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FOLIATED CR MANIFOLDS

CLAUDE L E B R U N

Abstract

Let A" be a (maximally complex) abstract CR manifold of dimension Am + 1
with nondegenerate Levi form. Suppose that X is foliated by compact
complex manifolds of complex dimension > m. Then m = 1, the leaves are
Riemann spheres, and X arises from a twistor construction.

Introduction

Consider for a moment the Hopf map

77: CP3 -* HPX « S4

obtained by remembering that a pair of quaternions is also a quadruple of

complex numbers:

7Γ([ZO, Zχ, Z2, Z3]) = [ZO + z j , Z2 + Z37'].

The inverse image of any point x ^ S4 is then a complex protective line

CPX c CP3, and if we take the inverse image X = π"1(M) of a hypersurface

M 3 c S 4 , we obtain a real hypersurface in CP3 foliated by compact complex

curves. For example, if M is the equator S3 <z S4 given by { [g o >#i] e

H I \ I Ikoll = ll#ill}> ώ e CP1-foliated real hypersurface X is the real hyper-

quadric {[z0, z1? z2, z3] e CP31 | z o | 2 + |z x | 2 - | z 2 | 2 - | z 3 | 2 = 0}. The Levi

form (§0) of this hyperquadric is clearly nondegenerate, a fact which carries

over for any choice of M3 c S4.

How general is the above family of examples? For instance, is it possible to

find a real hypersurface in a (possibly noncompact) complex 3-manifold which

has nondegenerate Levi form and is foliated by compact holomorphic curves of

higher genus? The answer, as shall be shown herein, is no.
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Another sort of generalization would be to consider hypersurfaces of higher

dimension; for instance, the real hyperquadric

3 7

n = 0 n = 4

contains many CP3's; one might expect at first glance that, by replacing the

quaternions in the above example with the octonians, Xu would be fibered

over S1 with fibers consisting of CP3's. In fact, however, the nonassociative

character of the Cayley numbers prevents this construction from going though.

Indeed, we shall see (§1) that this failure is really dictated by topological

considerations more primitive than those stemming from complex analysis.

Indeed, the only circumstance under which a CR (Am + l)-manifold (e.g. a

real hypersurface in a complex (2m + l)-manifold) with nondegenerate Levi

form may be foliated by compact complex m-manifolds occurs when m = 1

and the leaves have genus 0. This is proved in §2. The remainder of this paper

then shows how all such foliated CR manifolds arise from a twistor construc-

tion generalizing the above method of generating CR manifolds from hyper-

surfaces of S4. In the sequel to this paper, coauthored with Simon Salamon, it

will be shown that, excluding the exceptional case of the hyperquadric, any

such foliation is necessarily unique—a result very much in the same spirit as a

local result of Bryant [3] concerning families of curves in CR 5-manifolds.

0. Notation and conventions

Let X be a smooth (2k + l)-manifold. A (maximally complex) CR structure

on X is defined to be a complex vector bundle D of rank k which is a smooth

subbundle of the complexified tangent bundle

D c C Θ R TX = C TX

for which

(1) D Π 3 = Ox— i.e. D contains no nonzero real vectors; and

(2) [C°°(D\ C°°(D)] c CCO(D)—i.e. the complex distribution D is involu-

tive.

Example. Let X be a real hypersurface in a complex (k + l)-manifold Z.

Let T0ΛZ c CΓZ be the (-z')-eigenspace of the complex structure, spanned in

local holomorphic coordinates z°,— ,zk by 3/3z°, 3/θz1,- -,d/dzk. Then

D = (T0ΛZ) Π (CTX) is a CR structure on X.
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CR structures isomorphic to examples of the above kind are called realizable
or imbeddable. Any real-analytic CR structure is realizable, but many smooth
(C0 0) CR structures are not (Nirenberg [11], Jacobowitz and Treves [5], LeBrun
[8]). For positive results concerning imbeddability, cf. Kuranishi [6].

Associated to any CR structure is a real-linear imbedding TX ^ E of the
tangent bundle of X into a complex vector bundle E -> X of rank k 4- 1;
namely, set E = CTX/D. (For instance, if X c Z is an imbedded CR mani-
fold, E = TZ\χ.) In particular, there is a smooth distribution H c ΓX of real
2/:-planes which are the maximal complex subspaces of TX c E. Equivalently,
H = (D + Ί>) Π 7X Thus, one invariant of the CR manfiold X is the skew
form

A: HxH -* TX/H

(v,w) >-> [y,w] + H,

which measures the degree to which the distribution H fails to be integrable.
Closely related to this "Frobenius obstruction" A is the Levi form β. The

latter is the sesquilinear form

β: D X Z) -> C(TX/H)

(v,w) •-> ϊ[t»,w] 4- Ci/.

for *;, w any sections of Z). Note that A is exactly twice the imaginary part of
β under the canonical identification of D and H; thus, these two forms are
degenerate or nondegenerate under the same circumstances. Note that if
X c Z is an imbedded CR manifold, defined locally by / = 0, where / is a real
function with df Φ 0 at X, then the Levi form β is represented locally by /33/.

Now suppose that Σ c X is a submanifold of dimension 2m. H CTΣ Π D
is of complex dimension m at all points of X, we will say that Σ is a complex
submanifold of X (of complex dimension m). Indeed, the involutive distribu-
tion T0ΛΣ = CTΣ Π D defines a complex structure on Σ by the
Newlander-Nirenberg theorem (cf. Nirenberg [11]) and, in the case of an
imbedded CR manifold I c Z , Σ c X is a complex submanifold iff it is a
complex submanifold of Z in the usual sense. The importance of the Levi form
may be seen in the following observation: If Σ c X is a complex submanifold,
then T0ΛΣ c D is an isotropic subspace; i.e. if υ, w G Γ o α Σ, then β(ϋ, w) = 0.
(This follows immediately from the fact that TΣ is involutive and Γ Σ c H.)
In particular, if β is a definite form, in which case (X, D) is called pseudo-
convex, X contains no complex submanifolds. More generally, if β is nonde-
generate, then X can contain no complex submanifold of dimension exceeding
k/2.
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1. Foliated contact manifolds

Let X be a smooth (2k + l)-manifold. A contact structure on X is a

distribution of 2A>planes H c TX which is "as far from being integrable as

possible"—i.e. such that the skew form

A: Hx H -> TX/H

(u,w) •-> [v,w] + H

is nondegenerate. Equivalently, any nonzero 1-form φ orthogonal to H over

some region U c X satisfies

φ Λ(dφ)Ak ΦO

If Σ c X is a smooth λ>manifold, we will say that Σ is a Legendrian

submanifold (Arnold [1]) iff Σ is everywhere tangent to the contact structure:

TΣ c H.

Proposition 1. Suppose that a contact manifold χ2k + 1 is foliated by compact

Legendrian submanifolds. Then a generic leaf of the foliation is either a sphere Sk

or a real projectiυe space RP*. If k is even, any leaf must be either a sphere or a

projective space.

Proof. Let Xo c X be the union of all the leaves of trivial holonomy, let M

denote the space of such leaves, and let π: Xo -> M be the quotient map. M is

then a smooth (k 4- l)-manifold in a unique way making π a smooth submer-

sion. Xo is open and dense in X (Edward, Millett and Sullivan [4]).

Let Y • = RP(Γ*M) be the Brassmannian of Λ -plane elements on M. Then Y

is a contact manifold in a canonical way—namely, the contact structure Hγ is

given by

Hγ\\v=(πγ.)~l[V],

where V e Y is a A>dimensional vector subspace of some tangent space of M,

and 7ry: Y -> M is the canonical projection. In other words, Hγ is the

orthogonal space of the canonical form Σ^=l PjdxJ of the cotangent bundle of

M.

There is now a tautological smooth map a: Xo -> Y given by a(x) = π *HX.

(Since the fibers of π are A:-dimensional and tangent to the contact structure

//, π*[Hx] has dimension 2k — k = k\ so the map a is well defined.)

Moreover, the pull-back of Hγ is, by construction, precisely H. In particular,

the derivative of α is nonsingular, since a typical (2k 4- l)-form on 7 would be

φ Λ (dφ) Λ *, where φ is some "contact form" orthogonal to Hγ.

Now a takes fibers of π to fibers of mΎ\ hence, for q e M,
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is a local diffeomorphism between a generic leaf and RP*. Since the leaf is, by

hypothesis, compact and connected, «L-i(^) is a covering map, and T Γ " 1 ^ )

must be either Sk or RP*.

If k = 2m is even, we may use this to conclude that an arbitrary leaf is also

either a sphere or a protective space, since the density of Xo in X implies that

any exceptional leaf is covered by a leaf of the above type. If the exceptional

leaf were oriented, the covering leaf would necessarily be a sphere, with deck

transformations acting in an orientation preserving fashion; but since χ(S2m)

Φ 0, such a map has fixed points, and, being a deck transformation, is

therefore the identity map. Thus, an orientable leaf is a sphere. Similarly, an

unorientable leaf is a projective space, as is deduced from the above by passing

to a double-covering, q.e.d.

For k odd, the reader may find it amusing to construct Legendrian folia-

tions with compact leaves such that some exceptional leaf is, for instance, a

Lens space. This may be readily done by lifting the standard action of Tp on

CN = R2N to the cosphere bundle of R2N.

2. Holomorphic considerations

Let X now denote a CR (4m 4- l)-manifold, and let D c CTX be the

distribution of complex 2m-planes constituting the anti-holomorphic tangent

space of X. H = (D + D) Π TX will denote the underlying distribution of

real 4m-planes. We will assume that the Levi form of D is nondegenerate—i.e.

that H is a contact structure.

Now assume that X is foliated by compact complex submanifolds of

complex dimension m. Thus we assume that, for each leaf Σ, Γ o α Σ c D. As a

consequence, Γ Σ c H and the foliation is Legendrian. As Σ is even dimen-

sional and oriented, it is, by Proposition 1, diffeomorphic to S2m. The

holonomy of all the leaves is therefore trivial, and we can realize the foliation

as a smooth fibering π: X -> M.

This allows us to construct a map β: X -> Gm(CTM) by β(x) = w*[/>*],

where Gm(CTM) is the Grassman bundle of complex m-planes in CTX; since

D Π C Γ Σ = T°'ιΣ, π*[Dx] has complex dimension 2m — m = m; thus, β is

well defined. Now let q e M, Σ = ττ~\q\ and identify Gm(CTqM) with

G w ( C 2 m + 1 ) by choosing a basis for TqM; the resulting map β\π-ιiq): Σ ->

Gm(C2m+ι) will be called βq for brevity.

Proposition 2. The map βq: Σ -> Gm(C2m+ι) is a holomorphic immersion.

Proof. The complex vector bundle CTX/CTΣ = π*CTqM -> Σ has a

canonical flat connection which may be expressed as
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where w is a section of CTX and the vector field υ on Σ is extended in an

arbitrary way so as to be tangent to the foliation. In particular, this gives

CTX/CTΣ a holomorphic structure by taking

3 > + CTΣ) = [υ,w] + CTΣ

when v is a section of D\ the flatness of V guarantees that 3 2 = 0. Since the

integrability condition guarantees that [υ,w] is a section of D if υ and w are,

this makes D/T0ΛΣ SL holomorphic subbundle of m*CTqM. Thus βq is

tautologically holomorphic.

To conclude that βq is also an immersion, we must use the fact that the Levi

form is nondegenerate. Indeed, since the restriction of the Levi form to Σ

vanishes, it follows that for every v e 7 τ l 0 Σ there is an element w of D/T0ΛΣ

with [υ,w] + H nonzero—i.e., Vv(w + CTΣ) £ D/T0ΛΣ. Thus, the deriva-

tive of βq has maximal rank.

Corollary 3. In the above situation, m = 1; i.e., X is a 5-manifold and the

leaves are Riemann spheres.

Proof. By Proposition 2, any leaf Σ may be holomorphically immersed in a

Kahler manifold; pulling back the Kahler form, Σ is itself Kahler. In particu-

lar, H2(Σ,R)Φ0—the Kahler form is not exact! Since we have already

concluded that Σ is diffeomorphic to S 2 m , m = 1.

Proposition 4. The degree of βq: S2 -> G2 (C 3) is 2, and βq is an imbedding

as a nondegenerate conic in CP2.

Proof. The Levi form sets up a sesquilinear pairing of Γ 0 1 5 2 and D/T0ΛS2,

so they are isomorphic as smooth complex line bundles. But the line-bundle

D/T0ΛS2 is, by construction, j8*[O(-l)]. Hence

2 = χ(S2) = Cι(Tl0S2)[S2] = - c 1 ( Γ 0 1

As the cohomology class c J O ί l ) ] generates i/ 2 (CP 1 ? Z), /?*(c1[D(l)])[52] is

precisely the degree of βq. The degree is therefore 2. By the classical Plucker

formulae, βq can have no double point, and so is an imbedding as a nonsingu-

lar conic.

3. The first fundamental form

Starting with an abstract CR {Am + l)-manifold foliated by compact com-

plex m-manifolds, we have concluded that, provided the Levi form is nonde-

generate, m = 1 and the leaves are curves of genus 0. Moreover, we have found
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a smooth inclusion

β: X^P(CTM)

which takes the leaves of X holomorphically to conic curves; here the smooth
3-manifold M is the space of leaves. We will not identify X with its image
under β. If we now use π: P(CΓM) -> M to denote the canonical projection,
so that its restriction π \x: X -> M becomes the projection formerly denoted
by 77, we may also recall that, from our construction of β,

π*[Dx] = x VXΪΞX.

In particular, X does not meet the real directions RP(TX) c P(C7T), since D
is a CR structure and hence contains no nonzero real vectors.

Since X intersects each fiber of Ή in a conic, there is, near every q e M, a
complex symmetric form g on CTM such that X is given by

(•) X={[v]<ΞP(CTM)\g(v,v) = 0}.

One should think of g as a complex metric—in local coordinates

3

g= Σ gjkdxj®dxk,

where the complex coefficients gjk satisfy gjk = gkJ, det[gy J Φ 0, and
3

Σ gJku
JukΦ0

jk l

for M1, w2, w3 reα/ numbers not all zero. As {gJk} is only determined only up
to an overall complex scale factor, one might expect some difficulty in
choosing g globally. Fortunately, however, this problem does not actually
occur.

Fact 5. The tensor g may be chosen globally in such a way that (*) is
satisfied.

Proof. Since M is odd dimensional, there is a global nonzero real vector
field u on M. (For M compact, this amounts to the observation that χ(M) = 0
by Z 2 Poincare duality.) Locally, there is exactly one candidate for g satisfying
g(w, u) = 1. Since two such local candidates agree on their common territory,
this condition determines g globally, q.e.d.

Of course, X does not actually determine the tensor g; the ambiguity of a
nonzero complex scale factor remains. Thus, if two tensors g and g are related
by g = / g for / a smooth function with values in the nonzero complex
numbers C*, we will write g ~ g, and denote by [g] the equivalence class of g
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with respect to this equivalence relation. The class [g] will be called the first
fundamental form of X; this terminology, intended to conjure up associations
from the theory of Riemannian hypersurfaces, will be justified in the appendix.

4. A rival CR structure

Given a CR 5-manifold X foliated by compact complex curves, we saw in §2
that X could be imbedded canonically in P(CTM), where M is the 3-manifold
of leaves. Moreover, the image of X is a conic subbundle avoiding the real
directions RP(ΓM) c P(CΓM). In this section, we review a method (LeBrun
[8]) for giving such a subbundle a CR structure. This "rival" CR structure will
turn out to be closely related to, but by no means generally identical with, the
given CR structure. Rather, the difference between the two CR structures will
be measured by the "second fundamental form" of X, as detailed in §5.

Let X c P(CTM) be a conic subbundle avoiding the real directions. Thus,

X= {[v]eV(CTM)\g(υ,v) = θ}

for some complex symmetric tensor g e C°°(&CT*M) with nonzero determi-
nant and no real null vectors. Let

g"1 e C*{&CTM)

be the inverse of g, considered as a morphism CTM -> CΓ*M, and let
X c P(CΓ*M) be the bundle of dual conies

l = { [ φ ] G P ( C T * M ) | g - 1 ( φ , φ ) = 0}

so that

b:P(CTX)-*P(CT*M)

M ~ [*(»,•)]
provides a diffeomorphism from X to X. (Notice that this diffeomorphism is,
fiber by fiber, a biholomorphism.) More geometrically, this map is the classical
planar duality map assigning to each point of a conic the corresponding
tangent line.

Let L be the tautological complex line bundle on P(CΓ*Λf) with fiber at
[φ] consisting of all complex multiples of φ; thus, the restriction of L to a
typical fiber of π: P(CT*M) -> M is the usual Hopf bundle over P2 with
Chern class - 1 . Let θ be the canonical L*-value 1-form on P(CT*M) defined
by
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and notice that θ Λ dθ is a well-defined 3-form with values in L*®2. Then,
letting j : X -> P(CΓ*M) denote the inclusion map, we may let fl c C7X
denote the set of vectors u e C7T satisfying

«J7*(fl Λ dθ) = 0.

Then 5 is a CR structure on A' (LeBrun [8]) and thus determines a CR
structure fl on X via the diffeomoφhism b; this is the promised "rival" CR
structure. Moreover, this CR structure satisfies the following two conditions:

(1) The fibers of the projection π: X -> M are holomorphic curves with
respect to fl; and

(2) 77*(flx) = J C V X E I C P(CΓM).
Note that the second condition states that, should we choose to construct β:

X -> P(CΓM) for the rival CR structure fl, β simply becomes the identity map
X -> X This fact is critical to the classification theorem of the next section.

One should ask what goes wrong with the construction of JX when X is not
conic. Indeed, all that is important for the construction is that (1) S avoids
RP(ΓM), so that fl contains no real nonzero vectors; (2) X intersects each CP2

fiber of P(CΓM) in a holomorphic curve; and (3) the tangent-line map b
X -> X is a diffeomoφhism. If one does not stipulate (as we have done) that
the fiber curves are compact, one may create many other CR manifolds in this
way. If the curves are compact, however, they will necessarily have inflection
points (by the classical Pliicker formulae) unless the degree is 2; this gives rise
to cusps in the dual locus X, and the CR structure fl fails to be defined at the
singular points. In this way, however, one may construct many interesting
examples of foliated CR manifolds with leaves that are punctured Riemann
surfaces of positive genus.

5. The second fundamental form

Given an arbitrary CR 5-manfiold (X, D) with nonnegative Levi-form
foliated by compact holomoφhic curves, we have shown that the first funda-
mental form of X determines a "rival CR structure" J\on X such that

(1) The leaves are also holomoφhic with respect to fl:

for each leaf Σ; and
(2) ΊTJXX = π*Dx for all X G I , where π: X -» M is again the projection to

the leaf manifold M.



90 CLAUDE L E B R U N

For simplicity, let F α i and F o α c CTX denote, respectively, the antiholo-
morphic and holomoφhic tangent spaces of the leaves; thus F 1 0 + F o α =
Ker[ττ+: CTX -^ CTM]. Statements (1) and (2) are then equivalent to the
observation that

D + F 1 ' 0 = fl 4- F 1 ' 0 .

The inclusion Z> <-> fl + F 1 0 therefore gives rise to a morphism

γ: D / F 0 ' 1 -> F 1 ' 0

which vanishes identically precisely if D = fl. Now we have already noticed
(§2) that D / F 0 ' 1 is leaf-wise a holomorphic line-bundle of Chern class -2;
indeed, K/K0-1 = β*L.

Proposition 6. 77ze bundle morphism γ w leaf-wise holomorphic. Conversely,
every leaf-wise holomorphic morphism β*L -> F 1 0 arises for some D.

Proof. Let u e C 0 0 ^ 1 ' 0 ) be a nonzero leaf-wise holomorphic vector field
over some open set of X; let w e C°°(Z)) and w e C 0 0 ^) represent the same
leaf-wise holomoφhic section of D/V0Λ = fl/01 = β*L. Thus, for ap-
propriate complex-valued functions fl9 /2, /3, /4 we have

[«>w]=/1δ, [i/,w]=/2w, w = w+/ 3 w+/ 4 w.

Note that γ([w]) = /3w, so the claim is that ΰf3 = 0. But

[ΰj3u +/4w] = [M,W] -[W,W] ^ / ^ +/2w,

and so

(«Λ)W = (Λ - Λ - "Λ)"-
Since w and U are linearly independent, it follows that γ is leaf-wise holomor-
phic.

Conversely, every leaf-wise holomoφhic moφhism γ: β*L -> F 1 0 arises
from a unique CR struction D. Indeed, if we set

D is automatically involutive, as may be seen by reversing the steps of the
above argument, q.e.d.

Up to this point, no strong use has been made of the compactness of the
leaves of the given foliation; γ is in fact defined for an arbitrary foliation away
from the flex points of /? (where R ceases to be defined). However, the
compactness does have an important consequence—it allows us to explicitly
parametrize all morphisms γ, as will be explained below.

Let X have leaf manifold M and first fundamental form [g]. Then a pair
(g,e), where g e [g] and e e C°°(Λ3CΓ*M) is a complex 3-form, is called an
oriented first fundamental form if for every triple υv υ29 ^

G CTM satisfying
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g(Vj, υk) = 8jk we have e(uv v2, v3) = ± 1 . M admits an oriented first funda-

mental form iff wλ U wλ = 0, for the latter is the condition for the existence of

a nonzero complex 3-form e, and if g is an element of [g] we may then take

g = (det g) - 1 g and e = (detg)" 1 ^,

where detg is computed relative to the 3-form e. In particular, there are

oriented first fundamental forms if M is either orientable (which we may

arrange by passing to a double cover) or spin (in which case the Wu relations

give wλ U wλ = w2 = 0).

Given an oriented first fundamental form, the bundle morphism γ can be

described explicitly by a trace-free quadratic form II, called the second

fundamental form of (X, D). Indeed, if we are given a rank 2 tensor II, we may

obtain a morphism γ by

y([o]) = ϋXll(o, )

for [u] e X c P(CΓM); more precisely, in any local frame

( γ ( M ) Γ = ea

bcIVdυ
bϋd VvΦO s.t. g(υ9 v) = 0,

where indices are raised with gah and the summation convention applies. This

expression is to be read as a vertical protective vector field, and one should

remark immediately that it is tangent to X because it is orthogonal to υ.

Notice that the above expression is independent of the trace II" of II (which

we shall therefore take to vanish) because e is skew. Further, because the

above is to be interpreted projectively, the expression on the right is to be read

modulo υ\ the skew part of II therefore also makes no contribution, since

u X II(ί;, •) is orthogonal to υ and Π(ϋ, •), and hence would be a multiple of v

for II skew and υ null. On the other hand, once we impose the conditions

IIα / > = Π ^ and II£ = 0, we get an injection from tensors II to vector fields γ

on X which are vertical, fibre-wise holomorphic, and of homogeneity 1 in υ.

It follows by counting dimensions that every γ arises from some II. Indeed,

the space of trace-free quadratic forms II at some q e M has dimension

ί 3 ^ 1 ) - 1 = 5, while the dimension of

H0(ττ-ι(q), ©(K 1- 0) Θ β*L*) s H0(Pλi D(4))

is also 5. Thus, for every (g, e, II) on an arbitrary 3-manfiold M we get a CR

5-manifold with nondegenerate Levi form foliated by Px's, and every such CR

manifold either arises from some (M,g,e, II) or is double-covered by a CR

manifold which does. Note that (g, e, II) and (Ω2g, Ω3e, ΩII) produce the same

CR manifold for any nonzero complex-valued function Ω on M; the orbit

[g, e, II] of g, e, II) under this action will be called the first and second

fundamental forms of the corresponding X. In the case where M is not
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orientable,, we may still specify (g, e ® II) globally, and thereby avoid the

need to double-cover X; in this case, we will refer to the orbit of (g, e Θ II)

under the action (g, e ® II) -> (Ωg, Ώ,2e Θ II) as the first and second funda-

mental forms.

We will refer to the above construction of Pi-foliated CR manifolds from

first and second fundamental forms on a 3-manifold as the twistor construction',

the reason for this terminology will become clear in the appendix. Collecting

our results, we have proved the following:

Theorem 7 {Classification Theorem). Let X be a CR (4m + l)-manifold

foliated by compact complex m-manifolds. If the Levi form of X is nondegenerate,

m = 1, the leaves are Riemann spheres, and X arises via the twistor construction

from a 3>-manifold M equipped with first and second fundamental forms. The

latter are uniquely determined by X, and any pair of quadratic forms conversely

determines a unique CR manifold.

Appendix: The geometry of fundamental forms

In this appendix, we will relate the fundamental forms of a foliated CR

manifold (as defined in this paper) to the familiar first and second fundamen-

tal forms of a hypersurface in a smooth 4-manifold.

Let N be an oriented smooth 4-manifold, and let h be a Riemannian metric

on N with Weyl curvature W satisfying W = *W, where * is the Hodge star

operator and where W is treated as a bundle valued 2-form. Let Λ2

± denote the

bundle of (anti-) self-dual 2-forms on N, and let Z c Λ2_ be the sphere bundle

of Λ2_; thus,

Z : = (ω e Λ2_Γ*Λ |̂ω = - * ω , ( ω , ω ) = l ) ,

where ( , ) is the inner product induced by h. Then Z carries a canonical

complex structure [Atiyah et al. [2]]. This complex 3-manifold is called the

twistor space of N.

Before we describe this complex structure, let us first provide an alternative

picture of Z. Recall that an almost complex structure on a manifold TV is a

section J of End 77V satisfying J2 = - 1 . Every such structure induces a

canonical orientation on N, namely the one determined by eι A J*eι

A ••• Aem A J*em, where {V, ,e m } is a generic set of covectors and

dim TV = 2m. If we are given a Riemannian metric h, the principal GL(2m)

bundle End 77V has a corresponding subbundle O(TN) with fiber 0(2m)

consisting of endomorphisms which are orthogonal with respect to h—a

condition which is invariant under conformal rescaling of h. An almost
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complex structure is then said to be orthogonal if it is a section of O(TN).
Finally, we will say that an almost complex structure J is positive (respectively,
negative) if the orientation it determines is (not) the given one. Then the
bundle Z is precisely the bundle whose sections are the negative orthogonal
complex structures on the Riemannian 4-manifold N:

Z = {/ e 0{TN)\J2 = - 1 , J < 0}.

Indeed, there is a one-to-one correspondence between unit anti-self-dual
2-forms ω and negative orthogonal almost complex structures / given by
requiring that

h(Ju, υ) = γ/2~ω(w, υ)

for all tangent fields u and υ\ similarly, positive orthogonal almost complex
structures correspond to unit self-dual 2-forms. This is most easily seen by
choosing a proper orthonormal frame of the form el9 e2 = J(eλ), e3, eA =
±J(e3), noticing that the corresponding unit (anti-) self-dual form is then ω
= \(eι Λ e2 ± e3 Λ e4), and that the forms so constructed sweep out, as e2

varies, an S2, which thus must be the entire unit sphere in Λ2

±.
To construct the complex structure of Z, let p: Z -> N be the canonical

projection with fiber S2, let V c TZ denote the vertical space ker[/?*: TZ ->
TN], and let E c TZ be the horizontal space of the Levi-Civita connection;
thus TZ = E Θ V. We will construct endomorphisms Jλ e End E and J2 e
EndF with J2 = -1, J2 = -1 , and let the almost complex structure of Z be
Jλ θ J2. The integrability condition of this almost complex structure will then
be precisely W = *W.

To define Jl9 notice that E = p*TN, and hence End E = ;?*End TN. But the
points of Z are endomorphisms of 77V; hence there is a canonical section
/?*End TN, namely Jλ\3 = J. By construction, J2 = -1 .

To define /2, notice that each fiber p~ι(q) is a metric 2-sphere, and in
particular has a complex structure once an orientation is specified; this
complex structure on the fibers will be J2. The vector bundle Λ2_ has a natural
orientation because the identification of 2-forms with endomorphisms of TN
gives each fiber a Lie algebra structure isomorphic to su(2), so that eλ /\ e2 A
[el9 e2], el9 e2 e Λ2_, defines an orientation class; hence the fibers of Z c Λ2_
may be given a standard orientation by contracting this orientation with the
inward pointing normal vector field. This defines J2.

As stated before, Jλ θ J2 is integrable if and only if W = * W. (By contrast,
Jλ θ (-J2) is never integrable.) Moreover, the resulting complex structure
depends only on the conformal class of h. Note that, by construction, each
fiber p~ι(q), q e N, is a holomorphic curve CPX c Z.
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The basic example of this construction is obtained by taking (N, h) to be S4

with its usual metric. In this case, Z is biholomorphic to CP3, and p: Z -> N

is the Hopf map CP3 -> HPX.

Now, in the above situation, we obtain a CPΓfoliated CR manifold by

considering X = p~ι(M) <z Z for M c N any smooth hypersurface. Let g

denote the metric on M induced by h (i.e. the classical first fundamental form

of M c TV) and let B denote the classical second fundamental form of M; let

II denote the trace-free part of B.

Theorem. Using the above definitions, the first and second fundamental forms

of the foliated CR manifold X = p~ι{M) are [g, II]—i.e. the conformalparts of

the first and second fundamental forms of the imbedding M t-> N.

Proof. Choose a local normal vector field ξ along M, and give M the

corresponding orientation. There is an isometric identification ψ of Λ2_|M with

TM given by ψ(ω) = ^2~(£-iω)#, where # is the identification of T*M and

TM induced by the metric. The usual connection on Λ2_ thereby induces a

(torsion) metric connection v o n M related to the usual connection V by

Vuv = Vuυ — v X B(u, •), where B is the second fundamental form oί M a N

and there X denotes the 3-space cross-product; indeed, if V denotes the

Levi-Civita connection of N, t orthogonal projection to TM, and if vectors and

1-forms are identified via Λ, we have

M ^ - ( ξ Λ v- * £ Λ υ)
2

= € \ [ i Λ v u υ + ( v M f ) Λ ^ - * ( ξ Λ v ^ ) + * ( ϋ Λ

= (Vj))t-ξ\*(υΛ B ( u , ) ) = Vuv- υ X B ( u , - ) .

Now since Λ 2_|Λ /= TM, we may identify X = p~ι(M) with the sphere

bundle of M. Let E c TX be the horizontal space of V, so that E = E Π TX,

and let η e C°°(£) be the canonical horizontal field satisfying

Then £ Π JλE is the peφendicular space of η, and / x acts on this space by

u -> u X η, where the cross-product has been pulled back to E = p*TM; this is

an immediate consequence of the definitions of ψ and J^ In particular,

w = P*(u ~ u\u)

satisfies g(w, u) = 0 for all such w; the image of X under /? is thus precisely

the null locus of g, and the first fundamental form of X is [g].
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Let us now identify CΓ*M with CTM via # , let j : X ^ CTM denote the
inclusion of

X:= {u e CTM\g(u,u) = 0}

into the complex tangent bundle, and, for elements of CT(CTM), let the
operations _L, || denote projection to the horizontal space of the Leυi-Ciυita
connection V and to the (1.0) part of the vertical space, respectively. Then the
canonical form satisfies

θ{υ)\u = g(u,v^) and dθ(v,w) = g(v\w^ - g(v± , w »).

Hence if ξ is the canonical complex vector field satisfying ζ = ξ± and
ζ ± I u = w, we have

ξ\j*(θ Λ dθ) = 0 onί.

As a consequence, the projective image of ξ (in the tangent bundle of β(X)) is
an element of fl. On the other hand, if ξ is horizontal with respect to V and
satisfies (ξ - ζ)± = 0, we have

since VMw = 0 <=> VMw = u X B(u, •). However, the trace part of B has no
effect on the right-hand side of the above equation. But when projected to X, ξ
is a element of C Θ E whose projection to CTM gives the map /?; as a
consequence, ξ has an element of D as its projective image. Since f" = ξ ±

X Π(f -1, ), it follows that II represents the second fundamental form of X.
q.e.d.

This theorem should provide sufficient motivation for the terminology "first
and second fundamental form" used in this paper. Indeed, techniques similar
to those in LeBrun [7] may be used to show that any given foliated CR
manifold arises via the construction used in this appendix provided that the
fundamental forms are real and analytic. Note, however, that the forms that
arise in this construction are always real, although generalizations, in which
complex forms arise, are made possible by the consideration of totally real
3-manifolds in the complex half-flat 4-manifolds of Penrose [9].
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