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THE TOPOLOGY OF FOUR-DIMENSIONAL
MANIFOLDS

MICHAEL HARTLEY FREEDMAN

To my teachers and friends

0. Introduction

Manifold topology enjoyed a golden age in the late 1950’s and 1960’s. Of the
mysteries still remaining after that period of great success the most compelling
seemed to lie in dimensions three and four. Although experience suggested that
manifold theory at these dimensions has a distinct character, the dream
remained since my graduate school days' that some key principle from the high
dimensional theory would extend, at least to dimension four, and bring with it
the beautiful adherence of topology to algebra familiar in dimensions greater
than or equal to five. There is such a principle. It is a homotopy theoretic
criterion for imbedding (relatively) a topological 2-handle in a smooth four-di-
mensional manifold with boundary. The main impact, as outlined in §1, is to
the classification of 1-connected 4-manifolds and topological end recognition.
However, certain applications to nonsimply connected problems such as knot
concordance are also obtained.

The discovery of this principle was made in three stages. From 1973 to 1975
Andrew Casson developed his theory of “flexible handles”2. These are certain
pairs having the proper homotopy type of the common place open 2-handle
H = (D?* X D% 3D? X D?) but “flexible” in the sense that finding imbed-
dings is rather easy; in fact imbedding is implied by a homotopy theoretic
criterion. It was clear to Casson’ that: (1) no known invariant—link theoretic

Received May 10, 1982. This work was supported by the University of California at San Diego,
the Institute for Advanced Study, a National Science Foundation grant, and the Alfred P. Sloan
Foundation.

! My graduate work was under the direction of William Browder and, informally, Frank Quinn
at Princeton University, 1969-1973.

280 named by Casson but generally called “Casson handles.” We will adhere to the latter,
terminology.

3 See Notes by Guillou on Casson’s lectures [15].
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or otherwise—could be used to show that a Casson handle CH was not
diffeomorphic (as a pair) to the standard open 2-handle H; and (2) if all
Casson handles were discovered to be diffeomorphic to the standard open
2-handle, then 4-manifolds would be much simpler than most researchers
expected. In particular, 1-connected smooth 4-manifolds would be completely
classified. (The complexities arising from the possibility that “homeomorphic”
might replace “diffeomorphic” were not, however, considered in advance.)

In 1978 [22] I developed a reimbedding technique which can be used to
construct a new Casson handle CH! inside a predictably large compact piece
T, of any given Casson handle CH®. This gives a small but useful amount of
geometric control over Casson’s construction. The payoff for this refinement
was a 1-connected noncompact surgery theorem.

The last stage can be seen as a systematic exploitation of the control
obtained in 1978. We construct an explicit but somewhat singular parametriza-
tion H >CH /{gaps™ } of any Casson handle modulo a countable-null collec-

tion of cell-like sets which will be called {gaps™ }. The gaps are regarded as
recalcitrant pockets of resistence to our explorations and essentially unknowa-
ble. To make progress we crush them to points. Although singular, the
parametrization a is shown by an explicit shrinking argument provided by
Robert Edwards* (§8) to be approximable by a homeomorphism &: H —
CH{gaps* }. On the other hand, an abstract approximation argument which
uses no specific knowledge of individual point inverses, but exploits the fact
that the interiors of CH and H are both homeomorphic to 4-space R*, is used
to show that B: CH —» CH/{gaps™ } is also approximable by a homeomor-
phism B. Putting these together we obtain a homeomorphism (of pairs)
B~ 'o& H - CH. Thus topologically a 2-handle may be imbedded in a
4-manifold whenever Casson’s homotopy theoretic criterion, or the appropriate
nonsimply connected generalization, is satisfied.

This imbedding theorem leads to a great wealth of consequences which are
outlined in §1. While some consequences are immediate, the path to most leads
through a five-dimensional proper k-cobordism theorem which is proved in
§10. The proof of this theorem, ultimately based on the high dimensional
argument of Larry Siebenmann’s’ [46], was not clear for several weeks follow-
ing the establishment of H =t0p CH and I would like to thank Frank Quinn
for many valuable conversations during that period.

4§8 expounds Edwards’ argument and serves as my take-home final in Bing topology! My
thanks to my teacher!

3 Siebenmann’s proof generalized to a noncompact setting Stephen Smale’s landmark h-cobor-
dism theorem [50].
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Both the viewpoint and technical detail of this paper were much sharpened
during three seminars (La Jolla, California, Aug. 22-30, 1981; Austin, Texas,
Oct. 12-21, 1981; Princeton, New Jersey, Oct. 22-28, 1981). I would like to
thank all the participants for their interest, criticism, and finally stamina as the
hours wore on.

Rob Kirby introduced me to Casson’s work in a private session some time in
1974. It was several years before I fully understood Casson’s ideas and their
potential. This was a difficult time for me and through much of it Kirby was
my contact with the mathematical world. In May of 1978 I visited Bob
Edwards to show him my work on splitting surgery problems leading to a fake
S? X R. He immediately saw that shrinking could be added to my techniques
to gain useful geometric control. In July 1981 I found that the theme of
geometric control could be elaborated and repeated even uncountably. The
result is the singular parametrization a which serves as the entrance into the
third and final stage of the proof.

I owe special thanks to Ric Ancel, Jim Cannon, Bob Edwards, Frank Quinn,
and Larry Siebenmann for their efforts (partly successful) to make the proof
less ugly.

The body of the paper, §§2 through 9, is the proof of one theorem, Theorem
1.1: H =r10op CH. A final and long §10 proves the second main theorem, that
1-connected, simply connected at infinity, smooth, 5-dimensional proper-A-
cobordisms are products. This allows both smoothing theory and Kirby’s
theorem on nonlocally flat points to enter into the general scheme. With these
tools come many results which are described in §1. The proofs are mostly given
in §1 with reference, where necessary, to succeeding material.
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There seems to be a small cluster of interrelated unsolved problems which
the present techniques come tantalizingly close to, but still leave untouched.
Among these are the four-dimensional annulus conjecture, the question of
smoothing compact topological 4-manifolds in the complement of a point, and
the nonsimply connected versions of surgery and s-cobordism theorems. In
contrast, the question of smooth structures on closed 4-manifolds seems to be
not at all advanced. In the former cases one cannot yet tell whether there is an
obstruction or no obstacle at all.

1. The final results

We present the main results in logical /historical order even though some are
technical and cannot be fully appreciated until the paper is read. For a quick
perusal of well-known questions settled here we recommend reading the
statements of Theorems 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11 and 1.14, also
Corollaries 1.1, 1.2, 1.3’, 1.4, 1.5 and 1.6.

In dimension four piecewise linear manifolds are smoothable (the final
obstruction group I'? is trivial by Smale’s theorem [27], thus we will ignore the
P.L. Category and discuss only smooth and topological manifolds.

The following theorem of Casson’s (circa ‘73) is the homotopy theoretic
criterion mentioned in the introduction (see §2 and §3 for definitions, or [15]).

Theorem 3.1 (Casson). Let (M, d) be a smooth simply connected 4-manifold
with boundary, and d = Ild;: II(D?, d); => (M,d) be an immersion of a finite
disjoint union of disks, which is an imbedding on TIdD?. If there exist classes
x; € Hy(M; Z) with integral intersection numbers x; - d; = §;;and x; - x; = even,
and if d; - d; = 0 (this is defined for i + j), then d is regularly homotopic to the
first stage of a disjoint union of smoothly imbedded Casson handles.

A “Casson handle” is one of a certain class of smooth 4-manifolds with
boundary which have the same proper homotopy type as the open 2-handle
(D? X D%,0D* X D?). They were constructed by Casson with the above
theorem in mind. We describe them in detail in §2. Roughly speaking, a
Casson handle is an open regular neighborhood of an infinite tower of 2-disks
immersed in a 4-manifold M with boundary, the (n + 1)st stage of the lower
being attached to annihilate the fundamental group resulting from the double
points of the nth stage. The boundary of the first stage disk lies in oM,
thereafter the construction is in interior M. This sketch is not yet complete
since there is also a framing condition designed to keep the fundamental group
at infinity isomorphic to the integers.
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The hypothesis of simple connectivity above can be replaced with a hypothe-
sis involving a 6-fold fundamental group death,® and the requirement on the
existence of a dual can be weakened. Theorem 5.1 is a good example of this.
This theorem “reimbeds” (with control) some Casson handle CH! in the first
six stages of an arbitrary Casson handle CH. It is not important that the
number turns out to be six; it is only important that there is some bound.

Theorem 1.1. Any Casson handle CH is homeomorphic as a pair to the
standard open 2-handle (D* X D?,3D? X D?).

The proof is assembled at the end of §6, by which time only two pieces
remain unproved, Theorem 8.1 and Theorem 9.1.

Since the smooth Hauptvermutung for open 2-handles will now be an
obvious question, it is worth saying how much the newly discovered topologi-

. hom
cal parametrization H °Z CH differs from a diffeomorphism. Larry Sieben-
mann and Bob Edwards have observed that the maps in the diagram (§6)

HicH /{gaps™ } 5 CH can be so carefully approximated by the homeomor-
phisms o/ and B/ that B/ ! o &/ is actually a diffeomorphism over the comple-
ment of a closed set K C interior(CH) where dim(K) = 2, that is, K has
general position properties similar to a 2-complex; see [19]. A category “Flex”
(presumably) intermediate between Top and Diff can be formed where transi-
tion functions are homeomorphisms which are diffeomorphisms off a dim = 2
set (a slightly stronger condition on transition functions may eventually prove
profitable). All known 4-manifolds are flex, and all known homeomorphisms
between such may be replaced by flexomorphisms. Possibly this will become
the best language to describe many of the results of this paper. However for
the present we are content to make statements in the topological category and
ignore the additional structure.

In 1978 certain smooth disks with a (possible) isolated singularity were
constructed [22] as “cores” to Casson handles. Siebenmann asked whether the
image under the homeomorphism 4: H — CH of a core disk can also be made
smooth in CH except (possibly) at a single point. In effect can [22] and the
present paper be synthesized? Fortunately the answer is yes, but no use is
made of this in the present paper.

Addendum A to Theorem 1.1. Any Casson handle CH admits a homeomor-
phism of pairs h: (D* X D?,0D* X D?) — CH which is a diffeomorphism on a
collar C of 9D* X D? and carries 0 X D? into a submanifold of CH which is
smooth except ( possibly) at h(0 X 0).

6 Robert Gompf has drawn some explicit handle diagrams which show that 6 can actually be
replaced by 5. This same improvement also justifies the claim that Wh, is topologically slice (see
[22])).
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Proof. That h is a diffeomorphism on C is immediate from the proof of
Theorem 1.1; all the shrinking argument takes place well away from the
attaching regions.

For the second claim a certain familiarity with §§85, 6, and 7 are required;
the reader may wish to postpone this argument. D’ X D’ is the exceptional
(type III) element of D(a). It corresponds to the central gap; G = (K, \ open
collar of attaching region), in CH. It is a fact that G is smoothly cellular in CH,
that is, G is a nested intersection of smoothly imbedded 4-cells in CH. To see
this, return to the construction of the design 9 in §5. For any element in the
complement of the standard Cantor set in [0, 1] with length n(= number of
initial zeros of its base three expansion) there is a 6(n + 1)-stage tower T*
contained in CH and containing G. For any such p > 0 no matter how long
there is a longer p’. T?" C TP with the inclusion homotopic to a point. Set
Y = T* \(open collar of attaching region). Recalling (§2) that towers have
1-complex splines, we see Y can be smooth engulfed by a smooth ball B C T°.
If, previously, we adjust T° by removing a suitable open collar of the attaching
region, we can think of it as a typical member of a neighborhood system for G.
Thus G is defined by the intersection of smooth balls such as B.

It is easily verified that the showing G smoothly cellular is equivalent to
showing the end of CH — G converging to G is smoothly equivalent to the
standard end S* X [0, o). Thus the quotient space CH/G carries a smooth
structure and is diffeomorphic to CH. In CH /G there is an obvious imbedded
“core” 2-disk, called A, which is smooth except at a point. It comes from an
annulus S! X [0, o) in the collar structure on CH whose open end converged
to G. See Diagram 1.1.

DiaGraM 1.1

Now replace (*) in §6 by

. & B
H/D'X D'>CH/ {gaps* } « CH/G.
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Applying fact 7.2 to the diagrams
« o ABH B, ABH

H—————CH CH CH/{gaps* }
ABH ~ ABH B’
Proj « Proj
1?/D' x D' CH/G

shows that @ and B are ABH. Now the corollary to the majorant shrinking
principle (Cor. 7.1) allows approximation by homeomorphisms. &, and §;
which agree with & on D> X 0/D’ X 0 and B on A respectively. Thus the
homeomorphisms k = (8,)"' o &, carry DX 0/D’ X 0 onto the almost
smooth A. Precomposing k; with a homeomorphism /: D? X D? - D? X
D?/D’ X D' satisfying I(D? X 0) = D* X 0/D’ X 0 gives the desired map
kol:D>*X D* - CH. q.ed.

Two immediate consequences of Theorem 1.1 are Theorems 1.2 and 1.3.

Theorem 1.2. Let f: (M*3) —> (X* 0) be a degree-one map between a
compact 1-connected smooth manifolds and a 1-connected Poincaré space, and
suppose f is covered by a map of linear bundles b: v*(M) — &, v*(M) a normal
bundle to M. Assume f/0M: OM — 0X induces an isomorphism on integral
homology (the boundary may be empty). Then f is topologically normally bordant
rel boundary (see [71] and [13] for definitions) to a homotopy equivalence
(absolute) from a topological 4-manifold (M’,9) if and only if the surgery
obstructions, (signature M )-(signature X), is zero.

Addendum. M’ has a smooth structure in the complement of a flat 4-cell
contained in M.

Theorem 1.3. A compact 1-connected smooth 5-dimensional h-cobordism (W,
M, M’) (which is a product over the possibly empty boundary 0M) is topologi-
cally a product, i.e., W is homeomorphic to M X [0, 1].

Addendum. The product structure is smooth over the complement of a flat
4-cell in M.

Proof of Theorem 1.2. Let w,...,a, be a subbase for the surgery kernel.
Remove the interiors of n disjoint balls from M to form (M~ ,9dB,
U .- UdB,). a; coresponds to relative classes in M~ , and these can be
represented by immersions with boundaries imbedded and distinct components
0B;. Theorem 3.1 applies to engulf regularly homotopic immersions with
Casson handles which by Theorem 1.1 are actual open 2-handles. Since the
self-intersections p(a;) equal O, the framings are zero. The open 2-handles
union B; form a disjoint collection of n imbedded copies of S* X D? in M.
These contain flat imbeddings of S? X 1D? on which surgery (in the topologi-
cal category) can be done as usual to create a topological normal bordism to a
homotopy equivalence from a topological manifold M'.
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To verify the addendum, instead of representing a subbase a;,---,a,,
represent an entire hyperbolic base «,,...,a,, B,,...,B, using the same method
by n disjoint topological imbeddings (S? X S%point), C M such that (S? X
point), and (point X S?), represent a, and B, respectively. To do this think of
S2 X S2pt as B* union two Casson handles =to, open 2-handles attached
with zero framing to an open neighborhood of the Hopf link lying in the
limiting 3-sphere. Trimming off open collars of the ends we find n topologi-
cally flat 3-sphere bounding nS? X S? summands on one side. The desired M’
is the result of removing the summands and gluing in 4-cells. M’ is clearly
smooth away from these 4-cells. Since the separating 3-spheres have smooth
spots (the portion which is inherently topological, i.e., constructed using the
topological parametrization of CH is only a closed tubular neighborhood of
the Hopf link in S?), the 4-cells may be all joined by thickened arcs to form
one flat 4-cell.

Finally a standard argument (write (S X S?), as 9(D> X $?),) can be used
to “fill in” the normal bordism between M and M’.

Proof of Theorem 1.3. This argument is outlined in §10 as Theorem 10.3
(also compare with [15]); it rests on a topological Whitney trick in the middle
level of a 5-dimensional A-cobordism.

To prove the addendum one modifies the argument in §10 as follows. In the
middle level construct twice the number of topological 2-handles, the cores of
these being somewhat arbitrarily divided into the Whitney and accessory disks
of [25]. In the simplest nontrivial example the asccending the descending
manifolds of the middle level will each be a single 2-sphere A and D with
A N D consisting of 2 positive and 1 negative intersection points. Using
Kirby’s handle calculus (introduced in §2) we illustrate this situation. A regular
neighborhood 9, of 4 U D (Diagram 1.2) and then a regular neighborhood 9
of A U D U Whitney disk U accessory disk

DiAGRrRAaM 1.2
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(1]
n £Q77" Topological
B Whitney 2-handle

@

topologically
> cancels to
0
c:r() Topological accessory 2-handle
Di1AGRAM 1.3

The conclusion suggested by Diagram 1.3 is that the second regular neigh-
borhood 9T is homeomorphic to S? X S%-interior (D*) with the ascending and
descending spheres being isotopic to the standard inclusions of the factors. (In
the more general cases 91 may be a finite boundary connected sum of copies of
(82 X S%interior (D*))). But this generalization is safely ignored; we may
restrict our attention to the example. The bordism W may be restricted to the
portion W’ “above or below” I, that is, the bordism: 90 X [0,1] U , ., Top
3-handle U, ,Top 3-handle. By elementary handle body theory, W’ is a
topological product (D* X I; D* X 0, D* X 1). The complement of this prod-
uct (in fact, the complement of the smaller subbordism above and below ;)
is already trivialized as a smooth product by the smooth gradient like vector
fieldon W. q.e.d.

A simple corollary to the proof of Theorem 1.2 is a realization theorem for
the particular subbase, the singleton {( p, )}, (p, q) € H,(S* X §?; Z) with p
and q relatively prime. Since the question of representing these classes by
smooth or even topologically flat imbeddings has attracted some interest we
state

Corollary 1.1. If p and q are relatively prime integers, then the class
(P, q) € Hy(S? X S?; Z) is represented by a topologically flat 2-sphere, that is,
by topological imbedding of S* X D?.

Theorem 1.3 has a noncompact version which at the present state of the art
is a quite lengthy deduction from Theorem 1.1 and 5.1.

Theorem 10.3. Let (W, V, V") be a simply connected smooth proper h-cobor-
dism of dimension 5. Suppose W (and therefore V and V') are simply connected
at infinity. Then W is homeomorphic to V X 1.
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Corollary 1.2. Any topological 4-manifold V which is proper-homotopy equiv-
alent (p) to R* is homeomorphic to R*. (The assumption V p R* is equivalent to

requiring: (1) m(V) =0, Hy(V; Z) =0, and V simply connected at infinity. For
this see Larry Siebenmann’s Bourbaki seminar [48].

Proof. Smoothing theory [32], [33] says that a connected noncompact
n-manifold (for any 0 < n < o0) can be smoothed if the classing map for its
topological tangent microbundle can be lifted over BO(n) — B Top(n). When
n = 4 the second space is quite mysterious, but if the manifold in question is
contractible there can be no obstruction to the lifting. Thus any V (proper)-
homotopy equivalent to R* admits a smoothing V.

By hand one can construct a proper-h-cobordism W between Vs and R*. Set
(W; Vs, R*) = (Vg X [0,1)) U B*X 1; V5 X 0, B* X 1) where B* is the in-
terior of a smooth 4-ball in V. Now apply Theorem 10.4 to obtain R* =10, Vz
=1ep V. qed.

In [22] the author constructed a smooth proper imbedding of the punctured
Poincaré homology sphere P~ into V, a smooth manifold known to be proper
homotopy equivalent to R*. (Proper implies that the imbedding carries end(Z ™)
to end (R*).) A similar construction shows that any homology 3-sphere minus
a point 2~ can be so imbedded. (The only difference is that more than one
framed 1-surgery may be necessary to make (homology 3-sphere) X I simply
connected.) By Corollary 1.2 any 2~ has a topologically flat proper imbedding
in R* (flat means the imbedding extends to an imbedding of =~ X[—¢, €].) A
beautiful theorem of Rob Kirby’s (actually a special case [29] says that except
for surfaces in three-manifolds no codimension-1 topological imbedding can
have an isolated non-locally-flat point. Thus if we take the 1 point compactifi-
cation of the pair (R*, imbedding (=7 )) we must get a topologically flat
imbedding = => S* since flatness is apparent away from the compactification
point. Thus we have

Theorem 1.4. Every three-manifold 33 with the integral homology of the
three-sphere admits a topologically flat imbedding into S*.

Note. In the case of Rochlin-invariant-one homology spheres such as P,
this imbedding cannot be made smooth. For P#P smoothness is an important
open question; see [26] for a discussion of the implication for polyhedral
structures on manifolds.

In [22] the imbedding P~ = V separates V into two (symmetrical) contract-
ible pieces. The same is true for S~ = V =r1,, R*. Thus we obtain a slight
strengthening of Theorem 1.4.
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Theorem 1.4'. Every three-manifold =* with the integral homology of a
3-sphere bounds a topological contractible 4-manifold A*. S* is homeomorphic to
the double &* U,y | — A*. Thus S* admits a tame topological involution with any
homology 3-sphere as a fixed point set.

As a simple consequence of Theorem 10.3 and [29] we have

Corollary 1.3. Any smooth 4-manifold X proper homotopy equivalent to
S3 X R is homeomorphic to S* X R.

Proof. According to [14] there are at most two proper-h-cobordism classes
of such manifolds X, distinguished by the mod 2 of Rochlin invariant of the
end. (To define this, frame X in any way. Let F3 be a compact 3-manifold
separating ends. F has a canonical almost-framing and so a mod 8 Rochin
invariant = [2k] € interiors /16 integers. Since S* X R is normally bordant to
idgsyz and since 2k becomes a signature splitting obstruction on the normal
bordism, 2k must be the signature of a nonsingular form. Consequently 8
divides 2k, and F? has a well-defined mod 2 Rochlin invariant.) According to
[22] both values are realized, so there are exactly two p-h-cobordism classes of
fake S3 X R’s.

By Theorem 10.4 any X p-h-cobordant to S3 X R is homeomorphic to
S3 X R. Now consider X with Rochlin invariant ®.(X) = 1. Let 2X be the
“connected sum along a line” running from one end of X to the other of X and
—X. Thatis2X = (X — line X X D) Uy, . — (X — line X D?). By addi-
tivity (2 X) = 0, so 2 X is p-h-cobordant to S X R and therefore homeomor-
phic to §* X R. Form the end-compactification 2 X of 2 X, this is, 2X U = o0
=1pS> X R U %00 =15, §*. ¥ = (line X D> U +0) is a 3-sphere in 2X,
which is flat except possibly at =occ. By [29] Y is a flat 3-sphere in 2 X. By the
generalized Schoenflies theorem Y bounds two 4-balls B and B’ in 2X.
Consider either ball minus compactification points B\ (* c0) = D* X R. But
(X — line X D) = B\ * 00, 50 X =t1op D> X R U, 5, . D* X R. Since all
orientation preserving homeomorphisms of S? X R are isotopic (see [34] for
example) X =1, D> X R U, ., D* X R=8§>XR.

Larry Siebenmann has pointed out that the assumption that X has a smooth
structure can be dispensed with.

Corollary 1.3’ (Siebenmann). Any topological 4-manifold proper-homotopy
equivalent to S X R is homeomorphic to S* X R.

Outline of Proof. Step 1. Use techniques of Homma (see [28] and [11]) to
construct a flat arc in X running from end to end. The complement is, of
course, (topologically) R*.

Step 2. At intervals along the arc place transverse 3 disks. By [29] the
image of these disks in X U = o /arc U * 00 =10, S* are still flat 3-disks A.
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Step 3. Use flatness to produce nested 1-sided thickenings A X [01] C §*
as shown below.

PELY
{

\
4

]
T*~p3

A~

N
)

‘C.\D3

[\
o

)

~D3

1

A/

/,
\

DIAGRAM 1.4

Step 4. Parametrize X as S° X R using a “spine-ribs-meat picture”. The
line is the spine, the inverse image of d(A X [0, 1]’s) are flat 3-sphere ribs, the
meat consists of 4-balls found, by an application of the generalized Schoenflies
theorem, to lie between the ribs. q.e.d.

The following classification can be considered the main theorem of this
paper.

Definition 1.1. A manifold is almost-smooth if it has been given a smooth
structure in the complement of a single point.

Theorem 1.5. (Existence) Given any integral unimodular quadratic form w
there is a (oriented) closed almost-smooth 1-connected 4-dimensional manifold M
realizing w as its intersection form:

() H(M;Z) @ Hy(M; Z) > Z.

(Uniqueness) In the case where the form w is even (that is {x, x)= even for
all x € Hy(M; Z)), then any two manifolds above M and M’ which realize w are
homeomorphic. If w is odd (that is not even), there are exactly two homeomor-
phism classes [M] and [ M'] of almost smooth 4-manifolds realizing w. One will
have vanishing Kirby-Siebenmann obstruction (so M X S, for example, will be
smoothable), the other will have nontrivial Kirby-Siebenmann obstruction (so
M X S will not be smoothable).

Proof of existence. Once a basis is chosen, w determines a symmetric integral
matrix with determinant equal to = 1. Associated to this matrix is a smooth
plumbing (see [7]) which is a 1l-connected 4-manifold N with N=3, a
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homology sphere. M has intersection pairing . By Theorem 1.4, = = 9A% A% a
compact contractible topological manifold. Set M = N U A*. Van Kampen’s
theorem and the Mayer-Vietoris theorem establish that M is 1-connected with
intersection form W. Finally the inclusion N => M-(point of A*) is a homotopy
equivalence, so the lifting of the classifying map for the topological tangent
microbundle of N over BO(4) — B Top(4) extends to a lifting:

__,Bo@
lift///”

-
—

(M-points of A4)———T—-—> BTop(4)
By smoothing theory M — (point of A*) can now be given a smooth structure.
Proof of Uniqueness. Let M and M’ be a compact, 1-connected, almost
smooth 4-manifolds both realizing the same form w. It has long been known
[36] that there is a homotopy equivalence. f: M’ — M. This allows the stable
normal bundles of M and M’ to be compared, the difference is an element of
[M, G/Top]. Recall the fibration:

G/PL
l
G/Top
N\
B(Top/PL)

The obstruction to lifting to [M, G/PL] is the Kirby-Siebenmann obstruction
which lies in [M, B(Top/PL)] =M, K(Z,,4)) = H (M, Z,) = Z,.

Assume this obstruction vanishes and lifts. Wall shows how to use a self
equivalence to replace f by f’ where [ f'] = 0 € [M, G/PL] (see [52, Chapter
16]; follow Wall’s argument using the presence of the smooth structure in the
complement of a point). Necessarily ( f')= 0 € [M, G/Top] as well. Thus if
the K — S obstruction vanishes, there is a homotopy equivalence f': M’ - M
which is (topologically) normally cobordant to id ,,. Since the surgery obstruc-
tion group Ls(0) = 0, f’ is actually (topologically) A-cobordant to id ,,. Call the
h-cobordism (W; M’, M). Let W = W \arc, where arc is a flat arc (see [12] for
existence) running from the non-smoothed point of M to the non-smoothed
point of M. It is easily seen that (W; M’-pt, M-pt) is a (topological) proper
h-cobordism which is 1-connected and simply connected at infinity. It has a
smooth structure at (actually near) each end and the only obstruction to
extension of the structure lies in the zero group

suspension
~

HYW,3W, Z,) = HM-pty=H*(M)=H|(M)=0.
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Thus we may extend the smooth structure over W. Apply Theorem 10.4 to
write (W; M'-pt., M-pt.) =p (M’ — pt X [0,1], (M'-pt.) X 0, (M'-pt.) X 1).
This gives a homeomorphism of M-pt. to M’-pt. which extends to the 1-point
compactification M = M".

In the case where w is even, M and M’ are spin manifolds. For closed spin
4-manifold the K — S obstruction is well known [45] to be (signature
M/8)mod2. Thus the difference class [f] € [M, B(Top/PL)] satisfies [ f]
= {(signature M — signature M’) (mod2) = 0. This explains why in the even
case there is only one manifold; a normal bordism to the identity can always
be found (after a change of f to f’) as in the preceding paragraph.

In the case where w is odd and indefinite, by the classification of quadratic
forms [36] one representative will always be of the form H =
(#, copies(Pz)-'#\‘=(-'l=i-',,,_copies — CP?). This is a smooth manifold. It is sufficient to
produce (realizing w) a non-smoothable manifold. For if there is such a
manifold there are at least two homeomorphism classes corresponding to w.
There cannot be more than two since for any homotopy equivalence f:
M - M", (fYE[M", BG/PL] is nonzero only if one manifold has zero and
the other nonzero K — S obstruction.

To produce the second example replace one CP2 summand with the “Chern
manifold” (Named for S. S. Chern in honor of his seventieth birthday)
Ch = 4-ball U_ .. 2handle U A% Ch is built by attaching a 2-handle to the
trefoil knot with framing = +1 (see §2) and then recognizing the boundary to
be the Poincaré homology sphere =3 [31] and capping off with the A* produced
by Theorem 1.4'.

It remains to verify Ch#Q = Ch#( # CP?)#( # CP?) is not smoothable.

By construction CH#Q — (point of A“) can be glven a smooth structure T’
containing P as a smooth submanifold P = 9A*. For manifolds of dimension 5
uniqueness of structure is measured by H3( ; Z,). Thus (CH#Q-pt) X R has a
unique smooth structure containing a smooth imbedding of P X R (with
structure (Pypique structure) X R). This imbedding bounds A* X R. If (Ch#Q) X
R could be given any smooth structure 6, then P X R could by uniqueness, be
moved by an ambient e-isotopy § to a smooth submanifold. But this would
mean that §(P X R) was the boundary of a smooth contractible 5-manifold
with two ends. This well known to be impossible (compare with [45]). One
finds a contradiction to Rochlin’s theorem by making P X 0 bound a cross-
section of the contractible 5-manifold. This will be a smooth spin 4-manifold
with index zero.

The case where w is odd and definite is similar but less explicit. The
preceding discussion reduces the realization problem for w to producing two
framed links L, and L, both with linking-framing matrix representing w with
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R(OH(Ly)) =0 and R(IFC(L,)) = 1. H(L,) is the 2-handle body (see §2)
formed by glueing 2-handles to L;, and } is the Z,-valued Rochlin invariant
(see [36]) of the boundary homology three-sphere. Capping off the boundaries
with contractable topological 4-manifolds results in examples of M, with
trivial and nontrivial K — S obstruction. Let x,,...,x, be a basis for the
underlying locus of w so that x, is “characteristic,” i.e., w(x;, x;) = w(x;, X,),
mod 2. Let (y,,...,v,) = L be a framed link representing (x,,...,x,), and let
JC be the associated 2-handle body. The geometric formula generalizing Roch-
lin’s theorem [24] for JC(L) is: 3[w(x,, x,)-signature (w)] (mod 2) = Arf( X)
+ R (I (L)), where Arf(X) is the Arf invariant (€ Z,) of a characteristic
surface in JC. This is simply the Arf invariant of the knot v,. Clearly, connected
sum of y, with a small zero-framed trefoil knot (or any knot with Arf invariant
= 1) changes R.(3JC). This yields the two desired examples.

Theorem 1.5, Addendum. Any automorphism of a nonsingular w is realised
by a self homeomorphism of either (replace “either” with “the” when w is
even) almost smooth M . If M is smooth, Wall shows [52, Chap. 16] how any
automorphism of w will be represented by a self map of M, which is normally
cobordant to the identity. Five-dimensional surgery (L%(0) =0) turns the
normal bordism into an A-cobordism inducing the given automorphism of w.
This outline may be carried out for M, \pt in a proper setting when M, is
almost smooth. (The noncompact surgery groups also vanish (see [51]).) The
resulting (proper) h-cobordism is a topological product by Theorems 1.3 and
10.4. Following the product lines gives the desired automorphism which is
fixed on the deleted point in the almost smooth case.

It is worth pointing out the following special cases of the classification as
separate theorems.

Theorem 1.6 (The 4-dimensional Poincaré conjecture). If =* is a topological
4-manifold homotopy equivalent to the 4-sphere S*, then =* is homeomorphic to
S4.

Proof. This simply corresponds to the case w = & of no intersection
matrix. It remains only to see that any possible £* will be an almost smooth
manifold. =4-pt is contractible so there is no obstruction to lifting the bundle.
Apply smoothing theory for noncompact manifolds to smooth =*-pt.

Note. Using Theorem 1.3 the relative version may be established. Any
compact contractible 4-manifold with boundary =10, S* is homeomorphic to
B4,

Perhaps the most interesting special case is

Theorem 1.7. There is a closed 1-connected almost-parallelizable, almost-
smooth, 4-manifold | Eg | with intersection matrix Eg.

The next corollary follows directly from [43].
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Corollary 1.4. There is a topological transversality theorem for maps f:
M™ - (L' C N") from (top) manifolds to flat (manifold/submanifold) pairs
except possibly when n or m = 4 and 1 = 1,2, or 3. See the above reference for
details.

Corollary 1.5. The triangulation conjecture fails for 4-dimensional manifolds,
since | Eg| has K — S obstruction = generator € H,(| Eg|; Z,); | Eg| cannot be
given a P. L. structure.

Corollary 1.6.  Either | Eg | is the first example in any dimension of a manifold
not homeomorphic to a polyhedron or the 3-dimensional Poincaré conjecture is
false.

Proof. Suppose | Eg| is a (simplicial) polyhedron. Then since it is not P.L.,
the link of some vertex must fail to be a combinatorial triangulation of S>. The
link L will, however, be a homology-3-manifold with the homotopy type of a
sphere in dimension equal to 3. All 3-complexes which are homology manifolds
are manifolds, so L is a manifold. The 3-dimensional Hauptvermutung [38]
tells us that if L =r,, S°, its triangulation must be the standard combinatorial
one. So the assumption that | Eg| is polyhedral leads to the conclusion that
some link L is a homotopy 3-sphere not homeomorphic to S°.

Theorem 1.8. There are two closed 4-manifolds homotopy equivalent but not
homeomorphic: CP? and Ch.

Theorem 1.9. The Kummer surface K is topologically reducible. (K equals the
zero set of z{ + 23 + z3 + z§ in CP3.) In fact given any direct sum decomposi-
tion of the intersection form of a closed 1-connected almost-smooth 4-manifold,
there is an analogous (topological) connected sum decomposition. In the case of K
the formisw =E; ® Eg® |1]| ®00| (73] -

Remark 1.1. There are no known 4-manifolds which are not also known to
be almost-smooth.

Theorem 1.10. The 4-dimensional Hauptvermutung is false at least for
noncompact manifolds. A non-straightenable open 3-handle carrying the K — S
obstruction exists in dimension four.

Proof. The two (at least) smooth structures on S X R (see the proof of
Theorem 1.4") show that homeomorphisms are not always isotopic to P.L.
homeomorphisms.

If the proof of Corollary 1.3 is applied to the example in [22] of a fake
S3 X R, then during the proof (D* X R,3D? X R) i>((fake S3 X R — open
nbd(arc)), 0) is constructed. 4 is not topologically isotopic to a P.L. homeomor-
phism on D? X B', in particular A is not straightenable. & X id z» for n =1 is

the nonstraightenable parameterization detected by Kirby and Siebermann in
1969 [32], [33].
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McMillan’s cellularity criterion [35] is now known in all dimensions. The
new case is;

Theorem 1.11. Suppose M is a 4-dimensional topological manifold, and
K C M a compact set with the Céch homology of a point. Assume K is tame, that
is, given any open set U containing K there is always smaller open set V
containing K with m(V — K) —» (U — K) zero. Then K is the infinite intersec-
tion of topologically imbedded 4-Balls B, C interior B;, 0 <i < oo, (K is
cellular).

Proof. The first step is to argue that for all U above thereis a V' C U, as
above with the inclusion null homotopic. One approach is to cross with B (for
example) and use Siebenmann’s thesis [44] to recognize the end toward K X B3
as S3 X B3 X [0, 0). As long as (U — V') X B? contains, for some r € R, a
copy of S3 X B3 X r the desired null homotopy will be available. The classify-
ing map for that topological tangent microbundle over ¥ now lifts to BO(4) so
¥ may be smoothed as V.. Trim off some of V. to obtain a compact smooth
manifold with boundary N containing K. Without touching some small open
neighborhood of K first cap off 9N to form a smooth closed oriented
4-manifold N, containing K, and then do 1-surgeries to arrive at a smooth
simply connected N, containing K. Let W= (N, X I —p X ITU K X 1) for
some p € K. W is an h-cobordism by Alexander duality. A stabilization
argument as above shows W is a proper-h-cobordism. W is 1-connected and
1-connected at infinity. Thus Theorem 10.5 implies N, — K is homeomorphic
to N, — p. A deleted neighborhood system for K can now be pulled back under
such a homeomorphism from {Ball, ,(p)\p}, i large. That K U
homeo ~!(Ball, ,i(P)\p)is a ball follows from the note beneath Theorem 1.6.

Theorem 1.12. If a smooth 4-dimensional manifold M has a 1-connected end
(which does not meet 9M), then the end is topologically collared as S X [0, c0).

Proof. Using the method above, capture the end in a simply connected
smooth 4-manifold N which is 1-connected at infinity. Using [45] N is a proper
homotopy equivalent and actually p-A-cobordant one of the almost smooth
4-manifolds of Theorem 1.5 with the single bad point deleted. Thus the
unknown end is homeomorphic to the standard end. q.e.d.

Although the methods of this paper apply with most force in simply
connected settings, it is possible to obtain some new results on topological knot
concordance. In [23] the author proved two knot slicing theorems which
involved possible singularities. The allowable singularity could, depending on
the hypotheses, occur either both on the 2-dimensional slice and in the ambient
4-manifold or only in the ambient 4-manifold. Now we know that, topologi-
cally, any smooth end proper homotopy equivalent to S; X [0, c0) is standard,
so no ambient singularity occurs. As remarked in Note 1.1, any compact
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contractible 4-manifold with boundary S* as homeomorphic to B*. Thus the
unidentified space in [23] can now be replaced by B*.

Theorem 1.13. Let S' =k%S 3 be a smooth knot. k has Alexander polynomial
A(t) =1 if and only if the smooth imbedding k extends to some topological
imbedding (“slice ) B* £ B% with the following properties:

(1) k is smooth except for a single point p which is nevertheless local-homotopi-
cally unknotted. (The local homotopy condition at p is equivalent to assuming the
end (B* — k(B?)) is proper homotopy equivalent to the standard end (S' X D?
X[0,00))

() 7(B* — k(B?) = Z.

Theorem 1.14. Let S! fo )S3 be either untwisted double of a knot k with
Alexander polynomial A,(t) = 1. D(k) is topologically slice, that is, D(k)
extends to a topologically flat imbedding of B? into B*. Equivalently a 2-handle
(D? X D?,0D? X D?) can be topologically imbedded in (B*, S*) with its attach-
ing region 9D?* X D? parameterizing a closed tubular neighborhood of D(k).

2. Handle calculus

While developing my approach to 4-manifolds, I spent a moderate amount
of time exploring examples and making fundamental group calculations using
the calculus for 1- and 2-handles. This is the art form called “Kirby calculus”
by his students and friends. Although its ardent practitioners are few, perhaps
even fewer mathematicians have entirely escaped the shock of accidently
encountering a monstrous link diagram in an otherwise friendly looking
journal.

We will use the calculus to: (1) define Casson handles and their finite stages
(§82); (2) make fundamental group calculations (§3); and (3) describe the
frontier of a geometrically controlled Casson handle (§4). Alternatives to the
calculus are available for these purposes, but none give so explicit a geometric
understanding.

We will introduce only the handle body theory specifically needed for this
paper. For a general discussion of the calculus see [2].

We represent a 4-dimensional handle body: B* U k 1-handles U/ 2-handles
by a labeled (k + /)-component link in 3 = dB*. We, of course, draw the link
as if it lies in R>. The first k-components of the link are trivial—that is, k
unknotted and unlinked circles and they are labeled with a dot to indicate that
they represent 1-handles. Then each of the last / components of the link is
labeled with an integer. This integer n; is the twisting (measured as a linking
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number in dB*) of a trivialization of the normal bundle of the link compo-
nent ¥ yoonem--0p and specifies an isotopy class of an attaching map
9™ (2-handle) = 3D? X D? % nbd(component). In particular g,(S' X (0,0)) and
g(S' X (0,1)) will have linking number = n,. To interprete the dotted compo-
nents, subtract the standard (unknotted, unlinked) slice, II; .o (D2, ) —
(B*%,9), for this k-component unlink from B* More precisely delete the
interior of a tubular neighborhood of this slice. This is Alexander dual to
erecting 1-handles and has the convenient feature that the attaching regions for
the 2-handles may in this way be regarded as lying in dB*, so that the integers
which indicate the twist of their normal framing have meaning. This saves the
trouble of establishing some conventional notion of untwisted framing around
each 1-handle to serve as the zero framing. The ever-present zero handle is not
explicitly drawn, yet its boundary serves as our blackboard.

Before proceeding to examples let us introduce two additional conventions.
We need to label subsets, generally “attaching regions” in the boundary of a
handle body and also occasionally to indicate that the interior of a thin
sub-handle body, the 0-handle and certain of the 1 and 2-handles have been
subtracted. In lectures color coding is quite successful (orange for “attaching
regions”, green for deleting handles). Not wishing to strain the resources of this
journal we will modify the color coding: indicated subsets will be drawn in
boldface; deleted handles (of index 1 and 2) will be drawn in dashed lines (the
zero handle is never drawn) lines. The utility of marking subsets will become
apparent since the spaces to be diagrammed are in some sense substitutes for
2-handles and like 2-handles are actually pairs, (space, attaching region). We
will indicate the exact position of the attaching region S! X D? in the boundary
with a boldface curve. The point of subtracting a subhandle body is that it
gives an easy method for describing handle bodies based on 3-manifolds other
than the 3-sphere. Certain complements whose fundamental groups we must
calculate (§4) have the homotopy type of such handle bodies.

Example 0. The 2-handle (D? X D2,3D? X D?)

O (empty link diagram)

Example 1. A kinky handle is a pair obtained from a 2-handle by finitely
many self-plumbings away from the attaching region. A self-plumbing is an
identification of DZ X D? with D} X D* where DZ, D} C D* are disjoint
subdisks of the first factor disk. In complex coordinates the plumbing may be
written as (z,w) > (w, z) or (z,w) > (W, Z) creating either a positive or
negative (respectively) double point on the core D? X 0.
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Kinky handle with one self plumbing:

= _‘%

Kinky handle with one positive and one negative self-plumbing:

CE =L — @

Di1AGRAM 2.1

It is an exercise to prove that (1) kinky handles, as an absolute space are
Hanie S' X D3, (2) as pairs are determined up to diffeomorphisms by the
numbers p = positive kins, (= +self plumbings) and n = negative kinks, (3)
the handle diagram for the pairs is:

o
7
N

or

f

1

I

|
A
DIAGRAM 2.2

In the following paragraph, we will give a brief description of the geometry,
or rather combinatorial topology, of a (kinky handle, attaching region) =
(k, 3™ k). (For more details see [15].)

Let C = core(k) be the image under the self-plumbing 7 of the 2-handle
core D? X 0. There is an identification of 0~k with S' X D? which takes
d(core k) to S' X (0, 0) and under which the curves S' X (0,0) and S' X (0, 1)
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have linking number zero. This linking number is defined to be the number of
(transverse) intersections, counted according to sign, of C and C’, a normally
displaced copy of C with 3(C") = S' X (0, 1).

Caution. The identification #~': 3~ K - S' X D? is not, in general, the
one we have described. In fact under this identification link (S' X (0,0),
S' X (0,1)) = (D? X (0,0), D? X (0,1))= 2(# self plumbing counted by
sign).

Having a notion of ““parallel” circles in 0~ k now enables us to attach kinky
handles to a framed link in dB* just as we previously saw how to attach
2-handles. It is in this sense that we will write Casson handles CH and their
finite approximations, n-stage towers 7,, as kinky-handle bodies. This is not
really a new notion but a combinatorical convenience: attaching a kinky
handle with m kinks is the same as attaching m 1-handles and then a 2-handle.

The key to understanding (k, dC) is to think of (k, C) as obtained (in the
case of one kink) from (B*; (B* N (w, x)-plane) U (B* N (y, z)-plane)) by
the addition of a 1-handle pair (D' X D3, D' X D'; S° X D3 S° X D).

//— -~ \\
/’//"—\‘\\
LLy \ \\
1, \
1]
<
7 /
Y2 7 o2
[ -
B% U 1-handle K
Diagram 2.3

Observe that the two planes meet dB* in the Hopf link: C and that

there is a torus in dB*, {(w, x, y, z)|w? + y2=1/2 and y? + 22 =1/2},
which separates the components. In the diagram the torus appears as S° X §°
= 4 points. Its image in the kinky handle will be called the distinguished torus.

The sign of the self-plumbing determines the attaching map of the sub-2-
handle. One could now draw the position of C (= attaching region 9~ k) in
0k = S' X S$? by starting with the Hopf link and performing a 0-surgery on
(S3, Hopf link). Below I have drawn, in handle body notation, the result. The
distinguished torus appears as a punctured torus Siefert surface for the
1-handle which is completed to a torus by the addition of a parallel copy of the
scooped out slice.
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<— punctured
torus

| Di1aGraM 2.4
The clasp h or H depends on the sign (+, — respectively) of the self

plumbing. Using the symmetry of the Whitehead link diagram Diagram 2.4
can be redrawn as:

O-framing

DIAGRAM 2.5

A k with several kinks can be formed from several copies of k’s each with
one kink by boundary connected sums along [0, 8] X D2 C §' X D> =07 k.
Thus the general case drawn in Diagram 2.2 is now readily understood.

All kinky handles will be attached with zero framing. Beyond this, the sign
of the self plumbings plays no role for us; so we will henceforth draw clasps
ambiguously. In effect we are considering both cases simultaneously.

Definitions. A one-stage tower is a kinky handle (k, 9™ k). An (n + 1)-stage
tower is an n-stage tower (7,0~ T,) union kinky handles. These kinky handles
are attached to the zero-framed link consisting of simple linking circles to those
dotted circles representing the 1-handles of 7, — T,,_,. (Caution: When draw-
ing handle diagrams a different picture is needed for each component of a
disconnected space since the background is by convention the boundary of a
single O-handle = B*))
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Schematically 7, might look like:

DIAGRAM 2.6

Each kinky handle (k, 0k) is a mapping cylinder of a piecewise smooth p:
(0k — 37 K9(0™ k)) — (C, 0C). If one kinky handle is attached to another, say
(k',d7 k") is attached to (k,d” k) to form (L, k), one can consider the
connected piecewise smooth subcomplex J = C U C' U mapping cylinder of
0C". It is not difficult to see that (L, 0 k) is itself a mapping cylinder of a
piecewise smooth map p’: (0L — ™ k,0(3™ k)) — (J, aC).

Let C, represent a core of a pth-stage kinky handle, that is, a kinky handle in
T, — T,_,. Let C,_, denote the disjoint union of the cores of the kinky handles
in stages p through g, that is, the kinky handles of 7, — T, union the mapping
cylinders connecting each C,; tothe C,,;,0<i<g—p— 1

LetT, ,=T,— T, T, ,a(q — p)-stage tower.

§3 treats the key reimbedding theorem which describes how one n-stage
tower can be imbedded in another n-stage tower forn = 3, 4, 5, and 6.

Absent, to this point, from our discussion of handle body theory are the
lovely rules for changing one diagram to another—one set of rules if the
diagrams are supposed to represent precisely the same 4-manifold; another set
if only the boundary 3-manifold is to be preserved. We will use only a single
rule. It is the Morse cancellation lemma applied to a 1-handle two handle pair.
This well known operation (which preserves the 4-manifold) must be inter-
preted in terms of the link calculus.

Cancellation is possible whenever a framed curve (v, n) has exactly one
point (and that transverse) of intersection with the spanning disk A of a dotted
circle a representing a 1-handle. a is, of course, unknotted but y is not
necessarily unknotted. However, the well-known lamp-cord trick [29] shows
that y may be isotoped in S' X §? = (3(B*h (slice for a))) to assume an
unknotted position back in the 2-sphere (the isotopy may have to slide y across
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the slice). Thus we only need describe cancellation in the case where a and
(v, n) assume the standard form of the Hopf link with a spanning the disk A
and y spanning a disk A’.

Rule. To cancel: (0) Arrange that nothing in the diagram meet the open
interval int A N int A’, (1) erase a and (v, n), (2) give all material in the
diagram which passes through A (attaching curves framing, regions marked (as
in orange) on the boundary, deleted handles (marked in green), etc.) n full right
handed twists across A, and (3) clasp with all material which passes through A’.

Schematically the dimensions can be divided in half, and the handle cancel-
lation rule assumes the pleasing form:

& - @

Di1AGRAM 2.7

Checking the rule amounts to following through the isomorphism S' X D?
%X [0,1] U, D? X D? = B* where h: S' X D* X 1 - 3dD? X D? is given by
h(0,(p, $)) = (0,(p, 270 + ¢)).

Here are two sample handle body pictures of the same 3-stage tower. Use
the cancellation rule to check that the two pairs are in fact diffeomorphic.

(e}
fo) o ~ +1
A e e N e’
———r’ S N e’
stage 1 stage 2 stage 3 stage 1  stage 2 stage 3

DiAGRAM 2.8

For another example consult the proof of Theorem 4.1.

Finally, we define a Casson bundle CH. T, is an n-stage tower. Let T, be
(interior T,,) U 0~ T,,. Suppose T} = T, => T, =.- - - are inclusions of towers as
specified by the inductive definition of 7. There will be a corresponding
sequence of inclusions T, =» T, = T; = ---. Define CH to be the union
(with direct limit topology) of such a string of inclusions. Casson handles are
smooth manifold pairs which are a priori indexed by finitely branching trees
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(with signed edges). The symbol CH will mean “any Casson handle.” It is not
known if all Casson handles are diffeomorphic.

Theorem 2.1. The interior of any CH is diffeomorphic to R*.

Proof. Interior (CH) can be described as an infinite union of U= int(7,,)
where int(T,_,) C interior (T,). By trimming open collars of thickness &¢/n
from int(7},) we have a description of int(CH) as a nested notion of smooth
submanifolds H, = interior, s (48" X D*) where m\(H,_,) — m(H,) is the
zero map. Smooth engulfing factors the inclusion H,_, => B_| = H, through a
smooth 4-ball. It follows that int(CH) is a nested union of smooth 4-balls B,
B} _| being contained in the interior of B,. It follows that int(CH) =smoom R*.
q.e.d.

The zero framings are an essential feature of the definition of T,. For the
limiting Casson handle to have the proper homotopy type of (D2 X D?, 3D?
X D?) all the framings of the 2-handles must be zero. Regardless of framings
the fundamental group of the end is an infinite free product with amalgama-
tion. A handle body calculation shows that this group system will be stably
isomorphic to Z if and only if all framings are zero. Compare this with [15].

3. Casson’s imbedding theorem and fundamental group improvement

In §§3-6 we will work in the smooth (C*) category. We will assume that
maps of surfaces into 4-manifolds are in general position, that is, immersions
with isolated normal crossings.

Andrew Casson lectured on the following imbedding theorem in the summer
of 1973 at Institut des Hautes Etudes Scientifiques. This theorem motivates the
study of Casson handles CH.

Theorem 3.1 (Casson). Let (M, d) be a smooth simply connected 4-manifold
with boundary, and d = 11d;: TI(D?,9); = (M, d) be an immersion of a finite
disjoint union of disks which is an imbedding on TIOD?. If there exist classes
x; € Hy(M; Z) with integral intersection numbers x; - d; = 8, and x, - x; = even
and if d;-d; = O (this is defined for i # j). Then d is regularly homotopic to the
first stage of a disjoint union of smoothly imbedded Casson handles.

Addendum. If the d; are disjoint and with normal crossings, then the cores of
the first stage c; result from d; after a finite number of “births of pairs of double
points.”

The key to this theorem is the fundamental group improvement lemma
which we state in a nonsimply connected setting.
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Lemma 3.1 (7,-lemma). Let f: (S,9) — (M, d) be an immersion of a com-
pact oriented, connected surface into an oriented 4-manifold. Assume that f has an
algebraic dual x. Then that if is regularly homotopic to [’ with

m (M, —f'(S)) iy (M) and isomorphism.

Definition. An immersion 2-sphere x in M is an algebraic dual for an
immersed surface f: (S,d) » (M, d) iff x meets f transversely and f N x =
{p,4,,49,-.-,4,,q,) where for each 1 <i < n, g, and g are paired over =,( M),
that is, sign(q;) = —sign(q/) and some Whitney circle consisted of an arc on
f(S) and an arc on x between g; and g/ is null homotopic in M. Equivalently
x - f = 1in the module generated by cosets Z[m,(M)/=,(S)].

Note. In the present application S will be a disk.

Terminology. In the above lemma f'(S) is 7,-negligible. We will use the
terminology 4 C X is 7 -negligible if and only if inc, 7 (X — 4) > 7(X) is an
isomorphism.

Addendum. f’ will result from finitely many birth of pairs of self intersec-
tions of f. These births are essentially inverse to the “ Whitney tricks” and have
come to be called “Casson moves”.

Proof of Lemma 3.1. If we can find an x’ with f'(S) N x’ = p, that is,
n = 0 in the previous definition, we will say x’ is geometrically dual to f'(s).
We will modify f and x simultaneously to make them geometrically dual. The
inductive step is a weak sort of Whitney trick which lowers the number n;
when n = 0 we are finished.

Let A C M be an immersed disk bounding the Whitney circle pairing ¢, and
q,. We assume without loss of generality that A meets the sheets of f(.S) and x
normally along its boundary but beyond that we do not attempt to establish
the usual circumstance requisite for Whitney’s trick. In particular the following
four circumstances are all expected to arise.

1. A is not imbedded.

2. The natural section § of the normal bundle »,_ ,, defined over 9A by
Vaeux U orth. comp. (7(A)|sanss) @ Vaanjss)-scs)) does not extend to a
nonzero section over A.

3.int(A) N x #* 2.

4.int(A) N f(S) # 2.

We avoid only the fourth possibility. This done by a regular homotopy of
f(S) which removes points of intersection of f(S) with int A by pushing these
points along disjointly imbedded arcs in A until they fall off 0A N f(S). This
introduces new pairs of self-intersections of f(.S), and these are the advertised
“Casson moves.”
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Now use some (possibly singular) extension # of 8 to define a homotopy
(regular except at the singularities of ) of x across A to cancel g, and g, This
is done using the traditional formula for the Whitney trick. Since x was not
imbedded, at the start possibilities 1, 2, and 3 do not cause any loss of
inductive hypothesis.

Theorem 3.2 (Tower construction). Let {f;} be a collection of disjoint im-
mersions, each of which is imbedded along the boundary f: (D?,3) = (M}, 0M,).
Assume that there are dual spherical classes {x;} with f,-x; =18, f,- f,=0,
i #j, and x; - x; = even, where the dot denotes integral intersecting number.
Assume there exists a sequence of inclusions M, C M, C My C --- C M, such
that the induced maps on m, are all zero. Also assume that 1If,(11dD?) is contained
in some open 3-manifold which is included in all the boundaries 9M;, 1 <i<n +
1. Then 1If, is homotopic to disjoint normal immersions 1If] which are the first
cores (c;) of disjoint n-stage towers 1(T,,0™ T,) C (M,,dM,) with UT,m,-
negligible in M,,.

Note. Theorem 3.2 generalizes Theorem 3.1. For this set M, =M for
1 <j < o0, and let CH be the direct limit defined in §2.

Note. For simplicity we will give the argument for only a single f; = f. The
general case follows by repeated application of this special case. That is, use
the special case to construct 7, ; inside M, ., and in the complement of T} _, ,,
and T, ; for all i #i and for all i<i, k<n. This is possible since our
construction keeps the tower m,-negligible in any containing M,. (Compare this
construction with the proof given by A. Casson in the simply connected case
[15})

Proof of Theorem 3.2. The first step is to follow the inclusion into M, and
apply Lemma 3.1 to replace (f, x) with (f’, x"). We will be content to
construct the next stage of the tower to be -negligible in M;. This is
equivalent to the inductive step.

Let T, be a regular neighborhood of f/(D?) in M,. Let hy,...,h, represent
the 1-handles as in Diagram 2.2 for T,, with the boldface curve representing
07 Ty, letl,,...,I, be the small linking circle to h,,...,h,.

We work first with /. /, bounds an immersed disk A = M; with A N T}, = 0A.
We cannot be content simply to take A as the core of a second stage kinky
handle; the framing of the attachment may not be zero, and 7,-negligibility has
not been arranged. Fixing up the framing takes four steps, the m,-condition
requires a fifth. First, one may twist a collar of 0A around the normal disk to
f/(D?*). This changes a certain relative Euler class by one, but in the Kirby
calculus notation we see this as a connected sum of the old attaching region for
A with the zero framed small linking circle to 3~ 7,. Thus the change A ~ A' is
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interpreted below as a change in the attaching regions but not in the framing
of the second stage kinky handle.

n

—— Picture for k = 1. The 2-hand
represents the attaching region
of A. The framing equals n.

n
Now the 2-handle represents the
attaching region of A’. The
framing is still n.

DiAGrAM 3.1

This change is equivalent (compare with Diagrams 2.3 and 2.4) to changing the
attaching framing by one and leaving the attaching curve unchanged.

Thus we may assume that A' induces an even framing and that 9A is the
small linking circle /,. However, int A' N T, # @. Next using the “Norman
trick” [41] to form an ambient connected sum of A' with 0 < m < co copies of
x’ to obtain A? = A'#x’s with A> N T, = &. The framing for A2 will be even
since it is given by the formula

frame(A?) = frame(A') + 2(4' - f/(D?))(4' - x*) + m?(x’ - x').

The third step changes A% to A* which admits a geometric dual y in M,. A?
meets the distinguished torus = transversely and in one point. Since both
generators of 7 are linking circles to f’(D?), and f'(D?) admits the geometric
dual x’, we see that 7 represents a spherical class [7] (actually lying in M,). By
lifting to the universal cover one verifies that the class [7] € m,(M;) contains
an algebraic dual 7 to A? with the Wall form p(7) =0 €
Z|[7,(M;)]/indeterminancy. Compare with [23] and [52]. Apply Lemma 3.1 to
replace (A?, 7) with (A%, y).

Step four. Let A* be a connected sum with — 4frame(A?) copies of y. By the
displayed formula frame(A*) = 0. Since p(y) = 0, another copy of y will serve
as an algebraic dual to A*. Now a final application of Lemma 3.1 changes
(A% y) to (&% y’), a zero framed kinky-handly core attached to /, with a
geometrically dual sphere assuring that A® is 7,-negligible in M; — T,. Induc-
tively construct A}, 1 <i<k, to attach to /, with zero framing and be
m,-negligible in M, — (T, U Jj<ihbd( Asj )). This completes the proof of Theorem
3.2.
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Addendum to Theorem 3.2. Suppose that an (n — 1)-stage tower (7,_,,0"
T,_,) is imbedded in (M* dM*). Further assume that (1) the inclusion is
7,-negligible and (2) 7(T,_,) —» m,(M*) is the zero map. Under these assump-
tions the inductive step of the above proof shows that a new layer of kinky
handles can be added to 7,_, to create an n-stage tower (7,,0” 7,) C
(M?*,3M*). Furthermore T, will be m,-negligible in M*. The requisite algebraic
duals arise from the distinguished tori in the n — 1st layer of the tower.

4. Reimbedding theorems

Reimbedding theorems for towers 7,,, n = 3, 4, 5, and 6 will be presented in
this section. The four theorems are actually a sequence of lemmas leading to
the best. The final result is the mitosis Theorem 4.5. Reimbedding was
discovered by studying the surgery problems associated with slicing higher
order Whitehead links 9~ 7, C 97, (in handle calculus notation). However the
description given here does not involve surgery.

Without further mention the reader should assume that all imbeddings
T,, C T, of one tower in another will satisfy 97,, N 97, =0~ T,, = 3~ T,,. Also
we use the notation C, — C, or simply C,_, to mean the union of all cores at
levels a through b, C, U - - - UC,, union the mapping cylinders M, a <i<b
(compare with §2). We use T, _, to mean the union of kinky handles in tower T
at levels a through b. C,_, is the spine of T,_,. The subscript to 7 will indicate
which stage of T, a given distinguished torus 7 lies. We state the theorems.

Theorem 4.1 (3-stage reimbedding). For every T there exists T,' C Ty
satisfying:

(1) (agreement) C_, = C|_,,

(2) (m,-negligibility) m(T — T}') > (T — C?) is an isomorphism.

Theorem 4.2 (4-stage reimbedding). For every T there exists T, C T,
satisfying:

(1) (agreement) C{_, = C| _,

() (m,-negligiblity) 7 (T — T,) -» = (T? — C}) is an isomorphism,

(3) (no linking C,) The image of m(T,_,) in w(T? — C?) lies in the (in fact
equals) the image of (T ;) in m(T).

Theorem 4.3 (S-stage reimbedding). For every T there exists T,! C T,
satisfying:

(1) (agreement) CY_, = C| _,,

(2) (m,-negligibility) (T — 1)) —» 7 (TL — CP) is an isomorphism,

(3) (nullity) m(Ty") > m(T?) is the zero map.
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Theorem 4.4 (T, imbeds in T;). For every T there is a T} C T satisfying:

(1) (agreement) C{_, = C}_5,

(2) (m,-negligibility) = (T — T;) - 771(72,0 — CY) is an isomorphism.

Before we begin the proof, a word about the fundamental group. All the
groups mentioned in the above theorems are free groups. To discuss these
groups without picking base points we pick in each space a system of disjoint
three-dimensional submanifolds “duals to the generators”. To any oriented
loop with a distinguished point (not on one of the submanifolds) associate the
ordered word of * transverse intersections with the system. The systems are
easily seen. For T, the system is {Y ’s} where each Y is a “distinguished solid
torus” (with boundary the previously defined distinguished torus) in the nth
layer of kinky handles.

nth layer with three
distinguished solid tori

DiAaGraM 4.1

Note. At a self plumbing there are two natural choices of distinguished
solid torus.” Make either choice.

For T, — C,, or the spaces with isomorphic , the system consists of
{X} U {Y’s}. X is dual to the linking circle to C,. Specifically X is X X [0, 1)
in the mapping cylinder structure on 7T, where S is an open Siefert surface for
9C, in (8T, \ nbd (curves represent 1-handles)).

DIAGRAM 4.2
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Lemma 4.1. #(T, — C,_,) is a free group with dual generators (X, Y’s).
The inclusion m (T, — C,_,) —» 7(T; — C,) is an isomorphism.

Proof. The proof is a handle body calculation. (7; — C,_,) =smootnty (T, —
C,_,) U kinky handles =smoothty (T, — C,_,) U l-handles U 2-handles = (7,

C,_,) U 2-handles U 1-handles ~ (07, — dC,) U 2-handles U 1-handles.
The first homotopy equivalence results from changing the attaching maps of
the two-handles within their homotopy classes so that they do not run over the
one-handles. Consider an unramified example:

( NN O
delete 3c; = dc \‘\ I,’! ¥id
b
N /
s

<= delete 3c;

moo @ o

- 7y isomorphism
—_— ~— delete 3¢,
€ delete 9cy
DiaGraM 4.3

Observe the importance of the two zero framings. Only zeros would result in
the last diagram being an unlink. (It can, however, be shown that the
assumption of zero framing is only essential to Theorems 4.1-4.4 in the first
two levels.) Another framing would yield a knot and a separated unknot (or
many mutually separated unknots in the ramified case—they correspond to
the {Y’s}); there would still be a representation to a free group but the map
would no longer be an isomorphism.

The ramified case is similar.

The distinguished solid tori {Y ’s} do not meet the 2-handles so they can be
picture in the final homotopy equivalent handle body of Diagram 4.3. Drawing
as a motion picture: torus through time; we see Y:

Time = 1 Time = % Time = 0

DiAGRaM 4 .4
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For the final assertion we should verify injectivity. This amounts to showing
that a small linking circle to C, is already null homotopic in T; — C, _,. This is
true since C, N (XU Y’s) = &.

Lemma 4.2 (Changing distinguished tori into algebraic duals). Suppose 7 is a
torus imbedded in an oriented 4-manifold M, and that d: (S,d) —» (M, 0) is an
oriented immersed surface meeting v transversely in one point. If the inclusion
m (1) = 7 (M) is zero, then d has an algebraic dual 7.

Proof. Use a null homotopy of one generator of T to surgery 7 into an
immersed sphere 7. The intersection points {T N d} — {7 N d} come in pairs
of opposite sign with a Whitney loop homotopic in M to a dual generator of
ar,( ), thus homotopic to zero. (See [23].)

Proof of Theorem 4.1. , is disjoint from the dual 3-manifold {X, Y’s} of
T — C? so Lemma 4.1 says that ,(7,) - m(T — C{_,) is zero. Lemma 4.2
replaces 7, with an algebraic dual 7, to C? in T — C{_, (several algebraic
duals in the case C, is a disjoint union of kinky cores). Lemma 3.1 applied to
M = T, -(open nbdC,_,) may be used to replace C{ by C; so that m (T} — C?
UCYUG) - a(T — CYU CY) an isomorphism. The proof is completed
by setting T; equal to a regular neighborhood of C? — C;.

Proof of Theorem 4.2. Simply apply Theorem 4.1 to 7,2, to find 7, , C
T, 4. Set T C T to obtain T, C T_. Since the circles generating 7,(7,_,) lie
in T,) ,, they will not meet the dual 3-manifold X C T)?; thus Lemma 4.1
implies conclusion 3. To verify conclusion 2 we much check that a small
linking circle a, to C, is null homotopic in T, — C,_;. a, is null homologous
since it is essentially the boundary of a top-cell for 7,. Specifically a, is a
commutator of the form [a,, Yy~ 'a;y] € 7 (T, — C,_;) wherey C T, N T,_, is
a standard generator of #(7T}) and q, is a small linking circle to C,. Since y can
be taken disjoint from X C T, ,, v is zero in #(T,_, — C,_;). Thus a, =
[a), @;] = 0. Conclusion 1 is immediate.

Proof of Theorem 4.3. The argument here is similar to Theorem [22] and
bears comparison. The main difference here is that the “triangular basis” of
the earlier paper occurs only transiently during our proof and is not part of the
conclusion (and could be likewise eliminated from statements in the earlier
paper). Another difference is that all framing induced by kinky handles will be
made zero; the outer framings were unimportant in [22].

Let m be the number of kinky handles in the fifth layer of T3, (that is, in
T’ — T)). Let n,,...,n,, be the total number of self-plumbings (not counted
by sign) in the fifth layer kinky handles. Let w = m + 3™, n,. Apply Theorem
4.2 w times to create a succession of inclusions 7, = --- = T! & T,? each
satisfying the conclusions of Theorem 4.2. Let C;=7/' — T/, 1<,<w.In
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each Cj there is a collection of m immersed annulli a]"., 1<i<m and
1<j<w.

We first describe the boundary curve of a typical a;. The upper boundary
component d*a} is the core circle along which the ith kinky 2-handle of
T) — T, is attached to T. (As described in §3, this curve may also be
identified as the small linking circle to the ith 1-handle curve in the handle
diagram of T0.) There is a mapping cylinder structure on T, which gives a
collapse of T? to its spine C,_,, the shadow of 3" a} is an imbedded annulus
A'. Consider w + 1 intermediate levels (37.),, 0 < k <w, ((3T), = 9T}) in
this mapping cylinder structure between 37,° and C_,, 3" ai,, = 9~ a} will
be defined to be A’ N (3T),. The reader may object that 3+ a}, (for example)
should lie in 0T} not (37),. However the Addendum to Lemma 3.1 tells us
that CJ agrees with Cf ™! except along a finite number of smooth arcs in 7.} !,
along which pairs of double points are born via “Casson moves”. Thus by
general position (of points and arcs in a 2-disk and arcs and annuli in a C;) we
can assume 9 aj ., =9 a; C 9~ (Tf) and in fact that 4'N C; is an im-
bedded annulus a;. a; is not precisely the annulus we are looking for. We will
form a C C, with 3a; = 3a} and U, a; C C; m-negligible. The annuli a; meets
a distinguished torus 'rji C 9C, transversely at a single point, in fact 5} N a}." =8,
transverse points. Lemma 4.2 allows us to turn 1-j' into a spherical algebraic
dual x}. Now apply Lemma 3.1 to change a; by Casson moves and X; by a
homotopy to arrive at an immersed annulus and an immersed 2-sphere x}
geometrically dual to a}. Again by general position a;,...,a] lie in C, — a.
The geometric dual x} shows that =(C;, — a,'.) - m(C;) is an isomorphism.
Thus 7,(7%) - m(C, — aJ‘.) is the zero map. Consequently Lemmas 4.2 and 3.1
can be applied again to find a} and geometric spherical x? contained in
C, — a}. Continuing in this way we construct a},...,aland x},...,xJ".

Now create m immersed disks 8',...,8™ in T . These will be the cores of
some of the kinky handles of (7' — 7,?). We begin with an “approximation”
to what we want: 8',...,8™ with §' = U;’: ! o} U C4. The most obvious thing
wrong with these cores is that conclusion (3) of Theorem 4.3 will not be
satisfied—the essential loops of T are carried by loops in &'. This defect is
corrected by ambient connected sums with the transverse spheres xl,... ,xl,l,
X2 i1see-sXp bnp---2 X3, This is the “singular Norman trick” of [22], [23].
Briefly, a double point of k in C! is removed by cutting out a D X S°, where
D? X —1is a sheet at g and D? X 1 is a patch of x. containing the intersection
point with 8’ and gluing back S' X D', the normal circle bundle over an arc in
&' connecting g with & (copy x.). Call the resulting collection of disjointly
immersed disks {8, / < 1 < m). Since x| is not imbedded, this only trades one
sort of intersection for another, and it does not eliminate intersections. Recall
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our method for using dual generators to measure fundamental groups. The
distinguished solid tori {Y,, 1 < k <w — m} associated with the self-plumbing
in T — T2 are dual to a basis for m,(T.?). Any loop in §; which is transverse to
the Y,’s is easily seen to represent a cancelling word, thus those disks are
compatible with conclusion (3).

There remains a framing problem. These “singular-Norman-tricks” have
changed the framing of the attachment of &', frame(8) = frame(C;) = 0

It is a consequence of the formula:

(x) framing = relative algebraic intersection = relative Euler class +2,
(# double points counted by sign)

and the fact that the normal bundle »,; - 7o are all trivial that framing (87) is
even. Now consider the effect of changing 8’ to 8’ = §'# copies(x.. ), where
1 <i<m. By formula () the number of copies can be adjusted to make
framing §° = 0.

Apply Lemma 3.1 successively to 8,, - -,8,, to achieve m,-negligibility: m,[( T
-T2 — U™ 8]=m(TL — T,°). This is accomplished by Casson moves;
the disjointness and zero framing of the §; is preserved.

In the difference, D =T — T,”— U §,, it remains to attach kinky
handles to the new -generators vyy,---,y, of 7,*. The new generators are
introduced by each Casson move made during each of the w applications of
Theorem 4.2. The canonical generators (= the small linking circles to the
I-handles in the handle diagram) are not null homotopic in D or equivalently
in T2 — T and so cannot be capped of directly. However according to
conclusion (3) of Theorem 4.2 each new generator can be composed with a
word in the old generators to yield loops a;,- - -, &, which are null homotopic in
T — T,”. The loops a,,- - -,a, correspond to the “triangular basis” in [22],
[23]. The handle body diagram for 7,* has m + s, s > 0, 1-handles in the 4th
stage. 98',---,08™ represent small linking circles to the first m of these
1-handles. The curves a,,- - -,a, can, without loss of generality, be chosen so
that they would become (isotopic to) small, zero-framed, linking circles to the
last s 1-handles if the first m 1-handles were deleted from the diagram.

o

e ae e’

Example: s = m = 1.
DiAGRAM 4.5
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A 7 -negligible collection of null homotopies: 8”1, --,§™** for a,, - -, a
(resp.) in C,,, — U/, 8 can be chosen so that the corresponding kinky
handles attach to the curves a,,- - -,a, in the handle diagram with framing =
zero. The control of the framing and =,-negligibility is obtained just as in the
inductive step of the tower construction Theorem 3.2. We do not actually care
about the 7,-negligibility of the 6’s in the end, but it is needed to keep the
different §’s disjoint as we construct them.

Set V' = nbd(T"*' U S' U --- US™) C TL. Vi is not a 5-stage tower
according to our definition since the fifth stage of kinky handles was attached
to a triangular rather than a standard collection of curves. Despite this V5!
satisfies conclusions (1) agreement and (2) nullity required of 7;'. The desired
T, will be found within V3. Set 7, = T,*-collar (3+ T,*) so that 7,» N V! =
3~ T, the attaching region. Let C? Cint T be the interior of a tubular
neighborhood of C?.

Apply the Addendum to Theorem 3.2 to extend 73* , = T,* N (V5! — €P) to
a m-negligible 4-stage tower T, s C Vi — C2. Set Ty = T° U T,' 4. T, is an
honest 5-stage tower and satisfies conclusion (2) m-negligiblity, as well as
conclusions (1) and (3). Thus the proof is completed by verifying that the
hypotheses to the Addendum to Theorem 3.2 is in fact satisfied. To check the
7,-negligibility hypothesis it suffices to determine that both 7 (Vi' — C?) and
7, (Vs — T,*) are free groups with dual generators {Y’s} U {X), the solid tori
associated to the fifth stage self-plumbings and the (Siefert surface to 9~ V3')
X I respectively. Nullity is clear.

This calculation is an easy variant of the proof of Lemma 4.1, drawing the
pictures is left as an exercise. We remark that here, as in Lemma 4.1, the zero
framing of the last stage 8',---,8™"* is crucial. That the attachment is to a
triangular rather than the standard diagonal basis does not affect the calcula-
tion: First move the 2-handle curves 38',- - -,38™ so that they are geometrically
unlinked from the 1-handles with which they have linking number zero. Then
cancel away these 2-handle curves. At this point 38™*!,- .. 38™"* becomes
isotopic to small linking circles to the remaining fourth stage 1-handles. We are
now in the standard diagonal case handled by Lemma 4.1 g.e.d.

Proof of Theorem 4.4. Apply Theorem 4.3 to the top 5-stages of T to obtain
T} C T,°. We claim that the small linking circle a, to the second stage core C,
is null homotopic in T, — T¢'. By conclusion (2) Theorem 4.3 it is sufficient to
check that a, is null homotopic in T2 — C,_,. But a, is already null in
T — C,_, by Lemma 4.1. It follows that the loops at the top of 7' which
generate m,(T,') are null homotopicin T — T¢.

Now apply the Addendum to Theorem 3.2. Set M, = T," — nbd(C,_,) and
T, ¢ is the 7 -negligible, n — 1 stage tower included into M, inducing the zero
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map on m,. T;_, C M, is the output of the addendum. Adding back the lower
stages we obtain T} C T as desired.

Theorem 4.5 (Mitosis). Given any T there exists T, C T such that

(1) (agreement) C¥_, = C{_,, and

(2) (m,-negligibility) m(TL — T%) —» 7 (T — C{) is an isomorphism.

Certainly this theorem could be proved with any finite number in place of
thirteen. The purpose of thirteen is that 13 = 6 + 6 + 1 and we should train
ourselves to think in units of 6-stage towers. The 6-stage tower will be thought
of as the heart of a Casson handle; the minimum initial segment (as far as is
known) which can replicate. Thus the Mitosis theorem says that inside any
6-stage tower there is “smaller” one whose fundamental group is killed by
attaching 6-stage towers. And further, the thirteenth stage guarantees that
these final towers also induce the zero map on fundamental groups.

od

1 1
T3.12 T7.12
/fﬂ%

1
Ti6

DiI1AGRAM 4.6

To illustrate the combinatorics (but not the homotopy theory) of some
rather complicated nestings used in §5 we introduce a schematic notation in
Diagram 4.6. A 6-stage tower is drawn as a disk, its attaching region as a lower
more or less straight segment of its boundary. The towers attached on top of
another tower are assumed to be attached to the canonical m, generators with
“zero framing”. This is equivalent to saying that the union of the indicated
subtowers is itself a 12-stage tower. (Compare with the definition of Whitney
towers in §9.)

The last two conclusions of Theorem 4.5 are not actually important; we state
them only to preserve the parallel with the previous five theorems.

Proof of Theorem 4.5. We apply Theorem 4.4 in seven successive steps.
First form T} C T,” and set aside its first stage T|'. Now consider the (possibly
disconnected) 6-stage tower T, ;. Apply Theorem 4.4 to the tower to find
T § C T, ,, and set T; aside. Next apply Theorem 4.4 to find 7% ¢ C T2 4,
and set T3 aside. Continuing in this way form and lay aside 7}, T’, T, and
finally T \; C TS. Define T, = T} U T2 U --- UTS U T;_,.



THE TOPOLOGY OF FOUR-DIMENSIONAL MANIFOLDS 393

To check that =,-negligibility is satisfied (conclusion (2)) observe that the
core C} has a geometrically dual sphere x made from a transverse disk union a
null homotopy of the linky circle in 7> — T,'_,. By piping to copies of x,
transverse spheres to all higher cores in T} can be formed. Conclusion (1) of
Theorem 4.5 is immediate from conclusion (1) of Theorem 4.4 and our
construction of T7}.

5. Geometric control and the imbedding of a design ) in CH

It was already known to Casson in 1974 that any Casson handle could be
described as a certain open dense subset of a standard 2-bundle (D? X
D?,39D? X D?). In the simplest (= unramified) case CH = (D? X D? — (D?
X 9D? U cone(Whitehead continuum)), 9D? X D?). Thus among possible
compactifications of a CH is the standard handle H. There is another quite
useful compactification; we will call it in the Shapiro-Bing’ compactification or
S — B handle and reserve the letter X for it. The frontier Fr(K) is divided as
Fr(K)=Fr*(K)U 9 K, 3" K=0D?>X D? and Fr*(K)=Fr(K)\d K.
In the unramified case K is H/cone (Whitehead continuum). If one uses
Theorem 3.1 to find CH C M, the closure CH will be totally unpredictable and
therefore useless. However, the Mitosis Theorem 4.5 can be used to gain
geometric control (that is, decay the diameter of higher stage kinky handles) as
a new imbedding CH’ C M can be found with closure CH homeomorphic (as
a pair) to K. Notice that our theorem only requires a T; to start with, not a full
CH. The precise definition of K follows the following theorem.

Theorem 5.1 (geometric control). Given any (Ty, 9~ Ty) there are some
S — B handle K and an imbedding of it (K, K) C (T,, 9™ Ty) satisfying
0" K=0"Tg and Fr(K) N 0T, = 0~ Ty. The imbedding is smooth on the Cas-
son handle (K\Fr* (K), 9~ K), in fact smooth except at the non-manifold points
of Fr* (K). Furthermore, the spines of the first 4 stages of K and T agree, that
is, C',_4 =C _4

A Casson handle is specified up to (orientation preserving) diffeomorphism
(of pairs) by a labeled finitely-branching tree with basepoint *, having all edge
paths infinitely extendable away from . Each edge should be given a label +
or —. Here is the construction: tree ~ CH. Each vertex coresponds to a kinky
handle; the self-plumbing number of that kinky handle equals the number of
branches leaving the vertex. The sign on each branch corresponds to the sign of
the associated self plumbing. Of course to ensure we are building a true Casson

7Named in recognition of A. Shapiro’s discovery (1957) of the first manifold factor. The space
he considered appears here as Fr* (K). Bing rediscovered and generalized this fact. The example
appears in print after being independently found by Andrews and Rubin [3] in 1965.
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handle each kinky handle is attached with zero framing® to a standard
generator (see Diagram 2.7) of an earlier kinky handle. As remarked in §2 the
sign of the self-plumbings will have no importance for us. We will not bother
to establish explicit orientation conversions, and will quickly be abusing
terminology by calling the Whitehead link and its mirror image by the same
name.

Given a labeled based tree Q, let us describe a subset Uy, of D? X D2, It will
be verified that (U, 3D X D?) is diffeomorphic to the Casson handle associ-
ated to Q. In D? X 9D? imbed a ramified Whitehead link with one Whitehead
link component for every + labeled edge leaving * and one mirror image
Whitehead link component for every-labeled edge leaving *. In handle notation
this is Diagram 2.2.

Thicken the circles just imbedded to become smoothly imbedded solid tori.
Using the null homotopy, each of these imbedded solid tori acquires a
preferred normal framing (= linking number = 0 in 3(D? X D?) that is a
framing ... c soiid torus- With respect to this framing it makes sense that a circle
imbedded inside one of these solid tori is a Whitehead link (or a mirror image
of a Whitehead link); simply use the framing to identify the open solid torus
with R3-z-axis and ask if (z-axis, image (circle)) is a Whitelead link (or a mirror
image).

Corresponding to each first level node of Q we have already found a
normally framed solid torus imbedded in D? X 3D?2. In each of these solid tori
imbed a ramified Whitehead link, ramified according to the number of + and
— labeled branches leaving that node.

Thicken these ramified Whitehead links to obtain a second level collection of
normally framed solid tori. As before Q determines a third family, normally
framed solid tori imbedded in the second family. Let the disjoint union of the
(closed) solid tori in the nth family (one solid torus for each branch at level n
in Q) be denoted by X,. Q tells us how to construct an infinite chain of
inclusions:

--+CX,,,CX,C---CX,CD*XdD%

Let Why, be the set® of connected components of MN*_, X, and let Wh} =
N5, T,- Wh, is the Whitehead decomposition associated to Q (technically,

8Via a standard imbedding a kinky handle is a subset of a standard 2-handle H (compare with
the following page). If ky,...,k, are kinky handles attached to kinky handle k along standard
generators for (k). The zero-framings are the unique framings so that the pair (kU H,
U --- UH,,d k) is the 4-ball B* with the unknoted solid torus imbedded in dB*, the attachment
of H; being determined by the attachment of k; and the above imbedding (k;, 3™ k;) C (H;,9™ H,).

9 Actually this set inherits a natural topology from the quotient space D? X 9D? /Whg.
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the nondegenerate elements of same). In the simplest case where Q is non-
branching and all edges are labeled +, then Wh‘é is the famous Whitehead
continuum (see [53]).

The nth stage X, of the defining sequence of Wh,, can be thought of as the
attaching region of a disjoint union of 2-handles W, relatively imbedded in
(D?* X D?, D? X 3D?). Inductively, we see that X, is an unknotted unlinked
collection of solid tori in dW,_,, with W, = (D? X D?). (To prove this, note
that deleting the curves representing 0~ in Diagram 2 leaves the unlink.) We
choose W, C W,_, to be (isotopic to) the standard slice for the unlink.

Set Wh,, = set of components of N*_, W, and ﬂa = N7_,W,. If one
chooses it is easy to arrange the geometry of the inclusions W, , C W, so that
W_hz is homeomorphic to the mapping cylinder of a: Wh} — End(Q) where a
associates to a component of Wh, the end to which the corresponding path in
Q converges. To do this begin with the mapping cylinder and building, in
abstract, at a defining sequence for it is homeomorphic to {W,}.

The subset U, C D*> X D? is defined as U, = D?> X D? — (D? X 3D?
UWh*) The compactlflcatlon K (or more premsely KQ) is defined as the
decomposmon space K, = =(D*X D?*/ WhQ, 0D? X D?). This means that each
element of Wh (and these a parametrized by End(Q)) is declared to be a
point and the resulting set is given the quotient topology. We set 3~ K — dD?
X D? and Fr* (K ) = Frontier(K) — 9D? X interior(D?).

Theorem 2.2. Uj, is diffeomorphic as a pair to the Casson handle indexed by
0, CH,,.

Proof. It is enough to see that (D> X D? — int(W,), dD* X D?) is (diffeo-
morphic to) an n-stage tower. Since an unknottedness of the 2-handles W, C
W,_,, i <n, is transitive, W, is a union of unknotted slices in B* = D?> X D2
Thus X, =0W, N 3d(D? X D?) yields the dot-bearing circles (Diagram|2.3)
indicating 1-handles in the Kirby calculus. The only question is whether the
solid torus 9D? X D? is positioned appropriately in the handle diagram.
Following the cancellation rule, consider the effect of cancelling all the
2-handles in the bundle body description of the first n stages of CH,, T%. (For
example, cancel the 2-handles in Diagram 2.7.) The result is an iterated-rami-
fied link precisely of the type determined by the cores of the solid tori
X, 1I0D? X D% The cancellation rule given in §2 allows us to compute the
result of cancelling all 2-handles in the description of T, , the first n stages of
CH,,. (Try this with Diagram 2.7!) The result is precisely the link: X,I[dD? X
D? of 1-handle curves with the attaching region. Below we illustrate a simple
example showing how doubling and ramification occur as we cancel (Diagram

5.1).
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The next theorem is immediate but quite important. It recognizes Fr* K 0 as
a rather famous space, in fact a space which is known (see [3]) to become a
manifold after the Cartesian product with the real line is taken. This property
provides a motivation for the design ) at the end of this section.

Theorem 5.3. Fr* (K,) is homeomorphic to D* X 9D*/Wh,,.

Proof. Fr* (K,) = 8% (D* X D?)/Wh, N 3(D* X D?) = D* X
dD?/Wh,,.

Proof of Theorem 5.1. We construct CH C T, = T,? as a union of (disjoint
unions of) 6-stage towers. Apply Mitosis to find T}, C T°, the inclusion zero
on ;. Think of T}, as T}, U T_,,. (We have

cancel

(g = (3 )

\./Q aD? x D?

aD? x D? £
cancel
aD? x D?
DIiAGrRaM 5.1

abused notation by not indicating that the last six stages form a disjoint union
of 6-stage towers.) Use the fact that 7;' ,, has a 1-complex spine, and thus is
engulfable, to construct a diffeomorphism of 7,? which is the identity on 97
and carries the various components of T,_,, into disjoint closed 4-balls of
diameter < e. Now apply Mitosis to each six stage tower: component (T5_,,)
to find T7_,; C T,_,, (inducing the zero mapping on m, and an isomorphism
on 7).
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As before it is possible to find a diffeomorphism of T,_,, which is the
identity on 37T;_,, and carries the various components of T} _,4 into disjoint
closed 4-balls of diameter less than /2.

Continue in this way. The general step is to imbed (T, 1)+ — 6(k+2) 07)C
(T . - —6(k+1)» 9~ ), k= 0. Homotopically the inclusion inducing an isomor-
phism on 7, and the zero map on m, and geometrically the components of
T6(k+1) +1—6(k+2) Should lie in disjoint closed 4-balls of diameter <eg/k + 1.
Call this disjoint union of closed balls B,. Define K = U7_ T&* ! _ 6k+1) and
0" K =0T} =3~ T, where the bar denotes closure in T,’. We must prove K
is a S — B handle.

It is clear from the construction that skinning K yields a Casson handle
smoothly imbedded in Ty (K = (Fr(K) — 38~ K),3” K) = (CH,, 9~ CH, C
T for some index tree 0. The simple union Y= U, _oTEL ¢y is
smoothly imbedded in 7,0 and is the source of a diffeomorphism d (v,07) -
(D?* X D* — Wh, 3D X D?). To see this recall that (U}_o Tk g1y, 07)
is an n = m(k + 1)-stage tower and as such is a handle mlnus (open) slices
(H — W,,9” H). Thus (Y,37) is simply a handle minus the infinite intersec-
tion = Whg. Any point p which is a limit point of ¥ but not in Y must be the
limit of a sequence g, with g, € T/}, and thus must lie in N_ _1B- On
the other hand, N?_, B, certainly is contained in the closure Y. Thus Y = Y U
Mi=1Bs- Call B, = L. LN Y = & since T6k+l—6(k+l)n_13k =g.

L is naturally identified with End(Q) and therefore with Wh,,. This allows
the definition of a one-to-one onto function f from Y to K, extending d. We
need only verify continuity of f/L. A base of open sets for Wh,, consists of
elements contained in a component of the nth defining element W,. The ! of
such a base is the set of points in L inside a particular component of §,, but
this is an open set (in fact a typical basic open set) in the induced topology on
L. It follows that f is continuous, and smooth off L. q.e.d.

A way to regard the situation at this point is that CH is unexplored territory
(insofar as establishing any map from H to CH is concerned), but its
compactification K has a well understood frontier Fr* K = §~! X D?/Wh.
Theorem 5.1 therefore allows us to explore a little of the unknown by placing
Fr* Ky, CTg C CH, C K, (for any Q). Granted that this does not explore
very much of CH,, only a “codimension” 1-sliver. It is however a beginning.
We will actually send uncountably many such frontiers across CH,, (indexed
by a Cantor set), and still more frontiers will have imbeddings “partially
defined” into CH, that is defined over a compact piece of predictable size.
Together these functions map out enough to CH to completely determine its
topology. But to be of any use these frontiers must be arranged coherently in a
space we call a design 9.




398 MICHAEL HARTLEY FREEDMAN

It is convenient to work in the compact world. We begin with an arbitrary
labeled tree Q and form K ,. Next construct a design, dependent on Q, (GDq;
Fr*@,, 9~ 0,), and finally a topological imbedding i of this triad into (Ky;
Fr* K,, 0~ K,) which is a homeomorphism over Fr* K, U 3™ K,,. For some
purposes it will be better to focus on the noncompacted design (GDQ - Frt GDQ,
9~ ,) which is now imposed on CH, by i|: (D, — Fr*e,, 37 D,) -
(CHyp, 3™ CHy).

The construction of %, and i is the last task of this section. Since i| is not
onto, it is natural to wonder how even a complete understanding of the design
6, can determine the homeomorphism type of (CH, 3~ CH). Although this is
the subject of §§6 and 9, we may, without digressing unduly, offer a thought
experiment. Suppose we have explored all of (CH, 9~ CH) except for a region
bounded by a topologically flat 3-sphere = in interior (CH). By Theorem 2.1
we know that interior (CH) =4¢ R*, so by the topological Schoenflies theorem
[9] 2 bounds a 4-ball in CH. There is only one isotopy class of the gluing map
along = (by smooth approximation [38] and Cerf’s theorem I'* = 0 [16], [17]),
so we now have explored all of (CH, 3~ CH) up to homeomorphism.

We must describe a new sort of labeled tree S, S = S(Q) will be a
bookkeeping device constructed from a * labelled tree Q. S(Q) will ultimately
be used to construct the design D,. The form of S is quite simple. There is a
base point from which a single edge called “decimal point” (“.”) emerges.
Thereafter the tree branches in a simple dyadic fashion; one edge enters and
two edges leave every vertex. The edges are named by initial segments of
infinite base 3 decimals representing numbers in the standard “middle third”
Cantor set C.S. C [0, 1]. S is shown below.

.220
.202

.200
.022

.020

.002

.000

DI1AGRAM 5.2
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The letter e will be reversed for finite base 3-expansion of 0’s and 2’s. Notice
that .0 and .00 are different edges and therefore different expansions. The
letter ¢ will denote an infinite expansion of zeros and 2’s, ¢ € C.S.

Each edge e of S carries a label 1, where 7, is an ordered finite disjoint union
of 6-stage towers with an ordered collection of standard loops generating the
fundamental groups. The standard loops will be the small linking circles (in
some fixed order) to the sixth stage 1-handle curves. The first constraint on the
labels is the requirement that if the base three decimal e’ is formed by adding
either a zero or a two to the end of the base three decimal e, then the number
of connected components of 7, is equal to the total number of standard
fundamental group generators (that is, 6th stage 1-handles) in all the compo-
nents of 7,. This condition means that any branch of S, that is, any edge path
beginning at b and heading (steadily) out toward infinity, represents some *
labeled tree Q’. Each edge in the branch determining six stages of Q.
Equivalently we may think of each branch of § as specifying a K,,.. Also
observe that any terminal segment of a branch represents some disjoint union
of Ky.’s. The branches of S are, of course, enumerated by the standard Cantor
set C.S. The second constraint on the labels 7, is simply that the top branch
B,,, represent the = labeled tree Q.

Suppose e is a finite base three decimal ending in 2. Let e° be the decimal
that results when the last place 2 is changed to zero. Let e* be the finite base
three decimal e® followed by k 2’s. Associated to the terminal segment
e®Ue' Ue?U --- is some disjoint union of S — B handles (IIK),. The third
and final constraint on the labels {r’s} is that Theorem 5.1 must provide an
imbedding (preserving the orderings) ((IIX),, ™ IIX),) = (7,9 7,).

Given a =+ labeled tree Q call any dyadic r-labeled tree S associated to Q if it
satisfies the three constraints above.

These constraints are achieved by an inductive process which simultaneously
imbeds in K, a collection {K ., c € C.S.} of S — B handles indexed by the
Cantor set of {branches of S}.

Theorem 5.2. For any * labeled tree Q there exists an associated t-labeled
tree S.

Proof. Q determines (constraint #2) a r-labeling along the branch B ,,, . As
inductive hypothesis assume that a r-labeling has been given along all branches
B, where ¢ terminates in 2’s and has no zero beyond the nth place. We assume
that this partial 7 labeling satisfies constraint 1 and 3 where these apply. The
inductive step consists of indexing branches B, where ¢’ has a zero in its
(n + Dst place and 2’s occupying all (n + k)th places, kK > 1. 7’s have already
been assigned to the initial n edges by the inductive hypothesis so we need to
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assign 7’s only to the terminal segment of B, beginning with the edge
[¢'],+1 = (the first (n + 1)-place of c¢’). Apply Theorem 5.1 to the (disjoint
union of) 6-stage tower(s) 7,, where e is the shortest base three expansion
representing the same real number as ¢’. The resulting (disjoint union of)
K’s C 7, may be read six stages at a time to yield the required labels along the
terminal segment of B,.. This labeling satisfies constraints 1 and 3 by construc-
tion and establishes the inductive step.

Since every edge in S is part of a branch B, where ¢ ends in all 2’s after some
initial segment the induction labels all of S. The associate T-labeled tree S(Q)
is constructued.

Theorem 5.3. Let Q. be the = labeled trees associated with the branches B,
of S(Q), ¢ € C.S. = Cantor set. There is a nested family of imbeddings {i_} so
thatifc’ <candc',c € C.S., we havei (K, ) Ci Ky CKy, =K, =K.
(We will identify i (K, ) and K, .) Also if ¢’ and c have base three expansions
agreeing for n places, then the first 6(n + 1) stages of i K, , and i kg, are
identical. All imbeddings are normalized at 9~ by requiring that K, N dK, =
3" Ky N3~ K,=93 Kyforallc € C.S..

Proof. In the proof of Theorem 5.2 we imbedded all K, = K, where ¢
ends in an infinite string of two’s. These imbeddings are into 6-stage towers 7,
and are provided by Theorem 5.1. Their geometry is controlled by the choice
of & in the proof of Theorem 5.1. It is necessary now to make a universal choice
of &. Pick ¢ >0 and let the epsilon in the proof of Theorem 5.1 be ¢ = &//
when imbedding K, in 7,. / is the length of the finite base three expansion e
associated to c.

Now in the course of imbedding K, ¢ infinite and ending in 2’s, we have
imbedded for each edge e of S a (disjoint union of) 6-stage tower(s) 7,. These
may be fitted together along any branch B,, ¢ € C.S,, regardless of whether ¢

has an infinite expansion ending in 2’s. We must verify that the closure
def
U = = Z_ is in fact the Bing-Shapiro handle X ..

e an initial
segment of ¢

Let e, e,,... be the edges of B,, or as expansions, the finite initial segments
of c. Because of our universal choice & the diameter of the components of 7,
approaches zero as i approaches infinite. Thus we may argue as in the final
paragraph of the proof of Theorem 5.1 that the closure Z, is in fact homeomor-
phic to K.

The agreement of K, and K_ for 6(n + 1) stages is immediate from the
construction of each space as the closure of an infinite union; the first n + 1
layers of 6-stages towers will be identical. The one in n + 1 has been built in
for a technical reason which will surface in §6 when we solve the problem of
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“threading disks”; it corresponds to the fact that there is no branching at the
base point bof S. q.ed.

Leti : K, - K denote the imbedding just constructed.

Addendum to Theorem 5.3. Under the imbeddings i, and i, the Frontiers
of K. and K_ match up through 6(n + 1) stages and then are disjoint (where n
is the number of decimal places to which ¢’ and ¢ agree (both written with
zero’s and twos in base three)). That is, i .(Fr(K_) N i (Fr(K,)) = i C,(J;c(’,, +y)
interior of attaching region of kinky handles of stage 6(n + 1)+ 1. =
0i (T -+ 1y)-interior of attaching region of kinky handles of stage 6(n + 1) + 1.

The proof is a matter of checking that the limit points L. of Fr(X_) do not
meet Fr(K,). If ¢/ <c, then eventually the defining sequence 8, for L. is
contained in the interior of a 6-stage tower contained in K,. q.e.d.

We now construct the design D(S(Q)), or GDQ. It will be a decomposition
space(= quotient space) of a closed subset 4 of the standard 2-handle H =
(D% X D?,3D?* X D?). Give a collar of the boundary of each factor disk a
radial coordinate zero to one. Set D?-collar = D’ and S}, the circle with radial
coordinate = r.

02 { ()

DIAGRAM 5.3

For every ¢ € C.S. C [0, 1] we have a branch B, of S(Q) which gives a =
labeled tree Q,. As explained at the beginning of this section, Q. determines a
defining sequence X: for a decomposition of a solid torus. In our coordinates
for H we let this solid torus be D’ X S!. Each of X¢ is a disjoint collection of
imbedded solid tori. Suppose ¢ and ¢’ have expansion agreeing for n places,
then for k < 6(n + 1) the collections, X{ and X7 will be isotopic (after
identifying D’ X S} and D’ X S! by a radial push). This is because the
agreement of ¢’ and ¢ means B, and B, shares the first n edges and that Q,, and
Q, agree for 6(n + 1) stages.

It will simplify notation to reindex setting X7 =°4X¢, .. We do this
without further indication.
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Because of this radial coherence between X and X¢ we can construct a
countable four dimensional defining sequence X, consisting of a disjoint union
of (solid tori x internal) whose infinite intersection M’_, X, = the union of the
elements of U .5 Wh, , where Wh,, C D’ X A

Call [0,.1] U [.2, 1] the “first complement”, and (.1,.2) the first third. Call
[0,.01] U [.02.1] U [.2,.2] U [.22, 1] the second complement, and call (.01,.02)
U (.21, .22) the second thirds. Continue this terminology according to the usual
“middle” third construction of the Cantor set. Write D’ X D? as D’ X D’ U
D’ X §' X [0,1].

The set X, = X° X [0,1] C D’ X S' X [0, 1], meaning the product interval
over the submanifold X? C D? X §' X 0. Set X, = X2 X [0,.1] U X;* X [.2,1].
Similarly, X, is defined as the result of a positive radial thickening (to a
thickness of (1/3)"") of the nth stage of the defining sequence X, for e a
base 3 expansion of n places of zeros and twos (e may terminate in any
number k < n of zeros). X is, of course, given by the link diagram of the
6(n + 1)-stage tower determined by any branch B, containing the edge e C S.
So X; is determined by S (up to smooth isotopy).

Set B = UY_, (interior (X,) N D’ X S' X (kth middle thirds)) =
UP_, B,. These are middle third boxes. Define 4 = H — (% U int(D’) X
int(D")). Set D(S(Q)) =4/ W_hs where Wﬁs is the collection of closed subsets
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of A consisting of the components of U’_, )?n. %) is given the quotient
topology. A and %) are actually pairs (4,0~ A4), (D, D) withd~ 4 =0~
= 9dD? X D? C H. Define Fr* (9) to be the image of D? X 9D? under the
quotient map.

In the above diagram the interior of the smaller boxes represent %. The
vertical spacing reflects the radial coordinate [0, 1] in collar (D?) C second
factor D?. The horizontal diameter of the components of % in our illustration
is designed to suggest the nesting /\7,, +1 C X,. A component of % is homotopi-
cally a circle but is shown in “cross-section” as 2/-boxes.

We will use Theorem 5.3 and its addendum to construct an imbedding

(D(S(Q)); 9~ D, F*D) - (Ky: 8~ Ky, Frt Kyy).

We do this by thinking of ) as the Freudenthal (“end point”) compactification
“> of a certain infinite union A equal to %) minus the singular set

) — Why. A = (collar(3D?) X D*) U (D’ X collar 3D — X,

U ()7l — ((extreme thirds of )71) U )?2))

u---u ()?k —((extreme thirds ofX—K) u )FKH))

def.
J---U =V+y0U---Uka---.

The dotted compartments in Diagram 5.4 represent these pieces of A. In fact
A = A — Wht. 9 = A. Diagram 5.5 suggests how we will imbed 9 in Kp.

The imbeddings {i,} constructed in Theorem 5.3 assigns to every edge e C S
a (disjoint union of) 6-stage tower(s) 7, imbedded in K,. We suppress the
imbedding in our notation. The space y, may be identified as the (disjoint)
union of one-sided relative regular neighborhoods JC(Fr* 7, — 8~ 7,.) where e
is an expansion of length k, and e’ an expansion of length (k + 1). Thus these
1-sided neighborhoods fit together as shown in Diagram 5.6 to give
U, s (ETT 7,10~ fre,)dzefE C K. E is the 1-1 continuous image of D,
E = f~ (D), and from the construction Frontier E = Frontiery € K.

Let S be the tree which results from replacing each edge e C S with the
6-stage = labeled tree describing 7,. The limit point & = ) — A, correspond
bijectively with the ends of S. Also in bijective correspondence with the ends of
S are the limit points N of the imbed towers 7, C K, o- The composite bijection
£ < 9 is a homeomorphism in the induce (inverse limit) topologies. Thus f~ :
D - E extends to the desired imbedding f: D —» K,. q.e.d.
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Di1AGraM 5.5

6. The decomposition space CH/ {gaps* } intermediate between CH and H:
a reduction of the main theorem

The main theorem of this paper is:
Theorem 1.1. For any Casson handle (CH, 3~ CH) is homeomorphic to the
standard open 2-handle (D* X D?,3D? X D?).
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This section uses §5 to reduce the proof to showing that two maps « and 8
are each approximable by homeomorphisms. Bob Edwards solved the problem
of approximating a. His proof is a virtuoso performance in classical Bing
topology. It is given, with minor modifications, in §8.

§7 will be devoted to background. In §9, B is approximated by homeomor-
phisms. This is done by an infinite replacement “swindle”.

What has §5 accomplished? Let us phrase the answer in terms of an
arbitrary Casson handle CH rather than its Shapiro-Bing compactification K.
Let A=A —D*X 3D and )= — Fr* & = 4/ Wh. The imbedding f:
&) - K restricts to g: ¢) - CH. Let H be the standard open handle (D? X
D?,3D? X D?). One strategy for establishing a homeomorphism h: H - CH
would be to somehow extend the composition 4 5 g CH to a map #’

i
/’—.\k
A5 9 —Escn j=gon

N K

H

which could later be approximated by a homeomorphism 4. This is not an
unreasonable idea, since there is a good theory (shrinking theory of Bing
topology, see §7) for solving the problem of approximation by a homeomor-
phism. The point inverses of j are cellular in H. This raises the hope that &
could be found with all its point inverses cellular, which is at least a prere-
quisite for being approximable by homeomorphisms 4 (see Observation 7.2).

The problem with this approach is that CH — ( gM) is still unexplored
territory. We have no idea how to extend a map over it maintaining any
geometric property (like cellular point inverses). Our solution is to crush to
points closed subsets of CH which contain the unknown parts of CH.

One could call {gaps} the collection of closures of the components of
CH — g(%) and, as a first approximation, form the quotient space CH /{gaps}
by declaring each gap to be a point. j would now induce a map of pairs J:
H /{holes} —» CH/{gaps} where {holes} = {D’ X D’} U {closure of compo-
nents of B} (see Diagram 5.5). J is a homeomorphism over a neighborhood of
0~ CH/{gaps}.

Consider the two maps (of pairs) a and b:

. Proj

. T = P . .
H— H/{holes} <, CH/{gaps} b = Projection
\_’—‘/

CH

a
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Unfortunately there is no hope of showing these maps to be approximable by
homeomorphisms since all but one nondegenerate (definition: not itself a
point) point inverse of each map a or b has fundamental group isomorphic to
Z and in particular is not cellular. However, the simplest possible remedy leads
directly to the solution. We will run certain disjoint, imbedded, topologically
flat disks through A which attach to and kill the fundamental group of the
holes (which are different from D’ X D’). Transported by g o « these will
(still!) be disjoint flat imbedded disks in CH attaching to the gaps and
annihilating their fundamental groups. Call {holes™ } the collection of compo-
nents of {holes} U {disks} and call {gaps* } the collection of components of
{gaps} U {disks}.

Now we divide out by these sets to get maps of pairs, which are homeomor-
phisms near 9~

. a B
(*) H-CH/ {gaps™ } < CH.

Heuristically, we divide CH out by ““the smallest cellular sets” which contain
the unexplored region CH — g(D). It is these maps « and 8 which we will
approximate by homeomorphisms.

Description of the disks {d/}. It remains to describe the disjointly imbe-
dded disks {d}} in 4. Flatness of g o m(d}) will not be proved until §8.

The boundaries {9d}} lie in Fr(%), the frontier of the middle third boxes,and
establish a bijection {3d{} and {components of closure (%) = B}. The sub-
script k corresponds to the k in the definition (§5) of %; it is a “diagonal
subscript” in the sense that a component B/ is both at depth k in the nesting
X, CX,_,C---CX,CD' XD? and in the [0,1] coordinates at a “kth
middle third”. The index j simply keeps track of ramification. Thus B/ are the
components of B, .

It is useful to introduce what could be called the “upper diagonal boxes”
?I?),{ 1,k Which are the components of X,_, N D' X S' X (closed kth middle
thirds). The range of j depends on the value k — 1. Set R, = U, B,

Each Bf and each B/, , is homeomorphic to S' X D? and each B/ and

Bj_, ,meets exactly one diatic level of the form
D’ X 3D?* X % C D’ X collar 9D2.

The intersections with that level are the solid tori. Call them bj and b]_, ,
(resp.). These solid tori are simply equal to the intersections of X, and X _,

respectively with the particular diatic level D’ X 9D? X ozd_d Thus if we vary j
to realize all b/ C bj_, , imbedded for a fixed j’ we see that U, bﬂ C Sk
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is at regular neighborhood of some highly ramified-iterated Whitehead link in
the solid torus. Each inclusion b/ C b/_, , is null homotopic so there is a
collection of immersed disks A/ with 3A) = ¢/, the core circle of bj. A
standard argument in 3-manifold topology moves these disks by regular
homotopy (relative to their boundedness) so that all double points (intersec-
tions and self intersections) are simply clasps:

/5 \\\

(Argument: (1) Pipe off boundary to turn all double circles into double arcs,
(2) pipe triple points off double arcs.) Note that in our situation, ramified
Whitehead links in S' X D? and most obvious choices for A}, are of this form
already.

We may assume that each A} N (U, ;. b]) consists of a collar ¢/ on 3Aj, and
various closed subdisks v}/ C A/. Let 8/ =AJ, — icf. {8/} will be adjusted by a
function @ taking values in the [0, 1] coordinate of D’ X dD? X [0,1]. § =
I , 6/, 6/: (8/,98{) - ([0,1],0). We define d/ = 8/ + 6/(8]) with addition
interpreted as translation in the radial [0, 1] coordinate.

Before defining 8/ we list the properties that the dependent dj must satisfy:

(1) Each df is imbedded in (4 — U2, ®,,, )= 4 — J, C H.

(2) Distinct disks do not intersect, d{ N df. = @ unless k = k’ and j = k.

(3) No disk d{ intersects any component « of Wh in more than one point.

(4) No component w of Wh intersects more than one disk of the collection
{d{; k' <k, j arbitrary}.

In the first condition the requirement that d/ N J, = @ is not logically
necessary but is a simple way to make sure we leave some room nbd( Ek, kt1)
for the disks {d], ,} after we have inserted the disks {d{}.

We construct 6 by induction. To be precise the base for the induction is
k = -1 with {d/,} = @. As induction hypothesis assume that all §/ have
been defined so that {d]'} satisfy (1)-(4). 6/, will be defined as the limit of a
certain uniformly convergent sequence {,0/.,, i =0, 1,2,...} all of which are
zero on the boundary 38} , ;.

Fix a particular j, k + 1 is already fixed. By (1) there is a real number » > 0
so that the previously constructed disks {d/} do not come within distance r of
By s Let By rs1 =X, N (D' X S X ({points distance <r from closed
(k + 1)st middle thirds}), that is, %, ,,, is a slight radial thickening of
B

k,k+1° _
Consider the inverse image pattern on 11§ = II, §/, ;.
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arcs = preimages of double curves of II§
hatched region = preimage of Il bf
J

Di1AGRAM 6.1

Although the above picture is simplest, it is locally the general case; our
earlier preparation removed circle preimages and triple points. The function
II; 40/, =obi+ must be chosen so that: (a) On oriented arcs v, Y’, paired
under the immersion, 40, is increasing on one and decreasing on the other.
(b) On hatched disks (8, ,, assumes one of 2 values, = 3((3)¥*! + r’) where
0 <r’ <min(r,(3)**1) is some fixed element of C.S™ . C.S.™ is the Cantor set
with end points deleted (= complement of closed middle thirds).
(c) Range b, C[—r, 7]

Set odiiy = 0,11 t40,+1(8). The 4d,.,’s are (by (a)) imbedded and (by
(c)) disjoint from the previously imbedded disks. Condition (b) implies that
each ,d,,, C A and that (d,,, NJ,,, = @. For the second assertion note

that the projection in the collar D’ X 9D% X [0,1] > D’ X dD? X odd

2k+|
£ —
LE(X,,, N D X D> X [°d;+l L oddt 1
I =k + 1 it is only necessary to make sure that 0, ., lifts to C.S.™ level, the
intersection 8 N w(gB_,,, +1) €8 N 7L = preimage II, bj., (see Diagram 6.1).
Unfortunately II (d{_ , does not satisfy conditions (3) and (4).

Make the sub-induction hypothesis that the 10 ’s have been defined so that
@ {1, 6/.,} are disjoint imbeddings onto B, ,,, N (4 — J;,), and (1))
intersections of II; ,d{,, with X, are all horizontal (meaning constant in
the radial [0, 1] coordinates of D’ X 9D? X [0, 1]) with each component assum-
ing a distinct radial coordinate value: v}, - -, 0% € C.S.”

We construct 0, with the corresponding properties. (Below we omit the
subscript K+ 1 on 6.) Let 0 <g, ., < min{4 min{|v, , —v{,,|, i, jE
{1,...,n4,} with i #j}, ¢,/2}. Now change 6 only over 07 '(X, . 44,) to
make 0, assume distinct constant values € C.S.” on the components of
407 (X1 4+7)- Do this so that sup. dist. (6, ,,,) < & ,. Finding the nearby
new values is possible since the Cantor set is a perfect set. Also there is no
difficulty preserving property (I). The set q+10_‘( Jr+1) is contained in

carries

]) onto I; b/, ;. To miss By 11
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(7' (Xgis1) — 87 (Xyii42))- Since dist(,0(S), J,.,) >0 the ¢,,, above
can be chosen so that q+10_1(']k+l) = @ (e most also be constrained so that
q+194 C By i)

Thus by our sub-induction for any ¢ = 0, { 6/, ,} are obtained satisfying (I)
and (II). Since these sequences are uniformly convergent, let {8/, ,} be the set
of limiting functions. These functions satisfy (I). The disk limiting {d{, ,} are
graph over flat disks and thus flat, although they are not smooth being the
graphs of “Cantor functions” {8/, ,}.

Now return to the main induction. {d{,,} have been segregated into
Ek +1,k+2 and will satisfy (1) and (2). Because of this segregation (4) could only
fail if two disks d/, , and [/ , meet the same & € Wh. This possibility and any
possible violation of (3) are ruled out simultaneously by showing that IL, 8/,
= 6, , becomes an injection 8, | |r: T’ = [0, 1] when restricted to T', the set of
limit points for our construction C II;/,, =& is defined to be the set of
points p, such that { 6/, ,(p), ¢ =0, 1,2,...} is infinite. This will suffice since
any point carried by 8 + 6(8) into Wh* must be, by construction, a limit
point.

The elements of y are indexed by the (infinite) branches y of the based
finitely branching tree S. 6, . ,(y) = = v where the values in the sum v depend
on the branch y. Assume y ¥ vy’ once the branches separate the corresponding
terms of the sum differ by an amount = 3¢, let us say, but the construction in
the sub-induction the latter terms differ by no more than ¢, ¢/2, ¢/4, /8, ...
and thus the sums 6, , ,(y) and 6, ,(y") are not equal.

This completes the main induction. We can now set § =11, 6, and d =
10, ;8 + 6,(8]). This is the desired family of disjointly imbedded disks
annihilating the fundamental groups of the holes.

Define {holes™ } as the set of components of {holes} U {d}} and {gaps™ }

as the set of components of {gaps} U {i o m(d{)}, where = is the projection,
and i the imbedding

AZA/Wh =95 cH.

Conditions (3) and (4) of the main induction show that io«|II, df is
one-to-one. So i o m(d{) is also a collection of disjointly imbedded disk.

Two sketches may help in understanding where the disks df we have
constructed are actually located. Diagram 6.2 shows the position of §, , , inside
a b, (except that we could not draw a 6-fold (untwisted) double and so settle
for a 2-fold (untwisted) double).



410 MICHAEL HARTLEY FREEDMAN

Diagram 6.3 reproduces the schematic and description of the (open) holes
B = UB, given in Diagram 5.4 and adds to it a representation of the disks dy
having been threaded around to avoid not only “diagonal” the B,’s but also
the “upper diagonal” B, _, ,’s. In the diagram the vertical direction (upward in
top third, downward in bottom third) is the radial coordinate [0, 1] of D? X S!
X [0, 1]. The horizontal direction is used to represent depth in nest X, ,;, C X,
C --- C X, CD?XS'"Xr (at any radial value = r). Thus horizontal inter-
vals at level =r represent a solid torus (or disjoint union of solid tori) and an
inclusion of intervals represents the three-dimensional situation of one (or
several) solid torus imbedded according to a highly iterated (and ramified)
Whitehead link in another (as shown in Diagram 6.2).
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Diagram 6.3

The lines drawn and labeled d/ can actually be interpreted literally. They are
the graphs (with radial [0, 1] the absica) of 6/ restricted to a middle line in 8]
which contains the singular points 8/ N T.

We now show how the proof of the main theorem (Theorem 1.1) can be put
together from three theorems to be proved in §§7, 8 and 9. The statements
abbreviated slightly are reproduced here.

Definition.' A map 7: 4 — B between compact metric spaces is said to be
approximable by homeomorphisms, ABH, if and only if for every ¢ > 0 there is
a homeomorphism h: 4 — B with dist.(7, h) < e. (The notion of distance is, of
course, dist(e, h) = sup,c , dist g(7(a), h(a)).)

Corollary 7.1 (consequence'' of Edwards-Kirby [20]). Supposem: M — N is a
continuous map between closed topological'®> manifolds (of any dimension).
Suppose that 7 is ABH. Finally suppose that C C N is a closed set and 7 |-\ ¢y’
7~ Y(C) - C is already a homeomorphism. Then there is a homeomorphism h:
M — N which agrees with m on ™ '(C). (Also h may be chosen to approximate ;
Ve > 03h, as above, with dist(w, h) < € .)

10 This definition is extended to a noncompact setting in §7.

11 Bob Edwards observed Theorem 7.3 of which the above is a corollary shortly after [20] was
written. It quickly entered the folklore but never was published.

12 See §7 for precise definitions and conversions regarding metrics.
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Theorem 8.3. For any Casson handle CH there is a homeomorphism of pairs
CH/{gaps* } =1op H.

Theorem 9.1".!> Let f: S" > S™ be a continuous map between spheres.
Suppose that f is countable null (meaning: Ve > 0 there are only finitely many
sets ( f~ ' ( point)) having diameter = ¢) and that the singular set S(f) = {x € §"
such that f~'(x) consists of more than one point} is nowhere dense in S™. Then f
is ABH.

From these we prove

Theorem 1.1. For any Casson handle CH there is a homeomorphism of pairs
H ETop CH

Proof. The design %) which we impose on CH (see §5) has a product collar
dD? X D? X [0, €] on its attaching region 8~ ) = 3D? X D2 The imbedding
i: @ — CH shows that 3~ CH also has a closed product collar W = 3D? X D?
X [0, €], with dD? X D2 X 0 = 3~ CH, which is disjoint from U gaps™* .

By Theorem 2.1, CH\ 9~ CH is homeomorphic (actually diffeomorphic) to
R*. By Theorem 8.3, CH/{gaps* } \0~ (CH/{gaps™ } is also homeomorphic
to R* Consider the proper map of pairs 8: CH — CH/{gaps* }. Compose
with the homeomorphism given by Theorem 8.3 to obtain a map of pairs S:
CH - H. Since W N {gaps™ } = @, B| W is a homeomorphism and 8~ '8(W)
= W.

Delete the attaching regions and the forming the 1-point compactifications
(denoted by U oo) of both domain and range. From B we obtain a map f:
S* - S* between the 1-point compactifications of spaces homeomorphic to R*.

We verify that f satisfies the hypotheses of Theorem 9.1 As a result of the
geometric control of §5 only finitely many gaps have diameter larger than any
fixed ¢ > 0. We constructed the disks df for a given gap within the upper
diagonal blocks B} 1.« Whose diameter also tends to zero. Thus the diameter of
the disks in CH{i o m(d{)} also tends to zero. Thus {gaps™ } is countable-null.

Next observe that the singular set of a contains the singular set of B,
S(a) D S(B). (The difference is that B(S(A — 9.) (See §5.)

Definition. D*( f) = union of all point inverses consisting of more than
one point.

To check that S(a) is nowhere dense we show that if p is a limit point, p
€ D*(a) — D*(a), then there are points g in H — D*(a) arbitrarily close to p.
By the construction of the disk {d{}, each hole” = ®/ U d{ is contained in the

13 A relative version can be proved where f is supposed to already be a homeomorphism over a
closed set C C S”, this would eliminate the need for Corollary 7 or its parent theorem. Theorem
9.1 (see §9) has a slightly more general statement.
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upper diagonal box @_5,{_1, x Any limit point p will be approached by a
sequence of upper diagonal boxes with k approaching infinity. Thus p € Wh*,
the intersection of the defining sequence { X,} of which the B/ _, , are subsets.
Since p & D*(a), p will have radial coordinates C.S.™ C [0, 1], the Cantor set
minus end points. On the level 7 only a 1-dimensional set, defined by a nested
intersection of (finite disjoint unions of) solid tori { X, N r-level} lies in D”'(a).
Thus p may be approached by points g € (r-level \D*(a)).

Apply Theorem 9.1 to conclude f ia ABH. Let C denote the image under
1-point compactification of the half open collar C~ = D? X R X (0, ¢] C CH
— 8~ CH. Our observation that f is a homeomorphism over f(W) now implies
that f& is a homeomorphism onto its image (and that f~'( f(€)) = €). Thus
setting f(C) = C we can apply Corollary 7.1 to find a homeomorphism A:
§* > §*with b2 = f2. In particular h(c0) = oo.

Now remove the compactification point oo from source and target 4-spheres.
This yields #|: CH\3~ CH —» H\9~ H which agrees with f on a neighbor-
hood of the deleted attaching region h |- = f|c.- (and f~'o f(CT)=C7).
The two homeomorphisms f|. and % | cyys-cy may be spliced together over
C™ to yield the requried homeomorphism of pairs h = fly U h|ge_ (o
(CH,9" CH) -» (H,d” H).

7. A short course in Bing topology
(from the teachings of Robert Edwards)

We consider epimorphisms between spaces which are locally compact and
metric. One theorem relies, ultimately, on the torus trick and it will be stated
for (metrizable) manifolds. Manifolds here are assumed to be finite dimen-
sional, separable, and metric. A proper map will mean a map under which the
inverse image of compact sets is compact. The chief question will be: When is a
proper surjection f: X — Y approximable by homeomorphisms (ABH)?

Definition (1). A proper surjection f: X — Y is ABH iff for any majorant
function & X — (0, 0) there exists a homeomorphism h: X - Y with
dist,(h(x), f(x)) < e(x) forall x € X.

Definition (2). A proper surjection f: X — Y is ABH iff for any majorant
function ¢: Y - (0,c0) there exist a homeomorphism h: X - Y with
dist,(h(x), f(x)) <¢€ o f(x)forall x € X.

For X and Y locally compact metric spaces the two definitions are equiva-
lent: setting ¢ = & o f shows (1) = 2. To show (2) = 1 one must construct a
continuous &’ satisfying ¢'(y) < inf(e( f'(»))). This is done using paracom-
pactness: see Lemma 3.1 of [47].
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Note. For X, Y compact it is sufficient to consider ¢ and &’ constant

Associated to a proper surjection, f: X — Y is a decomposition D(f) =
{f"'(y), y € Y} C{closed sets of X}. In general a decomposition D is
nothing more than a collection of disjoint closed subsets which cover X, and to
it is associated the quotient map #: X - X/D where the elements of D are
declared to be points in X/D and the target is given the weak topology. The
elements of D which are not singletons are called nondegenerate and form the
sub-collection D. D actually has a topology induced from inclusion in X/D.
An open set U is saturated if it is the union of elements of D.

Various properties of = and X/D correspond to conditions on D. Consider
the following table for X locally compact and metric.

TABLE

@ is proper = Elements of D are compact

X/Dis Hausdorff < wisclosed < D is“upper semi-continuous,”
i.e., every element of D has a
saturated neighborhood system.

X /D is metrizable = D upper semi-
See [39] continuous and D is countable

Niceness of Y = X/D depends on the structure of D. All decompositions
which we consider will have locally compact, metric spaces as quotients; in
particular D will be upper semi-continuous. The projection map 7 will always
be proper.

Warning. Even nice quotients X /D do not generally have any “canonical”
metric induced by X but are metrized from scratch using the familiar theo-
rems; see [39].

The main question asked of a decomposition D of X is: Is D shrinkable? We
will define shrinking in terms of presumed metrics on X and X/D (both
written d).

Definition. D is shrinkable if given any majorant function &: X — (0, 00),
there exists a self homeomorphism k: X — X such that for all A € D we have:
(1) diam k(A) < min, c{&(x)} and (2) d(7(x), 7 © k(x)) < &(x).

Bing discovered and exploited the following beautiful connection between
approximation and shrinking.

Theorem 7.1 ( Bing shrinking criterion (BSC)). A proper surjection between
locally compact metric spaces f: X — Y is ABH iff D( f) is shrinkable.
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Proof. To establish the forward implication, shrinking homeomorphisms k
can be constructed as k = h~! o 4’ where & is a closely, and A’ a still more
closely approximating homeomorphism to f.

For the reverse implication we must pick a majorant &: X — (0, o) and show
that there is an homeomorphism 4: X - Ye-close (definition (1)) to f. Consider
the space C of maps from X to Y with the metric

disty(p(x), 9(x)) ))

distC(p,q)zmin(l,sup( )

C is complete with respect to this metric and hence a Baire space. Let E be the
closurein C of { fo h| h: X - X is a homeomorphism}. E is closed so it is also
a Baire space. Let E; = {g € E such that diam(g™'(y)) < min, ¢, {(1/7)
€ (x)}}. One checks that D( f) shrinkable implies E; is dense in E, it is clearly
open in E. The residual set M2, E; consists of homeomorphism and has f as a
limit point. Thus f is & (in fact ¢/i for any i) approximated by homeomor-
phisms. Since € was an arbitrary majorant f is ABH.

The following observation clarifies the relationship between choice of metric
d: X X X - [0, c0) and majorant e: X — (0, o0).

Observation 7.1. Suppose d, and d, are metrics on a locally compact X. Let
e: X - (0, 00) be an arbitrary majorant. Then there exists a (smaller) majorant
8: X - (0, ) so that for any compact K C X, diam,(K) < min, ¢ ¢{8(x)}
implies diam , (K') < min, ¢ x{&(x)}.

The proof depends on the fact that for any metric on X the majorants
determine a neighborhood system for the diagonal A C X X X. Choose 8 so
that the (d,, 8)-neighborhood 9’ of A is within the (d,, €)-neighborhood 9;
then any set K whose square K X K lies in 9’ also lies in 9. One immediate
consequence is that our notions of ABH do not actually depend on the choice
of metric.

In the case where X is a manifold, the notion of cellularity enters as a
necessary condition to shrinking.

Definition. A subset 4 C M" of a manifold is cellular if it is the intersec-
tion N, B; where B, C interior B,, and each B; is an imbedded n-ball.

Observation 7.2. If f: M > N is a proper surjection of manifolds and f is
ABH, then for each n € N, f(n) is a cellular subset of M.

Proof. Let f; M - N be homeomorphisms for i =1, 2, 3,--- inductively
defined to satisfy: (1) dist. (f,f) < 38,, (2) f“(Ball”'_H(n)) C
int( f,~! Ball,; (n)), and (3) the §; approach zero. Let B, = f,-“(Ballzal_(n)). Then
B, Cint B;,, and N2 B, =f"!(n). qed.
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However the converse is not true. There is an example of Bing’s (drawn
below) of a decomposition D of S' X D? with only countable many nondegen-
erate elements all of which are cellular, yet D is not shrinkable.

Definition. A decomposition of a compact metric space is countable-null
iff for every e > 0 there exists a only finitely many elements of D with diameter
larger than e.

The example is in fact countable-null.

Consider the imbedding S' X D?IIS' X D?> C S' X D?, i = iylli,.

ip(S* x D?)

Q ip(s* x D)

DiaGrRaM 7.1

In both subsolid tori repeat the imbedding.

In each of the resulting four solid tori again repeat the imbedding. If
continued indefinitely, the components of the nested intersection are indexed
by the dyadic-Cantor set of base 3 decimals between 0 and 1 with only 0’s and
2’s in their expansions. The nondegenerate elements will be those with only
finitely many zeros (making the correspondence with the subscripts of i, and
i,). Suppose the quotient were homeomorphic to S! X D2. Using countability
of D, for some distinct # and 8’ € S' we obtain disjoint imbedded disks 4,
B =770 X D?), #7Y(6’ X D?). An argument in the 2-fold cover shows that
one of the two sub-solid-tori io(S! X D?) or i,(S' X D?) (say i,(S' X D?)
must meet both 4 and B in essential disks 4' C 4 and B! C B. By the same
token another 2-fold covering argument shows that one of the sub-sub-solid-tori
i(S' X D?) or i(S' X D?) must meet both 4' and B' in essential disks
A" C A’ and B” C B’. Continuing this argument to the limit we see that some
element of D will meet both 4 and B contradicting our assumption. q.e.d.

We will present one quite general situation, however, which is shrinkable.
The theorem slightly generalizes arguments of Bing’s [6] and Bean [4]. It was
told to the author in this form by Bob Edwards. It will be used twice in §8.
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Theorem 7.2. A4 countable-null “star-like-equivalent decompositions D of a

locally compact metric space X is shrinkable. (Equivalently the projectory w:
X - X/Dis ABH.)

Remark. We put “star-like” in quotation marks since we use a notion
slightly more general than is usually associated with that term. Replacing the
metric space Z by S” in the definition below would recover the usual notion
(see [6]).

Definitions. Let Z be a compact metric space. Let C(Z) = Z X [0, 00)/Z
X 0 be the open cone on Z. A subset of C(Z) is “star-like” iff it has a polar
coordinate representation S = {(z, t) |.z € Z and 0 <t < ¢(z)} for some up-
per-semi-continuous function q: Z - [0, o) (g can jump down but not up). A
subset T C X is called “star-like ”’-equivalent if T has a neighborhood N (T) C
X and there is a topological homeomorphism k: 9U(T) C C(Z) such that
k(T)=S a “star-like” set. We will call k~!(Z,0) = a the cone point. A
decomposition D of metric space X is countable-null iff given any majorant e:
X — (0, 0) the elements K € D with diam(K) > min, . & K) is a discrete
subspace of D C X/D. Notice that Observation 7.1 implies that this notion
does not depend on the metric. The term null expresses the fact that if
elements K; approach an element K, then diam(K;) approach zero. Finally, an
upper-semi-continuous decmposition D of a metric space is countable-null,
“star-like” equivalent iff it is countable-null and each nondegenerate element
of D is a “star-like”-equivalent subset of X (Z, in the definition of “star-like”
may vary).

Proof. According to our table X/D = Y is metrizable so approximating by
homeomorphisms, as we have described it here, makes sense.

The strategy of the proof is to use the Bing Shrinking Criterion (Theorem
7.1). Since only a discrete collection of T’s € D has diameter greater than &
(that is, if A is the metric on X, then diam,(7) > min ., &(T)) for any
majorant e. We can consider these large T’s one at a time.

Lemma 7.1. For any T € D, any constant ¢ > 0, and any neighborhood U of
T, there exist a smaller neighborhood 9 of T and a homeomorphism h: X - X
with support in 9 which satisfies: (1) diam W(T)<eand 2)if T' €D and T’
meets support (h), then diam h(T") <e.

By applying this lemma (with & varying) in disjoint neighborhoods of the
large T’s is possible to construct (by an infinite composition which at any
point is the identity except for at most one function) a homeomorphism h
e-close to = for any preassigned majorant & and with 7 o h arbitrarily close to
a. The theorem then follows from the BSC. q.e.d.
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Actually any decomposition which is countable-null and whose elements
satisfy Lemma 7.1 is shrinkable. For completeness we give a proof of Lemma
7.1 for T a “star-like”-equivalent element.

Without loss of generality we take to be 9U(T) = 9 compact, and assume
k(9) is star-like with a continuous radius function. (k(7") has a neighborhood
base consisting of such “star-like” sets.) k: 9 — C(Z) is uniformly continu-
ous. Consequently for every ¢ > 0 there is a § > 0 (the “Lebesgue number”) so
that diam ,(k(compaction) < § = diam,(compaction < e. Henceforth we will
work in the cone C(Z); we simplify notation by omitting k and speaking of T
and 9 C C(Z). We will find h: C(Z) —» C(Z) with support in some star-like
neighborhood ¥ C 91 which makes a given countable-null collection of com-
pactums {k;} (e.g. and those nondegenerate decomposition-elements whose
image under k meets V, {k,} have diameter smaller than §.

We presume C(Z) has been given a metric d which shares the following
properties with Euclidean space: (1) d(( p,, z), ( Py, ")) = d((p,, 2), (Po, 27))
forz,z’ € Zif py < py < p,, (2) d((py, 2), (P2, 2)) =|p, — py | forall z € Z,
and (3) d((p,, 2), (py, 2")) = d(( Py, 2), (Py» 2")) if p, > p,. These conditions
are easily arranged.

Using nullity, make V' = {(p, z)|p <r(z), r: Z - (0, o0) continuous} so
small that we may assume that no element k; of diameter = & /2 meets V. For
simplicity assume that the maximum radius of V' = max(r) <1. Let n be a
fixed integer >4/8. Let V=V, DintV,D V,_, DintV,_; D ---DintV, D
V, be a sequence of star-like neighborhoods of T with continuous radial
functions r = r,,...,r,. Using the upper semicontinuity of the decomposition
we choose the ’s to decrease sufficiently fast that every k liesin V; — V,_, for
some 2<j<n+1 (letting V,,, = C(Z) and ¥V, = &). Foreach 1 <j <n,
let B; be the ball of radius j/n about the cone point a.

Let g be the natural homeomorphism of the pair (C(Z), a) which is
invariant and piecewise linear on each cone line which: (1) is fixed off ¥, C B,
and (2) which carries each set ¥; U B; onto B;. Note that the graph of g on any
cone line is made of at most n straight segments and an infinite straight ray.
This graph is below the diagonal; any point which is moved is moved closer to
a. We must slow diam g(k;) < 8. First we establish

Claim. For each 1 <j < n, every point of B;\ V; is moved by g a distance less
than 1/n.

Proof. Suppose x € B;\ V. Without loss x & B;_,, for otherwise we could
replace j by j — 1, since x € V,_; C V}; continuing this way until x no longer
lies in the next smaller ball. Now since x & V,_, U B,_,, g(x) & g(V,_, U
B;_,) = B;_,, and hence {x, g(x)} C B; — B;_,, establishing the claim. g.e.d.
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Now suppose k; N V, # &. Then diam k, < §/2. Let x, y be two points of
k;.Let2<j<n+ 1satisfy x, y € V; — V,_, (see above). We consider three
possibilities.

Case 1. Both x and y liein B;_,.

By the triangle inequality

d(s(x), (7)) < d(x, g(x)) + d(y,8(»)) + d(x, y) <2+ 1+ L <3,

Case2. xliesin B,_,,y doesnotliein B,_,.

d(s(x), ) <d(g(x), x) + d(y, x) <7 + 2 <2

Since y € B;_, and y &€ V,_, it follows that g(y) & B;_,. Thus the radial
coordinate of g(y) lies between the radial coordinates of y and g(x). By our
first requirement on the metric d, d(g(x), g(»)) < d(g(x), y) < 3/446.
(Roughly, we have just argued that when y is moved to g(y), it is moved
toward g(x), which is closest to a, and so decreased distance.)

Case 3. Neither x nor y liesin B;_,.

g(x), g(y) € B; — B;_,. Assume without loss of generality that the radial
coordinate of g(x) is smaller than g(y)’s, p(g(x) < p(g(y)). Let u be the
point (p(g(x), z(g(y))) in polar coordinates, and let v be the point which has
p = min(p(x), p(y)) say p(v) = p(y), and the z-coordinate of the other, say
z(u) = z(x). Using property (1) of d, §/2 > d(x, y) = d(v, y). By property
(3) of d, d(g(x), u) < d(v, y) so d(g(x), u) <8/2. Since u, g(y) € B, — B;_,
and have the same z-coordinate, property (2) of d yields d(u, g(y)) <é/2.
Again using the triangle inequality d(g(x), g(y)) < 8. See Diagram 7.3.

The above cases show that diameter g(k;) < 8 for all k;. This completes the
proof of Lemma 7.1 and Theorem 7.2.

DIAGRAM 7.2
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DIAGRAM 7.3

Another quite general tool is the majorant shrinking principle. It says that
shrinking, at least for epimorphisms of manifolds, is a local problem. Its proof
uses the Edwards-Kirby [20] results on deformations in the group of homeo-
morphisms and hence, ultimately, the torus trick. This result was observed by
Edwards in the early seventies but does not seem to have found its way into
print.

Theorem 7.3 (Majorant shrinking principle (MSP)'*). Let f: M" - N" be a
proper surjection of topological manifolds (metrizable and without boundary).
Assume that if is ABH. Let V C N be any open set. Set f~'(V) = U. Then f|:
U - Vis ABH.

Proof. Setg=f|,: U~ V.Letm: V - [0, c0) be a proper map. Leti =0,
1,2, 3,..., define

A=m"Y([0,3/4] U [21/4,23/4] U [41/4,43/4] U ---),
B=m"'([11/4,13/4]U[31/4,33/4]U ---),
C=m"'([3/4,11/4) U [13/4,23/4] U ---),
ct=m'([1,11/4] U [2,21/4] U ---),
c =m'([3/4,1] U[13/4,2]U---),
D=m'(1U2U3U---),
and let D* C C be an open neighborhood of D.

14 With care the use of this theorem can be avoided (it is used in both Chapters 6 and 8), making
this paper logically independent of the torus trick.
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Let h: h~'(AUC) - AUC (and k: k™ (BUC) - BUC) be a homeomorphism
approximating f, 4 (and k) can be constructed sequentially over each compo-
nent of AUC (BUC) to achieve any desired degree of closeness to
f/h~(AUC)( f/k~(BUC)) as measured by a majorant £”: ¥ - (0, o).

If h and k are sufficiently close to f, h o k™! |,+: D* = C will be so close to
the inclusion D" C V that there will exist an autohomeomorphism G: C » C
With G |prontiercy = i grcy and G |p = k o h™'|,. This is by Theorem 5.1(1) of
[20]. Furthermore the same theorem allows us to choose G as close to the
identity as we like, norm(G) < ¢”’: V — (0, o), provided ¢” is sufficiently
small.

If ¢ is chosen so that &’(v) + ¢”(h(v)) is less than a predetermined
majorant €(v), then a homeomorphism H: U — V, ¢’-approximating f, will be
given by the following formula:

H=h onh~!(4),
H=Goh onh '(C"),
H=k on U\h~'(AUCY).

Corollary 7.1. Let f: M" > N" be an epimorphism between (metrizable)
topological manifolds. Assume that f is ABH and that f is a homeomorphism over
a closed set C C N (that is, f|-(c): fN(C) - C is a homeomorphism). Then f is
approximable by homeomorphisms h; which agree with f over C (that is, when
restricted to f~'(C)).

Proof. Apply Theorem 7.4 to f|1y\cy: (M\f~'(C)) = N\ C to construct
an ¢'-approximating homeomorphism g: (M \f~'(C)) > N\C with&': N\C -
(0, 00) which limit to zero as the argument tends to C. In particular for any
majorant &: N — (0,00) set ¢’ = min(¢/, distance from C). The required
approximating homeomorphisms 4;: M — N are defined by & |-1¢) = f|1(c)
and h lM—j_'(C) = g.

It is helpful to collect the following two facts about diagrams involving ABH
maps. Below all spaces will be locally compact and metric, and maps will be
proper.

f 8
Fact7.1. Let X, Y, and Z be space and fand g ABH, X > Y —>Z. Thengo f

is ABH.
The proof is easy.
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Fact 7.2. Let X, Y, and Z be spaces. Suppose we have the following
commutative diagram in which p and q are ABH:

Xx—2 sy

Then r is ABH.

Proof. Let¢': Z — (0, 00) be a majorant fraction. Construct §: Y — (0, c0)
to satisfy dist(yy, ;) < 8(yp) = dist(r(y,), r(y1)) <€(),)- Let p’: X > Y §-
approximate p, r o p’¢’-approximates p o r = g. A sufficiently close approxima-
tion ¢’ to p will also be ¢’-approximated by r o p’. Thus g’ o p’~! e-approxi-
mates 7.

For the shrink in §8 it is necessary (and a pleasure) to discuss an example
which holds a central position in the history of decomposition spaces. In its
simplest form one considers the cell-like compactum Wh =“Whitehead con-
tinuum” C D? X S, the solid torus. Wh is defined as the nested intersection of
solid tori M2, T; with T;,, C interior T; and each inclusion null homotopic,
but not null 1sotop1c' (Actually, the term Whitehead continuum is usually
reserved for a particular example of the above. It is the set Wh with D? X
S!'/Wh = Fr* K, for K the standard compactification of an unramified Cas-
son handle.) For our discussion of shrinking, however, only the null homotopy
assumption is used. Wh is cell-like since given any neighborhood of Wh there
is a second smaller neighborhood which contracts to a point in the first.

Since T,,, C T, is not null-isotopic D? X S'\Wh fails to be simply con-
nected at infinity. Consequently, D? X S' /Wh is not a manifold.

Theorem 7.4 (Shapiro, Bing, Andrews-Rubin [3]). (D*X S'/Wh) X R is
homeomorphic to D*> X S' X R. In particular the quotient m: D* X S' X R —
(D> X S' /Wh) X R is ABH.

D? X S'/Wh is perhaps the simplest nontrivial example of a “manifold
factor,” that is, a nonmanifold which becomes a manifold after crossing with a
Euclidean space. R. H. Bing has told the author that Armnold Shapiro dis-
covered this example, and indeed the phenomenon, shortly before his death.
The next year at the Institute for Advanced Study, Bing learned of Shaprio’s
(lost?) discovery from Deane Montgomery and quickly reconstructed the
proof. Bing went on (1959) to generalize the technique in his remarkable
shrinking of “dog bone” X R [6], however, this simplest example of a manifold
factor did not enter the literature until Andrews and Rubin described it in
1965.
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Proof of Theorem 7.4. An individual shrinking homeomorphism 4, will have
support in T; X R and consist of a composition # = T o L, a “lift” followed by
a “twist.” The lift shears in the fourth coordinate to exchange “self-clasping”
of each T, , X r with “clasping” of T;,, X r, with T, , X r,. The twist places
each 7;,, in a fixed rod D? X @ X R and is tapered continuously (but not
uniformly continuously) to the identity near 97;. Below is a schematic picture;
for details see [3].

Twist

The statement of Theorem 7.4 can be generalized and varied in several ways.

Theorem 7.4, Addendum A. Wh may be taken in Theorem 7.4 to be any
“Whitehead Decomposition” of D2 X S'. These have already occurred in §5.
For the present purposes we may say that the nondegenerate elements of a
Whitehead decomposition are the components of M2, T, where T; is a finite
disjoint union of solid tori and 7;,, C interior 7, with the inclusion restricted
to any component of T, inessential. Thus the nondegenerate elements of Wh
are parameterized by the ends of a finitely branching tree. The proof is
unaltered.

From now on Wh will indicate a general Whitehead decomposition.

Theorem 7.4, Addendum B. The projection D? X §' X R - D? X S! X
R/Wh X 0 is ABH. The necessary shrinking argument is quite simple. By a
tapered thickening in the fourth coordinate Wh X 0 can be given a defining
sequence of (disjoint unions of) 4-dimensional solid tori S'X D?> Wh =
ﬂf‘;lf. The inclusions T}, C interior T, are now null isotopic (homotopy
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implies isotopy for 1-complexes in 4-manifolds) so T,,, may be shrunk small
inside T Now the BSC (Theorem 7.1) applies.

Theorem 7.4, Addendum C. The projection D? X S' X [0, 00)/Wh X 0 -
D? X S' X [0,0)/Wh X [0, 0) is ABH (of pairs) (Wh X [0, c0) means the
collection of closed sets of the form A X r, A € Wh, r € [0, o0).) This may be
proved by hand, tapering the 4, in the Andrews-Rubin argument. Alternatively
it is a formal consequence from the diagram:

(D* xD*-D")=D? x 8! x (0, 1)—————»1)2 x 81 x (0, /e

N A

D? x S' x (0, 1)/Wh,

Addendum 4 says a is ABH. Addendum B says b is ABH so Fact 7.2 says 7 is
ABH. Corollary 7.1 says the approximating homeomorphism 7/ may be taken
to be the identity (that is, agree with #) on D2 X S' X 0/Wh X 0. The
argument is completed by restricting 7/ to D X S' X [0, 00)/Wh X 0.

Theorem 7.4, Addendum D. The decompositions of the open 2-handle
introduced in §6, Wh is shrinkable. That is, (D2 X D2, aD? X D?) 5 (D? x

D?/ Wh, dD? X D?) is approximable by a homeomorphism equal the identity
on dD? X D2. The exceptional element of Wh is D’ X D, a flat 4-ball. If the
decomposition Uccg Why = & of D? X (D?* — D’) is shrinkable, then so is
Wh. & has a defining sequence consisting of a disjoint union of 4-dimensional
solid tori {X,} = {mS' X D*’s}, each S' X D?* being null homotopic in its
containing S' X D3. The discussion of Addendum B applies to give the
shrinking,

Theorem 7.5, Addendum E. Consider &’ C & to be the subset of gener-
alized Whitehead continuums which lic in M = D2 X S' X [¢,1) = D2 X (D?
— D’) C H, where ¢ belongs to the Cantor set (and also for M = D2 X §' X
(0, c]. Let Wh_ be the subset & lying at level c. The projection M /Wh, - M /&’
is ABH; the approximations may be taken to be the identity on D2 X S!
Xc/Wh_. To see this consider the factoring:
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szslle____”___>D2 x S! x R'/Wh x R

b (
D? x S! x R'/Wh x 0

One argues as in Addendum C that = is approximable by homeomorphisms
equal tom on D? X S' X .

We conclude this section with the observation that the Bing Shrinking
Criterion has a straightforward generalization to pairs of spaces. In §8 this will

be exploited to establish that certain flat disks (the df of §6) stay flat under a
decomposition map ().

Theorem 7.1, Addendum. Let f: X — Y be a proper surjection of locally
compact metric spaces. Suppose f is actually a surjection of pairs
(X, X') - (Y,Y’), f may be approximated (with respect to e: X — (0, o0) or ¢
Y - (0, o0)) by homeomorphisms of pairs A, iff given e: X — (0, o) there is an
autohomeomorphism of pairs k: (X, X) —» (X, X’) such that for all A € D(f)
we have: (1) diam k(A) < min ,x{e(x)} and (2) d(/(x), f © k(x)) < e(x).

8. The approximation of a: H -~ CH/ {gaps™ }

Let us recall the notation of §6 for the various pieces of D(a), the

decomposition associated to the projection a. D(a) contains three types of
elements.

_.L Consider the family of closed sets {the components of N2, X,} called
Whin §6. These elements are all generalized Whitehead continua. Some of
these elements intersect the disks {d}} threaded through 4 in §6. Consider the
elements whose 4th-coordinate (in D? X R2 — D' ~ D2 X S' X (0,1)) is at a
Cantor set endpoint ¢ at the top or bottom of a diagonal BJ. Such elements
must be amalgamated into large, type II, elements. The G4 subset of Wh which
does not meet {d{} or {B,} is, by definition, the set of type I elements.

I1. The type two elements have been descriptively named hairy red cells. Any
such element is the union of a diagonal “solid torus” B, diffeomorphic to
S!' X D? X I, a topologically flat disk df, meeting Bj along S' X (boundary
point) X 1/2, and finally a Cantor set’s worth of a generalized Whitehead
continua belonging to Wh each of which meets df in one point and is disjoint
from all other dj’s.
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Legend:
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Di1AGRAM 8.1

III. The exceptional type III element is the smooth (with corners) 4-cell
D' X D' C H.

It is convenient to work in the space D? X (D? — D') with coordinates
given by D2 X D? — D’ = D? X S' X (0,1) and ignore the element of type
III. Let D(a”) be the collection of elements of types I and II. D(a™) is a
decomposition of D? X (D? — D’). Suppose that we determine that D(a™ ) is
shrinkable. Then &~ = a| D? X S' X (0, 1) is approximable by a homeomor-
phism onto image (a~ ). Adding the collar of the attaching region (D?> - D"
X D? we see that a|D? X D> — D’ X D’ is approximable by homeomor-
phisms h;: D2 X D — D’ X D’ X D’ - a(D* X D* — D’ X D"). Sending D’
X D’ to a(D’ X D’) extends h, to h;: D* X D* - CH which is certainly ABH
since its only nondegenerate preimage is cellular. Thus D(a™ ) shrinkable
implies that a is itself approximable by homeomorphism.

The shrinking of D(a~ ) will be carried out in three steps. That is D(a™ ) will
be divided out in three successive stages and each successive projection will be
shown to be ABH. Here is the factoring

[ e
2 « gl 1,2 ol = %
D? x 8! x(0,1)—— D% x 8! X (0, 1)/Wh —— D2 x 81 X (0, 1)/set, U set,
[e1
3, 02 x st x (0, 1)/D(c7),

Set 1 = {elements of Wh not meeting {d{}},
Set 2 = {d} U elements (hairs) of Wh which meet d/},
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D_(al) =Wh,

D(a,) = {a,(d])}, the image of the spanning disks, .

D(a;) = {Qf)}, where the compacta Q] = (B{/ddj)/elements of Wh lying in
0B/ identified to points.

Step 1. Divide out to points the generalized Whitehead continua of Wh.
These lie at Cantor-set levels in the (0, 1) coordinate of D2 X S! X (0, 1). The
projection map is a,. By Theorem 7.4, Addendum D, «, is ABH.

Step 2. Divide out to points the disks {a,(d}{)}. The disks d{ are flat since
they are the graph (in the (0, 1) coordinate) of a continuous function over a
smooth disk. If we establish that each a,(dy) is flat, we can apply Theorem 7.2
to conclude that a, is ABH. The hypothesis is satisfied since a flat g-cell,
having by definition the neighborhood structure of the pair (B9 X B" 9,
1B X 0) where B denotes the g-ball of radius = 1, 2B7 denotes the g-ball of
radius = 1/2, is certainly a star-like equivalent set. Furthermore, the collection
{d{} is null by construction; since a, is proper, {a,(d{)} is also null. Let d be a
typical d{. We finish step 2 by showing that a,d is flat in a relative boundary
sense. We use Y as a shorthand for D? X S! X (0, 1).

Lemma 8.1. Let d X A’ be a product neighborhood of d in Y. Then the
projection o, o> d X N >Y/ Wh can be approximated by an imbedding o:

dX AN -Y/ W=h which agrees with o, on d and a neighborhood of 9d.

Proof. Let S CWh be the closed subdecomposition of ﬁ consisting of

the sub-Cantor set of generalized Whitehead continuums which meet d. Like ﬁ
S has a defining sequence {S, = Il ;.. S' X D3}, §* = N%_ S,. a; may be

1) /3 az/3 =
factored as @, ;3 @ )30 ¥ > Y/S - Y/ Wh.

Think of a, /3 as a map of pairs: (Y, d) > (Y/S, & /3d). , /5 is approxima-
ble by homeomorphisms of pairs, which agree with @, ,; on d and near 9d. This
follows from the Addendum to Theorem 7.1 once we see that shrinking
homeomorphisms described in Theorem 7.4. Addendum D (described there for

Wh rather than S) can be chosen to be the identity on d and near boundary d.
But this is easily seen, as in Theorem 7.4, Addendum B, the shrinking
homeomorphisms consist of an unclasping (away from d) followed by an
ambient isotopy which may be taken to be the identity near d (see Diagram
8.2).
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The point z is an intersection of d and Sn‘
The points w, x, and y are not intersections since
d and S, have distinct 4-coordinates there.

ambient isotopy fixed near
du s, 4 makes S, small

iy
—_—— //
—_ é/

—
S—

LN

isotopy at time one (S,,)

DIAGRAM 8.2
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By Fact 7.2, &, /5 is ABH. Now a, /5 ° a, /3(d) is a homeomorphism over its
image. Corollary 7.1 says that the approximations to a, ,; can be made to
agree with a, ,; on d (and also over a closed neighborhood of dd). Composing
the approximations (Fact 7.1) to a, ,; and a, ,; completes the proof.

Step 3. Divide out by D(a;) = {Q/}. Let Q be a typical element. Ab-
stractedly Q is the closed cone on S! X D? with two disjoint generalized
Whitehead decompositions divide out at the base of the cone. We wish to
prove that Q has a “star-like” equivalent neighborhood. We do this in four
stages.

Stage 1. Consider S' X D? X I U d to be a typical type-two element less
the “hairs” (= generalized Whitehead continua meeting d). S' X D2 X I U d
is part of an obvious mapping cylinder to d, namely a mapping cylinder M(gq:
S3 — d) when S? is a tamely imbedded sphere surrounding S' X D2 X T U d
(see below):

\l/

S xD"xI 1
[~

DIAGRAM 8.3

This structure may be chosen to have three useful properties: (1) the
mapping cylinder lines may be taken vertical (only the 4th coordinate of
S! X D?* X I varying) near S' X D? X {0, 1}; (2) the mapping cylinder struc-
ture restricts to a flatness structure normal to d; and (3) S' X D> X I'is a
union of closed mapping cylinder intervals terminating on 9d.

Stage 2. Consider the image of S! X D2 X I U d in Y/D(a,). The map-
ping cylinder on the neighborhood structure (in which the nondegenerate
element is a sub-mapping cylinder) may have been destroyed, but let us see
what remains. We have seen that a,(d) remains flat (Step 2), so the structure
lines normal to a,(d) persist. It follows from Theorem 7.4, Addendum C, that
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a,(S' X D? X I — da,d) has an open product structure, it is homeomorphic to
(S' X D?/Wh X [0, co), where Wh is some generalized Whitehead decomposi-
tion. Using Theorem 7.4, Addendum E then Addendum C we that the just
mentioned product structure extends outward beyond the a,(S' X D? X I),
this by following the homeomorphisms of pairs:

(81 X D2) X (—<, 0)/Wh X (==, 0), S X D? x 0/Wh X 0) « (§! X D? X (==, 0)/Wh X0,

s1 x D2 x 0/Wh X 0)
ADDENDUM E /

ADDENDUM C

! x D? X (—=, 0)fe, S! X D% X 0/Wh X 0).

The mapping cylinder structure over a,(d) and the product structure con-
taining a,(S' X D? X I) fail to match up at 9d, so there is no obvious
mapping cylinder neighborhood at this stage.

Stage 3. We now factor a, = as,3 ° ay ;. 5(0:4/3) = {a,d}, that is, a, /3
simply divides out the single flat disk of the element which we are considering.
The rest of the disks are divided out under as 5.

Dividing out by a,d, that is, forming X/D(a, 3 ° a,), restores the mapping
cylinder neighborhood by providing each line of the product structure S' X
D?/Wh X (— 0, 00) a unique limit point, image (dd). But this is a mapping
cylinder to a point, in other words, a “star-like” equivalent neighborhood. If
one were to look for the base Z of the cone, it would be S divided by the
generalized Whitehead continua in S' X D% X {0,1}.

Stage 4. Now divide out by the remaining 2-disks to form
Y/D(as/3°a,/,3°0a)=Y/D(a,° ;). We must check that the “star-like”
equivalent neighborhood is not destroyed. The easiest way to check this is
purely formal. Consider the diagram:

Y/D(e;) % Y/D(eey © ;)

054/3\‘ /;/3

Y/D(ay5 © &)

4,3 and a, are already known to be ABH, so a; 5 is as also ABH by Fact
7.2. But by Corollary 7.1 the approximating homeomorphisms o 5 (to as ;)
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may be taken to agree with s, on the closed set Q (more precisely the closed
set a, 30 & (S' X D? X [0,1]). Such a homeomorphism will transport the
“star-like” equivalent neighborhood from X/D(a, /3 © @) to X/D(a, ° a,).

Now that we have established that one (so each) Q has “star-like” equivalent
neighborhood, we may apply Theorem 7.2 to approximate a; by homeomor-
phisms. (The type II elements were countable null in X, and this property is
preserved by proper decomposition maps.) Finally, two specifications of Fact
7.1 show @~ = a3 ° a, © a; is ABH. By our preliminary reduction we have
proved

Theorem 8.1. «: H > CH/{gap™ } is ABH.

Note that we have really proved the analogous relative boundary statement.
However the stronger assertion is easily recovered from the weaker using
Corollary 7.1. This same principle allows the pieces of the main argument,
assembled in §6, to arrive there without careful relative statements and still be
sufficient to complete the job.

9. Approximating Certain Self-maps of S”"

The previous section was devoted to understanding Edward’s explicit shrink-
ing of the decomposition D(H — CH /{gaps™ }). The present section is de-
voted to an approximation procedure which is in effect a “blindfold” shrinking
of certain decompositions of S”. That is, we shrink without ever seeing what
we are trying to shrink. The main theorem, Theorem 9.1, is a generalization of
Morton Brown’s [8] Schoenflies’ theorem (set Sing( f) = {two points} for this).
Brown’s proof may be regarded as the prototype for the argument presented
here. In both cases knowledge of the quotient space replaces explicit informa-
tion about the sets to be shrunk.

We recall some terminology. Let f: X — Y be a (continuous) surjection
between compact metric spaces. D(f) = {f~'(y)|y € Y}. The nondegenerate
elements of D( f) are the f~'(y) which are not singletons. D( f)is the subset of
nondegenerate elements of D(f). D* will represent the union of the elements
of D. The singular set is Sing(f) = f(D*(f)). Sing(f) is filtered by the
diameter of preimages, Sing(f) = U,.,+ {y € Y|diam f~'(y) = 1/i}, and is
therefore o-compact.

We say that subsets 0, C S” are mutually separated if closure (Q;) N Q; =
@ fori#j.

A o-compact subset A of the n-sphere is tame-zero-dimensional if given
x € A and € > 0, there is a flat n-cell B of diameter less than & such that
xEBCS"and4 NdB = @.
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We say f: X — Y is approximable by homeomorphisms (ABH) iff for every
€ >0 there is a homeomorphism A: X — Y with d( f(x), h(x)) <e for all
x € X

Theorem 9.1. Let f: S" — S” be a continuous function with the singular set
Sing( f) tame-zero-dimensional and nowhere dense. Then f is approximable by
homeomorphisms.

Ric Ancel and Jim Cannon (independently) suggested the above formulation
of Theorem 9.1. My original statement assumed D( f) was countable, null, and
Sing( f) nowhere dense. They pointed out that my argument would cover the
more general case. Also I would like to thank them for showing me an elegant
way to handle the convergence questions by constructing the limit homeomor-
phism as the intersection of a family of closed relations.

Theorem 9.1 only yields new information for n = 4. For n = 5 it is a special
case of Siebenmann’s approximation theorem [47]; for n = 3 (and certainly
n < 3) Theorem 9.1 is subsummed under a more general theorem of S.
Armentrout [1].

Lemma 9.1 (General position). Suppose A C S" is o-compact and tame-
zero-dimensional, and X C S" is nowhere dense. Given a neighborhood U of X
and any € > 0, there is an e-homeomorphism h of S" (that is, dist(y, h(y)) <e
for all y € S™) which agrees with id g» outside U and moves X off A, h(X) N A
= dJ.

Proof. The proof is an exercise in the use of the Baire category theorem.
Apply it to the (Baire) space of auto-homeomorphisms of S” fixed off U.

Definition. A diagram
R
X s Y
—
r s
zZ

is admissible iff the following hold:

(1) X=Y = Z = §", the n-sphere for n = 1.

(2) r and s are epimorphic functions; R and S may be closed relations.

(B)R=S"' 5o R=r,and r o § = s (Relations are inverted and composed
according to the rules: (x, y) ER < (y,x) ER 'and (x,z) ER cR = 3y
such that (x, y) € Rand (y, z) € R').

(4) The union Sing(r) U Sing(s) may be written as: Sing(r) U Sing(s) = &
U B U C of three mutually separated sets €, B, and C, which are s-compact,
tame-zero-dimensional, and nowhere dense, and @ = Sing(r)\ Sing(s), B =
Sing(s) \ Sing(r), and € = Sing(s) N Sing(r).
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(5) The restriction R | r~(€) —» s~ !(€) is a homeomorphism.

If f satisfies the hypothesis of Theorem 9.1, then an admissible diagram is
obtained by setting Ry = f, S, = f ', r, = f, and s, = id g». The next lemmas
will be applied to an infinite sequence of diagrams beginning with
(X,Y, Z, Ry, Sy, 1> So)-

Lemma 9.2. Suppose (X, Y, Z, R, S, r, s) is an admissible diagram.
Given any neighborhood N of R and any & >0, there is a new diagram
(X, Y, Z, R, S, r', s') satisfying conditions (1)-(5) with R CN and
maximum ¢ y{(diam S(y))} <e.

Proof. Let @ be the subset of @ consisting of points a € @ such that
diam r~'(a) = e. @, is compact tame-zero-dimensional and is therefore covered
by the interiors of a finite collection of tiny disjoint tame n-cells in Z. The
procedure for producing (R’, S’, r’, s”) from (R, S, r, s) consists of a sequence
of changes each defined on the interior of one of these n-disks. Thus there is no
loss of generality in assuming that there is only one such cell B. Since we may
restrict the size of such cells B we may arrange that the following two
conditions are satisfied:

(A) r~(B) X s~!(B) C N. (Later this will ensure that R” C N.)

(B) B C Z-closure (B U ©). (This makes s a homeomorphism over B and
will enable us to avoid changing R over C.)

Choose a (closed) tame n-cell U C interior Bwith (EURB U EC)NIWU = g
and B N (&,) C U. Choose a large n-cell B’ C Z such that both B and the
nowhere dense set closure (€ U % U @) are contained in interior B’. Without
loss of generality require that the imbedding of U and B’ are in the same stable
(see [10]) class as B. (U may be taken to be B\ collar and B’ to be the image
under some stretching diffeomorphism which carries a small round ball inside
U to Z minus a small round ball disjoint from (@ U % U ©).) Thus there is a
stretching homeomorphism i: Z —» Z which fixes U and makes i(B) = B’.
After perturbing i (use Lemma 9.1) we can assume without loss of generality
that Sing(r) — U and ®° = ® = (i~' Sing(r) — U) are mutually separated.

Since 9B’ N closure (& U C) = &, r~'(3B’) is a collared (n — 1)-sphere. By
the generalized Schoenflies theorem [9] r~'(B’) is a (tame) n-cell. Thus we may
define a map j: r~'(B’) —» s~ (B) to be any homeomorphism extending the
boundary homeomorphism s~ o i~! o r: r"(3B’) » s~ '(3B).

We make the following new definitions:

R on X — r~ (B),

R =1j onr Y(U),
jorleior onr '(B\U).
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-1 1 1

oj

(Compatibility on ~!(3dB) is verifiable noting that (s
is™! o r, and R are equal when restricted to r~'(3B).)
s onY — s~ !(B),

itorojt' ons'(B) '

or)or_ ojor,

S=(RY',r'=rros= {

The new sets @', ®’, and C’ are expressible in terms of the old:
@=8-U,
R =BUB, =B U (i Sing(r) — U),
C'=Cu(@nuU).

One can now check that the requirements of Lemma 9.2 are satisfied. q.e.d.
The proof of Lemma 9.2 is summarized in the following figure:

R D
r(8) R
—_——
r-](B) S
1 ~< . 5-](3)

\ N /

B
U

N

DIAGRAM 9.1

Lemma 9.3. Let X and Y be compact metric spaces, and T C X X Y a closed
relation. Assume maximum yey{(diam(T_‘( )} <e. Then there exists a closed
neighborhood M of T such that maximum {M~'(y))} < ¢ as well.

The proof is an easy exercise.

Proof of Theorem 9.1. We start with the admissible diagram (X, Y, Z, R = f,
S=f"', r=f s=idg). Fix a neighborhood N of graph (f) C X X Y. We
will find a homeomorphism inside N.
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An application of Lemma 9.2 yields (X, Y, Z, R’, ", r’, s’). On the one
hand, R’ no longer has large (larger than &) point inverses, but on the other
hand, it is no longer a function. A point may map to a large set (so long as
pt X set is contained in N ).

Next we exploit the symmetry (X <& Y, R & S, r o5, @ o B, and C < C) of
admissible diagrams. Use Lemma 9.3 to find, inside N, a closed N! containing
R’ with “y-inverse-diameter” (N') (= maximum . {diam(N')"'(y)}) <e.
Now apply Lemma 9.2 to find $? C (N!)™! C ¥ X X with “x-inverse-diame-
ter” (S?) (= maximum . y{diam(S?)"'(x)}) < e. Lemma 9.3 yields S2 C N2
with X-inverse-diameter (N?) < e.

We proceed in this way to construct closed sets N3, N4, N5,..., and {S¢"")
and {R°%}. These should satisfy (1) N**! C (N*)~!, (2) y — inverse-diameter
(N**1y <g/(k + 1) and x-inverse-diameter (N2¥) < ¢/k and (3) N°**" con-
tains an S°V°°; N°4 contains an R°%.

Define h= NT_ N***' C X X Y. h is (the graph of) a function since
y-inverse-diameter (k) < ¢/(k + 1) for all k£ and must therefore be zero. h is
an epimorphism (use property (2) of admissible diagrams) since (R°%)™!(y)
C (N°¥)~1(p) is never empty for any y € Y. h is also NT_,(N**)7! so
x-inverse-diameter (h) = 0, that is, 4 is one to one. (N®)~!(x) is never
empty for x € X so the domain of definition of 4 is all of X. Thus A is a one to
one, onto map of, compact metric spaces and therefore a homeomorphism.
Since h was constructed to lie within an arbitrary neighborhood N of f, h
approximates f in a sense equivalent to approximation in the supremum norm.

10. The Proper /-cobordism theorem

The most detailed information on the topology of compact 4-manifolds
requires the noncompact, proper h-cobordism theorem described in this sec-
tion. This peculiar circumstance results from the existence of a smoothing
theory for open but not compact 4-manifolds. Thus the smooth structure
necessary for the construction of Casson handles and the consequent applica-
tion of Theorem 1.1 may be available in the complement of a point, if not on
the entire manifold.

Theorem 10.3. Let (W; V, V') be a simply connected smooth proper h-cobor-
dism of dimension 5. Suppose W (and therefore V and V') are simply connected
at infinity and if C = 0W — (V U V") is not empty, assume that C already has
product structure C =pig(C N V) X 1. Then W is homeomorphic to V X I
(extending the product structure on C).
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Note. A space X is simply connected at infinity if given any compactum
K, C X there exists a larger compactum K, C X, K, C K,, such that every
loop in X — K, contracts in X — K. A space with more than one end, such as
S3 X R, may be simply connected at infinity.

Lemma 10.1 (negligibility of two collections). Suppose {a;} and {b;} are
finite collections of compact immersed surfaces in a smooth 4-manifold M.
Suppose {a;} and {b;} are each (separately) m-negligible in M. Let {T,} and
{T, } be the geometrically dual spheres following from the previous hypothesis.
Supjpose that the intersections of a; with Tbj, and b; with T, are paired over
m(M). Then Casson moves between {a;} and {b;} (but not permitting Casson
moves within either collection) will make the new union, say {aj} U {b;},
m,-negligible in M (as the notation indicates only one collection need be moved).

Addendum. The a’s and b’s may be taken to be immersed 2-complexes
with a main section. Define main section of an immersed complex X to be an
imbedded 2-patch R? C X with the property that any disk D in M which meets
X in a single point C int(D) is isotopic rel 3D to a disk D’ which meets X only
in the 2-patch R?. Interpret the geometric duals T, (and Tb,) as meeting a;, (and
b;) in a single point lying in the main section. Also the arcs in the a’s and b’s
used to define the above pairing are required to lie in the main section. In this
situation the conclusion to Lemma 10.1 becomes: Casson moves between the
main sections of {a;} and the main sections of {b;} result in {a/} U {b;},
a,-negligible in M.

Proof. The proof is similar to Lemma 3.1 so only the outline is sketched.
We change {a,} to {a;} and (T, } to {7} } so that T; N b, = V1, j.

We will use the pairing hypothesis to eliminate intersections of 7, and b; two
at a time. Let A be a weak Whitney disk (see Lemma 3.1) cancelling a pair
p,p' €T, Nb. We may assume that intA N (Ub;) = & since {b;} is m-
negligible. Now pipe intersections of (Ua;) with A off the part of dA incident
on (Ub;); this results in the Casson moves between the two collections. A
singular Whitney trick pushing {7, } across A eliminates the pair (p, p’). Now
{a;} has dual spheres {7} } disjoint from {b;}. To find the dual spheres to {b,}
simply apply a “singular normal trick” [40], that is, change each Tb by ambient
connected sums of copies of 7;’s to remove intersection between {T,,} and
{a;}. The resulting collections of duals {T;,} and {T} } establishes the requlred
a,-negligibility.

Proof of Addendum. Consider complexes with a main section. In the
preceding argument one checks that there is no loss of generality in assuming;:

@ (UT,) N (Ub) C U main section (b;),

@3N b C main section (b)),
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®An a; C main section (a;), and finally

@ (v T,) N (Ua,) C U main section (a;). q.e.d.

A (smooth) Whitney circle is a pair of arcs each lying on a sheet and
connecting two double points ( p, p") of opposite sign of some normal immer-
sion of an orient (but not necessarily connected) surface in an oriented
4-manifold. A (smooth) Whitney disk, in the strong sense, is a smoothly
imbedded disk A which meets some normally immersed surface X (possibly a
disconnected one) along 0A in a Whitney circle A N X = dA N X = 0A. This
intersection should be normal in the sense that any unit speed curve in X
transverse to the Whitney circle is transverse to A. There is also a framing
condition: The section § of the normal bundle »,., given over dA by
6 = oriented normal to dA C sheet,(X) over dA N sheet,(X), @ = an oriented
complement to the 3-plane bundle (7(A) ® 7(X))pansheet,(x) 1N the 4-plane
bundle T(M)ganheet,x) Should extend to a global nonzero section 6 of v,., .
(The fact that double points have opposite sign makes 6 a section.)

Let us suggest two ways of thinking about this framing condition:

(1) One may use a coordinate tangent to the first frame vector to write down
a formula (cf. [36], [37]) for pushing sheet;, across A and push sheet,. The
choice of 0 assures that no new double points are introduced as we cancel
those paired by the Whitney circle 9A.

(2) Extend & to a slightly larger 2-disk A. Exponentiate »§_, 5, to form a small
smoothly imbedded closed 4-ball B* C M. 9B* N X will (if A — A and ¢ are
small enough) consist of two linking circles S| U S; C S3. The linking number
link(S{, S;) = sign( p) + sign( p’) = 0. The link has the form:

N

n full
twists

N4
5 32

Di1AGRraM 10.1

The n in Diagram 10.1 is the integral obstruction w € H? (4, 3; m,(SO(2)))
= Z to extending the section # to 8. Thus for a Whitney disk » = 0 and
S} U S is the trivial two component link. Slicing this link is tantamount to the
Whitney trick cancelling ( p, p’).
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Being unable to construct smooth Whitney disks in a general situation, we
will use the notion of a 6-stage Whitney tower as a substitute. These are now
known to contain topological 2-handles (Theorems 5.1 and 1.1) whose cores
can be thought of as topological Whitney disks. That is, the core A is a flat disk
(= extends to an imbedding of A X R?) which is only assumed smooth near
3A; 6 admits an extension to a section 8 of A’s topological normal bundle
which is only smooth near 9A.

Definition. A Whitney tower is a 6-stage tower (T}, 9~ ) C (M — 9(X),
990( X)) imbedded in a 4-manifold M minus an open tubular neighborhood of
a normal immersion of a surface X with the attaching region 0~ Ty lying in
990(X). On the imbedding we impose the following two conditions which
correspond to the requirement that the boundary of a Whitney disk be a
Whitney circle and the framing condition:

(1) The core of the attaching region 9~ T; should lie on a circle y C 990(X)
which projects under the collapse 39U( X) — X to a Whitney circle y in X.

(2) Let ¥ be the framing of » 50 (x, SO that if a 2-handle is abstractly
attached to 9U(X) along (v, %), then A = (core of the 2-handle) U (natural
annulus (the shadow of y under collapse) bounded by yIly) becomes a
Whitney disk. Let y’ be a parallel copy of y in 99U, parallel in the sense of ¥.
The framing condition on the attachment of T; is that y and y’ should have
vanishing linking number in 97;. This means that if y and y” are each made to
bound singular disks d and d’ (resp.) in T (e.g., appropriately displaced copies
of the core c,), thend - 4’ = 0.

We need an existence theorem for Whitney towers.

Theorem 10.1 ( Existence of Whitney towers). Suppose that X is a normally
immerse surface in M, an oriented 4-manifold, and that X is m-negligible in the
following rather strong way: Assume that for each component X; of X there is an
immersed 2-sphere T, (transverse to X) such that T, N X; = §,; points and the
algebraic self intersection number T, - T, = even € Z for all i. Suppose ¥ is a
Whitney loop pairing double points of X. If the fundamental group hypothesis
stated below is satisfied, then there is a Whitney tower T attached to a
Y CAN(X), (T4, ) C (Mg — N(X), 99U(X)), where v is related to ¥ as in the
definition of Whitney tower. Furthermore, Ty is m,-negligible in Mg — 9U( X).

m,-Hypothesis. There is an inclusion of smooth four-manifolds M C M, C
M, C My C M, C M5 C M such that each inclusion is the zero map on =,.
Note. We refer to the #,-hypothesis as “multiple death.”

Addendum. As with Lemma 10.1 the X, can be replaced by a 2-complex with

main sections with the same conventions (and modifications of proof ) as in the
addendum to Lemma 10.1.



TOPOLOGY OF FOUR-DIMENSIONAL MANIFOLDS 439

Proof of Theorem 10.1. The proof has, in disguised form, already been
given—it is Theorem 3.2. There we were given, up to homotopy, the first stage
core f, so were in no way concerned with modifying the framing (= notion of
linking number) that f induced on its boundary. Framing considerations did
not arise until it was time to construct c, the second stage core. Now, however,
we wish to control the framing of the first stage, and consequently we have
provided in the hypothesis of Theorem 10.2 exactly what was used in Theorem
3.2 to control the second stage framing, namely even geometric duals. q.e.d.

In lectures which Casson gave in the spring of 1975 at the Institute for
Advanced Study (also see [15]), he observed that the compact 5-dimensional
h-cobordism theorem would follow if his open handles were shown to be
smoothly standard. Here we sketch an analogous argument using the topologi-
cal parameterization of Casson handles. We do this as a “warm up” for the
proof of Theorem 10.4.

Theorem 10.2. Let (W; V, V") be a smooth 1-connected compact five dimen-
sional h-cobordism. Then W is topologically a product, W =1q, V X [0, 1].

Sketch of proof. Put a handle body structure on the compact #-cobordism
(W: V, V). Follow the Appendix of [37] to replace 1-handles by 3-handles and
4-handles by 2-handles. Let M be the middle level lying above the 2-handles
and below the 3-handles. M is l-connected since M U 3-cells =~ W. The
ascending spheres {a;} and descending spheres {d;} are each = -negligible
collections (e.g., M\ Ua; =gier V' \(U circles) and m,(V’ \ Ucircles) = = (V') =
0). Since the integral intersection pairing ( , ) between {a;} and {d,} is
nonsingular, one may assume after handle passes (= row operations) among
the 3-handles that a, - d; = §,; € Z. Now {d,} serves as the {7, }, and {a;}
serves as the (T } in the hypothesis of Lemma 10.1, so we may find {a;} with
{a}} U {d,} m-negligible in M. Since M is simply connected, set M = M, =
-+« = Mj. The hypotheses of Theorem 10.1 are now satisfied. Thus we obtain
Whitney towers in M pairing the excess intersections between {a,} and {d,}.
Use Theorems 5.1 and 1.1 to thread topological 2-handles (D2 X D?,3dD?* X
D?*) C (T4, 3~ Ty) through each tower. Now a topological ambient isotopy at
the middle level which tapers to the identity just above the middle level moves
the descending 3-manifold to cancel all excess intersection between {a;} and
{d;}. What results is a topological 2 and 3-handle body structure which has a
standard geometric pairing. a; N d; = §;; transverse points. This cancels down
to a topological product structure on (W; V,V’). q.e.d.

We are ready for the proof of the proper A-cobordism theorem, stated at the
beginning of the section. The proof is intricate, but it is the natural conse-
quence of attempting to follow Siebenmann’s proof in dimensions = 6, [44],
[46] (Siebenmann’s argument itself is mildly intricate). It is interesting that the
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more modern proofs (in dimensions = 6), e.g., [21] and [41], which analyze
intersection theory on a global middle level using locally finite algebra, have
not so far been generalized. The older argument accomplishes less geometry
prior to handle cancellation (achieving a triangular rather than diagonal
intersection pairing), and this seems, in dimension = 5, to be the margin of
success. The author is indebted to Frank Quinn for many hours of discussions
on the known arguments and their varied prospects in dimension five.

Proof. Equivalent to the definition of proper h-cobordism is the existence
of proper deformation retractions r,; W — Wand r/: W - W, r,=r; =idy,
rewW-V,ri: W-V.

Using the separability of W construct a proper Morse function f: W —
[0, o). Since r, and r, are proper, for every regular value x € [0, oo) there is
another regular value y, >x such that r(f '[y,00)) Cf '[x,0) and
r/(f [y, 00)) Cf '[x,00) for all 0 <¢<1. Also the hypothesis of simple
connectivity at infinity means that for sufficiently large y, loops in f~'[ y,, )
contract in f~'[ x, 00). Similarly, if g and g’ are the respective restrictions of f
to ¥ and V’, there exist y; and y, so that loops in g~ '[ 3, 00) contract in
g '[x,0) and loops in g’ '[y,, ) contract in g’ '[x, ). Set y =
max|y,,...,y,]- Reparameterizing [0, o0) so that x =1, y = 2, and that in
general the pair of positive integers n and n + 1 bear the same relation to each
other as we have just created between x and y.

Call f~'[n, 00, g™ '[n, ), g'~'[ n, 00) = (W, ¥,,, V) (throughout W = W,).
We will make finitely many modifications of these triples to create certain
relative connectivities and fundamental group deaths. These modifications or
improvements will be progressive; nothing gained will later be given up. All
but the first modification will “use up neighborhoods” that is, the improved
information will only hold for the neighborhoods inverse to some infinite but
proper subset of the positive integers. This subset could be spread out quite
thinly toward infinity. Formally this should be handled by indexing the
indexes and then the sub-indexes, etc..... We will not do this but simply
imagine that [0, c0) is reparameterized following each step so that the im-
proved neighborhoods are still defined as inverse to {[n, o), n a positive
integer}. In particular all (W,; V,,V,) will satisfy the conditions involving
Yis- - +»), arranged above.

The first improvement is simply to delete from each W, all its compact
connected components.

The second improvement together with the first will make m(V,(?) - m,(W,)
an isomorphism for all n > 0 (the prime in parenthesis above V means that the
statement holds with and without the prime. To make the map my(V,) - m(W,)
an injection, consider r(y) C V,_, where y is an arc connecting the frontiers
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of two components of ¥, which lie in the boundary of a single component of
W,,. Back and forth 1-handle exchanges along y realize injectivity. Similarly for
V,. See the picture below and [8] for a careful description of handle tracing.

Vn-] v

“mgr X <—l—hand1e pair
1-handle
pair

n

DiaGram 10.2

What is actually exchanged are handle pairs lying in (W, V') of index = 1
and dimension = (5.4), It is easy to see how to get by with one exchange per
arc v, but it is the back and forth method which is generalized in improvement
(3). Surjectivity is automatically satisfied since a (noncompact!) component of
W, not bounded by ¥,(? would imply that the map between the space of ends
End(V?) » End(W) is not onto, but this map must be an isomorphism.

The third improvement is to make ,(W,V,(?) = 0 for all n > 0. This is done
by a back and forth handle exchange argument similar to the previous
improvement; only now 2-handles are involved. The inductive step is to let A
be an imbedded homotopy (given by r,) of an arc (v, 9) in (W,, V,(?) to an arc
(v,0) C (¥, V). Assume A is transverse to frontier (W,). A sequence of
2-handle exchanges along all the sub-disks of A bounded by (A N Fr(W,)) U dA
imbeds the original homotopy A within W,. It follows quickly from compact-
ness of Fr(W,) that only finitely many operations as above are necessary to
make 7 (W,, V,(?) = 0.

At this point we introduce a crucial asymmetry. Let 3~ W, = Fr(W,) U V,
a*W,=V,fornodd=1and 3~ W, =Ft(W,) U V,, 3" W, =V, for n even
=2,

To simplify notation we will discuss the case n = odd, the other case being
similar. The fourth improvement is to make Hy(W,,0~ W,; Z) = 0. Do this by
subtracting 2-handles representing a generating set. Such a set can be taken to
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be finite since the pair (W,, 0~ W,) is compactly commensurate with the trivial
pair (W, V") (for n = odd). That is to say the two pairs are related by a triple,
one pair of which is equivalent by excision to a compact pair and therefore is
acyclic mod the category of finitely generated Z-modules. Specifically we have:

Hk( W—=W,, o\ V,;) > H (W, V') > H(W,,3” W,)
€x €x

= mod C

0 ) .
"Hk—l( WAW,, V’\V,:)

= mod C
0

The fifth improvement, to make o (Fr W,) = 0 for all n, is accomplished by
the back and forth trading of 5-dimensional 2-handles in interior (W) and with
attaching region in Fr(W,). This will not affect the first four improvements.
(Following Siebenmann [46], homotopy groups of disconnected spaces will
mean the direct sum of fundamental groups of the components.) Finiteness of
the procedure follows from the compactness of Fr(W,). A consequence of the
fifth improvement is that #(W,) =0 for all n = 1.

"Back and forth" 2-handle trade

Di1AGrAM 10.3

Up to this point the fact that dim W = 5 has not presented a problem. The
sixth and final improvement in Siebenmann’s program should be the annihila-
tion of the free module Hy(W,,0~ W,; Z) by subtracting handles exactly
representing a basis. This step even in high dimensions requires rearranging the
handle body structure of (W,, 0W,) via a Whitney trick. After this is done, the
high-dimensional proof is completed by trivializing the infinitely many com-
pact h-cobordisms into which W has been divided. In dimension five we
encounter a technical problem in that we have only Whitney towers, not
smooth Whitney disks. This requires a significant departure from the high
dimensional argument. Having found the Whitney towers and within these
(Theorems 5.1 and 1.1) topological 2-handles (= topological Whitney disks)
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we defer until the end of the proof the actual (topological) Whitney isotopy.
We do this to stay in the smooth category on which we depend for the final
construction: So what follows is not a “sixth improvement” but preparatory
work for a grand cancellation at the end of the proof.

Taking our first five “improvements” as a starting point, we will lay out a
blueprint of the structure which we intend to impose on (W; V, V’), and then
list the design specifications of the constitutent pieces. Understanding what the
pieces are supposed to do is actually more difficult than the proof that the
specifications can be met—this comes next. Finally, we will see how the
specifications feed into the hypothesis of Lemma 10.1 and Theorem 3.2 to
construct Whitney towers in certain middle levels. As in the compact case they
are the key to creating the topological product structure.

Let z, =W W, ,n=0,and 8%z, =z, NV, 9 z,=92,\3" z, for n =
odd and 9~ z,=z,N V', 8% a, =3z,\9" z, for n = even.

v
¥
z ? )
W z ! 3
0 - Z, -
£l 2 ] 24

DiAGraMm 10.4

Redrawing the W so 97z 44 and 3% z,,,, lie in a single “level” (of some
handle structure soon to be determined) we have:

<

=

’ 2y L)

Vertical boundary represents (3-manifold) x interval.

Di1AGraM 10.5
It will be convenient to alter this picture of W by adding certain thin “slabs”
near various junctures. A “slab” will simply mean a product M* X [0, 1] (or
M* X [0,2]) where M* is some compact submanifold of dW. Whether stuck on
or carved out, these slabs are just relative collars along the boundary and do
not change the diffeomorphism type of W. The shading in Diagram 10.5

indicates the interval product lines in the slabs.
In addition to the slabs Diagram 10.4 indicates certain compact submani-
folds “blocks” B; C z; which carry the relative homology we would like to
remove (cf. Siebenmann’s sixth improvement). The slabs and blocks use up
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many neighborhoods of infinity so we have, of course, reparameterized be-
tween Diagrams 10.5 and 10.6.
Below is a representative chunk of W.

[

M

o
S
)
N,
4
w
e
N o
%

DiaGraM 10.6

Specifications:

0. Diagram 10.6 accurately represents incidence, i.e., two regions meet in the
diagram, iff they meet.

1. Shadings represent pt X I in product structure of slabs.

2. Regions represented as having vertical sides possess a product (with I)
structure there and have a naturally defined upper and lower portion of
boundary 9" and 9~ .

3.m(3" B;) > m(B,) - 1 (3~ B;) are isomorphisms for all i. (B,, 9~ B,) has
a 2 & 3-handle body structure with the boundary map of the integral chain
complex generated by these handle identically zero:

a=0
0 Hy(B;,0"B,)>C; > C,—>0
Furthermore the handle basis of C, is required to represent a basis for
Hy(W,, 8" W; Z).
4. X,=z,— B. m(d* X;) > m(X,) - 1m(3~ X,) are isomorphisms for all i.
5. We represent certain compact 4-manifolds with boundary by a string of

numbers under a bar as line segments are represented in plane geometry. The
numbers refer to the vertex labels in Diagram 10.6. We require that:

m(01424) - m,( 014243, ),
771(31‘_61') - 7Tl(4i5i6i7i )’ i=1,
"71( 9"11’21') - '”1( 8.9:1,2,3; );’ i=1
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are all seven-fold maps. That is, in each of the above cases the indicated
inclusions factor through seven (7) compact manifolds (the seventh being the
space at the right-hand side of arrow) with each successive inclusion inducing
the zero map on m,. The slabs (with the exception of S?) inherit this seven part
structure.

The first specification requiring comment is # 3. Hy(W,, dW,; Z) is the only
nonzero relative module, and consequently it is projective and therefore free.
Since it is finitely generated, a basis is represented in some compact region
W, \W,., = Y. Y should be thought of as a first approximation to B. We have
temporarily discarded the subscript. If n is odd, call 3~ Y = V’ \V,,(UFrW,
and 3T Y =V,\V,,U FrW,, . For n even, exchange ¥ and ¥’ in the above.
The height function should be thought of as inverted in the case n even to
match this labeling. A simple Van Kampen argument using improvement # 5
shows that #(Y) = 0 (for every Y = W\ W, ).

R

Di1AGraMm 10.7

Another Van Kampen argument using the simple connectivity of W, V, and
V’ shows that two slabs can be glued on ¥ and ¥V’ as shown in Diagram 10.7
(toward and away from oo) so that if + denotes this addition, then 7, (37 Y)
S>m@ Y"), m(@tY)->m@"Y"), and m(Y) > 7,(Y") are all three zero.
It follows quickly that

Mm@ Y ) > m(YT) «m(d3tY")

are isomorphisms. Note that the two slabs are not necessarily connected.
However, the component graphs associated to Y+, 9" Y*, and 9~ Y are
trees, so Van Kampen’s theorem applies as in the case of connected intersec-
tion. Y™ is the second approximation to B.

Give (Y*,0”Y*") a 2- & 3-handle body structure. If the handles are
thought of as generation of chain groups, we have an exact sequence

slab

s]ab

3
0 Hy(W,, 0" W,) > G, > C, - 0.

There is no obstruction to sliding 3-handles over each other to realize genera-
tors for this kernel by a collection of 3-handles {x’s}. Let B be the handle
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body consisting of all the 2-handles in the above structure union {x’s}. (A
slight modification to B will be made after we arrange specification #4.)

The inclusion of 3~ Y* = 3~ B into B still induces an isomorphism on m,
since the deleted 3-handles did not affect ;. To check that the upper boundary
d* B, of B, induces an isomorphism on m, observe that the deleted 3-handles of
Y™ are trivially attached 2-handles when regarded as being attached to 3% Y™,
so deleting then does not change m, of the upper boundary. This arranges
specification number 3.

Geometrically, the boundary map in the above exact sequence is given by
intersection number with ascending 2-spheres, so {x’s} have zero (€ integers)
algebraic intersection with {a’s}, with ascending spheres of the 2-handles.

For specification #4 consider the region W,  \W, ,,, where [ is a
sufficiently large odd number so that the slab pointing toward the end
belonging to Y™ \Y is contained in W, _,\ W, ,_, = Q. Shortly we will require
[ to be even larger, but for specification #4 this suffices.

An easy Van Kampen argument using 7(V) = 7= (V’') =0 and = (Fr W, ,)
=m(Fr W, ;) = 0 shows that slabs can be added along V (for n = odd, V’
for n=even) to make Q* =W, W, ., U slabs with 7,3~ Q") -
7(Q") « (3" Q") isomorphisms. To conform to the illustration (Diagram
10.5) one should enlarge the slab away from oo in this and /or in the prior step
(establishment of specification number 3) to obtain the alignment, shown in
Diagram 10.5, over the points 5,.

IﬂaMSpdfkaﬁonS
slab-spec. 4

4
aligned

[ slab-spec. 5

N /
I slab-spec. 4

Product 3-manifold x ]:==

DiaGraM 10.8

Give (Q*,9~ Q") a 2- & 3-handle body structure. By sliding underneath
this handle body the 3-handles of Y \B and reordering the levels we find a 2-
& 3-handle decomposition for X = Z\ B, where Z = W,\ W, ., U (slabs so
far constructed). The inclusions (3~ X) - 7 (X) » m(3" (X)) are funda-
mental group isomorphisms since the 3-handles we slipped underneath are
(when regarded upsidedown) trivially attached because (3" Y*) - #,(Y™") is
an isomorphism. This 2- & 3-handle structure on X will be important later.
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The final specification is #35.

So far we have constructed everything in Diagram 10.6 except the slabs
S!,...,S¢. This will require space, that is, on another reparameterization of
[0, 00). This means, for example, the extent of X, to the right (that is, the size
of the odd number = /) will not be determined until the slab S; is constructed.
The slab S is simply 3~ B;\ 3™ Z,_,) X [0, 1].

Slabs away from infinity S?, S;*, and S? will simply consist of a product over
the closed difference between seven improved (improvements # 1-5) neighbor-
hoods of infinity (V,{?\ V,{), X Interval, the interval being [0, 1], [1, 2], or [0, 2],
whichever matches Diagram 10.6.

The remaining slabs toward infinity are essentially determined by specifi-
cation #5. To say exactly what this means, let co(o0’) represent the ends of
V(V"). It is easy to check that, in the notation for Diagram 10.5, the following
maps are zero:

(1) m(0152¢) = m(0152400"),

(2) m,(5,6) — m,(4]775,6,7,8,00"), for all i, and

(3) m(91,2) - m,(8/1,2,, 00", for all i,

We have used fractions to correspond to a factor of an inclusion which induces
“multiple ,-death.”

Begin by considering (2) for i = 1. By compactness of the source space, some
finite terminus Fr(¥(?), some n can be found to replace oo” and still induce
the zero map. Label the terminus 7/7. Similarly, #,(5,6,7)/7) -
7,(4%/75,6,7,8,, ") is zero and so 72/7 can be found to replace oo’ in the
above statements. Continuing in this way the slab S| is determined by:
0”8 =6,7}/27/7 ... 77 with 7//7 = 1,.

Next consider (1) above, S; is determined by the condition 3% (S}) = 9~ S
U collar. The collar comes from seven closed differences V; — V., , 1 <i<7,
where each difference is large enough to allow a fundamental group death

K (0 152, 3({/7) Zio'”l (O 10203({“/7) .

Now the slabs with subscript = 1 are constructed. Mark off 16 closed
differences toward infinity ¥\ ¥, ¢ to allow room for the slabs S7, S;, and
S$. (16 =141+ 7+ 7, one needs to construct ¥,* from Y,, one needs to
construct Q5 from Q,, seven for S, and seven for S5.)

Next construct the slabs with subscript = 2 and make X, extend far enough
to allow for the slabs with subscript = 3 and even superscript. Continuing in
this way one may impose the pattern of Diagram 10.5 with its specifications
#1-50on (W; V,V").
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We will use the natural fractional notation to denote the part of a slab which
lies over the first-constructed portion: 1S/, 15?2, 158, 1572 |, etc.

Let us make the convention that the handle body structures of B; and X; are
considered to be turned upside-down when i is even.

Inside each B; (we will drop the subscript) there is a middle level N between
the two and three handles. Forming B U 1S' U 15? we form a new 5-mani-
fold with a natural handle structure on it whose middle level can be thought of
as N'/7 extending N. In N we know that the {3 X ’s} and {a’s} (the descending
2-spheres and ascending 2-spheres, resp.) have integral intersections zero; in
N'/7 we know that the intersections are zero over the fundamental group ring.
The Lemma 10.2 below enables us to apply Lemma 10.1 to find Casson moves
(in N'/7) between the two collections so that {9X’s} U {a’s} is m,-negligible
in N'/7. The triviality of the intersections over Z[,] is preserved by these
Casson moves. Now add the remaining 6 mini-slabs of S' and S? to obtain a
5-manifold B U S' U $? with a natural middle level N! extending N'/7.
Theorem 10.1 can now be applied to find disjointly imbedded ,-negligible
Whitney towers {T'} pairing the intersections between the spheres of {31 ’s}
and {a’s}.

Let {d’s} = {3.X’s} denote the descending spheres.

Lemma 10.2. In N there are second homology classes {T,} and {T,} with
integral intersections d; - T, = 6, , = a, - T, andd, - T, =a,- T, =0, for all
k, j. When included into N 1/7 these become the spherical duals required in the
hypothesis of Lemma 10.1.

Proof. d, represents a class [d,] € Hy(0~ W;; Z). It is sufficient to find
classes [e;] € Hy)(0~ W;; Z) with [d,] - [¢;] = §, ;. For floating the e,’s to N we
will have intersections formulas in H,(N; Z):

(dp)-(e;)= 80 (e;)- (a,)y=0,forallk,j.
(e;) will serve as T, and the desired T, can be produced from any dual to a,
by adding an appropriate linear combination of (e;)’s and (d,)’s (for this use
(dy)- {a;)= 0 for all k, j).

Lefshetz duality implies that the existence of {[¢;]} is equivalent to the claim
{[d,]} is a basis for a summand of H,(d~ W,,3(3~ W;) U end(d~ W}); Z)/tor-
sion. (We continue to consider only the case i = odd.)

To show this, one first shows {[d,]} is a basis for a summand A of
H,(0~ W;; Z)/Torsion. If any nontrivial linear combination of {[d,]} bounds,
then the same linear combination of descending 3-manifolds can be capped off
to form a 3-cycle in W with a relative rational dual consisting of some
ascending 2-manifold whose dual is represented in the linear combination. This
is impossible in an h-cobordism. Thus the [d, ]'s are linearly independent. The
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same consideration replacing integral with Z, coefficients for all pnmes )4
shows that the [d, I's generate a summand A.

It is now necessary and sufficient to check (using coefficients Z and Z,) that
no nontrivial linear combination of the [d,]’s is in the image of H,(3(d~ W,) U
end 3~ W)). In this case we cap off the nontrivial combination of ascending
3-manifolds to form a relative 3-cycle in Hy(W, V U end W). Some ascending
2-manifold whose dual is represented in the linear combination can be capped
off in interior V; to form a 2-cycle in H,(W) rationally dual to the relative
3-cycle. Again this cannot happen in an A-cobordism.

2-cycle

3-handle
1
/VZ-hand]es relative
. 3-cycle
7

DiaGraMm 10.9

Consider the union K = {dX’s} U {a’s} U {spine T’s)} and K™ =
K /surgery on {dX’s}, K~ = K/surgery on {a’s}. K* is the result of pushing
K via the associated gradient-like Morse flow into 3" B, and K~ is the result of
pushing K to 9~ B. Now without meeting any singularity we can keep pushing
K U K, to M}, the mid-level of X;U S/ U S, .

In M} we see a disjoint collection of honest ascending 2-spheres; disjoint
from these we see immersed complexes, these are the components of K; U
K;,,. The spheres are the ascending spheres of the 2-handles of our handle
body structure on X;. Call the total collection {A’s}. UA’s is easily checked to
be 7,-negligible in M,' (note that: K" is m,-negligible in 3* B;, and K, is
7-negligible in 9~ B, ;). Also in M;' we see {D’s} the descending 2-spheres of
the 3-handles of X,. These are separately =,-negligible collections, and the
nonspheres of K;” U K}, , are complexes possessing main sections.

To check this last ascension it is only necessary to work out the general form
of such a complex. It is formed by: taking a sphere with an even number of
round open disks deleted; identify the boundary components in pairs with
total orientation = 0, attach the spines of 6-stage towers to kill the half basis of
loops formed from arcs connecting identified disk boundaries. Clearly all
intersections with another 2-complex can be deformed into a patch contained
in the punctured sphere portion.

We will check that the pairing {( , ) in M; between {A’s} and {D’s} is
nonsingular over the integers. Suppose this is done; we postpone this verifica-
tion. Change {D’s} by handle passes so that (, ) is given by §,.
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Form X, U S* U 1SS US>, U 1S, and call M¥'* the corresponding
extension of the middle level of X. In M3/, (A4’s, D,s) is §,; over the
fundamental group ring. Since the self-intersection of any D or A4 is zero (hence
even), we can regard the A’s as suitable duals for the D’s and the D’s as duals
for the A’s. All the hypotheses of Theorem 10.1 are now satisfied. In the
extended middle level M? of X,U S*U Sf US>, U S’ ,, we may insert
Whitney towers T”’s pairing all the excess geometrical intersections. We obtain
a m,-negligible collection {D} U {4} U {T"s} C M2

We must return to check that the pairing ( , ) in M' is non-singular over Z.
Consider W X I. In fact, cross the entire decomposition of W (diagram 10.6)
with I to obtain a decomposition of W X I. This possesses an obvious
generalized Morse function with interval critical manifolds replacing the
original critical points in W. By “bending upward” the interval direction we
obtain an honest handle structure (or Morse function) on W X I = W which
combinatorically is “parallel” to the handle structure on W. However, dimen-
sion W = 6, so we can apply the sixth improvement in Siebenmann’s program
which previously was frustrated by the lowness of dimension (W). Thus the
three handles corresponding to {X;} may be subtracted from every z,. The
resulting chunk Z, satisfy Z, = (z, — 3-handles) U 2-handles. The 3-handles
correspond to {X;’s}. The 2-handles correspond to {X,,,’s} turned upside-
down; what is subtracted from Z, , must be added to Z,. Siebenmann [46]
shows by a simple excision argument that each Z, is a Z-homology H-cobor-
dism. Z, is a 2- & 3-handle body, so necessarily the intersection pairing

=i

between the ascending {Z ’s} and descending {5 ’s} spheres in the middle level
(which is simply the boundary between the relative chain groups C, 5 G,)isan
isomorphism. However, there are natural 1-1 correspondences {D’s} <> {D’s}
and {A’s} < {A’s} which preserve the intersection pairing. This establishes the
nonsingularity of (, ).

We come to the final step of the proof. Through each Whitney tower thread
a topological 2-handle (by Theorems 5.1 and 1.1). By “each” we mean all T’s
contained in K} and K;, ;, which we slid into M/, and all the T’s, which we
constructed in M. Now take these topological 2-handles and slide them along
gradient lines of the Morse function back into the level in which their containing
tower was first constructed. This means the 7”’s are not moved, a T C K} is slid
into N' CB,US*U S}, and a T C K}, is slid into N\, C B,,, U S%, U
Sk

Now the topological coordinates of the 2-handles allows the usual formula
to produce “Whitney tricks” at all the levels N;! and M?2. These Whitney tricks
amount to an ambient topological isotopy § of descending 3-manifolds. When
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the isotopy is completed, we find the three handles {X;’s} and {X,, ’s} (the
later are, of course, 3-handles with respect to the inverted handle structure) are
off (not intersecting) the 2-handles in B; and B, ,. Thus the “sixth improve-
ment” is belatedly accomplished by exchanging these topological 3-handles.
We obtain Z; = (Z; — 3-handles {9X,’s}) U 2-handles {X,, ’s}.

Indeed Z, is a compact h-cobordism, but it is only a topological manifold, so
we would now be hard pressed to continue the argument except that we have
prearranged Z; to have a cancelling 2- and 3-handle body structure. In fact the
ascending and descending spheres of this structure are {$D’s} and {4’s}
(actually these A’s coming from upside down 3-handles in B, , are also moved
by §) which meet according to the formula $D, N 4; = §,; standard transverse
points. Since the Morse cancellation lemma proceeds in the topological cate-
gory each (Z;; 9~ Z,, 9™ Z,) is a topological product.

The proof is completed by observing that a product structure on (W; V, V")
is obtained by following (never through more than two Z’s) the product
structures in each Z,.
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