With this in mind we show the following gap phenomenon for minimal sub-
manifolds of constant curvature space forms: The condition (#) is a Bernstein
type condition in every nonflat space form in the sense that (g (and in fact all
of M™) must be totally geodesic if it is minimal and satisfies (*). In contrast,
(%) is always satisfied in R™, where it even characterizes minimal hypersur-
faces in the set of all hypersurfaces. To be precise we have the following
theorems.

Theorem 2. Under the assumptions of Theorem 1, suppose further that
(%) s fulfilled and that b # 0. Then Qg is a minimal cone in N™ and hence,
if N™ is actually a space form of constant curvature b, then M™ 1is a totally
geodesic submanifold of N™.

Theorem 3. Let (g be a regular domain of a minimal submanifold of
R™. Then (*) is satisfied. Conversely, if (x) is satisfied for all = in a regular
domain Qg of a hypersurface in R™, then Qg 1s minimal.

We note here that Theorem 3 may be viewed as a semiglobal generalization
of the following local result which is due to L. Karp and M. Pinsky (cf. [7]).

Theorem A. Let M™! be a hypersurface of R™, and consider the do-
mains Q. (p) C M for some firedpe M. If E.(p) = E? (p) for all sufficiently
small ¢ > 0, then the mean curvature of M at p s zero.

Remark. In order to construct the functional dependence of E(p) on
€ in this theorem it is in principle necessary to solve an infinite number of
Poisson equations (one for every €), whereas it is only necessary to solve a
single Poisson equation (i.e., (1.1)) to check condition () for Theorem 3.

2. Some preliminary inequalities
The following Hessian comparison theorem is well known and may be ob-
tained from standard index comparison theory (cf. [1]).
Lemma 1. If Ky <b (respectively Ky > b), b € R, then for every unit
vector X in the tangent bundle of Br(p) — p we have

(2.1) Hess (rp) (X, X) 2 (<) hu(rp)(1 — (grady rp, X)?),
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where hy(r) 1s the constant mean curvature of any distance sphere of radius r
in a space form of constant curvature b.

Now let F be a smooth function on R. Then F o7, is a smooth function
on Bg(p) — p with a smooth restriction to Qg (p) — p. A calculation along the
lines of [6, p. 713] now gives
(2.2)

Hessq(F o r)(X, X) = F"(r)(grad(r), X)?

+ F'(r) (Hessn (r)(X, X) + (grad y (1), a(X, X)))
for all X € T(Qr(p) — p), where af(-,) is the second fundamental form of {2
in N.

Combining (2.1) and (2.2) we get

Lemma 2. Letq € Qgr(p)—p and let {X;}, 1 < i < m, be an orthonormal
basis of To() C TqN. Suppose that F’(r) > 0 for allr € [0, R] and that Ky < b
(respectively Ky > b), b€ R. Then

m

Aa(For)ly 2 (<) (F"(r) - F'(hy(r) - Y grady(r), X;)?

Jj=1
+mF'(r)(hy(r) + (gradn(r), H(q))),
where H(g) is the mean curvature vector of (2 at ¢ in N.
In what follows we shall only consider functions F' = Fj defined by

F1- cos(vor)) if b> 0,
(2.4) Fy(r)={ r2/2 ifb=0,
$(1 —cosh(v/=br)) ifb<0.
Then Fy o7 is a smooth function on all of Qg(p), and moreover F}'(r) =
F{(r)hy(r) so that Lemma 2 specializes to
Corollary 3. If Ky <b (resp. Ky >b), then
(2.5) Aq(Fyor)lg 2 (<) mEy(r)(he(r) + pHa(g)),
where we have defined pHq(q) = (grady(r), H(q)), pHa(p) = 0.

(2.3)

3. Some properties of E

The mean time of first exit from a space form ball of constant curvature b,
radius R and dimension m is given explicitly by (cf. [3])

(3.1) Eh(r) = /rR(é’b(u)u"“‘)‘1 (/Ou 0b(t)t"“1dt) du

= &8(0) - £2(0),
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where 6, is the change of volume factor induced by the exponential map, i.e.,
(sin v/br /v/br)m—1 if b > 0,
(3.2) Op(r)=1<1 if b=0,
(sinh /=br/\/—=br)™~! ifb<O0.
Changing the variable from r to s(r) = Fy(r) defined in (2.4) we get g}{’(r) =
ER(r(s)) = E(s).
We shall need the following observations.

Proposition 4. E%(s) is a smooth function of s for 0 < s < s(R), and
in this interval we have

d
(3.3) £E'_§(s) <0 for every b,
P2 <0 ifb>0,
(3.4) pEg(s) =0 ifb=0,
>0 fb<O.

Proof.  Since r(s) and g,g (r) (in (3.1)) are smooth when the respective
arguments are nonzero, we see that E(s) is a smooth function of s for 0 <
s < s(R). The fact that E%(z) solves the Poisson equation (1.1) on Bg(p)
can therefore be written as
(3.5) ~1=AE=E"(s) | grad 5| + E'(s) - As,
and so from (2.5),

—1=E"(s) - (s'(r))* + E'(s) - ms' (r)ho(r),
or equivalently
(3.6) —1=E"(s) - s(2—bs) + E'(s) - m(1 - bs).

The unique solution E(s) to (3.6) with E(0) = ¢ has a power series expansion
E(s) = Y7, cks® whose radius of absolute convergence is 2/[b|. Indeed, a
substitution of the series into (3.6) leads to the recurrence relation

e1=—1/m, cre1=ck bk?+ (m—1)k)/(2k*+ (m+2)k+m), k>1,
and the claim now follows from the ratio test together with
|ck+1|/|ck[ - |b|/2 for k — oo.

In particular E%(s) is therefore smooth in the closed interval 0 < s < s(R),
and

EL(s) — E(0)

(3.7) 1 b, b2(m+1) 2
—s — Eales 87— 8§ < =
m  2(m+2) 3(m+2)(m+4) 5]
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We see that E'(0) = —1/m < 0, and the inequality (3.3) follows for all other
values of s from 7/(s) > 0 and &’(r) < 0 (from (3.1)). Furthermore, the series
(3.7) also gives directly the statement (3.4) for b > 0 and b = 0 respectively.
In case b < 0 we first observe from (3.7) that E”(0) = —=b/(m+2) > 0. A
differentiation of (3.6) with respect to s gives

0= (E"(s)) - s(2 - bs) + (E"(s))(m + 2)(1 — bs) — mbE'(s).
Here mbE'(s) is positive so that E”(s) = n(s) satisfies
0<n'(s)-s(2=0bs)+n(s)(m+2)(1—bs).

If a first zero sq exists for 7, then n’(sg) > 0, but this is clearly ruled out by
n(0) > 0. Hence E"(s) is positive for all s when b < 0.

4. Proof of Theorems 1 and 2
The comparison of Eg(z) with E%(s(r,(z))) will follow from the identity

(4.1) AqE%L (s(r(z))) = E"(s) - || gradg s||® + E'(s) - Aqs.

In fact, suppose that Ky > b > 0. Then by Corollary 3 (with Hgq = 0),
Proposition 4 and the fact that || gradg s||? < || grady s||> = || grads,, s||*> we
get
AE%(z) > E"(s) - || grady 8|2 + E'(s) - ms'(r) ks (r)
> E"(s) - || grads,, 8|2 + E'(s) - Agns
=Az EY% = -1=AqEg().

Therefore E}’%(x) — ER(z) is a subharmonic function on (g vanishing on Qg
so that the maximum principle applies and gives E'%(:c) < Eg(z) for all
z € pg.

In case Ky < b < 0 we get similarly

AqEy(z) < A, E% = -1 = AqEg(z).

Thus E‘}’z(x) — Eg(z) is a superharmonic function vanishing on the boundary
so that Eﬁ’z(m) > Eg(z) for all 2 € Qg. This proves Theorem 1.

If Ky = b =0, then by continuity E‘,’i(z) = Eg(z) for all z € Qg. Con-
versely, if EN'S’%(I) = Eg(z) for all z € (1g, and we are in one of the two
cases of Theorem 1 with b # 0, then we conclude from (E%(s))” # 0 that
[lgradq s|| = || grady s||. Hence Qg is a minimal cone in N. If N has con-
stant curvature Ky = b # 0, then by analytic continuation from Qr = Bp
we finally get that all of M™ is a totally geodesic submanifold of N™. q.e.d.
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We note here that if g (p) is a codimension-0 domain of N we get || gradg, s||
= | grady s|| for free, so that the assumption of Eg(z) = E%(z) for all
z € Qgr(p) now gives (from (4.1))

(4.2) Aas=Az s foralls.

Under any of the curvature assumptions Ricy > (n—1)bor Ky <b, (4.2) is
only possible if Kn = b along every ‘radial’ plane in Qg(p), which therefore
must be isometric to the space form ball Bg, of constant curvature b (cf. [1]).
Thus we get the following rigidity theorem which completes the Corollaire in
[3, p. 796].

Proposition 5. Let Q% (p) be a regular domain of N™. Suppose that
either Ricy > (n — 1)b or Ky < b for some b € R, and that Eg(z) = E%(z)
for all x € Qp. Then Qg s tsometric to Br with constant curvature b.

5. Submanifolds of R"

Now suppose again that (g is a regular domain of any submanifold of R™.
Then

AqE%(z) = E'(s) - Aqs
=E'(s) - ms'(r)(ho(r) + pHa(z))
= Ap,E%(z) + E(s) - mr(z)pHq(z)
= AqEg(z) + mr(z)E'(s) - pHq(z).

(5.1)

If we assume that Eg(z) = E%(z) for all z € (g, then we must have pHq(z) =
0.

To establish Theorem 3 stated in §1 we therefore only have to prove the
following

Lemma 6. Let M™~! be an immersed hypersurface of R™. If M has
everywhere vanishing pH, then M is minimal.

Proof.  Suppose for contradiction that H(q) # 0 for some ¢ € M. Then
H # 0 in some maximal neighborhood % (q) C M. Since

pH(z) = (gradg. 7, H) =0,

and H is orthogonal to the tangent space T,%, we get gradgn(z) € T, Z.
Thus Z(z) = gradg~ r(z) is a unit vector field whose straight line integral
curves foliate Z. Hence # is part of a cone with vertex p. But on a cone in
R™ the length of the mean curvature vector grows to co as one approaches the
vertex. In particular %(q) must contain p where |H|| = co. This contradicts
the smoothness of M and proves the lemma.
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