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THE EQUATION OF PRESCRIBED GAUSS
CURVATURE WITHOUT BOUNDARY

CONDITIONS

JOHN I. E. URBAS

Abstract

A necessary condition for the equation of prescribed Gauss curvature to have a convex solution

defined on a domain Ω c R" is that the Gauss curvature K satisfies /Ω AT < ωn. We prove the

existence, uniqueness and regularity, under suitable hypotheses, of a convex solution in the

extremal case /Ω K = ωn. We also discuss the boundedness of convex solutions of the equation.

1. Introduction

In this paper we are concerned with the existence, uniqueness, regularity and
boundedness of convex solutions of the equation of prescribed Gauss curva-
ture

in a bounded domain Ω c R " without imposing boundary conditions on the
function u. In particular, we are interested in a certain extremal case.

Equation (1.1) is elliptic only for functions u e C2(Ω) which are uniformly
convex at each point of Ω. For such solutions to exist we must therefore
assume that K is positive in Ω.

Suppose that u e C2(Ω) is a uniformly convex solution of (1.1). Then the
gradient mapping Du is one-to-one with Jacobian det D2u, so by integrating
(1.1) and changing variables, we obtain, as in [4],

dp

(1 + \p\2)("+2)/2

dpL (Λ + 2)/2
= ωn>
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where ωn denotes the measure of the unit ball in R". Thus the condition

(1.3)

is necessary for the existence of a C 2 convex solution of (1.1).

Equation (1.1) has been studied by several authors, particularly in connec-

tion with the Dirichlet problem

(1.4) detD2u = K(l+\Du\) ' inΩ, u = φ on 3Ω,

where φ is some prescribed boundary function. Bakelman [2], [3] (see also [9,

Theorem 17.4]) has proved that the condition

(1.5) fκ<ωn

suffices for a maximum modulus bound for convex solutions of (1.4) in a

bounded domain with bounded φ. Further conditions for the generalized

solvability of the Dirichlet problem (1.4) are treated in the papers [3], [4], [5].

The classical solvability of (1.4) is discussed in [17] (following [11], [12]) where

it is proved that if (1.5) holds, Ω is C u and uniformly convex, K e C U (Ω),

φ e C U (3Ω) and also

(1.6) K(x)^ Cdist(x,ΘΩ)

in a neighborhood of 3Ω, then there is a unique convex solution u e C2(Ω) Π

C 0 1 (Ω) of the Dirichlet problem (1.4).

It was previously shown in [4] and [5] that the condition (1.6) ensures that

the generalized solution of (1.4) satisfies the boundary condition in the

classical sense, provided Ω is uniformly convex and φ is continuous.

Here we are concerned primarily with the extremal case

(1.7) ( K=ωn.
Jo

This condition is analogous to one considered by Giusti [10] for the equation

of prescribed mean curvature.

The paper is arranged in the following way. In §2 we summarize the main

ideas of the theory of generalized solutions of (1.1). In §3 we prove a

comparison principle which we use several times in subsequent sections. §4

contains an a priori oscillation estimate for convex solutions of (1.1). This

estimate differs from others of this type (see for example [4], [7], [15]) in that

no boundary conditions are imposed on the solution. In §5 we prove the

existence of a generalized solution of (1.1) with K satisfying (1.7) using an

approximation procedure together with the oscillation estimate, and in §6 we
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discuss the regularity of the solution under some additional hypotheses. The

final section is concerned with the boundedness of solutions of (1.1).

Finally, we mention that with minor changes in the proofs our results also

hold for more general Monge-Ampere equations of the form

άetD2u = f(x, M, Du).

These results are discussed in [18].

The author wishes to thank Professor Neil S. Trudinger under whose

guidance this work was carried out.

2. Preliminaries

In the following sections we shall use the concept of a generalized solution of

(1.1). Such concepts were introduced for general Monge-Ampere equations by

Aleksandrov [1] and Bakelman [2]. Here we summarize the main ideas.

Suppose u is a convex function defined on a domain Ω c Rn. The normal

mapping, χu(y), of a point j> e Ω is given by

(2.1) χu(y) = { ^ R " : u(x) > u(y) +p -(x - y) for all x e 12}.

The normal mapping of a set E c Ω is defined by

(2.2) Xu(E)= i i

If £ is a Borel set, then so is χU(E). The normal mapping is one-to-one

modulo a set of measure zero in the following sense:

(2.3) | { ^ R " : ; G χu{yλ) Π χu(y2) toτyl9y2 e Ω,Λ Φ y2}\ = 0,

where | | denotes the Lebesgue measure on R".

If R e / ^ ( R " ) is a positive function, we define a set function ω(w, R) on

the Borel subsets of Ω by

(2.4) ω(u,R)(E)=[ R(p) dp

for each Borel set E c Ω. Using (2.3) it can be shown that co(w, R) is a

nonnegative countably additive measure on the σ-algebra of Borel subsets of Ω.

Furthermore, ω(w, R) is finite on compact subsets of Ω and therefore has the

following regularity properties:

(2.5) ω(u,R)(A) = inf{ω(w, R)(U): ί/isopen,^ c [ / c ί l )

for each Borel set A c Ω, and

(2.6) ω(u,R)(U) = sup{ω(u,R)(K):Kis compact, K <z U)

for each open set U c Ω.
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Suppose that {w,} is a sequence of convex functions defined on Ω which

converges uniformly on compact subsets of Ω to a convex function u. Then for

each compact set K c Ω and each open set ί /cβ,we have

(2.7) limsupω(w,, R)(K) < ω(u, R)(K)
/—• oo

and

(2.8) liminfcoΐi/,, R)(U) > ω(u, R)(U).
i —> oo

It follows from (2.7) and (2.8) that ω(w/? R) converges weakly to ω(w, R), i.e.,

j φdω(ui9R) -> j φdω(u, R)

for each continuous function with compact support in Ω.

A convex function u defined on Ω is said to be a generalized solution of the

equation

(2.9) R(Du)άetD2u = K

in Ω if for each Borel set E c Ω we have

(2.10) / E R(p)dp=fEK.

A convex C 2 solution of (2.10) is also a generalized solution. In the remainder

of the paper we write ω(u) instead of ω(w, R) if

R(p)= l

It is clear that if u is a generalized solution of (1.1), then (1.3) holds. If (1.7)

holds, then χM(Ω) = R" - £ , where \E\ = 0.

We write ω(w, R) > ω(v, R) in Ω if for each Borel set E c Ω we have

ω(w, R)(E) > ω(t;, R)(E). In the remainder of the paper we write

(det D2u)(l + |2)w|2)"(w + 2 ) / 2 as F[u]. We denote the ^-dimensional Hausdorff

measure by J^k.

Finally, unless otherwise stated our notation, is standard, as, for example, in

[9]-

3. A comparison principle

In this section we prove a comparison principle which will be used several

times in the remainder of the paper. We first introduce some terminology and

prove two lemmas.
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Suppose that Ω is a bounded domain in Rn and u is a convex function

defined on Ω. For each x e 3Ω, let

L(x) = graph u n({x] X R).

If L(x) Φ 0 , we define the value of u at x to be u{x) = inf{ί: (x, t) e L(x)}.

We note that w is then a lower semicontinuous function on the set of points of

Ω at which it is defined. We say that the graph of u is vertical on Γ c ΘΩ if for

every affine function / such that / < u in Ω, we have / < ι / o n Γ n { J C G 3 Ω :

L(x)Φ 0}.

Lemma 3.1. Let Ω be a bounded domain in W and Γ c 3Ω. Suppose that u,

υ e C°(Ω U (3Ω — Γ)) are convex functions satisfying u — v on 9Ω — Γ, u < v

in Ω, and the graph of u is vertical on Γ. Then χ y(Ω) c χM(Ω).

Proof. Every supporting hyperplane of graph v can be translated to give a

parallel supporting hyperplane of graph w, from which the result follows.

Lemma 3.2. Let f and g be convex functions defined on a bounded open set

I c R, and suppose that f < g in I. For each a > 0 let Ia = { / £ / : / ( / ) + « <

g(t)}. Suppose that for each rational α > 0 w have

(3.1)

and for each a > 0, we have for t e 9/α either f(t) + a = g(/), or the graph off

is vertical at t. Then f - g is constant.

Proof. Let α > 0 be irrational and {α,}^! an enumeration of the rationals

greater than a. Then from (3.1) we obtain

Xf(O= Ux/(/α,)= 0x g(/ β j) a.e.
/ = 1 ί = 1

Thus (3.1) holds for all a > 0.

Now suppose that the conclusion of the lemma is false. Then there exists a

point t0 G / such that/and g are differentiable at t0, and

(3.2) Γ(tQ)φg'{t0).

Choose β > 0 so that t0 e 3/^ and let /x = {t e /^: ί > ί0} and J 2 = {t G 7 :̂

/ < ί 0}. Then /0 is in either 3/x and 3/2; assume the latter. Using the convexity

of / and g and (3.2), we deduce that χf(J2) - Xg(Λ) contains a nonempty

open interval. However, by Lemma 3.1, we have χg(Jλ) c χf(Jι), and clearly

Xf(J\) n X/(Λ) contains at most one point, so that χf(Iβ) - χg(Iβ) contains

a nonempty open set, contradicting (3.1).

We are now ready to prove the comparison principle.
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Theorem 3.3. Let Ω be a bounded domain in R" and Γ c ΘΩ, Γ =£ 9Ω.

Suppose that u, v G C°(Ω U (3Ω - Γ)) are convex functions satisfying u < v on

8Ω - Γ, and ω(w, R) > ω(v, R) in Ω, where R G Lι(Rn) is a positive function.

Suppose also that the graph of v is vertical on Γ and for each Borel set E c Ω

with \E\ > 0, we have \χΌ(E)\ > 0. Then u < υ in Ω.

Proof. Suppose not. For each a > 0 let Ua = {x G Ω: V(X) + α < i/(x)}.

By Lemma 3.1 we have

(3.3) χu(Ua) c Xυ(Ua),

from which we obtain

(3.4) ω(u,R)(Ua) = ω(v9R)(Ua).

Since ω(«, jR)(t/0) < oo, we infer that for each a > 0, we have

(3.5) Xu(t/a) = X,(t4) a.e.

By the last hypothesis of the theorem we have \χu(UQ) Γ\ χυ(U0)\ > 0, so by

adding an affine function to u and υ, we may assume that for some x0 e t/0 we

have

(3.6) 0 G X M ( X O ) Π X P ( 4

Observing that

(3-7) Xu(Ua)= U χM(C/α)nspan{τ,},
1

and a similar expression for χυ(Ua), we obtain from (3.5) that for each fixed

a > 0 we have f o r ^ " " 1 almost all η G S"1"1,

(3-8) χ M ( ί / J n s p a n { η } = χ { ; ( ί / J n s p a n { τ ? } ^ 1 a.e.

Hence for 3^n~λ almost all η G S"2"1 we have (3.8) holding for all rational

α > 0.

For each η G 5 W - 1 let Pη denote the orthogonal projection of t/0 X R onto

span{η, βΛ + 1}, where en+ι is a unit vector pointing along the axis of the

cylinder Uo X R. Then for each η G S"1"1, the sets

} # 0}) ,

} # 0})

are the graphs of two convex functions fη and gη defined on a bounded

relatively open subset of span{η}. For Jf n~1 almost all η G S""1, /η and gη

satisfy the hypotheses of Lemma 3.2, and hence differ by a constant. By (3.6),

fη and gη must differ by the same constant for^T""1 almost all η G S""1, and

hence it follows that u - v is constant in l/0. However, M = v at some point of

9ί/0 ~ Γ, so we have u = vin Uo, which is a contradiction.
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Theorem 3.3 yields the following uniqueness result.

Corollary 3.4. Let Ω be a bounded convex domain in R". Let u and v be

convex functions on Ω satisfying ω(w, R) = ω(v, R) in Ω, where R e L\Rn) is a

positive function. Suppose that the graphs of u and v are vertical on 9Ω, and for

each Borel set E c Ω with \E\ > 0 we have | χ M ( £ ) | , \χυ(E)\ > 0. Then u - v is

constant.

Proof. If not, then by adding a constant to v we can assume that U =

{x e Ω: K(JC) < U(JC)} # 0 or Ω, and θί/ = I\ U Γ2, where M = ι ; o n Γ 1 c Ω

and the graphs of u and v are vertical on Γ2 c ΘΩ. Then from Theorem 3.3 we

obtain u = v in U, a contradiction.

Remarks. (1) If Γ = 0 , we can allow R e Lι

loc(Rn) in the proof of

Theorem 3.3 by replacing v by v + ε for ε > 0 and letting ε -> 0 at the end.

(2) The last hypothesis of Theorem 3.3 is not necessary and is made only to

ensure that χu(U0) Π χυ(U0) Φ 0 . The case \χu(U0)\ = \χv(UQ)\ = 0 can easily

be treated separately.

(3) An alternative proof of Theorem 3.3, based on a method of Aleksandrov,

is presented in [18]. The proof given here, which is the earlier one, is included

because the method is of interest. We also note that in both proofs the

requirement that graph v be vertical on ΘΩ can be replaced by a suitable

measure theoretic statement (see [18]).

In §6 we shall impose conditions on K and Ω which ensure that the graph of

a generalized solution of (1.1) in Ω is vertical on 3Ω. This is important for

proving regularity, as well as uniqueness.

4. An oscillation estimate

The oscillation estimate proved in this section is the key idea used to prove

the existence of a generalized solution of (1.1) with K satisfying (1.7). We first

prove two lemmas, the first of which is taken from [4].

Lemma 4.1. Suppose u is a generalized solution o/(l.l) in a domain Ω c R "

with K satisfying K > λ > 0 inQ for some constant λ. Then

Proof. If u e C2(Ω), then we have

, x i ./. . , Λ ,- . - i d e t Z > 2 w
\ ( n

Changing variables and estimating as in (1.2) gives the result. The general case

follows by approximation.
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Remark. Using Holder's inequality we can prove a sharper form of (4.1),

namely,

(4.3) ί Λ+|Z)ι/|2 < C(n, r)l f

for r G (1,2). For our puφoses (4.1) will suffice.

Lemma 4.2. Let ube a convex function defined on a bounded domain Ω c R",

and suppose that

(4.4) / \Du\ >M.

Then for each ε > 0 there is a tθ9 depending only on n, ε, M, d = diamΩ and

m = infΩ w, such that if t ^ t0, then

(4.5) Lt = {x G Ω: w(x) = / } C { X G Ω : dist(;c,8Ω) < ε}.

P/ΌO/. We may assume that m = 0. For / > 0 1 e t ^ r = ( X G Ω : W(X) > ί}

a n d £ , = (x G Ω: |Z)M(X)| > ί}.Then

(4.6) \Bt\ < M/t,

and by the convexity of w, since m = 0, we have

(4.7) inf \Du\ > t/d.
At

Thus At c B ί / έ /, and for t > t0 = 2Md/ωnε
n we have

(4.8) |Λ,| < ^ω.ε".

For / > t0, \ety G Lf and Γ be an « - 1 dimensional supporting plane of Lt

at j . Let T+ and Γ~ be the associated half spaces. Lt is an n — 1 dimensional

convex submanifold of Ω, and is therefore contained in one of the half spaces,

say T~. Then by the convexity of u, T+Π Ω c Ar If Bp{y) c Ω, then Bp(y) n

T+<z A( and hence

from which the result follows.

Corollary 4.3. Let u be a generalized solution of (1.1) in a domain Ω c R".
Then i/Ω/r c (= Ω' (= Ω, we

(4.9) oscw < C,
Ω "

where C depends only on n, diam Ω', dist(Ω/r, 3Ωr) and infΩ,^ > 0.

The local oscillation estimate (4.9) is in fact sufficient to prove the existence

theorem of the following section. We now prove the global analogue of (4.9).

We say that a domain ί l c R " satisfies a uniform interior sphere condition with
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radius R if for each point x e 3Ω there is a ball B = BR(y) c Ω such that
3Ω Π 3£ = {*}.

Theorem 4.4. Lei Q, be a bounded domain in R" satisfying a uniform interior
sphere condition with radius R, and u a generalized solution of (1.1) in Ω. //

(4.10) ^(jc)

/<9/* some constants M > 0 #«d 5 e [0,1), /Λe« we have

(4.11) o s c w < C ,
Ω

C depends only on n,δ, M, R and diam Ω.

Proof. For convenience we assume that infΩ u = 0 and Λ < 1. Applying
Lemmas 4.1 and 4.2 on U = {x e Ω: dist(x, 3Ω) > Λ/4) we obtain

(4.12) Lt c {x e Ω: dist(x,3Ω) <

for all / > /0(/i, δ, M, Λ, diam Ω).
To obtain (4.11) we use a barrier argument which was used in [17] to prove a

nonexistence result for the Dirichlet problem for a class of Monge-Ampere
equations including (1.1). Let B = BR{y) be an interior ball at x0 e 3Ω and
r(x) = dist(jc, dB) = R - \x - y\. Let w = ψ(r) = 4̂ - βr^, where β G (0,1),
α and yl are constants to be chosen. For x ^ B satisfying \x - y\ > R/2 we
obtain

provided 2(1 - β) - 1 > δ and 2n-\aβy2Rι-n < M. Thus we have ω(w) <
ω(u) in BR(y) Π {x e Ω: w(x) > ί 0 ). By choosing a suitable value for A we
may ensure that w ^ ί0 = u on BR(y) Π Lt, so by Theorem 3.3 we obtain
w < w in 2?Λ(.y) Π (JC e Ω: u(x) > /0}, from which (4.11) follows.

5. Existence

This section contains a principal result of this paper. We state it for quite
general functions K and domains Ω, although to prove the regularity result of
the next section some restrictions will be necessary. Our proof is based on an
approximation procedure using the following existence result for the Dirichlet
problem for (1.1). A proof is given in [17] (see also [11], [12]).
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Lemma 5.1. Let Ω be a C 1 ' 1 uniformly convex domain in Rn and K e C U ( Ω )

a positive function satisfying (1.5) and (1.6). Let φ e C U ( Ω ) . 77ίe« ί/ze Dirichlet

problem

F[u] = K IΛΩ, W = φ 0/1 9Ω

λαs <z unique convex solution u in C2(Ω) Π C 0 1 (Ω).

Theorem 5.2. Lei Ω t e ΰ bounded convex domain in Rn and K e LX(Ω) α

positive function satisfying (1.7) αwJ infΩ, A > 0 /or #// Ω' <s Ω. Then there is a

generalized solution 0/(1.1) in Ω.

Proof. Let {Ωm} be an increasing sequence of C 1 1 uniformly convex

subdomains of Ω satisfying U Ωw = Ω and {Km} a sequence of functions in

C U ( Ω ) converging to A'in LX(Ω) and satisfying Km > 0 in Ωm,

(5.1)

and

(5.2) tfm(jc) < C ( m ) d i s t ( x , 3 Ω m ) .

Let wm be the unique solution of the Dirichlet problem F[um] = Km in Ωm,

wm = cm on 3Ωm, where cm are constants to be chosen.

Choose x 0 E Ω; we may assume that JC0 e Ωm for each m. Fix the constants

cm so that ww(^o) = 0 f°Γ a ^ m Using the oscillation estimate (4.9) we see that

for each subdomain Ω' <ε Ω we have a uniform bound for supΩ,|wm| for all

sufficiently large m, and hence there is a subsequence converging uniformly on

compact subsets of Ω to a convex function u which is a generalized solution of

(1.1) in Ω.

Remarks. (1) The existence assertion of Theorem 5.2 clearly holds if we

assume (1.5) in place of (1.7). This is also proved in [4]. In this case we can also

obtain a uniformly Lipschitz solution by choosing a C 1 1 uniformly convex

domain Ω => Ω and a sequence of positive functions {Km) c C lvL(Ω) converg-

ing in LX(Ω) to K and satisfying for each m the inequalities

(5.3) />„ < « , , - ε

for some ε > 0 and

(5.4) Km(x) < C(m) dist(jc, 3Ω).

We can then obtain uniform bounds for |WJ 0 ;Ω ( s e e KL or [9, Theorem 17.4]),

where um is the convex solution of the Dirichlet problem

F[um] = Km infi, t ^ = 0 onθΩ,
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and hence uniform bounds for \Dum\0.a, using the obvious estimate

(5.5) sup \Dum\ < oscwmdist(Ω, 3Ω)~\
Ω Ω

from which the required assertion follows.

(2) From the proof it is clear that Theorem 5.2 also holds for unbounded

convex domains.

(3) It has been pointed out by the referee that Theorem 5.2 can also be

proved by solving the dual boundary value problem obtained by taking the

Legendre transform of the equation (1.1).

6. Regularity

In this section we prove that the generalized solution obtained in Theorem

5.2 is a regular solution provided Ω and K satisfy some additional conditions.

We shall require interior second derivative estimates for smooth solutions of

(1.1).

Lemma 6.1. Let u <= C 0 1 (Ω) Π W^(ti) be a convex solution of (1.1) in a

bounded convex domain Ω c R" where K e C U ( Ω ) satisfies K > λ > 0 in Ω for

some constant λ. If u is equal to an affine function on ΘΩ, then for any Ω' <= Ω, we

have

(6.1) sup \D2u\^ C,
Ω'

where C depends only on n, λ, |w|1;Ω, |AΓ|11;Ω, diamΩ and dist(Ω', 3Ω).

Lemma 6.2. Let u <Ξ C U ( Ω ) Π W££(Q) be a convex solution of (1.1) in a

bounded domain Ω c R " where K e C U ( Ω ) satisfies K > λ > 0 in Ω for some

constant λ. Then for any Ω' <H Ω, we have

(6.2) [J>2«]«;o<-« C,

where a e (0,1) depends only on n,λ, and | ^ 2 W | 0 ; Ω
 and C depends in addition on

lwli;Ω^ I ^ Ί u Q' diamΩ fl«ί/dist(Ωr, ΘΩ).

Lemma 6.1 is proved in [9] and [12] following Pogorelov [13], and Lemma

6.2 is proved in [16]. Before stating the next lemma we recall the definition of

the generalized Gauss map of a convex hypersurface. If M is a convex

hyper surf ace in R", the generalized Gauss image of a set E c M is given by

G(E) = (J { η G Sn~ι: η is the outer unit normal to
(6.3) y^E

a supporting hyperplane of M at y}.

Thus G is a set function.



322 JOHN I. E. URBAS

We say that a domain Ω c R " satisfies an enclosing sphere condition at

x0 e 3Ω if there is a ball B = BR(y) z> Ω such that 3Ω Π dB = {x0}.

Lemma 6.3. Le/ Ω be a bounded convex domain in Rn satisfying an enclosing

sphere condition at each point o/3Ω. Let u be a generalized solution of (1.1) in Ω

with K satisfying (1.7). Suppose that for each y e 3Ω we /zαi e

(6.4) K(x) < Mdist(x, 3Ω)~δ

/w a neighborhood of y, where M > 0 #«d δ e (0,1) are constants depending only

on y. Then the graph of u is vertical on 3Ω.

Proof. If not, then there exists an affine function/ such that/(x0) = u(x0)

for some x0 e 3Ω and/ < u in Ω. By replacing u by u — /we can assume that

u satisfies the equation

(6 5) dctD2u =

<1 + \Du + / ) / | 2 ) ( " + 2 ) / 2

in Ω in the generalized sense, u(x0) = 0 and w > 0 in Ω. For / > 0 let

Γ, = {> e Ω: M(X) = / } U { J C E 9 Ω : M(JC) < *}.

Then Γr is a closed convex n — 1 dimensional submanifold of Ω, and JC0 e Γr

for all /. Let ^ Λ ( j ) =) BR/2(z) be enclosing spheres at x0. Let Gr and G denote

the generalized Gauss maps of Γ, and Γ = dBR(y) respectively. Then for each

/ > 0 we have

(6.6) G , ( Γ , - £ ε ) c G ( Γ - 2 ? ε )

for ε > 0, where Be = BE(x0).

If x G Ω — Bε for some ε > 0, then x ̂  Tt for some t > 0. Let g be an affine

function whose graph is a supporting hyperplane of graph u at (x, u{x)). Then

provided Dg Φ 0, we have

(6-7) Dg/\Dg\ e G,(Γ, - 5£),

and hence

(6.8) χ u ( Ω - β ε ) c { p e R - : p / | p | e ( ? ( Γ - / ϊ β ) } u { 0 } .

Since χu(Ω) = R" - E, where | £ | = 0, we then have

(6.9) χ,(Ωnl!()D {peW:p/\p\eG(TnBt)},

except possibly for a set of measure zero. From (6.9) we obtain

κ =

(l + \p + Df\2)in+2)/2

(6.10) /
Xu(anBe)

Rn-l

for all ε e (0, ε0), where ε0 depends only on R.
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Denoting dist(>, 3Ω) by d(x) and using the fact that \Dd\ = 1 almost
everywhere in Ω, together with the coarea formula [8, Theorem 3.2.12],
inequality (6.4) and the estimate

we have, for small ε,

f K^MΓ f d(x)~8dJfn~ι(x)dt
QnBF 0 d

(6.12)
C(n)Mε"-8

^ 1 - δ

For ε sufficiently small (6.10) and (6.12) give a contradiction, which proves the
lemma.

Remark. It is evident that even if Ω does not satisfy an enclosing sphere
condition at some point x0 e 3Ω, we can still obtain the conclusion of Lemma
6.3 provided K satisfies

(6.13) K(x) < Mdist(jc, ΘΩ)α

in a neighborhood of x0, where bounds on the value of a depend on n and
parameters determined by the behavior of 3Ω near JC0.

We are now ready to prove the regularity theorem. We use a technique
which has already been used for proving the regularity of generalized solutions
of Monge-Ampere equations, for example in [6].

Theorem 6.4. Let Ω be a bounded convex domain in R" satisfying an

enclosing sphere condition at each point of 3Ω and K e C1'1(Ω) a positive

function satisfying (1.7). Suppose that for each point y e 3Ω K satisfies (6.4) in a

neighborhood of y with M > 0 and 8 G (0,1) depending only on y. Then if u is a

generalized solution 0/(1.1) in Ω, we have u e C2(Ω).

Proof. By Lemma 6.3 and Corollary 3.4, u is unique up to an additive
constant. We may therefore assume that u is obtained by the argument of
Theorem 5.2. In the proof of Theorem 5.2 we can now take {Km} c CU(Ω)
converging locally in C 1 1 to K. Elliptic regularity theory [9, Lemma 17.16] then
yields um e W^(&m). We may also assume that {um} converges uniformly on
compact subsets of Ω to u.

Fix a point x0 e Ω. We will show that u is C2 in a neighborhood of x0. Since
x0 is arbitrary, this implies that u is in C2(Ω).

Let / be an affine function whose graph is a supporting hyperplane of graph
u at (xQ, u(x0)). By Lemma 6.3, graph/ does not intersect the boundary of
graph u. Thus for some ε > 0, U = {x e Ω: u(x) < f(x) + 4ε} <= Ω and
x0 e U. For all sufficiently large m, the sets {x e Ω: um(x) < f(x) + 3ε} are



324 JOHN I. E. URBAS

contained in a fixed compact subset of U, and {x G Ω: um(x) < f(x) + ε}

contains a fixed compact neighborhood of x0. Using the estimates (4.9) and

(5.5) we obtain uniform estimates for \um\ and \Dum\ on {x G Ω: WW(X) < / ( * )

+ 3ε} for sufficiently large m. Using Lemmas 6.1 and 6.2 we obtain uniform

estimates for \D2um\ on {x G Ω: wm(x) < / ( * ) + 2ε}, and then for [Z>2wm]α

on (JC e Ω: um(x) < f(x) + ε) for sufficiently large m. We thus have uniform

estimates for \um\2a on a neighborhood of x0, from which it follows that

u G C 2(Ω).

Remarks. (1) If Λ: G C*(Ω) for A: ^ 2, elliptic regularity theory [9, Lemma

17.16] implies u G C Λ + 1 α(S2) for all α < 1. In particular, if K G C°°(Ω), then

M G C°°(Ω).

(2) If Λϊ = 2, generalized solutions of (1.1) with K > 0 are strictly convex (see

[14]). In this case, by modifying the proof of Theorem 6.4, we may drop the

hypothesis (6.4), and we can also allow Ω to be an arbitrary domain in R2.

Corollary 6.5. Suppose that Ω is a bounded convex domain in R" satisfying an

enclosing sphere condition at each point of 3Ω and K G C U ( Ω U Γ) satisfies

(1.5), (6.4) and K > 0 on Ω U Γ, where Γ is a relatively open C u portion o/ΘΩ.

Then there is a convex function u e C2(Ω U f ) satisfying (1.1) in Ω, where

Γ <£ Γ is a relatively open portion o/3Ω.

Proof. We can extend K to a positive function K G C U ( Ώ ) satisfying

(6.14) £(;c) < Mdist(jc, 3Ω)~δ

in a neighborhood of each pointy e 9Ω with M > 0 and δ < 1 depending only

on y, and

(6.15)

where Ω z> Ω is a bounded convex domain satisfying an enclosing sphere

condition at each point of 3Ω and f = Ω Π 9Ω <= Γ. Theorems 5.2 and 6.4

imply that there is a convex function ύ e C2(Ω) satisfying F[u] = K in Ω, so

u = ft|Q G C 2(Ω U Γ) is a convex solution of F[w] = Λ^in Ω.

Remark. If K G C i α (Ω), /^ > 0 on Ω, Ω is C 1 1 and # satisfies (1.5), then in

a similar way we can obtain a convex C2(Ω) solution of (1.1).

7. Boundedness

In this section we discuss the boundedness of generalized solutions of (1.1).

From the barrier argument used in the proof of Theorem 4.4 we can im-

mediately conclude the following.
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Theorem 7.1. Let Ω be domain in R" and u a generalized solution 0/(1.1) in

Ω. Let x0 e 9Ω. //

(7.1) K(x) > Mdist(jc,3Ω)δ

in a neighborhood ofx0, where M > 0 and δ < 1 are constants, and Ω satisfies an

interior sphere condition at x0, then for each ball B c Ω such that dB Π ΘΩ =

{JC 0 }, we have

(7.2) sup w < oo.
B

Next we consider conditions for the solution to be unbounded. We first

prove a simple geometric lemma.

Lemma 7.2. Let BR D BR/2 be two balls in Rn with dBR Π dBR/2 = {x0}.

Let y e dBR/,2 be the center of BR. Then for each x e BR/2 we have

(7.3) |JC - xo\ ^ (2Λ) 1 / 2 dist(x, dBR)1/2.

Proof. First suppose that ζ e dBR/2. Then we have

If - *ol = \ y - χo\ -\y - ?I
(7.4) ={R+\y-ζ\){R-\y-ζ\)

If JC e 5 Λ / 2 , there is a unique f e 3 5 Λ / 2 such that x = (1 - t)x0 + /f for

some / G [0,1]. Hence

(7.5) \x - xo\ = t\ξ - xo\ < t(2R)l/2dist(ξ, dBR)l/2.

Let z be the unique point in BR such that dist(x, dBR) = \x - z\, and η the

unique point where the line through ξ parallel to the line segment [ c, z]

intersects the line through x0 and z. Then

(7.6) \χ-z\=t\ξ-ηl

so from (7.5) we obtain

(7.7) \χ - xo\ < t(2R)l/2\ζ - r,\1/2 < t^(2R)1/2\x - z\l/\

which gives the estimate (7.3).

Theorem 7.3. Let Ω be a domain in R" and u a generalized solution 0/(1.1) in

Ω. Suppose that Γ is a relatively open portion of ΘΩ and the graph of u is vertical

on Γ. Let x0 e Γ and suppose that either

(7.8) K(x) < Mdist(;c,3Ω)

or

(7.9) A (JC) < M\x - xo\
2



326 JOHN I. E. URBAS

in a neighborhood of JC0, where M > 0 is a constant, and Ω satisfies an enclosing

sphere condition at x0. Then

(7.10) lim u(x) = oo.
x->χ0

Proof. Let B = BR(y) be an enclosing ball at x0 and r(x) = dist(x, 3Ω) =

Λ — \x — y\. We first consider the case (7.8). Let w = ψ(r) = A - a\ogr,

where A and a are constants to be chosen. We may assume that r < 1 and

α 2 r ~ 2 > 1. Then we have

provided Ma2 < 2~(n + 2)/2Rι~n. Thus for some ε > 0 we have ω(w) ^ ω(w) in

Bε(x0) Π Ω. By choosing a suitable value for A we may ensure that u > w on

3i?ε(x0) Π Ω, so by Theorem 3.3 we obtain u > w in 5 e (x 0 ) Π Ω, from which

(7.10) follows.

To prove the second case let BR/2(y) c B Λ (z) be enclosing spheres at JC0.

Then from (7.9) and Lemma 7.2 we obtain

(7.11) K(x) < 2MRr(x)

in a neighborhood of x 0, where r(x) = dist(;c, 35Λ(z)). The above barrier

argument can now be used to obtain the result.
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