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PLANES WITHOUT CONJUGATE POINTS

LEON GREEN & ROBERT GULLIVER

1. Problems involving perturbations of canonical Riemannian metrics arise
frequently. If one requires the resulting geometry to satisfy various other
conditions, the possible perturbations often become quite limited. An interest-
ing case of this is the following

Theorem. Let g be a smooth Riemannian metric on R* which differs from the
canonical flat metric g, at most on a compact set. If (R*, g) has no conjugate
points, then it is isometric to (R?, g,).

In physical terms, one may think of the Riemannian metric g as a very
general type of lens, made of optically anisotropic material. A pair of con-
jugate points occurs when an appropriately positioned point source of light
emits rays which converge at the second point. The theorem states that this
refocusing of light must occur for any nontrivial lens.

R. Michel has indicated a proof of a similar result with the additional
hypothesis that every geodesic of (R?, g) coincides, outside a compact set, with
a straight line [4]. In our case, although it is clear that positive and negative
subrays of a geodesic are parts of straight lines, we do not assume that these
lines are the same, or even that they are parallel. Nonetheless, our proof
resembles Michel’s in the strategy of showing that E. Hopf’s flat torus theorem
can be applied (compare Michel [5, §3.3]). Hopf showed that any Riemannian
metric without conjugate points on the two-dimensional torus has vanishing
Gauss curvature [3]. In a private communication to one of the authors, Michel
has suggested an approach along the lines of §6 of [4] which uses Hopf’s
calculations but avoids appealing to the full torus theorem.

The hypotheses of the theorem are to be interpreted in the following way: If
g, is the canonical Euclidean metric on R?, then we assume that g — g, has
compact support. We do not assert, and it is not true, that a Riemannian
metric without conjugate points on R* which is locally Euclidean outside a
compact set must be flat. For an example, one may smooth out the vertex of a
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“négacone” (see J.-P. Petit [6, p. 10]). An explicit C* example is g = dr® +
h(r)?d6? in polar coordinates, with h(r)=2r — 3 + 3 exp(2r/(r — 1)) for
0 <r<1land h(r)=2r — 4 for r > 1. Such examples in two dimensions are
extraordinarily general: given an arbitrary nonpositive smooth even function
K(r), there is a radially symmetric Riemannian metric in the plane with Gauss
curvature K(r) at all points on the circle of radius r (see [2, Proposition 4.2A]).

It should be remarked that we have made no hypotheses on sign or
magnitude of the Gaussian curvature of g; if K < 0, for example, then the
Theorem follows immediately from the Gauss-Bonnet formula applied to a
triangle containing the support of g — g, in its interior.

2. Let K be the Gaussian curvature of the metric g and £ the compact
support of g — g,. (R%, g) is clearly complete, and for any geodesic y, each
component of the intersection of y with R* — Q is a piece of a Euclidean
straight line. Call each such straight piece of y a straight component; y is
either a complete Euclidean straight line or among its straight compouents
precisely two are unbounded.

Lemma 1.  Any unbounded straight components of a geodesic in (R?, g) are
parallel.

Proof. The simple connectivity of R? and our hypothesis of no conjugate
points imply that (R?, g) is a “straight space”, in the sense of Busemann [1];
namely, that any two points can be joined by a unique geodesic. Let r, and r,
be the unbounded straight components of the geodesic y in question. (We need
ony examine the case when r, # r,.) If r; and r, are not parallel, then they
contain points p; on r;, i = 1,2, which can be joined by an ordinary Euclidean
segment lying entirely in R* — ©, contradicting the uniqueness of the geodesic
connecting them. q.e.d.

Now let y be a geodesic which intersects 2, with y((-o0,s;]), ¥( s, , 00)) its
unbounded straight components. Any perpendicular Jacobi field along y is
characterized by a single solution of the differential equation

)] y"(s)+ K(s)y(s) =0,

where K(s) stands for the Gauss curvature of g at y(s). Since K(s) = 0 for
§ < s, 0rs > 5,, y(s)is linear in these intervals.
Lemma2. Lety(s)=as+ bfors<s,andcs + dfors>s,. Thena = c.
Proof. This is an immediate corollary of Lemma 1, using the fact that any
Jacobi field can be produced by a one-parameter variation of y through
geodesics.

We may now turn to the proof of the Theorem. Choose a large rectangular
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region D which contains  in its interior. Then D is geodesically convex in the
(R?, g) geometry. Define a metric g on R? by tiling the plane with copies of D;
(R?, g) is then the Riemannian covering surface of the torus T obtained by
identifying opposite edges of D. If we prove that (R? g) has no conjugate
points, Hopf’s theorem [3] will then apply to 7, so that g, and therefore g,
have Gauss curvature zero.

Let ¥ be a geodesic of (R?, g). We may assume that y does not coincide with
any of the straight lines in the grid created by translates of the boundary of D.
Hence there exists an increasing sequence {s;}, with lim, , , s, = + 00, such
that ¥([s,, s;,;]) lies entirely in the closure of a single translate of D, say D,.
Note that )7|[x”x'”] is part of a geodesic for the translated metric (R?, g,),
defined in the obvious way to be an image of (R?, g). The Jacobi equation
along ¥ is

) y"(s) + K(s)y(s) = 0,

and it has the following properties:
(i) K(s) is zero in a neighborhood of each s,.
(ii) Set K,(s) = K(s) for s € [s,,5,, ], zero elsewhere. No solution of

() w”(s) + K,(s)w(s) =0

has more than one zero (for (R?, g,) is isometric to (R?, g) and therefore has no
conjugate points).

(iii) If y is a solution of (J), then y’(s,) is constant as i ranges over the
integers (for Lemma 2 may be applied to each of the equations (J;) in turn).

We can now prove that ¥ has no conjugate points. Otherwise there is a
nontrivial solution y of (J) with two successive zeros, say y(t) = y(t') = 0.
Observe that ¢ and ¢’ cannot both lie in one interval [s;, s, ;], by property (ii).
Let t €[s,5,.,), t' €(s,5;.,], i <j, and set a = y'(s;). Without loss of
generality, a > 0, and by (iii), a = y’(s;,.1) = y'(s;) = ¥'(s;41)-

Suppose a > 0. Then y(s;,,) > 0. In fact, the restriction of y to [s;, ;4]
may be extended to a solution w of (J;) by defining

W(S)=)’(5i)+a(s_si)’ S8,

w(s)=)’(5i+1)+a(s_si+1)’ Siv1 S 8.

If y(s;,;) <0, then w has two zeros, at ¢ and at s =s,,, — y(s;,,)/4,
contradicting (ii). If y(s,,;) =0, then w(¢) = w(s;,.;) = 0 again contradicts
(i1). This shows that y(s,,;) > 0. By the analogous argument, we see that
»(s;) < 0. But y has no zeros between ¢ and ¢’, and in particular none in
[s;41,5;], a contradiction.
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Hence we need only eliminate the possibility that @ = 0. In this case, the
uniqueness of solutions of (J) forces s, <t <s,,;, and + yl[x“SM] may be
extended as before to a solution w of (J;) with the properties

W(S) = -_}—y(sl.) <0 fors < Sis
w(s) = +y(s,,,) >0 fors, ;<s,

and w(r) = 0. By the continuous dependence of solutions on initial conditons,
we may perturb w to a solution v of (J;) such that

v(s;) = w(s,), v'(s;) <0

and v(7) = 0 for some 7 in (¢, s,,,). In fact, v'(s) = v'(s,) for all s <, and
for all s > s,,.;. But then v has a zero to the left of s, contradicting the
disconjugacy property (ii).

It now follows from Hopf's theorem that (R’.g) has Gauss curvature
identically zero. The conclusion of our theorem is a consequence of the
well-known theorem of Cartan-Ambrose-Hicks, or of the elementary argu-
ments in the Corollary below.

Remark. The reader can supply a proof in terms of intersecting geodesics,
of which the above argument is an infinitesimal version.

Corollary. Let g be a Riemannian metric on R?, without conjugate points, so
that g = g, outside a compact set §. Given any connected component U of
R? — Q, there is a diffeomorphism ¢ oj R?, equal to the identity on U, such that
P*go = &

Proof. Consider Riemannian normal coordinates (x, y) from a point p €
U. Since the Gauss curvature of g vanishes identically, the coordinates (x, y)
are defined on all of R?, and g = dx? + dy? everywhere. For any point ¢ in R?
with coordinates (x(q), y(q)), we may define ¢(g) to be the point which has
coordinates X = x(q), Y = y(¢) in terms of the corresponding Euclidean
coordinate system (X,Y) centered at p. Then ¢ agrees with the identity
mapping on a neighborhood of p. Now any other point ¢ € U may be reached
by a polygonal path T', starting at p and lying entirely in U. But ¢ preserves
the angles and sidelengths of T', which implies that the Euclidean coordinates
(X, Y) and the Riemannian normal coordinates (x, y) remain equal along T,
and in particular, that ¢(g) = ¢. This shows that ¢ equals the identity
mapping on the connected component U.

3. The last part of the proof (the case a = 0) may be reformulated in terms
of focal points. Its extension to dimension » is also true, namely, that for a
metric on R”, whose geodesics have no conjugate points and which agrees with
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the Euclidean metric outside a compact connected set £, no geodesic orthogo-
nal to a hyperplane disjoint from @ has a point focal to that hyperplane.
Lemma 1 and a version of Lemma 2 are also true in higher dimensions, but
other arguments with Jacobi fields do not have obvious generalizations. And of
course, E. Hopf’s theorem is still open for a torus of dimension greater than
two. Nonetheless, the generalization of the Theorem to higher dimensions
remains plausible and forms an interesting conjecture.
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