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ON THE MEAN EXIT TIME
FROM A MINIMAL SUBMANIFOLD

STEEN MARKVORSEN

Abstract

Let Mm be an immersed minimal submanifold of a Riemannian manifold
Nn, and consider the Brownian motion on a regular ball ΏR C M
with exterior radius R. The mean exit time for the motion from a
point x € Ωβ is called ER(X). In this paper we find sharp support
functions for ER(X) in the following distinct cases. The support is from
below if the sectional curvatures of N are bounded from below by a
nonnegative constant and the support is from above if the sectional
curvatures of N are bounded from above by a nonpositive constant. It
follows that the minimal submanifolds of R n all have the same mean
exit time function and we show that this function actually characterizes
the minimal hypersurfaces in the set of all hypersurfaces of R n .

1. Introduction

Let M m be an immersed (not necessarily minimal) submanifold of a com-
plete Riemannian manifold Nn. The distance function on N is denoted by
r so that dist;v(p, x) = rp(x) for all p, x in N. We now fix p G M c N and
define a regular domain ΩR{P) C M to be a smooth connected component of
BR{P) Π Mm which contains p. Here BR(P) is the geodesic Λ-ball around p
in N subject to the usual restriction that R < min{ijv(p), TTT/K}, where K is
the supremum of the sectional curvatures of N, and ΪN{P) is the injectivity
radius of N from p.

We now consider the Brownian motion on the domain ΩR (cf. [4]) and
denote by ER(X) the mean time of first exit from Ω# for a Brownian particle
starting at x G ΏR. We want to compare ER(X) with the mean exit time
function Eb

R{x) on the space form β-ball B^ip) of dimension m — dim M
and constant curvature b G R. Since BR has maximal isotropy at the center
p, we have that ER only depends on the distance of ί from p. Hence we may,
and do, write Eb

R(x) = <§ (̂f*p(i)) = &R{r). In order to compare E and E we
transplant E to Ω# by the following definition:

Our main result can now be formulated as follows.
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Theorem 1. Let Mm be a minimally immersed submanifold of Nn and

let ΩR(P) be a regular domain on M.

(i) // the sectional curvatures KN of N satisfy Kjy > b > 0, then ER(x) >

Eb

R(x) for allxeΩR.

(ii) IfKN<b<0, then ER{x) < Eb

R{x) for all xeΩR.

Remark. This type of theorem was first proved by Debiard, Gaveau and

Mazet in [3] where they used techniques different from ours to obtain bounds

on the mean exit times from codimension-0 domains of N. The setting in

Theorem 1 is more general in the sense that we have no a priori control on

the sectional curvatures of the domains ΩR in question.

A fundamental observation of Dynkin (cf. [4, vol. 2, p. 51]) states that the

function ER{X) satisfies the Poisson equation on ΩR with Dirichlet boundary

data, i.e.,

(1.1) ΔΩER = -1, ER\dΩR=0,

where Δ Q is the induced Laplacian on Ω^ defined by Δ Q = div^ o gradΩ =

tracen oHessn

If we let G(x, y) denote the Green's functions with Dirichlet boundary

conditions on Ω#, then every smooth function / on Ωfl satisfies

f(x) = - ί G(x, y)Af(y) dy - f ^ ( x , y)f(y) dy.

In particular, if we set / = ER we get by (1.1)

ER(x)= ί G{x,y)dy.
JOR

On the other hand, the Green's functions are given by

G(x,y)= ί βf{x,y,t)dt,
Jo

where %" is the Dirichlet heat kernel on ΩR. Thus

(1-2) ER(x)= f Γ β?{x,y,t)dtdy,
JΩR JO

and similarly

= ί Γ
JBR JOBR

In [8] we showed that under the assumptions of Theorem l(ii) we have

(1-3)

and also

(1-4)
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where J£ and J Γ are the Neumann heat kernels on ΩR(P) and BR{P) respec-

tively. From these latter kernels one may extract the volumes of the respective

domains (cf. [2]) and obtain

(1.5) ί dy> f dy.
JnR JBR

It is now natural to ask for situations where inequalities of type (1.3) and

(1.5) balance each other so as to give
(*) ER(x)=Eb

R(x) forallzeΩ*.

With this in mind we show the following gap phenomenon for minimal sub-

manifolds of constant curvature space forms: The condition (*) is a Bernstein

type condition in every nonflat space form in the sense that Ω^ (and in fact all

of Mm) must be totally geodesic if it is minimal and satisfies (*). In contrast,

(*) is always satisfied in R n , where it even characterizes minimal hypersur-

faces in the set of all hypersurfaces. To be precise we have the following

theorems.

Theorem 2. Under the assumptions of Theorem I, suppose further that

(*) is fulfilled and that b ̂  0. Then ΩR is a minimal cone in Nn and hence,

if Nn is actually a space form of constant curvature b, then Mm is a totally

geodesic submanifold of Nn.

Theorem 3. Let ΩR be a regular domain of a minimal submanifold of

R n . Then (*) is satisfied. Conversely, if (*) is satisfied for all x in a regular

domain ΩR of a hyper surface in R n , then ΩR is minimal.

We note here that Theorem 3 may be viewed as a semiglobal generalization

of the following local result which is due to L. Karp and M. Pinsky (cf. [7]).

Theorem A. Let Mn~λ be a hypersurface ofW1, and consider the do-

mains Ωe(p) C M for some fixed p G M. If E€(p) = E®{p) for all sufficiently
small e > 0, then the mean curvature of M at p is zero.

Remark. In order to construct the functional dependence of Ee(p) on
e in this theorem it is in principle necessary to solve an infinite number of
Poisson equations (one for every e), whereas it is only necessary to solve a
single Poisson equation (i.e., (1.1)) to check condition (*) for Theorem 3.

2. Some preliminary inequalities

The following Hessian comparison theorem is well known and may be ob-
tained from standard index comparison theory (cf. [1]).

L e m m a 1. If KN < b (respectively KN >b),b£ R , then for every unit

vector X in the tangent bundle of BR(P) — p we have

(2.1) RessN{rp){X,X) > (<) hb(rp)(l - 2
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where hb{r) is the constant mean curvature of any distance sphere of radius r

in a space form of constant curvature b.

Now let F be a smooth function on R. Then F o rp is a smooth function

on BR(P) —p with a smooth restriction to Ω#(p) —p. A calculation along the

lines of [6, p. 713] now gives

(2.2)

Hess Ω (For)(X,X) = F"(r)(grad N ( r ) ,X) 2

+ F'(r) (EessN(r)(X, X) + (grader), α(X,X)))

for all X £ Γ(Ω#(p) — p), where α( , •) is the second fundamental form of Ω

ΊnN.

Combining (2.1) and (2.2) we get

Lemma 2. Let q £ Ω#(p) — p and let {Xi}, 1 < i < m, be an orthonormal

basis ofTqΩcTqN. Suppose that F'[r) > 0 for all r e [0, R] and that KN <b

{respectively KN >b),bE R. Then

An(For)\q> (<) (F"(r) - F'(r)hb(r))

where H(q) is the mean curvature vector of Ω at q in N.

In what follows we shall only consider functions F — F\> defined by

!

\{\ -cos(Vbr)) if b > 0,

r 2 /2 if b = 0,

£(1 — cosh(v/—br)) if b < 0.

Then Fb o r is a smooth function on all of Ω#(p), and moreover F6"(r)

Fl(r)hb{r) so that Lemma 2 specializes to

Corollary 3. IfKN<b (resp. KN > b), then
(2.5) Δ Ω ( F 6 o r ) | g > (<) mFl{r){hb{r) +pHΩ{q)),
where we have definedpHn(q) — (gradΛ Γ(r),/ί(g)), pHn(p) = 0.

3. Some properties of E

The mean time of first exit from a space form ball of constant curvature

radius R and dimension m is given explicitly by (cf. [3])

(3 1
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where flj is the change of volume factor induced by the exponential map, i.e.,

( (sin Vbr/Vbr)™-1 if 6 > 0,

(3.2) θb{r)= I 1 if 6 = 0,

I 1-1 if b < 0.

Changing the variable from r to s(r) = Fb(r) defined in (2.4) we get Sβ(r) =

2 fc
We shall need the following observations.

Proposition 4. Eb

R(s) is a smooth function of s for 0 < s < s(R), and

in this interval we have

(3.3) J-Eβ(s) < 0 for every 6,
cts

!

<0 ifb >0,

= 0 2/6 = 0,

>0 ifb<0.

Proof. Since r(s) and <£R{r) (in (3.1)) are smooth when the respective

arguments are nonzero, we see that Έ(s) is a smooth function of s for 0 <

s < s(R). The fact that ER(x) solves the Poisson equation (1.1) on BR(P)

can therefore be written as

(3.5) - 1 = KE = E"(β) || gradό s||2 + E'(β) As,

and so from (2.5),

- 1 = E"(s) (s'(r))2 + E'{s) ms'{r)hb{r),

or equivalently

(3.6) - 1 = E"(s) s(2 - bs) + E7(s) m(l - bs).

The unique solution E(s) to (3.6) with E(0) = c0 has a power series expansion

E( 5) = ΣfcLocfcs/c w n o s e radius of absolute convergence is 2/|6|. Indeed, a

substitution of the series into (3.6) leads to the recurrence relation

d = -1/m, Cfc+i = ck 6(fc2 -f (m - l)fc)/(2fc2 + (m + 2)fc + m), k > 1,

and the claim now follows from the ratio test together with

|cfc_|-i|/|cfc| —• |6|/2 for k —> oo.

In particular Eb

R(s) is therefore smooth in the closed interval 0 < s < s(/2),

and

E»κ(β) - E6

R(0)

_ 1 - * C 2 b{m + l ) 3 2_
2( + 2) 3( + 2)( + 4) ' |6f

3

2

m 2(m + 2) 3(m + 2)(m
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We see that E'(0) = -1/ra < 0, and the inequality (3.3) follows for all other
values of s from rf(s) > 0 and £?'(r) < 0 (from (3.1)). Furthermore, the series
(3.7) also gives directly the statement (3.4) for b > 0 and 6 = 0 respectively.
In case b < 0 we first observe from (3.7) that E"(0) = -b/(m + 2) > 0. A
differentiation of (3.6) with respect to s gives

0 = (E"(β))' β(2 - bs) + (E"(s))(ra + 2)(1 - bs) - mbE'{s).

Here mbΈ'(s) is positive so that E"(s) = η(s) satisfies

0 < η'(s) s(2 - bs) + η(s) (m + 2)(1 - bs).

If a first zero so exists for r/, then η'(so) > 0, but this is clearly ruled out by
7/(0) > 0. Hence En(s) is positive for all s when b < 0.

4. Proof of Theorems 1 and 2

The comparison of ER(x) with Eb

R(s(rp(x))) will follow from the identity

(4.1) AQEb

R(s(r(x))) = E"(s) || gradΩ s\\2 + E'(s)

In fact, suppose that KN > b > 0. Then by Corollary 3 (with HQ = 0),
Proposition 4 and the fact that || gradΩ s||2 < || gradN s||2 = || grad^β s\\2 we
get

AΩEb

R(x) > E"(s) || grad^ 5 | | 2 + E'(s) msf(r)hb(r)

Therefore Eb

R{x) — ER(x) is a subharmonic function on Ω^ vanishing on dQR

so that the maximum principle applies and gives Eb

R{x) < ER(x) for all
χeΏR.

In case K^ < b < 0 we get similarly

AΩEb

R(x) < AsREb

R = - 1 = AQER(x).

Thus Eb

R{x) - ER(x) is a superharmonic function vanishing on the boundary
so that ER(x) > ER(x) for all x e ΏR. This proves Theorem 1.

If KN = 6 = 0, then by continuity Eb

R(x) = ER(x) for all x E ΏR. Con-
versely, if Eb

R{x) = ER(x) for all x E Ωβ, and we are in one of the two
cases of Theorem 1 with 6 ^ 0 , then we conclude from (Eb

R(s))f/ φ 0 that
|| gradΩ s|| = || grad^ s\. Hence ΏR is a minimal cone in N. If N has con-
stant curvature KN = 6 ^ 0 , then by analytic continuation from Ω# = BR

we finally get that all of Mm is a totally geodesic submanifold of Nn. q.e.d.
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We note here that if ΩR(P) is a codimension-0 domain of TV we get || gradΩ s||
= | |gradNs | | for free, so that the assumption of ER(X) = Eb

R(x) for all
x G Ωβ(p) now gives (from (4.1))

(4.2) Δas = ΔORs for all s.

Under any of the curvature assumptions Ricjv > {n — 1)6 or KN < b, (4.2) is
only possible if K^ = b along every 'radial' plane in Ω/?(p), which therefore
must be isometric to the space form ball BR of constant curvature b (cf. [1]).
Thus we get the following rigidity theorem which completes the Corollaire in
[3, p. 796].

Proposition 5. Let Ω^(p) be a regular domain of Nn. Suppose that
either Ric v > {n — l)b or KM < b for some b G R, and that ER(X) = Eb

R{x)
for all x G ΩR. Then ΩR is isometric to BR with constant curvature b.

5. Submanifolds of Rn

Now suppose again that Ω^ is a regular domain of any submanifold of R n .
Then

= E/(s) ms'(r)(h0(r)+pHn(x))

Δ

= ΔQER{x) + mr(z)E'(.s) pHφ).

If we assume that ER(X) = E%{x) for all x G Ωβ, then we must have pHn(x) =
0.

To establish Theorem 3 stated in §1 we therefore only have to prove the
following

Lemma 6. Let M 7 2" 1 be an immersed hyper surface of R n . // M has
everywhere vanishing pH, then M is minimal.

Proof. Suppose for contradiction that H(q) φ 0 for some q G M. Then
H φ 0 in some maximal neighborhood %f(q) C M. Since

and H is orthogonal to the tangent space T x ^ , we get gradβn(x) G Tx%.
Thus Z(x) = gradΛn r(x) is a unit vector field whose straight line integral
curves foliate %. Hence % is part of a cone with vertex p. But on a cone in
R n the length of the mean curvature vector grows to oo as one approaches the
vertex. In particular %f(q) must contain p where \\H\\ = oo. This contradicts
the smoothness of M and proves the lemma.
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