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Abstract

In this paper we discuss the relationship between the various techniques of proving vanishing
theorems and the method of obtaining the complex-analyticity of harmonic maps between Kahler
manifolds. We then obtain sharp results on the complex-analyticity of harmonic maps with the
curvature conditions on the target manifold expressed in natural and familiar terms and also
results concerning curvature characterizations of compact symmetric Kahler manifolds, Barth-
Lefschetz type theorems, the generalization of the strong Lefschetz theorem, and vanishing
theorems.

Introduction

This paper is an outgrowth of an attempt to apply the method of proving the
strong rigidity of compact Kéhler manifolds to obtain vanishing theorems for
holomorphic vector bundles. To prove the strong rigidity of negatively curved
compact Kéhler manifolds, one tried to use harmonic maps f: M — N between
compact Kihler manifolds (for definition and background of harmonic maps
see [17], [18], or [53]) and the technique of considering A | 3f|2. (The technique
of considering the Laplacian of the square norm was first introduced by
Bochner [10] in the case of harmonic tensors on Riemannian manifolds and
later applied by Kodaira [33] to (0, g)-forms on a Kéhler manifold with values
in a Hermitian holomorphic line bundle.) With this method of proving strong
rigidity one encountered the difficulty of two curvature terms of opposite signs,
one involving the Ricci curvature of M and the other involving the full
curvature tensor of N. In [53] the author overcame this difficulty by the
following variation of the Bochner-Kodaira technique which for convenience’s
sake we refer to in this paper as the 90 Bochner-Kodaira technique. One
considers the integral of 33(Z, 8.0/ N 8f#) A wj, 2 over M instead of
A|3f|?, where g, g is the Kéhler metric of N, w,, is the Kéhler form of M, and
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n is complex dimension of M. This 83 Bochner-Kodaira technique enables one
to get rid of the Ricci tensor of M and thereby to conclude the complex-analyt-
icity (or conjugate complex-analyticity) of the harmonic map f if rank df = 4
and the curvature tensor of M is strongly negative in the sense of [53].

It is natural to attempt to apply this 99 Bochner-Kodaira technique to
obtain vanishing theorems for negative bundles. Suppose E is a holomorphic
vector bundle over a compact Kéhler manifold M with Hermitian metric 4,z
along its fibers, and suppose ¢ is a harmonic E-valued (0, g)-form. One
considers the integral of 85(2‘!, g hag®™ N @?) A w971 over M. In this way
one obtains the following vanishing theorem. Let

0,5= /-1 3 h z0(h"dh,;)
‘/,V

be the curvature form of E. Let 0 < g <n. If for every nonzero E-valued
(0, g)-form (£*) at any point of M

D) S @A A EE Ao
a’B

is a negative multiple of w},,

(*)q

then HY( M, E) = 0. In particular, if the curvature tensor of an n-dimensional
compact Kihler manifold M is very strongly negative in the sense of [53] (as,
for example, in the case of a compact quotient of the open n-ball), then for
0 < g < n the tangent bundle T, of M satisfies (x), and H% M, E) = 0.

At first these vanishing theorems obtained by the 00 Bochner-Kodaira
technique seemed to the author to be new theorems until he became puzzled by
the following situation. Since the curvature tensor of P, is the same as that of
the n-ball with an opposite sign and since the tangent bundle of the n-ball
satisfies (), for 0 < g <n, it is natural to expect that the cotangent bundle
SZ'P” of P, should also satisfy (x), for 0 < g < n. However, this would lead to
the vanishing of H'(P,,Qp ) in the case n>1 which is a contradiction,
because the Kéhler form of P, is a nonzero class in that cohomology group.

To resolve this puzzle, I examined closely the curvature form of the dual
bundle of a bundle satisfying (x),. I discovered that a bundle satisfies (x), if
and only if its dual bundle satisfies the positivity condition for (0, g)-forms in
the sense of Nakano [41]. In this paper we call this positivity condition Nakano
g-positivity (see §4.1). For example, the curvature tensor of a Kihler manifold
is very strongly negative in the sense of [53] if and only if its cotangent bundle
is positive in the sense of Nakano [41] (or Nakano 1-positive in the terminol-
ogy of this paper). The vanishing theorems obtained by the 89 Bochner-Kodaira
technique turn out to be no other than the usual vanishing theorems for
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Nakano g-positive bundles expressed in dual form via Serre duality. The puzzle
resulted from the fact that the dual bundle of a Nakano g-positive bundle is in
general not Nakano g-negative (see §4.2).

The original Bochner technique is equivalent to applying integration by
parts to the global square norm of the gradient of a harmonic tensor. In the
case of a Hermitian holomorphic vector bundle E over a compact Kihler
manifold, the gradient of a harmonic E-valued (0, ¢)-form can be decomposed
into two parts. One part is the (0, 1)-gradient and the other is the (1, 0)-gradi-
ent. Integration by parts applied to the global square norm of the (0, 1)-gradi-
ent yields the vanishing theorem for positive bundles. Integration by parts
applied to the global square norm of the (1,0)-gradient yields the vanishing
theorem for negative bundles. For convenience’s sake in this paper we refer to
these two techniques respectively as the v Bochner-Kodaira technique and the
v Bochner-Kodaira technique. The v and v Bochner-Kodaira techniques are
transformed to each other by the Hodge star operator composed with conjuga-
tion. The Akizuki-Nakano vanishing theorem [1] for E-valued harmonic
(p, q)-forms when E is a line bundle is the consequence of comparing the v
and v Bochner-Kodaira techniques.

Further investigation shows that the 89 Bochner-Kodaira technique is equiv-
alent to the v Bochner-Kodaira technique in the sense that each term in the
equation obtained by the 39 Bochner-Kodaira technique can be transformed
by using identities in multilinear algebra to the corresponding term obtained
by the v Bochner-Kodaira technique. The identity in multilinear algebra used
in transforming the curvature term is not transparent and is an interesting
identity by itself (see §3.6). This identity plays a very useful role in this paper
involving the complex-analyticity of harmonic maps. Moreover, this identity,
together with the relationship between the curvatures of a Hermitian bundle
and its dual, leads us to realize that the underlying reason why the vanishing
theorem of Calabi-Vensentini [12] holds is the Nakano g-positivity of the
cotangent bundle of a bounded symmetric domain for an appropriate g (see
§§86.4 and 6.5).

Since the 30 Bochner-Kodaira technique is equivalent to the v Bochner-
Kodaira technique which in turn can be transformed to the ¥ Bochner-Kodaira
technique by the Hodge star operator composed with conjugation, from the
method [53] of proving the complex-analyticity of harmonic maps by the 90
Bochner-Kodaira technique we can derive two other methods of proving the
complex-analyticity of harmonic maps. One uses the v Bochner-Kodaira
technique and the other uses the v Bochner-Kodaira technique. The one using
the v Bochner-Kodaira technique was presented in [55] without explaining
how it is related to the method of [53]. In this paper we present the one using
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the v Bochner-Kodaira technique. This is the most natural one, because it is
parallel to the proof of the usual Kodaira vanishing theorem and, more
importantly, the Morrey trick of handling the boundary term in the case with
boundary works most directly in the v Bochner-Kodaira technique. The
method of proof by means of the v Bochner-Kodaira technique explains why
one of the curvature conditions on the target manifold is the Nakano g-positiv-
ity of the cotangent bundle.

By using the v Bochner-Kodaira technique, we get in this paper a proof of
the conjecture [55, §6] concerning the complex-analyticity of harmonic maps of
appropriately high ranks from compact Kihler manifolds into quotients of
irreducible bounded symmetric domains. This proof makes use of the identity
in multilinear algebra mentioned above, the eigenvalues of the curvature
operator computed by Calabi-Vesentini [12] and Borel [11], and the computa-
tion of what we call the degree of the strong nondegeneracy of the bisectional
curvature (see §5.8) which is a measure of the dimensions of the null spaces of
the bisectional curvature. We have to rely on the computation by Zhong [66] of
the degree of the strong nondegeneracy of the bisectional curvature in the case
of the two exceptional domains. This conjecture yields as a corollary the strong
rigidity of the compact quotients of irreducible bounded symmetric domains of
complex dimension = 2. The proof of strong rigidity via this conjecture is the
most natural and elegant and by far the simplest proof.

As a corollary of the confirmation of this conjecture we show by using the
method of Kalka [32] that, for a complex submanifold of appropriately high
dimension in a compact quotient of an irreducible bounded symmetric domain,
the deformation as a submanifold agrees with the deformation as an abstract
manifold.

Besides the quotient of bounded symmetric domains, these results more
generally hold for Kihler manifolds whose cotangent bundle is Nakano
1-semipositive and Nakano p-positive and whose bisectional curvature is
strongly p-nondegenerate, when the rank over R of the map is at least 2p + 1
or the complex dimension of the submanifold is at least p + 1.

Since the Morrey trick is directly applicable to the v Bochner-Kodaira
technique, we obtain also, in the case where the domain manifold has boundary,
results concerning the complex-analyticity of harmonic maps satisfying the
tangential Cauchy-Riemann equations and concerning the extension of maps
satisfying tangential Cauchy-Riemann equations from the boundary of the
domain manifold to holomorphic maps defined on the whole domain mani-
fold.

Though the complex-analyticity of harmonic maps was discussed in [53], [55]
and extended to the case with boundary in [42], [65] (see Remarks 5.19), yet
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there was no real understanding of the geometric meaning of the curvature
conditions on the target manifold introduced in [53] and used in the other
papers. Our discussion of the various Bochner-Kodaira techniques not only
makes sharper the results on the complex-analyticity of harmonic maps but
also reduces the curvature conditions on the tangent manifold to the more
natural and familiar notions of Nakano 1-semipositivity and p-positivity of the
cotangent bundle and the strong p-nondegeneracy of the bisectional curvature.

In [56], [54] the curvature characterizations of the complex projective space
and the complex hyperquadric were obtained by proving the complex-analytic-
ity of energy-minimizing harmonic maps by the second variation formula. In
this paper we obtain the following partial result on the curvature characteriza-
tion of general compact symmetric Kiahler manifolds. If the cotangent bundle
of a compact Kiahler manifold is Nakano 1-seminegative and if at some point
the bisectional curvature is irreducible, then either the Kihler manifold is an
irreducible Hermitian symmetric manifold with respect to the given Kihler
metric, or its cohomology righ with coefficients in R is isomorphic to that of
the complex projective space. As a consequence, on an irreducible compact
Hermitian symmetric space of rank > 1 any other Kihler metric which makes
the cotangent bundle Nakano 1-seminegative must be a constant multiple of
the standard invariant Kahler metric. Here the irreducibility of the bisectional
curvature at a point means that it is not possible to decompose the holomor-
phic tangent space into two orthogonal direct summands so that the bisectional
curvature in the direction of two tangent vectors, one from each summand, is
always zero. For the proof of this result we do not use energy-minimizing
harmonic maps. Instead, we use multilinear algebra (cf. [8], [21], [37], [43]) to
transform the curvature term in the v Bochner-Kodaira technique to show
that harmonic ( p, ¢)-forms are parallel. Then we use Simon’s result [S1] on the
transitivity of holonomy systems and Weyl’s theory [64] of the invariants of the
unitary group to obtain our result.

In Schneider’s scheme [49] of using the Grauert-Riemanschneider vanishing
theorem [22] to prove Barth-Lefschetz type theorems for compact symmetric
Kihler manifolds, he had trouble with the curvature term when the rank of the
symmetric manifold is > 1. The multilinear algebra used in proving the paral-
lelism of harmonic ( p, g)-forms in the curvature characterization of compact
symmetric Kihler manifolds can be used to complete Schneider’s scheme.
However, Schneider’s proof of the strong hyper-g-convexity of the complement
of a complex submanifold in a compact symmetric Kihler manifold seems to
be invalid. If one indeed has the hyper-g-convexity as Schneider claimed, the
Barth-Lefschetz theorems at the homotopy level can easily be proved by using
Morse theory, which we do in this paper instead of completing Schneider’s
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scheme. More precisely, we prove the following. Let M be a compact Kahler
manifold of complex dimension n with nonnegative bisectional curvature. Let
V be a complex submanifold of M admitting a tubular neighborhood U with
smooth boundary such that M — U has strongly hyper-g-convex boundary.
Then 7(M, V') vanishes for » < n — q. The proof involves using the second
variation formula for arc length and what we call g-plurisubharmonic func-
tions which has the property of being subharmonic on local complex submani-
folds of complex dimension gq.

We also prove the surjectivity portion of a Barth-Lefschetz type theorem at
the homology level for compact Kihler manifolds whose bisectional curvature
is nonnegative and appropriately nondegenerate. This is done by proving a
generalized strong Lefschetz theorem which asserts that cupping with the top
Chern class of a Hermitian vector bundle is surjective (respectively injective)
for cohomology groups of dimensions greater than (respectively smaller than) a
certain number when the curvature of the bundle is semipositive in the sense of
Griffiths and is appropriately nondegenerate.

Finally the close look we have at the various Bochner-Kodaira techniques
leads us to two, though very minor, results on vanishing theorems. One is a
generalization of the Akizuki-Nakano theorem to the case of a semi-negative
line bundle over a compact Kéhler manifold and a corresponding statement
for vector bundles (see §§4.7 and 4.8). Another is a vanishing theorem for
semipositive line bundles over a non-Kéhler compact complex manifold which
is motivated by the Grauert-Riemanschneider conjecture (see §10).

In this paper we will use the summation convention of summing over any
index which appears once as a subscript and once as a superscript. The usual
process of raising and lower indices by using metric tensors will be performed
without explicit mention. Standard notations in Kihler and Riemannian
geometries which carry obvious meanings will not be explained. For example,
when z’ are the local holomorphic coordinates, 9, means 9 /3z’ and d; means
08/9z'; the components of a ( p, g)-form ¢ with values in a vector bundle are
P T For a complex manifold M we denote the holomorphic tangent
bundle by T, and the bundle of holomorphic g-forms by £4,. We denote the
holomorphic tangent space of M at P by T,, ,. The space T, » as a vector
space over R is isomorphic to the real tangent space of M at P (when M is
regarded as a real manifold) under the isomorphism defined by taking the real
part of a tangent vector with complex coefficients. This isomorphism is
actually an isomorphism over C, when the real tangent space of M at P is made
into a C-vector space by the almost complex structure operator of M. Because
of this isomorphism, we denote the real tangent space of M at P also by T}, p.
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We will explicitly mention which of the two meanings T}, , takes on when it is
used.
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1. The v and v Bochner-Kodaira techniques

1.1. The original Bochner technique [10] is to integrate the Laplacian of the
pointwise square norm of a harmonic form over a compact Riemannian
manifold, yielding thereby two terms. One is the global square norm of the
gradient (i.e., the covariant derivative) of the harmonic form. The other
involves the curvature tensor. If the curvature tensor satisfies some suitable
positivity condition, then it follows that the harmonic form must be zero or
parallel. Equivalently, one can regard this procedure as transforming the global
square norm of the gradient of the harmonic tensor by integration by parts to a
term involving the curvature tensor. In the process of integration by parts the
principlal step of computation is to compute the Laplacian of the harmonic
tensor.

1.2. In the case of a Hermitian holomorphic vector bundle E over a
compact Kihler manifold, the gradient of an E-valued ( p, g)-form can be
decomposed into two parts. One part is the (0, 1)-gradient, and the other is the
(1,0)-gradient. Integration by parts applied to the global square norm of the
(0, 1)-gradient in the case p = 0 yields the vanishing theorem for positive line
bundles. This is due to Kodaira [33). We call this technique the & Bochner-
Kodaira technique.

One can also apply integration by parts to the global square norm of the
(1, 0)-gradient in the case p = 0 and get the vanishing theorem for negative line
bundles. We call this technique the v Bochner-Kodaira technique. Usually the
vanishing theorem for the negative bundle is obtained' from the vanishing
theorem for the positive bundle and Serre duality or from the Akizuki-Nakano
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vanishing theorem [1]. It is not proved by using the Vv Bochner-Kodaira
technique.

One can obtain the Akizuki-Nakano vanishing theorem [1] by comparing the
integration by parts for the (0, 1)-gradient of ¢ with that for the (1, 0)-gradient
of @ in the case of a harmonic ( p, ¢)-form . This is not the usual proof which
uses the identity [3, A] = — y=10* where A is the transpose of the operator
defined by multiplication by the Kahler form.

The principal step in the vV and v Bochner-Kodaira techniques is the
computation of the Laplacian of an E-valued ( p, ¢)-form. The formulas for
such computations are well-known. We collect them below and fix notations.

13. Let M be a Kihler manifold with Kéhler metric g, Its curvature
tensor is

R ai= =9, afgkl gsraigkiaj-gtl_’
and its Ricci curvature tensor is
— ki3
R =8 Rl ikl

Note that in this convention R, is negative definite as a Hermitian matrix
when the sectional curvature of M is positive.

Let £ be a Hermitian holomorphic vector bundle over M with Hermitian
metric &,z along its fibers. The curvature form

F= -\/_ 2 Qaﬁ, Az A dz’

of E is given by
— AE
Qogif= 00,5 — '3,k Bhyg.
This convention is chosen so that @,z is a positive (1, 1)-form when E is a
positive line bundle, and @, - agrees with the curvature tensor when E is the

holomorphic tangent bundle of M. Let
Qg=2g Q)

Let v,, videnote the covariant dlfferentlal operators. Let O = 99* + 0*9 and
O = 39* + 8*d. Let

aflij*

o= p'q' Eqp,jdz » A dz’e

be an E-valued (p, g)-form on M, where I, = (i}, --,i,), fq= (e -,J;),
dz'» = dz" A\ --- Ndz'», and dz7s = dz' N\ - - - Adz’s. From

a3 @)= 1 3 UVt



COMPLEX-ANALYTICITY OF HARMONIC MAPS 63

where j, means that the index j, is removed, it follows that

a a _ +1 5
(0*¢)1,7 g = (D 8795 5
. a
Q)i =-g"vvief i — 21 Q5oL b,
v=

(13.2) -

v

I M=

e _ -
lRﬂq’l,,j.~~~u),-~~jq

p q
ki_ a - - -
+ 2] lei“ jpil”'(k)u“'ipjl“'(l)t;"'jq’
": =

where (k), means that the index in the pth place is replaced by k.
When M is compact, by contracting formula (1.3.2) with ¢/(p!q!) and
integrating over M one obtains

_ _ — 1 i} —_—
18l + I0*@ll2, = Ivell2, — ;7—!_(—(1-—1)!.[]”9'“/3- St s Bl

P21

_; Sy® - I-IJ~|
(13.3) TR fMR W, P

1 s_ a _ —_—
’ (p—Dt(g—1)! /MRIk ki, P

where || - I|,, denotes the global L2 norm over M, and Ve denotes the
E-valued tensor with components ijp‘;p i Formula (1.3.3) is the v Bochner-

Kodaira technique which yields the vanishing theorem for positive line bun-
dles.

By applying the commutation formula for [v;, V/]¢ to formula (1.3.2), we
obtain

_ q -
(D(p);'qu — _glj vaiq)‘;pf; - 2] Qﬁalﬁwﬁlpﬁ...([_)”...j; + QBQ(P;;,J_,,
y=
i k
(13.4) - E]Ri" P (il
u:

p q -
kil a - - -
+ 2 ElRi“ jvq)il"'(k)u"’ipjl'"(l)y"'jq'
p,:] v=



64 YUM-TONG SIU

When M is compact, by contracting formula (1.3.4) with ¢/(p!q!) and
integrating over M one obtains

1

3@l + 13*@ll2, = I vell, — FICED] fMﬂaEnp‘;,s-,;_, @Plotam
1 « ‘ 1 PR
(135) g ] S0 g R

1 S - I-I-_, J,—
T DD fMR’k Wt i,

where Vo denotes the E-valued tensor with components V; iPT This formula
is the v Bochner-Kodaira technique which yields the vamshmg theorem for
negative line bundles. In the same way as deriving (1.3.4), by using O instead
of OJ, we obtain

@o)ij, = —g"v v ),

p
a kB - — o B -
+ El QB i q)il...(k)“...iqu Qﬁ (p[p.lq
p=
q 1
(1.3.6) EIR'%,,,. Doy
y=
p q i
ki - - -
+ 21 ElRi“ -’Wﬁ""‘(’k)u“”'.le'“([)"'“j"'
p=1r=

Another way to derive this formula is to apply formula (1.3.4) to ¢ and taking
complex conjugates of both sides. In this derivation one has to be careful about
the interpretation of §. One has to lower the index a of ¢% and regard
g = hgz9" as a (g, p)-form with coefficients in the dual bundle E* of E. The
curvature form of E* is the negative of that of £ (cf. Lemma 4.3). This
accounts for the fact that the terms of (1.3.6) which involve the curvature form
of E differ in sign from those obtained by formally applying (1.3.4) to ¢ and
taking complex conjugates.
Subtracting (1.3.6) from (1.3.2) ‘we obtain

((D - E)(P)qu = - ‘gﬂai“kq)ﬁ”.(k)“...i J—q

P
1

Eil[\dw

(1.3.7)

- 2 ol oy U
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When E is the trivial line bundle, formula (1.3.7) gives an alternative proof of
the well-known formula O = O for (p, g)-forms on a Kihler manifold, with
coefficients in the trivial line bundle.

When M is compact, by contracting formula (1.3.7) with @/(p!q!) and
integrating over M one obtains

3g I3, + 3*pll3, — Idell3, — 3%l

. | -
— -t a _ W BsT,_\J,
RTEDTT A

1 - —_—
R _ _Sa - B]p Jq_
(1.3.8) e I)JMQa,s R Jal

1 -
+ g [, Ror¥h 9"

This formula yields the Akizuki-Nakano vanishing theorem [1] in the case of a

negative line bundle. This derivation is more transparent than the usual proof

using the identity [0, A] = y=1 0*. It shows that the Akizuki-Nakano vanish-

ing theorem holds because of the failure of 00 — O due to the curvature of the

bundle.

1.4. The Hodge star operator * composed with complex conjugation can be
extended to an operator ¥ mapping E-valued (p,q)-forms to E*-valued
(n — p, n — q)-forms, where n is the complex dimension of M. It is straightfor-
ward to verify that the v Bochner-Kodaira technique applied to an E-valued
( p, g¢)-form g is equivalent to the vV Bochner-Kodaira technique applied to the
E*-valued (n — p, n — q)-form x¢.

2. The Morrey trick for the boundary term

2.1. The Morrey trick was introduced by Morrey [40, p. 176, Th. 6.1] to
handle the boundary terms when the v Bochner-Kodaira technique is applied
to a domain with boundary. He did the case of (0, 1)-forms, and Kohn [35, p.
113, Th. 5.6] extended it to the case of ( p, ¢)-forms.

We use the notations of §1. Let G be a relatively compact subdomain of M
with smooth boundary given by G = {p < 0}, where p is a smooth function on
M so that the pointwise norm of dp is identically one on dG. Let Dom,; 0*
denote the domain of the adjoint operator of the operator 9 defined for smooth
E-valued (0, g — 1)-forms. Then a smooth E-valued (p,q)-form ¢ on G
belongs to Dom ; 0* if and only if

(2.1.1) g o9i 7., =0
on 9G, where p, = 9,p.
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When one tries to derive (1.3.3) from (1.3.2) with M replaced by G, one has
the following two additional terms on the right-hand side:

) s, o _ T,J
q'f P*Plj,,(a‘P) ’ !LGPs*P/,,Jq Vs,

coming respectively from 3@l and lIvell?. (The boundary term form
l0*@llllZ vanishes because ¢ belongs to Domgd*.) By using (1.3.1) we
combine these two boundary terms together to get

(2.1.2) q' 2 / p.q),] V!vq) p./l (8)y
From (2.1.1) it follows that forl<v=<gyg
(2.13) s Galr Dy = pylpii ;

for some smooth i, Iy on G. Applymg Y l<p, jvf: to (2.1.1) we obtain

q S
S ¢ (vhp )q, Tpir () g 4 2 o7, Vs v (8)y )

v=1 v=

on 0G, because <p'}‘p ,;(Vf:p) = 0 on dG due to (2.1.1). Hence the boundary term
in (2.1.2) becomes

(q—l)"/ (th)q)I Jq |q‘)a]tjq .
We thus have the following formula:
13l + I13*ellZ = IVellZ + 1)'/ (39) 95" pslrta

1 _ =
+ —_— _ S __ BI,tJ,_
p!(q—l)!/cg“ﬁ AT

1 S 0 _ itJ,_
(2.1.4) +m[GR P15, Pa !

1 kS _ i,_,
oD 1)!fcR’ ki, B

for smooth E-valued ( p, ¢)-form on G belonging to Dom; o*.
2.2. Itis natural to ask whether there is a similar Morrey trick to take care
of the boundary terms of the v Bochner-Kodaira technique in the case of a
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domain with boundary. Hopefully this trick can yield vanishing theorems in
the case of pseudoconcave boundary so that it is in some sense dual to the
original Morrey trick used to take care of pseudoconvex boundaries. Unfor-
tunately so far such a dual Morrey trick has not been found. However, as
observed in §1.4 the v and Vv Bochner-Kodaira techniques can be trans-
formed to each other by the generalized Hodge star operator *. When the v
Bochner-Kodaira technique is applied to a smooth E-valued ( p, q)-form ¢ on
G, the boundary terms can be handled by expressing the integrand in terms of
Y = %@. A computation strictly analogous to that carried out above yields

13l + 110*pllZ

= |lvell Y& nptngm

nql

(————1),f (097 ) ¥, "

1 _
+ mfGQaﬁ t‘p [stq ,‘pBIP"Iq—I
(2.2.1) : v |
e L D ! slp A
p'q! /Gﬂaﬁ-w,,qv TEDT fGRS% %

1‘-74—1

1
N TEN PR AR

when ¢ = %¢ belongs to Domg 9*. We need the condition ¢ € Dom 9*
instead of ¢ € Domg 0* because the boundary terms are handled by the
Morrey trick for the ¥ Bochner-Kodaira technique after transformation by the
generalized Hodge star operator . The condition ¢ € Dom  9* is easily seen
to be equivalent to the condition

(2.2.2) 9 A @ =0 atevery point of 8G.

Because of a multilinear algebra lemma proved in §3.6 formula (2.2.1) for g is
identical to formula (2.1.4) for *¢.

3. The 30 Bochner-Kodaira technique

3.1. In [53] the complex-analyticity of a harmonic map f: M — N between
compact Kahler manifolds is proved under suitable negative curvature and
rank conditions by considering the integral of aé(ha,,é fENA AP A w2 over
M, where h ,; is the Kéhler metric of N, w is the Kihler form of M, and » is the
complex dimension of M. This leads one to using this kind of integral to get
vanishing theorems for holomorphic vector bundles over compact Kahler
manifolds. More precisely, let £ be a Hermitian holomorphic vector bundle
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with Hermitian metric 4,z over an n-dimensional compact Kéhler manifold M
with Kéhler form w. For an E-valued (0, g)-form @ on M the integral of
65(ha,;<p“ A@P) A w"~ 97! over M vanishes by Stokes’ theorem. By expanding
the integrand one obtains a vanishing theorem. We call this technique the 99
Bochner-Kodaira technique. The vanishing theorem obtained this way looks at
first sight different from the vanishing theorems obtained from the ¥ and v
Bochner-Kodaira techniques. However, upon closer observation this 99
Bochner-Kodaira technique is equivalent to the v Bochner-Kodaira technique.
This equivalence can easily be obtained by using the exterior algebra of
Hermitian vector spaces [62, Chap. I]. This is done in this section. The
knowledge of this equivalence will be used in later sections of this paper to get
new results on the complex-analyticity of harmonic maps.

3.2. Direct computation (by using normal coordinates of M and normal
fiber coordinates of E) yields

ag(h"‘ﬁq)a /\F A wn_q’_l) = \/jgal;/\ o° /\;ﬁ A @n—a-1
(32.1)  +hzDag* A gF A w1 + (1) 509" A D@ A a7
+(=1)%h,gDg" A DoP N 0" 97! — hz¢% A\ DdQF N " 707,

where 0, is the curvature form of E (see §1.3), and De” (respectively Dog®) is
the E-valued (1, g)-form (respectively (1, g + 1)-form) obtained from ¢ (re-
spectively dg) by covariant differentiation. Integrating it over M yields

T [ 057" A@P AW + [ h,gDig" A gF A e
M M

_1)9t! a a/\— B A a1 _1)\4 ~Dao®* A D B A a1
+(-1) th.,anv 9pf A" T+ (1) tha,g 9" A\ Dof N w

—f hog®™ N DI N w171 =0.
M
We now apply integration by parts to the second term and the last term. From
d(hoy 37 A 9P A @)
= h gD A @P A w71 + (=1)7 k5 39 A 3P A w0,
it follows that
j h,zD3¢* A @F A @071 = (-1)"f hog 99° A 3@P A @ 0L
M M
Likewise

thaB- ¢ A DagP A @' 9! = (-1)"+'th,,§ NP N
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Hence
D) hoz 0¢* N 3@P A" 9V + (=1)?[ hzD¢* A\ DoP A 97!
af a
M M

322 —
(3:22) +/-_1f O N 9" A @F N1 = 0.
M

We are going to transform, by using the exterior algebra of Hermitian vector
spaces, each term in (3.2.2) to a corresponding term obtained from the ¥
Bochner-Kodaira technique.

3.3. We collect together the formulas we need concerning exterior algebras
of Hermitian vector spaces. We use the following standard notations. Let L be
the operator of taking wedge product with the Kihler form w. Let (- ,-) be the
pointwise inner product. Let A be the adjoint operator of L with respect to
(- ,-). The Hodge star operator * is with respect to (- ,-). A k-form y is called
primitive if Ay = 0.

For any primitive k-formy and s < r

(331) ALy = ([:1 (r——i))( f[l(n—k—rﬂ) L.

Lete, , = (=1)2(p+aXp+a+D(/_T )P4 For any primitive ( p, q)-form ¢ with
pta=k
I3
1) — n—k—1
(3.3.2) *L‘P—sp’q(n—k—l)!L ¥
forO<I/<n—k.Onehas+*L'y =0if[>n — k.
Every k-form v can be uniquely written as

(3.3.3) v= XL,

where each v, is primitive, and r runs from max(0, k — n) to the largest integer
[k /2] not exceeding k /2.

For proofs of these three formulas see [62, pp. 21-28].

34. Lemma. For any (1, q)-formn

n—q—1

—_— _ W "
ﬂan’“71A'C;:7;:_ﬁT = ((n,m)— (An, An))—.

Proof. By (3.3.3) we can write uniquely n =, + L%,, where n,, 7, are
both primitive. Then by (3.3.1)

(3.4.1) An=ALn, =(n—q+ 1)y,



70 YUM-TONG SIU

One has
mymy={Mg> o)+ (Mg, L)+ (Lny,me)+ {(Lny, Ln,)
= (Mg>Mo)+ {Ang, m)+ {(my, Angy+ {m, ALn,).
Hence

(3.4.2) (M m)y= (g, Moy + (n — g + 1){my, my).
Since ¢, , = —¢, ,_, by direct computation, it follows from (3.3.2) that

ST ATAG T =5 (g + Lny) A (T + L) A w9
= ?,4"0 A Ln_q_lﬁo - ?q—l"?o N Ly,
+?,anl ALV, — rq_lm A L9y,
=[(n = g = 1)Xng, )= (n = q) g, Lm,)
+(n—gq+ )Ly, me)— (n— g+ 1), "71)]:_:

w’l

n!’

=[(n—q—=1)Yng,me)—(n— g+ 1)y, m)]

because {1y, L1,)= (Ang, 1,)= 0. By (3.4.2) we have
n—qg—1
(n—q—1)!

=[(mo> 10y = (n = @)(n = g + D)¢my,m)] o

& MATA

=[(n,m)—(n—q+ ){n,m)—(n—q)(n—q+ 1){n, 711)]2_:

n

=[(n,m)y— (n— g+ 1)’(n,, m>]%
= [(n,n)— (An, Aﬂ)]%-

3.5. Lemma. (a)

wn—q-l

—e @A N B A
80,q®aﬁ/\‘P AN /\(n—q—l)!

(1 o« o7, 1 as_ B | ¢

- FQGB— (qu(p ¢ - (q _ 1)!Qaﬂ_st1p J;_lm 9! "Hy
Wh;li as before O,z = —V-1Q,5dz° N dz' and Qg = Qags;g"_ with
=V-1gdz° N\ dz'.
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(b) Let §{ = %¢. Then
wn—q—l
(n—gq—1)!

_ —_
- B a0 @

nt(n—q) o - n!’

Proof. (a) Since @ is a (0, g)-form, it is primitive. By (3.3.2),

- eo'qeaﬂ-/\ (pa AN (pﬂ A\

wn—q—l

(n—qg—1)

wn
= <_ @aﬁ_/\ (pa’ L(pﬂ>m

—EO,qG)aB-/\ q)“/\q)BA —@aﬂ-/\ q)"‘/\*Lq;B

= (A(-0,5 N 9°), 9F) 5

Using local coordinates we have

q9
~ (@5 N 9%, = 1| Quzi98 — 2 i@ i,

r=1

Contracting both sides with g** we obtain
9 -
- (A(Bug N 9%))5, = g, — 2 Qg 95
v=1

from which the desired equation follows upon taking the inner product with
B
oF.

(b) We choose local coordinates and fiber coordinates such that both
Hermitian matrices h,z and g,-are identity matrices. Let 2’ denote summation
over distinct indices. Then
—8_0,;@‘13-/\ AN F A @l

q+1 "

’ rro A _—_
(q + 1)| j 2 " “2 ]( 1) aﬂhfq)fnmj,.quﬂq)h ~~~~~ Jo+1 p!
1> v=

+1
q "

(q + 1! QEB]‘,E " u’vzzlﬂaﬁhf,. g‘011'"'11,..1,,+z~~1,. gﬂl"'"fv]qﬁ»z"']n n!

—_— wn
= 2 2, Zﬂaﬂ_st-fal-‘-nt_j;ﬂnj-,, S‘Bl“ms-jzﬂ-“ﬁ,m’
avB jq+2V : ')jn st
from which the desired equation follows. g.e.d.
In the proof of Lemma 3.5 computation is carried out pointwise, and only
multilinear algebra is used. By using local coordinates so that both Hermitian



72 YUM-TONG SIU

matrices h g and g, -are identity matrices, we can combine Part (a) and Part (b)
of Lemma 3.5 together to obtain the following lemma in multilinear algebra
which will be used later in this paper.

3.6. Lemma. Let a, 8 run from 1 to r, and j,- - -,j,, s, t from 1 to n. Fix a
positive integer ¢ <n. Let £ . ji» Zafisi be complex numbers. Assume & ji Is
skew-symmetric in j,- - -,j,. Define

) o jl ...jn
oﬁfq+1“'fn - 2 Sgﬂ( 1---n ) éjgl“.j;.
1o
Then
1
- > Eogeisr 70 -
(n - q— 1)' a,B,s L Jg+2+ " " odn S
1
=5 = _te 8 .
q! 2 —'aﬁgjr “Jg gJl “Jg
a. B, 1y
1 a
-1 3 Eafi S
— , "'aBstgfjl"'j_|g’-j g1
(q 1)- o, Bys t fi gt ) S
where E,5 = 3{_| E g5

3.7. We are now ready to transform the terms in (3.2.2) to terms obtained
from the v Bochner-Kodaira technique. The procedure is done pointwise. Fix
a point of M, and choose local coordinates of M and fiber coordinates of E so
that at that point both Hermitian matrices g, and &,z are equal to identity
matrices.

By applying (3.3.2) to the case ¢ = dg and / = 0, we obtain

2 39" A 39" = (39
=1

a

S

n—q—1

€

A aAdB AN
80,q+|haﬁa(p /\a(P A(n—q—l)‘

o)l
\/

S

By applying Lemma 3.4 to the case n = Dg“, we obtain

wn—q—l

(n—q—1)!

because Vo = Do and 9*¢* = AD(p
Using Lemma 3.5(a) and ¢, , = £ .4, = (-1)?"'V~1¢, ,, we conclude that,

after we multiply the equation (3.2.2) by (- 1)"&1 o/ (n—q— 1)}, we obtain
~13el13, + v el — 13*pll%,

&1.4hogD9" A\ DgF 1 = ((V9, Vo)~ (', T9)) 21,

Lo = e
- o Bl — _ — O - - Bti,_, | —
+L4(q!ﬂ°”’q¢ PR AL A RL A Rl
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which is the same as the equation obtained by the v Bochner-Kodaira
technique.

3.8. Even in the case of Kihler manifolds with boundaries the 39 Bochner-
Kodaira technique is equivalent to the v Bochner-Kodaira technique. We
drop the condition that M is compact. Let G be a relatively compact subdo-
main of M with smooth boundary. Let ¢ be a smooth E-valued (0, ¢)-form on
G. When we apply the 99 Bochner-Kodaira technique to G instead of M, we
get the following three additional boundary terms on the left-hand side of
(3.2.2) (besides the three integrals over G).

- 5h a a/\_ﬁ/\w"—q_l + h _éa/\_ﬁ/\wn_q_l
j;G ( B 9P P ) '/E;G of 99 P
+ (—1)q+1-/;chaﬁ_<pa A é(pﬁ o\ wn—q—l’
which is equal to
(D" [ hoge ADF A 4 (1) [ hoger AP A
G 3G

Let G = {p <0}, where p is a smooth function on M so that the pointwise
norm of dp is identically one on dD. We use the following formula to convert
the above two boundary integrals. For any (2n — 1)-form n on 9G

-[ac;n :fac<dp A, :_"'>’

where on the right-hand side the integral is with respect to the volume form of
0G which is omitted.

As in the v Bochner-Kodaira t_echnique in the case with boundary, we
assume that *@ belongs to Domg d*. According to (2.2.2) this condition is
equivalent to dp A @ = 0 at every point of 0G. Hence

hog o A QP AW = <5p/\ha— “AD B/\w""q“,“’—>
_/;G g P P faG gP P n

vanishes. For the other boundary term we have

-1 g+l ha_ a/\ﬂ/\w"—q—l
(-1 faG 7P @

= atl P B n—g—1 &
= (- A A A .
(-1) faG<8p h 59" N\ DoP N ,n!>

From the vanishing of 9p A\ @ at every point of 3G it follows that dNAQ=pyP
for some E-valued (0, g + 1)-form ¢ on G. Applying D to both sides, we obtain

p A —0p ADp=23 Ay
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at every point of dG. Hence

3p A\ hoge® A D@ = (<1)°hz¢° A 3p A DeP
= (-1)'hgg" N33 A @F + (1) h oz Adp AP
= (=1)%83p N hog ¢ A 9P

at every point of 3G, because dp A ¢ = 0 at every point of dG. Thus

(-1)"*‘[ hoz o A DP A e~
9G

— _ a o _ﬁ n—q—1 w_n
LG<38pAhaW NP A w ’n!>'

The integrand corresponds to the value of the Levi form at %g.

4. Various notions of positivity

4.1. In this section we give the various notions of positivity which will be
needed for the discussion of the complex-analyticity of harmonic maps and
other results of this paper.

Definition. Let M be a Kéhler manifold with Kahler metric g;~ A Hermi-
tian holomorphic vector bundle E over M with curvature form €,z = -
V-1%, ;Q,57dz' A dz’ is said to be Nakano g-positive (respectively semiposi-
tive, negative, seminegative) if at any point of M with g, -= §,; (the Kronecker
delta), for any nonzero set of complex numbers ¢ T, which is skew-symmetric in
the g-tuple 1, of indices, the expression

- 2 Qaﬁ_kl-g;:lq_l {ﬁ,,_.
o Bk, T,y
is positive (respectively nonnegative, negative, nonpositive).

Remarks. 1. Any subbundle of a Nakano g-(semi)negative vector bundle is
also Nakano g-(semi)negative (cf. the computations of [26, p. 197, (2.14))).

2. In the case when FE is a line bundle, Nakano g-positivity (respectively
semipositivity, negativity, seminegativity) means that at every point the sum of
any set of g eigenvalues of the curvature form is positive (respectively nonnega-
tive, negative, nonpositive) when the eigenvalues are computed with respect to
the Kéhler metric of M.

Definition. E is said to be g-positive (respectively semipositive, negative,

seminegative) in the dual Nakano sense if at every point of M with g, -= §,;, for
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any nonzero set of complex numbers §}’; which is skew-symmetric in the g-tuple
I, of indices, the expression

- 3 e, 4
o, B,k 1, Ty
is positive (respectively nonnegative, negative, nonpositive).

Remarks. 1. When E is a line bundle, Nakano k-positivity is equivalent to
k-positivity in the dual Nakano sense. The same holds for semipositivity,
negativity, and seminegativity.

2. When the exterior product /\ ?E of g copies of E is given the Hermitian
metric induced from E, E is Nakano g-positive (respectively g-positive in the
dual Nakano sense) if and only if /\?E is Nakano 1-positive (respectively
1-positive and the dual Nakano sense). The same holds for semipositivity,
negativity, and seminegativity.

3. The condition that the curvature tensor of a Kéhler manifold is very
strongly (semi)negative as defined in [53] is equivalent to its tangent bundle
being 1-(semi)negative in the dual Nakano sense.

4.2. For vector bundles of rank > 1 Nakano g-positivity is in general
different from g-positivity in the dual Nakano sense. As an illustration we give
below the example which is responsible for motivating part of the discussion
which leads to the results of this paper. We take the holomorphic tangent
bundle Tp, of P,. Using the Fubini-Study metric and a suitable coordinate
system, we have g, -= §;; and

Qi = Q9 = -2,
Q13 = Q31 = a1z = Qo311 = -1,
with all the other components £, - being zero. The bundle T is 1-positive in
the dual Nakano sense, because the Hermitian matrix
Onr @ Qo @
Qi3 Qin Qo Qi
Qi1 i1 Q31 U3

|
—_—o oN
co~o
o—oo
NO O —

Qi Qs Q5 Qa3
is positive definite. However, the bundle Tp is only Nakano 1-semipositive
and not Nakano 1-positive, because the Hermitian matrix

Qi @z Qo Q5
2 i Q2 Qo
Qi Sz Qs 95

SooOoMN
O - O
O —— O
NO OO

Q1 i 9 9
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is only positive semidefinite and not positive definite (the second and third
rows being equal).

43. Lemma. A Hermitian holomorphic vector bundle E over a Kihler
manifold is g-positive (respectively semipositive, negative, seminegative) in the
dual Nakano sense if and only if its dual bundle E* is Nakano g-negative
(respectively seminegative, positive, semipositive).

Proof. Let h,z be the Hermitian metric of E. Then h°# is the Hermitian
metric of E*. Fix a point and choose local trivializations of £ and E* so
that at that point h,z=§,; and dh,z;=0. The curvature form ©,;=
- \/_2, Qo jdz’ /\dzf of E is given by Qaﬁ,j 9;07h 5. The curvature form

OF; = —V-13, , Q¥g,dz' Ndz/ of E* is given by @z, - = 9,0:h° o_Since

0 = 38(h*Thy; ) = (80h°7 Yhy; + h*730hy, = 90K + ddhygs,

it follows that Q*
clear. q.e.d.

As a corollary of Lemma 4.3, any quotient bundle of a g-(semi)positive
bundle in the dual Nakano sense is also g-(semi)positive in the dual Nakano
sense.

4.4. Definition. Let E be a Hermitian holomorphic vector bundle over a
complex manifold M of complex dimension n. Let 0,7 =
-V-13; Qo 2! Adz' be the curvature form of E. The bundle E is said to
be Griffiths g-positive (respectively semipositive, negative, seminegative) if at
any point of M and for any nonzero set of complex number £ the (1, 1)-form
2.8 ®aﬁ—£"£3 has at least n — g + 1 positive (respectively nonnegative, nega-
tive, nonpositive) eigenvalues.

Remarks. 1. Clearly E is Griffiths g-positive (respectively semipositive,
negative, seminegative) if and only if its dual bundle E* is Griffiths g-negative
(respectively seminegative, positive, semipositive). This property is different
from the case of Nakano positivity and negativity.

2. E is Griffiths g-positive if E is Nakano g-positive of if E is g-positive in
the dual Nakano sense. The same holds for semipositivity, negativity, and
seminegativity. On the other hand, Demailly and Skoda [14], [15] proved that if
E is Griffiths 1-(semi)positive over M, then E ® det E and E* ® (det E)* are
both Nakano 1-(semi)positive and are also 1-(semi)positive in the dual Nakano
sense, where k is the minimum of the rank of E and the complex dimension of
M.

3. When E is a line bundle, Griffiths g-positivity (respectively semipositivity,
negativity, seminegativity) means that the curvature form has at leastn — g + 1
positive (respectively semipositive, negative, seminegative) eigenvalues at every
point.

agif = —Qgg ;> from which the assertions of the lemma are
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4. Any subbundle of a Griffiths g-(semi)negative vector bundle is also
Griffiths g-(semi)negative when given the induced Hermitian metric (see [26, p.
197, (2.14)])). Any quotient bundle of a Griffiths g-(semi)positive vector bundle
is also Griffiths g-(semi)positive when given the induced Hermitian metric.

The following lemma follows from the standard projectivization argument
(see [26, pp. 201-203]).

4.5. Lemma. Let E be a Hermitian holomorphic vector bundle of rank r over
a complex manifold M. Let w:P(E) - M be the projective bundle over M
associated to E, and let L be the tautological line bundle over P(E) with the
Hermitian metric induced from that of E. Then the following two statements hold:

(a) E is Griffiths q-(semi)negative if and only if L is Griffiths q-(semi)nega-
tive.

(b) E is Griffiths q-(semi)positive if and only if L is Griffiths (¢ +r — 1)-
(semi) positive.

To conclude this section, we give a generalization of the Akizuki-Nakano
theorem to the case of vector bundles which are 1-seminegative and k-negative
in the sense of Griffiths. This generalization will not be used in this paper, but
the idea of its proof will be used later in §9.

4.6. Lemma. Let M be a compact Kdihler manifold of complex dimension n
with Kihler form w. Let 1 < k < n and let u be a smooth (1, 1)-form on M, which
is positive semidefinite and has at least k positive eigenvalues at every point of M.
For ¢ > 0 let w, = u + ew. Then for e sufficiently small the following condition is
satisfied at every point x of M: For p + q < k and for any subset A of p distinct
elements and any subset B of q distinct elements in {1,- - -,n},

él?\y(e,x)— S Ae, x) = S Agle x)

a€A BEB
is positive, where \\(g, x) = Ay(g, x) = - -+ = \ (¢, X) are the eigenvalues of u
with respect to the Kahler metric whose Kdhler form is w,.
Proof. Forx € Mlet\|(x) = Ay(x) = ---=A,(x) be the eigenvalues of u

at x with respect to the Kihler metric whose Kahler form is w. The functions
A (x), 1 < a < n, are continuous functions of x. Clearly

_ Ax)
A (e, x) BYOrTS

Let f(&, x) be the minimum of

él}\y(s, x) = D ALe,x) = 2 Agle, x)

a€EA BEB
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over all A and B, where A4 is a subset of p distinct elements, and B is a subset
of g distinct elements in {1, - -,n}. For p + g even,let/, = I, = 3(p + q). For
p+qodd, let /,=4(p+q—1) and I, =3(p + g — 1). Clearly the mini-
mum f(¢, x) is achieved when 4 = {1,---,/,} and B = {1,---,[,}. Thus

k I
f(e’x): 2 >\:x(z':’ x)_ 2 Aa(e’x)
a=l+1 B=1

& _A(x) 3 Agx)
= 2 A(x)+e AJ(x)+¢€’
a=L+1"a B=1"a

which approaches kK — (p + ¢) uniformly in x as ¢ approaches zero, because
each A (x) is a positive continuous function on M for 1 < a < k. Hence for ¢
sufficiently small, f(e, x) is positive for every x € M.

4.7. Proposition. Let M be a compact Kihler manifold of complex dimension
n. Let 1 <s < n. Let L be a Hermitian holomorphic line bundle over M, which is
Griffiths 1-seminegative and Griffiths s-negative. Then H?(M, 2§, ® L) vanishes
forp+qg<n-—s.

Proof. Let w be the Kahler form of M, and v the curvature form of L. Let
u=-v and k=n— s+ 1. We use the notations of Lemma 4.6. Then the
assumptions of Lemma 4.6 are satisfied, and we obtain a sufficiently small
€ > 0. We give M the new Kihler form w,. Fix p and ¢ withp + g <k. Let ¢
be an L-valued ( p, ¢)-form on M, which is harmonic with respect to the new
Kibhler form w,. On the manifold M with the new Kahler metric w, (and with
E = L), when we take the global inner product of both sides of (1.3.7) with ¢,
we obtain —||d@|l2, — l|0*plI2, from the left-hand side, and obtain from the
right-hand side an expression which is = 7l @|/3,, where 7 is the minimum over
x € M of the function f(e, x) defined in the proof of Lemma 4.6. Since 7 is
positive, it follows that ¢ is identically zero.

4.8. Theorem. Let M be a compact Kdhler manifold of complex dimension n,
and let E be a Hermitian holomorphic vector bundle of rank r over M, which is
Griffiths 1-seminegative and Griffiths k-negative for some 1<k <n. Then
HP(M, 24, ® E) vanishes forp + g<n—k —r+ 1.

Proof. This theorem follows from Proposition 4.7 and the argument of
Schneider [48].

5. Complex-analyticity of harmonic maps

5.1. In [53] the complex-analyticity of a harmonic map between compact
Kéahler manifolds when the target manifold is strongly negatively curved in the
sense of [53] was proved by using the 99 Bochner-Kodaira technique. The
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difference between Bochner-Kodaira techniques for bundle-valued forms and
Bochner-Kodaira techniques for harmonic maps lies only in the curvature
terms in the formula. Since the 39 Bochner-Kodaira technique is equivalent to
the v Bochner-Kodaira technique, the complex-analyticity of harmonic maps
can also be proved by using the v Bochner-Kodaira technique. Such a proof
was given in [55] without explaining how it is related to the old proof of [53].
Here we investigate the complex-analyticity of harmonic maps when the
target manifold is strongly seminegatively curved in the sense of [53]. A class of
examples of such target manifolds are the compact quotients of bounded
symmetric domains of rank higher than one. We obtain the complex-analytic-
ity of the harmonic map, when the curvature tensor of the target manifold is
very strongly seminegative in the sense of [53] and is sufficiently nondegenerate
and when the harmonic map has sufficiently high rank. This result for the case
of compact quotients of irreducible bounded symmetric domains of rank
higher than one was conjectured in [55, §8]. In the previous proofs [53], [S5] of
the complex-analyticity of a harmonic map f, either the 99 or the ¥ Bochner-
Kodaira technique was applied to df. This corresponds to the Bochner-Kodaira
techniques for bundle-valued (0, 1)-forms. The vanishing of 3f (or 3f) follows
when one has the strongest kind of negativity for the curvature tensor of the
target manifold but only the weakest condition on the rank of f. Here we apply
the Bochner-Kodaira techniques to df A - - - A3f (p times). This corresponds
to applying the Bochner-Kodaira techniques to bundle-valued (0, p)-forms.
The negativity required of the curvature tensor of the target manifold is
weaker. On the other hand, one has to assume that f has a higher rank. Since
the 90 and the v Bochner-Kodaira techniques are equivalent and since the v
and the v Bochner-Kodaira techniques can be transformed to each other by
the generalized Hodge star operator %, to prove the complex-analyticity of a
harmonic map f one can apply any one of the three Bochner-Kodaira tech-
niques to df A - -- Adf. The 99 Bochner-Kodaira technique was used in the
proof given in [53], and the v Bochner-Kodaira technique in the proof given
in [55]. Here we choose the v Bochner-Kodaira technique to show how it is
applied to prove the complex-analyticity of a harmonic map. There is another
reason for this choice. In this paper we will consider also the complex-analytic-
ity of harmonic maps when the domain manifold has a boundary. To take care
of the boundary term one needs the Morrey trick which works most directly in
the v Bochner-Kodaira technique. The Morrey tricks for the other two kinds
of Bochner-Kodaira techniques are obtained only after transformation back to
the case of the v Bochner-Kodaira technique. o
5.2. Let M, N be Kahler manifolds with Kahler metrics 7 5_, h,5dz®dz?,
27 =18 fdw"dwf respectively. We use the lower-case Greek letters a, 8, v, - - -
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to denote the coordinate indices for M, and the lower-case Latin letters
i, j,k,-+-+ to denote the coordinate indices for N. Let G be a relatively
compact subdomain of N with smooth boundary. Let p be a smooth function
on N, such that G = {p <0} and dp is of unit length at every point of the
boundary 9G of G. Let f: G > M be a map smooth up to 9G. (The results in
this section hold also when G is a compact Kihler manifold with boundary
instead of being the closure of a relatively compact subdomain of a Kihler
manifold N.)

Denote by /\?(3f) the exterior product 3f A - -- AJf (p times) which is a
(0, p)-form on G with values in the bundle f* A?T'°M. We apply the
generalized Hodge star operator % of N to /\ ?(3f), and obtain an (n, n — p)-
form { on G with values in f*Qf;. That is, { = (¢, .. -a,) and

Sayoay = (T_IT)!s“.,,...,,p;+,...i-"dz' Ao AdZ" ANdzirr A - Adzin,
with
(A1) ey
S o Mg, hug,
STy 2 -~-g";fp(ajlfﬂ_r) (ajpffi),
where g, ,-...; = det(gy;)i <k, i<n- We denote also § by x(/\ 9d1)).

We now apply to ¢ the v Bochner-Kodaira technique. The vector bundle
f*Q%, over N is in general not holomorphic. We can still use the v Bochner-
Kodaira technique, but the curvature terms are more complicated. We denote
by V; (respectively V;) the covariant differential operator with respect to
3 /dw' (respectively d /dw’) for f*@f-valued forms. Denote by D the exterior
differential operator defined by covariant differentiation which sends f*Qf-
valued (n, g)-forms to f*Q%-valued (n, g + 1)-forms. Let D* be the adjoint
operator of D and let 0 = D*D + DD*. We now compute [I§.

From

(BB )er a1, = ()™ 870 B ey
= —gﬁVi(VJ{,,I...%;H‘..,-;

n
+ 2 (—l)v pV,:fal...api};ﬁ...f'y...,-'",
v=p+1
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(D_ *g)al ap'p+|

it follows that

(Df)a,~~-api',,+,-~{,,

=) 3 (1) SRS 77 219 PRSI ;

ip+ In
v=p+1
< +1
v—p i a

2 (—1) (gf Vfa, ,,pj,pﬂ...;y...;n),
v=p+1
—_ i - -
= -g"'V V34 a i

+ 2 ( 1)" p+1gﬂ[vnv ]Ka, "‘pt/'p'*l
v=p+1

81

Iy ip®

The above computation runs exactly in the same way as the case of the v
Bochner-Kodaira technique applied to a holomorphic vector bundle; the
difference lies in the computation of the commutation [Vv;, v, ] which we are

going to carry out.

5.3. For the computation of [V,, V;] we choose normal coordinates of M
and N at the points under consideration. Let fE=0,1% f# =01 5= 0%
and £ = 9% Clearly f* = =77 and f% =f*. Denote the Christoffel symbols
and the curvature tensors of M and N respectively by I'3', T, and R ,z.5, R, 7
Though I' and R are used for both manifolds, confusion is avoided by using
Greek letters for coordinate indices for M and Latin letters for coordinate
indices for N. We denote the Ricci tensor of N by R, ~. From

ViV

e

ipp1in

= Vk(al -, i 1’ 2 r 1 (Ve

W

pipt1

n

— s - -
2 I‘ivlful'"‘!pip+|"‘(§)v"‘in—p
v=p+1

n -
_ f0¢B
— - - — 'Y - h £
- akal a|...ap,'p+l...,‘" 2 88Fa,ﬁ—§a1-~-(y),,~~a,,ip+.---x,, kf}

p=1

- 3 Tk,

v=p+1

pip+l' . (S.),. . 'in—p’



82 YUM-TONG SIU

ViVia, - -ayiyer i,

Cpipiy iy

= V,‘(akgal, pp+l 2 F

- - fB
"'(Y)n"'apip+1"'fnfk
p=

—TJ
rjk‘z;ﬂl “pp+| )

= aiak a Pp+| i 2 a& anﬂfal i foB

=T,

iy

it follows that

_ _ = - - 5 __ £B6
[Vk’vl ]§a|--~apip+1-~-i,,— 2 Ra,‘yﬁs-{ar--(y)“v--apipﬂ-”i,,(flfgffs f['Bfk )
p=1
LT
v=p+1
+Rk1{"‘l"'“p[_p+|“‘i-n'
Hence
O Fvd = BV a1
( f)"‘l“""p’pﬂ""n g L A N ¥ 2 B

—p+1 i
+ 2 (-1)” g’ ZRa B8 ey ap

A 5 _ fBfd
ol R 1)
v=p+1
< +1
v—p ; ~
- EH(—I) 8| Riila ayiiyur b,
V:p

- - -
+ 2 R il gar'-apjip+r"(5),.---iy"-i,,
p<ps<n

nFv

—p+1 ~
+ 2 ( 1) g/’R“ §a| ap_]lp+|"'i_,,"‘l:,'
v=p+1
Since

(1) R

o= = - = S--J“ - b =
1"11”§a, NIRRT 6 LT R RSy apiyire @ (i

n
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vanishes by the symmetry of R"f - in s, j and the skew-symmetry of
Sar-apiyar @y ()i IS, it follows that

(Dg)al"'api-p+l”'i_n = _gjivi Vj{al-na i 1-,,

pipt1
(5.3.1) P n 5 i
i _ _ 8
+ 21 2+13’Ra (T PR Sy O, O L L, ).
il

5.4. We now consider the curvature term obtained from (5.3.1) by taking
the pointwise inner product of [1{ and {, namely, the term

1 P n -
- 2 2 JiR v ) o
p!(n—p)! . lg a, Bsg"‘l‘"(Y)u”'api,,ﬂ"'(j)y'"i,,
p=1v=p+

(1P = 1B )

We denote this term by C and we want to simplify it.
Let

aF/\.../\aE/\afB./\.../\afﬁ,

1 . ,
= R A At

We will use this only for the cases (s, 1) = ( p,O)_, (p + 1,0). Clearly
& &BBi s the skew-symmetrization of £ -+ f%fFr - fP with re-

spect to its subscripts iy, - - -,i,,,. We will need the following obvious identity

o a,B — 1 a-
(5.4.1) 'u"ﬂ_p+1 (A ”fB_z SO fﬁ)'

This identity also holds when 8 is replaced by 8.
We use normal coordinates at both points under consideration. Then

Cup o= (1) D70 3 g(‘)
pp+l i‘~~-,ip ll'“ln 1 p

In the following computation of C, in addition to the usual summation
convention, we use the summation convention that an index is being summed
if it occurs either twice as a subscript or twice as a superscript, once with a bar
and once without a bar. An index with (respectively without) a bar in an
expression carrying a bar is considered without (respectively with) a bar. As
before, we use X’ to denote summation over distinct indices. Since we have
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normal coordinates at both points under consideration, we have

1 - -
= ———p! (n _p)' 2 2 Rdyiﬂggal"'('Y),."'“pip+l"'(j)v""in

p=1rv=p+1

p'p+1

(fjﬁf;s—j:ﬂfja)?;T—x-

We separate the summation in j into two parts, the first part with j = i, and
the second part with j # i,.

1
C - ' (n—p) R . i .. .._
p'(n—p)! gl v—§+l “ym(ga' Nt @plpr iy

(S f" foa)fa, ;

pp+|

. .. Y Py L I —
+ 2 g‘“l"'('Y);.""-‘pip+|"'(j)v'"in(ﬁﬁf;'-y f;-yf_l, )g’a‘...apip+|...i"
Vial®
1 n
= E, 2 RG'YBS-

(p=Dn=p)ipt, =, LA
T SRR~ PO,

- 3 I - DT )

l 4
ERTEDTE 2 R £ "(ﬁ,,+.f8 —7 fs ) oaz

Ip+1 Ip+1
Mot mlpy

P JE
= 3 I LR 1 ID )
A=1

P

1 ’
S G, 2 R
. .ll"'"~lp+l
yaz aaz & _ yaz '8_ 0dy @, B
f1p+| 'p+1 iy ipsr Jiyeoip fp+|
_ 2 i B 0“2 , 75
('p+|)x ipdipa Ip+1

+ glfi,*.".%'(;,,‘ff)x S I ),

A= Ip+1

'b
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By (5.4.1) and the identity obtained from (5.4.1) by replacing the 8 there by S,
we have

= P Ry SN AT
. (P" 1)!p!Roﬂ% ( iy Jigeip pfip+|

—_— 7“2 an pf
i 'p+| i Ip+1

Since £ vay- ":P is skew-symmetric in v, §, and R,;5 is symmetric in v, §, it

follows that
&8 —
Ro'yﬁs_ ‘.;Y 2'p+‘ll O'
Hence

pt1 -&,B 5@, @, 8

C:_(—p—T])_!;!—Roy&? l| p+| ’I"'ip ip+| .

Since the inner product of a skew-symmetric tensor with another tensor
remains unchanged when the second tensor is replaced by its skew-symmetriza-
tion, we have

pt1 8,8 Foa, ap
(5.4.2) €= (p—D'p !R"‘fl” i oh (e p+lp
As before, we use (- ,-) to denote the pointwise inner product. By combin-
ing together (5.3.1) and (5.4.2), we obtain the following.
5.5. Lemma.

p+1

<D§,§>= _<gi_jvjvi{’ §>+ ( ) alﬂlys‘f;]

a,d . i1 s giptidptt
N e, ha g 8 ghrteer,

5.6. Lemma. (a) D*{ vanishes identically on G for any smooth map f.

(b) If p = 1 and f is harmonic on G, then D¢ vanishes identically on G.

(c) For general p, if f is pluriharmonic on G, i.e., D3f =0 on G, then D}
vanishes identically on G.

() If v = 0o0n G for all j when p = 1, then f is pluriharmonic on G.

Proof. For the proof we use normal coordinates at both points under
consideration.
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(a) From the definition of { it follows that
(5*§),,l. ctpiyagt i

n
+1
=D 2 Vi Saayier iy

ip+|=l

_ (\/_—l—)n(_l)%n(n—l)+n+l » sgn(ill ,’:)

TR

.aip-‘—l((ail?a—l-) o (aip?Tp’))
_ (\/j)n(‘l)%n(n—l)-ﬁrf-l é 2 Sgn(ill :’)

v=10, iy
’ (ai.F) (aiv_.w)(ai,+.ai,E)(au+.7‘"T') (ai,,F;)*

. . RS o .
which vanishes because sgn(' ") is skew-symmetric i, , and i,, whereas
1---n p v

aiﬁlaiﬁ is symmetricin i, and i,.
(b) Assume p = 1. Then

(D—g)ali_l"'i_n

(“I)PIV,-‘”{aii‘,.A.,;v...;"
1

= (FT) " 8 ey
- (Y

J

Il
IR ZE]

n .. I .
Jll ‘..Iy-.‘ln _'1_
sen a-a 1
:Ig( 1 -n )wf

J

N 7 ERN

R

which vanishes because f is harmonic. .
(c) Assume that f is pluriharmonic. Then 9;0,/* = 0. Hence

n

(D_g)ar"api—p'“i_,,: 2 (_l)y_pvi_"{al...api;..i‘-;...,'—"
v=p

= (FT)" 0 S

A

S sl 1 (5, 77) o (3,77 <o

Ji 1:---n
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(d) Assume p = 1 and vV = 0 for all ;. Since
Ln(n— Ly, —
Viuiri, = (1) (1) "Esgn( ,._n)a,ﬂ,-,f N

where (i;,- - -,i,) is a permutation of (1,- - -,n), it follows that a,-a,.an =0 for
alljand i,.

5.7. Proposition. Suppose f satisfies the tangential Cauchy-Riemann equa-
tions of the boundary 3G of G (in notation 9, f = 0 on 3G). Then

DS + IID-*s°||2

SRS 3 R4

/ (akafp)fa.

"o o s
p+1 Taasy L
+ P! (p — l)l_[ “lBlefll p+17 v Jp+pl hﬂzﬂz
ha g gilj_l . gip+vfp+| ,
where || - || ; means the global L? norm over G, and V¢ means the f*Q4-valued

tensor of rank n — p + 1 on G whose components are V3, ... apiir i,
Proof. This proof is a straightforward adaptation of the Morrey tnck First
we verify that the vanishing of 3, f on dG implies that

(5.7.1) 8"*0,8,.. =0 ondG.

apkt,,H
To verify (5.7.1), we fix a point P on G and choose local coordinates, so that
dw',- - -,dw" are orthonormal at P and the tangent space of 90G at P is defined
by d(Re w™) = 0. It follows from the vanishing of 9, f at P that 9, = 0 at P
forl<k<n—1 AtP

§a|-~~apﬁi;+2...,-'n = (\/:T)"(_l)%"("—l)

vanishes, because the only possible nonzero terms in the sum are those with
ky,- .k, not equal to n. (5.7.1) follows from g;-= §;; and p, = 0 for / # n at
P.

By integrating the equation in Lemma 5.5 over G and performing three
integration by parts, we obtain an equation which is the desired one except
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that the boundary term is replaced by the sum of the following three boundary
terms:

_ 1 _ (D EI"'Ep-"ip-f-l"'in
—] e —_ TRRRY- SUPTERY
= —_— Jip+1 . - - ( D* p'p ,
Bt - 1)!~[acg T A €Y
1 sya; ip+ ...j"
5= (n—p)! ji;(;ps{“‘ @iyt cin V g Sl ’

where p; = 9;p and p; = 9;p.
It follows from (5.7.1) that B, vanishes. By

n
(D{) ap.an =V {a .ap,'-p+l...,~_" - 2 V,"vgal..ﬂpi;+l...(3')”...,7"
v=p+1
we have
-1 n
B, +B, =——— p_g' ] - V'v{al Oply o (8)y iy .
! ’ (n—p)' ,=§+1‘/;Gs a ppH
From (5.7.1) it follows that
(572) s {El uplp+l (8)yin pnal pﬁ' : ': iy
for some smooth g " @ip+1 i in on G. Applying = v=p+18aayier -'"VZ to
(5.7.2), we obtain

n
2 ga, - ( )ga, i),y
%ip

v=p+1

n
+ 2 ps'a, » 'V g“’l iy gyt (8), iy

+1 piper
v=p

= 2 §a| app+| ( '”P)ﬂ a"lpﬂ.“.“.' =0
v=p+1

on 3G, because §,...q 7 ... {V"p) = 0 on 3G due to (5.7.1). Hence B, + B,
equals the boundary term of the desired equation.

5.8. Before we introduce our main result on the complex-analyticity of
harmonic maps, we need some definitions.

Definition. Let s = 1. The bisectional curvature of a Kahler manifold M is
said to be strongly s-nondegenerate at a point P of M when the following holds.

If k and [ are positive integers, and £, - -, £, (respectively 1, - -, 1)) are
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C-linearly independent tangent vectors of M of type (1, 0) at P such that
(5’8'1) Raﬁ_vt?-g?n) ggt) "zv) nﬁ) =0

at P for all 1<p<k and 1 <»</, then k +/<s, where R,z is the
curvature tensor of M.

When the above condition is satisfied only for the special case k = 1, we say
that the bisectional curvature of M is s-nondegenerate at P.

The smallest s so that the bisectional curvature of M is (strongly) s-nonde-
generate at P is called the degree of the (strong) nondegeneracy of the bisec-
tional curvature of M at P.

Remarks. 1. If the holomorphic tangent bundle 7,, of M is s-negative (or
s-positive) in the dual Nakano sense, then the bisectional curvature of M is
s-nondegenerate. For we can apply the inequality in the definition of negativity
of positivity in the dual Nakano sense to the set of complex numbers

s — b a
o = &1 det('q(,}))lgxy,,g,-

The same statement holds when T, is Nakano s-negative (or Nakano s-posi-
tive) in which case we use

P — ¢6
oy g(l)deg(n?3))1<>\,ysl‘

2. If the bisectional curvature of M is s-nondegenerate, then the bisectional
curvature of M is strongly -nondegenerate, where ¢+ = max(1,2s — 2). For we
have 1 +/<s by considering &, n,- - *,n) and we have k +1<s by
changing the roles of §,, and ,,. Hence k + 1 <25 — 2.

Definition. Let G be a relatively compact subdomain of a Kahler manifold
N given by G = {p < 0} for some smooth function p on N whose gradient is of
unit length at every point of the boundary G of G. The boundary 9G of G is
said to be hyper-q-convex (respectively strongly hyper-q-convex) at P € 9G if
the sum of any g eigenvalues of the Hermitian matrix 9,0;p computed with
respect to the given Kéhler metric is nonnegative (respectively positive). When
9G is hyper-g-convex at every point of 0G, we simply say that 0G is hyper-g-
convex.

We now continue to use the notations M, N, G, f, { etc. introduced in §§5.1
through 5.7.

59.Lemma. Let1<p<n—1and{=3%/N\ P@df)). Suppose D¢ vanishes
identically on G. Assume that G is hyper-(n — p)-convex, and the holomorphic
tangent bundle T,, of M is p-seminegative in the dual Nakano sense. Then the
following statements hold:
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(a) V¢ and the following two expressions vanish identically on G:

(5.9.1) (akaip)§a|~ ~apki;+2--.,'_" {&I. ‘.&p[,‘p+2. . ,
_ 'I..._p FREE . i et
(5.9.2) Ro g B0 0 By = g, 8- 870,

(b) If 3G is strongly hyper-p-convex at some Q € 3G, then /\”(3f ) vanishes
at Q.

(c) If Ty, is p-negative in the dual Nakano sense at some Q € M, then
(/A P(@f)) Adf vanishes at Q.

Proof. The expression (5.9.1) is nonnegative, because G is hyper-(n — 1)-
convex. The expression (5.9.2) is nonnegative, because T), is p-seminegative in
the dual Nakano sense. By Lemma 5.6 (a), D*{ = 0 on G. Statement (a) now
follows from Proposition 5.7. The other two statements (b) and (c) are clear,
because { vanishes at a point if and only if /\ 7(3f) vanishes.

5.10. Lemma. Suppose 0G is hyper-(n — 1)-convex, and T, is 1-seminegative
in the dual Nakano sense. Let 1 <p<n—1 and { = A\ 2(31)). If f is
harmonic on G, then f is pluriharmonic on G and, consequently, D¢ vanishes
identically on G.

Proof. Letn = %(3f). By Lemma 5.6 (b), Dy =0 on G. By Lemma 5.9 (a)
for the case p = 1, we have v = 0 on G which, according to Lemma 5.6 (d),
implies that fis pluriharmonic. Hence by Lemma 5.6 (c), D{ = 0 on G.

5.11. Lemma. Suppose f is pluriharmonic on G. If rankcﬁf < g at every
point of some nonempty open subset H of 3G, then rank c 0f < q at every point of
G.

Proof. Take a connected open subset U of N such that U N dG is non-
empty and is contained in H. Let ¢ = /\ %9f). Since rank.df < q at every
point of H, ¢ vanishes at every point of U N 0G. From the pluriharmonicity of
f it follows that v =0 on G. Extend ¢ to $ on G U U by setting § =0 on
U— G. Since g =0 on U U 3G, and the differential operator v is of first
order, it follows that v¢ = 0 on G U U in the sense of distributions. Hence

(5.11.1) g9V, =0 onGUU

in_the sense of distributions. From the ellipticity of the differential operator
gk ViV, we conclude that ¢ is smooth on G U U and (5.11.1) holds in the
usual sense. Since ¢ = 0 on the nonempty open subset U — G of G U U, from
the identity theorem for solutions of second-order elliptic equations [2] it
follows that = 0 on G U U. Hence rank - 0f < q at every point of G.

512.Lemma. LetQ € Gandl <p<n-— 1.

(a) If rankg df = 4p — 3 at Q, then either rank . df = p or rank ¢ af=p at
Q.
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) IfF (NPQf) Ndf=0at Q and rank3f =p + 1 at Q, then 3f = 0. The
statement remains true when d and 9 are interchanged.

(c) Suppose rankg df = max(4p — 3,2p + 1) at Q. If (/\ PQf) N of and
(/\NP(3f)) N of both vanish at Q, then either 3f = 0 at Q or 3f = 0 at Q.

Proof. (a) Using Re f*= 1(f*+ f% and Im f* = A/2/-T)(f* = 9 to
compute rank g df, we conclude from rank ; df = 4p — 3 at Q that

(5.12.1) (7\1 d(fo+ f%)

p=1

4p—3 -
A(Qﬂﬁ—ﬂﬂ

is nonzero at Q for some (not necessarily distinct) indices a, - - a4, 3 and
some 1 </<4p—2 Weusedf*=09f*+ 3f* and df* = 3f* + 3 to write
the expression (5.12.1) as a linear combination of terms of the form

k r K _
(5.12.2) (/\afﬁ~)/\( N 5f’3n)/\( N afﬁo)/\
k=1

p=k+1 o=r+1

4p—3
N afﬂf).
T=s+1

At least one expression of the form (5.12.2) is nonzero at Q. Since each of the
four factors in that expression is nonzero at Q, we have

rank . 9f + rank . 9f + rank . 9f + rank. 3f =4p — 3
at Q. From rank - df = rank - 0f and rank . 3f = rank . 3f it follows that either
rank - 0f = p at Q or rank 0f = p at Q.

(b) Let r = rank . 3f. We can choose local coordinates at Q and at f(Q) such
that 3f* = dw® for 1 < a <r, and 3f# = 0 for B > r. Take y and i arbitrarily,
and we want to show that d,fY =0 at Q. Since r = p + 1, we can choose
1 < a, --- @, <rso that they are all distinct and all different from i. Then

N ANFFE AT = (BT )dWT A - Adw Adw .

From the vamshmg of (N\?(df)) Ndf at Q it follows that 9 ), /Y =0 at Q for
JFa . In particular, 9,fY =0 at Q. The statement with 3 and 9
interchanged is proved analogously.

(c) Assume that neither df nor df vanishes at Q and we want to derive a
contradiction. By (a), either rank . df = p or rank.df = p at Q. We consider
only the case rank ¢ 3f = p at Q, because the other case is completely analo-
gous. By (b), rank ¢ af = p- We can choose local coordinates at Q and at f(Q)
so that 3f* = dw® for 1 < a < p, and 3f# = 0 for 8 > p. As in the proof of
(b), it follows from the vanishing of 3f' A - -+ A3f? Adf7 at Q that 3f7=0
for all y and all p <j < n. Hence both 9, f and 9;f vanish for p <j < n. In the
computation of rankg df we can ignore the variables w? +*1... w" Thus
rank g df < 2 p and we have a contradiction.
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S513.Lemma. Letl<p<n-—1landQ € G. Assume that at Q
(5.13.1) uﬂysf‘“f glgl = 0.

Suppose T,, is 1-seminegative in the dual Nakano sense at f(Q), and the
bisectional curvature of M is strongly p-nondegenerate at f(Q). Suppose rank  df
=2p+ 1at Q. If either (/N?(3f)) Naf or (/\P(3f)) N df vanishes at Q, then
either 3f or df vanishes at Q.

Proof. We consider only the case (/\?(3f)) Adf =0 at Q, because the
other case is completely analogous. Let r = rank df at Q. We assume that
r>0, and we are going to prove that 3f =0 at Q. By Lemma 5.12(b) it
suffices to consider the case r < p.

Kerdf is a real subspace of real dimension<2n —2p — 1 in the real
tangent space Ty , of N at Q (when N is reparded as a real manifold). Let Gr
be the Grassmannian of all complex linear subspaces of complex dimension
p+ 1in Ty, (when Ty , is given the complex structure from N). Take a real
linear subspace F of real codimension 1 in Kerdf. Since dimg F<2n —2p
—2, the set of all L € Gr with L N F = 0 is dense in Gr (see e.g. [53, p. 85,
Lemma 1]). Thus the set of all L € Gr with dimR L N Kerdf <1 is dense in
Gr. Hence we can choose normal coordinates w',- - -, w” of N at Q such that if
we denote by L the complex linear subspace of Ty , spanned over R by Re 3%;,
Im;% (1 <i<p), thendimg L N Kerdf < 1and 3f| L # 0. Let s be the rank
of 8 f | L over C. Then 1 < s < r < p. Choose local coordinates z* of M at f(Q)
such that 9f*| L = dw* for 1 <a <sand 9f?|L =0 for B > s.

Fix1<i<s<j<p+ 1. Thenf* = 0for all @, and f# = 8, (the Kronecker
delta) for all B. Since w',- - -, w" are normal coordinates at Q, we have g, ;= §,,
at Q. Since T,, is 1-seminegative in the dual Nakano sense at f(Q), it follows
from (5.13.1) that at Q

Rog (FP57 = 1P12) (R — ) = 0.
Hence
0= 3 Raﬁya(_fjﬁsai)(‘];’ysai) = 2 tﬁw]j'f
a,B,y,0 B,y
Let{,, = (1<p<s)andn, =2, [ 3 (s<v<p+ 1atQ Then
Rofiln & Moy =0 (1<p<s<w<p+1).

It follows from the strong p-nondegeneracy of the bisectional curvature of M
at f(Q) that n(, ), - -,n,+) cannot be C-linearly independent. There exist
complex numbers a (s <v<p + 1) not all zero such that 22X a,n,, = 0.
Let X=23F*! |a =ReX, and ¥,=Im X at Q. Then Y,,7, are

Vaw ’
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R-linearly independent elements of L. Since X(f)=0 and X(f) =0, it
follows that (df )(Y¥,) = 0 (p = 1,2), contradicting dim L N Kerdf < 1.

5.14. Theorem. Let M be a Kdihler manifold whose holomorphic tangent
bundle T,, is 1-seminegative in the dual Nakano sense. Let G be a relatively
compact subdomain with smooth boundary in an n-dimensional Kihler manifold N
such that G is hyper-(n — 1)-convex. Let f: G —» M be a harmonic map smooth
up to 3G such that 9,f =0 on G. Assume that one of the following three
conditions (a), (b), (c) is satisfied:

(a) 9G is strongly hyper-(n — 1)-convex at some point of 9G.

(b) There exists 1 <p < n — 1 such that (i) 9G is hyper-(n — p)-convex, (ii)
T,, is p-negative in the dual Nakano sense, and (iii) rank g df = max(4p — 3,2p
+ 1) at some point Q of G.

(c) There exists 1 <p <n — 1 such that (i) 9G is hyper-(n — p)-convex, (ii)
T,, is p-negative in the dual Nakano sense, (iii) the bisectional curvature of M is
strongly p-nondegenerate, and (iv) rankg df =2p + 1 at some point Q of G.
Then f is holomorphic when 0G is nonempty, and f is either holomorphic or
antiholomorphic when 3G is empty.

Proof. We continue to use the notations we have been using in this section.
Let p be the positive integer given in condition (b) or condition (c). When
condition (a) is satisfied, we set p = 1. The conclusion for condition (a) follows
from Lemmas 5.10, 5.9 (b) both for the case p = 1, and Lemma 5.11 for the
caseq = 1.

We now assume the common subconditions (i) and (ii) of conditions (b) and
(c). By Lemmas 5.10 and 5.0(a), we have the vanishing of the expression
(5.9.2), which, by the p-negativity of T), in the dual Nakano sense, implies
(AP3f) ANaf=0 on G. By applying the same argument to the Kihler
manifold which is the complex conjugate of N instead of to N, we conclude
that (A P(df) Adaf=0onG.

When condition (b) is satisfied, it follows from Lemma 5.12 (c) that either 9f
or 9f vanishes identically on some open neighborhood of Q in G and hence on
all of G because of the harmonicity of f (cf. [53, p. 88, Prop. 4]).

Since 9G is hyper-(n — 1)-convex and T, is 1-seminegative in the dual
Nakano sense, it follows from Lemma 5.9 (a) that (5.13.1) is satisfied at every
point of G. When condition (c) is satisfied, it follows from Lemma 5.13 that
either 9f or 9f vanishes identically on some open neighborhood of Q in G and
hence on all of G.

What remains to be proved is that when 9G is nonempty and condition (b)
or (c) is satisfied, 9f cannot vanish identically on G. Suppose the contrary.
Since 9,f =0 on 3G, it follows that rank.df <1 at every point of 3G. By
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Lemma 5.11, rank. df <1 at every point of G. Thus ranky df <2 at every
point of G, contradicting rankpdf=2p +1=3atQ.

5.15 Remarks. 1. In Theorem 5.14, condition (c¢) implies condition (b)
because of Remark 2 of §5.8. We give a direct proof of the case of condition
(b) here because its proof is much easier than the proof of the case of condition
(c).

2. Instead of using the v Bochner-Kodaira technique as is done here, we
can also use the 39 Bochner-Kodaira technique to prove Theorem 5.14. We
give the key step of such an approach here. We first show that 93 =0 by
considering the integral of Bé(ha,; af* A 3ff A w""?) over G, where w is the
Kihler form of N. The boundary term has to be taken care of as in §3.8. Then
we consider

aé(hall;l T hdpﬁ-péfal ANRE /\Sfapafﬁ_] AREE /\af—B: N w”_p_l)
p
- 2 h"‘lﬂ_l o h“u—|E»~1R>\ﬁﬂu5yhav+1/§v+| e hapﬁ_p(afx A W + W A 5f)\)
v=1

AFIN - AJfD AN A - A fBr A P!

2 ha.ﬁ. hay R e, ha,5, 0 N O
NBFUN - N NI N - ADfBr A !
(because Rz, z is symmetricin A, a,, and
af* A 9f% is skew-symmetric in A, a,)
= (1" p((n—p—1)! )qualﬁlf,, z,ﬁ"‘x e e

ho5 .- 'ha,,l;pgiljl .. -gip+ljp+l’

B

and integrate it over G. Again we have to take care of the boundary term as in
§3.8. The computation of the curvature term by using the 39 Bochner-Kodaira
technique is easier than by using the v Bochner-Kodaira technique, because
skew-symmetrization is a built-in process in the exterior algebra of forms.
However, when one uses the v Bochner-Kodaira technique, it is slightly easier
to deal with the boundary term and is by far much easier to get the D* and D
terms for a general smooth map satisfying the tangential Cauchy-Riemann
equations at the boundary. We choose the ¥ Bochner-Kodaira technique here,
because we want to have the formula in §5.7 for a general smooth map
satisfying the tangential Cauchy-Riemann equations at the boundary.
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5.16. Theorem. Let M be a compact Kdihler manifold of complex dimension
m =2 whose holomorphic tangent bundle T,, is 1-seminegative in the dual
Nakano sense. Then M is strongly rigid (in the sense that any compact Kihler
manifold which is a homotopic to M must be either biholomorphic or antibiholo-
morphic to it) if one of the following two conditions is satisfied:

(a) Ty, is p-negative in the dual Nakano sense for some p < min(m — 1, =F1),

(b) T,, is (m — 1)-negative in the dual Nakano sense, and the bisectional
curvature of M is strongly (m — 1)-nondegenerate.

Proof. Since T,, is 1-seminegative in the dual Nakano sense, the sectional
curvature of M is nonpositive. By the theorem of Eells-Sampson [18], if N is a
compact Kéhler manifold homotopic to M, then we can find a harmonic map
f: N > M which is a homotopic equivalence. Since ranky df = 2m at some
point of N, it follows from Theorem 5.14 that f is holomorphic or antiholomor-
phic. For every P € M, f~!(P) is a subvariety which must be 0-dimensional
otherwise the homology class represented by f~!(P) is mapped to 0 by f,
contradicting that f is a homotopy equivalence. Since the degree of f must be
one, f is a homeomorphism and is therefore either a biholomorphism or an
antibiholomorphism.

5.17. Theorem. Let M be a Kihler manifold whose holomorphic tangent
bundle T,, is 1-seminegative and p-negative in the dual Nakano sense. Let N be a
compact complex submanifold of M. Then the deformation of N as a complex
submanifold of M agrees with the deformation of N as an abstract complex
manifold if one of the following two conditions is satisfied:

(a) The complex dimension of N is = max(2p — 1, p + 1).

(b) The bisectional curvature of M is strongly p-nondegenerate, and the
complex dimension of N is = p + 1.

Proof. This follows from Theorem 5.14 and the method of Kalka [32]. The
only thing we have to show is that every holomorphic cross section s = 5“3 /9z*
of Ty, | N over N must be identically zero. Let P be the point of N where the
maximum of the pointwise square norm | s |> of s on N is achieved. Let n be the
complex dimension of N, and let X, = £,0,/3z°% 1 <» < n, be holomorphic
tangent vector fields of N defined on an open neighborhood of P so that they
are C-linearly independent at P. Then for 1 < » < n we have at P

0=X,X,|s|*=| Vxs |+ R,5s88,E8,s7s°,
where R ;.5 is the curvature tensor of M. Since n = p + 1 and the bisectional

curvature of M is p-nondegenerate (see Remark 1 of §5.8), it follows that s
vanishes at P. Hence s is identically zero on N.
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5.18. Theorem. Let M be a complete Kihler manifold whose holomorphic
tangent bundle T,, is 1-seminegative in the dual Nakano sense. Let N be a Kihler
manifold of complex dimension n, and G be a relatively compact subdomain with
smooth nonempty boundary in N such that dG is hyper-(n — 1)-convex. Let
@: 3G —> M be a smooth map satisfying the tangential Cauchy-Riemann equation
of 3G. Suppose @ can be extended to a continuous map ® from G to M. Then ¢
can be extended to a smooth map from G to M, which is holomorphic on G if one
of the following three conditions is satisfied:

(a) 3G is strongly hyper-(n — 1)-convex at some point of 9G.

(b) There exists 1 < p <n — 1 such that (i) 0G is hyper-(n — p)-convex, (ii)
T, is p-negative in the dual Nakano sense, and (iii) either rank g dp = max(4p
— 3,2p + 1) at some point of G or ®,: Hq(G_, dG,R) > H(M, 9(3G),R) is
nonzero for some g = max(4p — 3,2p + 1).

(c) There exists 1 <p <n — 1 such that (i) 9G is hyper-(n — p)-convex, (ii)
T, is p-negative in the dual Nakano sense, (iii) the bisectional curvature of M
is strongly p-nondegenerate, and (iv) either ranky do = 2p + 1 at some point of
3G or @,: H(G,dG,R) - H(M, p(3G),R) is nonzero for some g =>2p + 1.

Proof. Since M is complete and has nonpositive sectional curvature, by
Schoen’s result [50, p. 115] there exists a harmonic map f: G -» M smooth up to
9G such that f agrees with ¢ on 9G and f is homotopic to @ relative to dG. Now
the desired result follows from Theorem 5.14. The condition of ®, being
nonzero is used to conclude that rank  df = g at some point of G.

5.19. Remarks. 1. In Theorem 5.18, instead of assuming that M is com-
plete, we can assume that M is compact with convex boundary. In that case we
use Hamilton’s result [28] instead of Schoen’s result to get the harmonic map f.

2. Wood [65] gave an extension theorem proved by extending to the case
with boundary the method given in [53] of showing the complex-analyticity of
harmonic maps. Wood does not assume any hyperconvexity condition on the
boundary of the domain space and claims that the boundary term which
occurs in the proof automatically vanishes because the given map satisfies the
tangential Cauchy-Riemann equations. His claim and his final results are both
incorrect. His argument can be made to work only when it is possible to
choose, in his notations, a local coordinate system z',- - -,z™ at p such that 9.X
is defined by Im z™ = constant in a neighborhood of p. The existence of such
a local coordinate system implies that 0 X is Levi flat at p.

3. After the author wrote up this paper, he received a preprint from S.
Nishikawa and K. Shiga [42] in which they applied to the case with boundary
his 39 Bochner-Kodaira method [53] and proved the following. Let M, N be
complete Kihler manifolds of complex dimension » = 2. Let D, C M and
D, C N be relatively compact subdomains in M and N with smooth boundaries
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0D, and 0D,. Suppose N has adequately negative curvature in the sense of [53,
p. 84], and 0D, is pseudoconvex (or more generally hyper-(n — 1)-convex). If
f: 9D, - 9D, is a smooth map which satisfies the tangential Cauchy-Riemann
equations and extends to a homotopy equivalence of D, and D,, then f extends
to a biholomorphic map from D, to D, diffeomorphic up to the boundary.

6. Negativity of Einstein bundles

6.1. Let M be a Kihler manifold of complex dimension n with Kahler
metric g, 4dz'dz’. Let E be a holomorphic vector bundle with Hermitian metric
h,j; along its fibers. Let ©,5= — V-1, 4dz'dz’ be the curvature form of E.
Let Qaﬁ-z g”ﬂaB-,.j-.

Definition. E is said to be Einstein if there exists a real-valued function k
on M such that @,z = kgh 5 at every point of M.

For every point P of M let x z(P) be the largest eigenvalue of the Hermitian
form

(gai) . Qaﬁij{aigﬁj .

That is, x; equals the supremum of £,z £*¢% for all ({*) satisfying
haﬁgij{aigﬁj =L

6.2. Lemma. Suppose E is Einstein, and 0 < q < n is an integer. If k; > qx g
(respectively k= qxg) at some point P of M, then E is (n — q)-negative
(respectively (n — q)-seminegative) in the dual Nakano sense at P. Hence if
kg = qXg on M with strict inequality at some point, then H*(M, E) = 0 for
v<gq.

Proof. Choose local coordinates of M at P and fiber coordinates of E at P
such that g,-=3§;; and h,z= 8,5 Let { - be a nonzero set of complex
numbers which is skew-symmetric in the (n — g)-tuple 1, of indices. Let

J, I, p
gon = 2 Sgn( ‘l]...;)gln—q'

9
I

n—gq
By Lemma 3.6, at P

1

— 2 Qb G

(n—q—1)! @Byt Iy g Pelemgmt Solnmgt
1 -— 1 —_—

== 2 Qa-gal é g, E Qaﬁ-sfasl_ g‘BJ_.,

q!a»B,Jq B q Bq (q—'l)' l’l;B’S,I,Jq_l t 1 °BtJy

Kg 2 XE 2
= — P A S
q! a,)‘d]qlgaJJ (q_ 1)' 2 Igaslq_ll

° a,s,.lq_l

Kg — gx
=ZE "X 3 e 1
q' a,J !



98 YUM-TONG SIU

The last statement follows from the v Bochner-Kodaira technique (1.3.5).
g.e.d.

For the special case where E is the holomophic tangent bundle T,, of M,
there is a trick of Calabi-Vesentini [12] which can be used to improve the result
of Lemma 6.2.

6.4. Lemma. For a Kdhler-Einstein manifold M of complex dimension n, the
holomorphic tangent bundle T,, of M is (n — q)-negative (respectively (n — q)-
seminegative) in the dual Nakano sense at P if kr, > g+ Dx7,, (respectively
kr, = 3(q + Dxy, ) at P.

Proof. We choose local coordinates of M at P such that g,-= §,; at P. To
use the same notations as in §6.3, instead of R, ; ki We use Qaﬁs, to denote the
curvature tensor of T),. Since {4,/ is symmetric in &, s and in B, ¢, it follows
that the Hermitian form

(6°) sz.,gs;ow?ﬁ

factors through the orthogonal projection 7: - S?T,,, where S’T,, is the
bundle of symmetric contravariant 2-tensors. At P the Hermitian form

as 1 as_
(0 ) Hi(saﬂast + 6oztaﬁs)o 0%
sends 6 € T,;” to the square norm of =(6). Hence at P
R 1 —_—
(6.4.1) Qogsi0 05 < x7,,5 (800, + 80,8, )0% 07

Let {7 - and £, s, be as in §6.3, when F is replace by 7,,. Let

q
P, E(é&u £ (B),."'jq)’

1 q
‘P/’Jq EE £BJ., 2 g/,m By g
p=1
whereJq =Jp, - “sJg)- Then

(6.4.2) €51, = Pas, T Yu,-

q

Since g J, is a sum of ¢ + 1 tensors each of which is symmetric in two indices
and since y;, J, is skew-symmetric in all of its ¢ + 1 indices, it follows that

(6.4.3) 2 Pps¥ps, = 0-
B» Jq
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By (6.4.1) we have at P
2 Qaﬁ-stfaqu_l gﬁ./q_l

a,B,s,t, T,
1 u —
g 2 2 Qagsjbaji -4y 87,
a,B,s,J, p=1
1 N
= — X1y, E 2 ( sj“ + 8aj,,8Bs)£aj,- ()t g g/3],,

q aBstl

XTME 2(531 § (B, )5&

q+1

2q XTM 2 q:’BJ 5/31

_q+1
Ty XTu 2 |§BJ,, *
q B.J,
by (6.4.2) and (6.4.3). We now use Lemma 3.6 to conclude, as in the proof of
Lemma 6.3, that

1 e
- _ B «
(r - q— 1)' a,B s?[ QGB“{ SI"_"_'{ thy—g—1
JBos 1y

1

. q+1
= F(KTM ) XTM) 2 lgﬁJq|2
! g1,

6.5. Remarks. 1. By Remark 2 of §4.1 and Lemma 4.3, the conclusion of
Lemma 6.4 is equivalent to the 1-negativity of A"~ 9T, in the dual Nakano
sense which is equivalent to the Nakano 1-positivity of @},79.

2. From the v Bochner-Kodaira technique (1.3.5) and Lemma 6.4 it follows
that H*(M, T,,) =0 for p<gq and H*(M, A" T),))=0forv<nif Mis a
compact Kihler-Einstein manifold with k7, = 3(¢q + 1)xz, on M and strict
inequality at some point of M.

3. The k-negativity of T, in the dual Nakano sense for an appropriate k is
the underlying reason why the vanishing theorems proved in [12] by Calabi-
Vesentini hold.

4. Tt is unknown whether A*T,, is (n — g + 1 — k)-negative in the dual
Nakano sense if kr, = 3(qg + Dxr, -

6.6. We apply the above considerations to the case of bounded symmetric
domains, and compute the negativity of the tangent bundle in the dual Nakano
sense and the strong nondegeneracy of the bisectional curvature. For the
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negativity of the tangent bundle in the dual Nakano sense we use Lemma 6.4
and the computation given in [11], [12] of the eigenvalues of the curvature
operator. For the strong nondegeneracy of the bisectional curvature we use the
computation concerning the classical domains given in [55] and the exceptional
domains given in [66].

Recall that for an n-dimensional Kihler manifold M the Hermitian form
(6.6.1) (§* )Rz ™8
factors through the orthogonal projection Tye> — S2T,,. Hence the sum of its
eigenvalues for the subspace of symmetric 2-tensors equals its trace g'/g*'R, i
on T,3? which, when M is Kihler-Einstein and of complex dimension n, equals
nkr, , where g, -is the Kiahler metric of M. In the following we will denote k7,
and x, simply by k and x. _

A. Let D! be the set of all complex m X N matrices Z such that I, — 'ZZ is
positive definite, where I, is the n X n identity matrix, ‘Z is the transpose of Z,
and Z is the complex conjugate of Z. By [12], for the case M = D! the
Hermitian form (6.6.1) has the following eigenvalues: 2 with multiplicity
Imn(m + 1)(n + 1), and -2 with multiplicity mn(m — 1)(n — 1). (Note that
our sign convention for R,z 5is opposite to that of [11], [12].) Hence x = 2. It
follows from dim¢ D/, = mn that

K= —":—n(2 X gmn(m+ 1)(n+1) =2 X tmn(m — 1)(n — 1)) =m + n.
Thus k> 4(q+ 1)x for g <m —n — 1. The tangent bundle of D] is (m
—1)(n — 1) + 1)-negative in the dual Nakano sense. By [55], the bisectional
curvature of D! is strongly (m — 1)(n — 1) + 1)-nondegenerate.

B. Let D!’ be the set of all complex skew-symmetric n X n matrices Z such
that I, —'ZZ is positive definite. By [12], for the case M = D/’ the Hermitian
form (6.6.1) has the following eigenvalues: 2 with multiplicity $n%(n? — 1),
and -4 with multiplicity (7). Hence x = 2. It follows from dim¢ D/ =
in(n — 1) that

1

k= m(zx tn2(nt = 1) —4x (3)) =20n—1).

Thus k > 3(q + 1)x for ¢ < 2n — 3. The tangent bundle of D" is (3(n — 2)(n
— 3) + 1)-negative in the dual Nakano sense. By [55), the bisectional curvature
of D!" is strongly (3(n — 2)(n — 3) + 1)-nondegenerate.

C. Let D' be the set of all complex symmetric n X n matrices Z such that
I, —'ZZ is positive definite. By [12], for the case M = D/’ the Hermitian form
(6.6.1) has the following eigenvalues: 4 with multiplicity (";3), and -2 with



COMPLEX-ANALYTICITY OF HARMONIC MAPS 101

multiplicity 1;n%(n* — 1). Hence x = 4. It follows from dim ¢ D" = in(n + 1)
that

= ——%n(n: 5 (4>< (" I 3) —2X §n*(n* — 1)) =2(n+1).
Thus k > (g + 1)x for g < n. The tangent bundle of D" is (3n(n — 1) + 1)-
negative in the dual Nakano sense. By [55] the bisectional curvature of D! is
strongly (3n(n — 1) + 1)-nondegenerate.

D. Let D!V be the set of all complex column n-vector z with 2z < 1 and
227 <1+ |'zz|%. By [12], for M = D" the Hermitian form (6.6.1) has the
following eigenvalues: 2 with multiplicity 3(n — 1)(n + 2) and 2 — n with
multiplicity 1. Hence x = 2. It follows from dim¢ D" = n that

n=%(2X%(n—1)(n+2)+2—n)=n.

Thus k > 1(q + 1)x for ¢ <n — 1. The tangent bundle of D" is 2-negative in
the dual Nakano sense. By [55] the bisectional curvature of D!V is strongly
2-nondegenerate.

E. Let DV be the exceptional bounded symmetric domain Eg/Spin(10) X T'.
By [11], for the case M = DV the Hermitian form (6.6.1) has the following
eigenvalues: 1 with multiplicity 126, and -3 with mitiplicity 10. Hence x = 1.
It follows from dimcD" = 16 that x = (126 — 3 X 10) = 6. Thus x =
(g + V) for g <11. The tangent bundle of D" is 6-negative in the dual
Nakano sense. By [66] the bisectional curvature of DY is strongly 6-nondegener-
ate.

F. Let D"’ be the exceptional bounded symmetric domain E7 /E® X T'. By
[11], for the case M = D"’ the Hermitian form (6.6.1) has the following
eigenvalues: 1 with multiplicity 351, and —4 with multiplicity 27. Hence x = 1.
It follows from dimc D'’ =27 that k = 25(351 — 4 X 27) = 9. Thus x>
1(q + D)x for q <17. The tangent bundle of D" is 11-negative in the dual
Nakano sense. By [66] the bisectional curvature of D! is strongly 11-nondegener-
ate.

6.7. Theorem. Let M be a compact quotient of an irreducible bounded
symmetric domain D, and N a compact Kihler manifold of complex dimension n.
Let f: N > M be a harmonic map, and r the maximum of the rank of df over R.
Then f is either holomorphic or antiholomorphic if r = 2p(D) + 1, where p(D))
=(m—1(n—1)+1,pD")=4(n—D(n—3)+ 1, p(D/") = $n(n — 1)
+ 1, p(D/¥) =2, p(D¥) =6, and p(D"") = 11. In particular, any compact
quotient of an irreducible bounded symmetric domain of complex dimension = 2 is
strongly rigid.
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This follows from Theorems 5.14 and 5.16, and confirms the conjecture of
[55, §6].

6.8. Remark. Since 2 X 16 > max(4 X 6 —3, 2X 6—1) and 2 X 27 >
max(4 X 11, 2 X 11 + 1), to conclude from Theorem 5.16 the strong rigidity
of the compact quotients of the two exceptional domains DV and D'’ one
needs only the k-negativity of the tangent bundle in the dual Nakano sense for
the appropriate k and does not need to know the strong k-nondegeneracy of
the bisectional curvature. However, the computation given in [11] of the
eigenvalues of the Hermitian form (6.6.1) of the curvature operator for the two

-exceptional cases is by no means simple. The simplest way to get the strong
rigidity of the compact quotients of the bounded symmetric domains is the one
given in [55].

The following theorems are obtained by applying Theorems 5.14, 5.17, and
5.18 to the case of a compact quotient of a bounded symmetric domain. The
number p( D) carries the same meaning as in Theorem 6.7.

6.9. Theorem. Let M be a quotient of an irreducible bounded symmetric
domain D, and N a compact complex submanifold of complex dimension > p(D).
Then the deformation of N as a complex submanifold of M agrees with the
deformation of N as an abstract complex manifold.

6.10. Theorem. Let M be a quotient of an irreducible bounded symmetric
domain D. Let N be a Kihler manifold of complex dimension n, and G a
relatively compact subdomain with smooth nonempty boundary in N such that 0G
is hyper-(n — 1)-convex. Let f: G —» M be a harmonic map smooth up to 0G such
that 5,, f=00n0G. Then f is holomorphic if either

(1) 9G is strongly hyper-(n — 1)-convex at some point of G, or

(ii) 9G is hyper-(n — p(D))-convex and rank g df = 2p(D) + 1 at some point
of G.

In particular, a smooth map @: 3G — M with 3,9 = 0 on 3G can be extended to
a smooth map from G to M which is holomorphic on G if ¢ can be extended to a
continuous map ®: G — M and if one of the following two conditions holds:

(1) G is strongly hyper-(n — 1)-convex at some point of 3G.

(ii) 9G is hyper-(n — p(D))-convex and either rankg de =2p(D)+ 1 at
some point of 0G or ®,: Hq(a, dG,R) - H (M, p(3G),R) is nonzero for some
q=2p(D)+ 1.

6.11. Besides using the eigenvalues and the dimensions of the eigenspaces
of the Hermitian curvature operator, at least in the case of classical bounded
symmetric domains one can also straightforwardly use the explicit form of the
curvature tensor and direct computation to get the numbers ¢ so that the
tangent bundles are g-negative in the dual Nakano sense. To illustrate this
method we do the cases D! and D!".
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The Case of D} ,. For every double index a, we denote its first component by
o', and its second component by a” so that a = («’, a”). The double index a
with first component o’ is said to be on the a’th row. At Z = 0 the curvature
tensor of the invariant metric with potential log det(Z, — 'ZZ)"! satisfies
2

+ 2

o, B

2
D@ @

o

Rt = 3

"
a,

S g a7

a

”

It follows that

2 Raﬁyﬁ-{aﬂ)\,-~~)\q§67}\l---)\q
@B 1.8,
2
= 2 ‘ 2 g‘(az’, a’)(a', BN Ay
o

a, B A, A,

2

+ > ‘zg(a',a")(ﬁ', @A
« B A LA e

To prove that the tangent bundle of D! is ((m — 1)(n — 1) + 1)-negative in
the dual Nakano sense, it suffices to show that for g=mn — m — n + 1 the
equations

2§(a',a")(a’,3")>\,~ A, T 0,
(6.11.1) e
Ef(a',a")(ﬁr, a N, 0
o

imply the vanishing {,g, ...\, When it is skew-symmetric in 8, A,,---,A . We
are going to prove this by inductionon m + n = 3.

We observe that, if either (o, ¢’') = (", ') for all double indices a =
(o, &) or 7(a, ") = (o(a’), ') for all double indices a = (&', a”’), where o is
a permutation of {1,- - -,m}, then the transformation

T fam.-~->\q"’ §f<a)r(ﬁ)f(x.>-~-r(xq)

leaves the set of equations (6.11.1) invariant. We further observe that the
component fam,---xq vanishes if every double index on the same row as the
index B is one of A,- - -,A ,, as one can easily see from the second equation of
(6.11.1) and the skew-symmetry of {,gy ... in B, A,-- “sA,. That is, the
component {g) ... A, vanishes if there is some row such that all indices on that
row belong to the set {8, Ay, - -, A }.

Consider the initial step of the induction where m + n = 3. We can assume
without loss of generality that m = 2 and n = 1. Every component {4, ... A,
vanishes for g = mn — m — n + 1 = 0, because B is the only index on its row.



104 YUM-TONG SIU

Assume now m + n > 3. Without loss of generality we can assume that
m=n. It follows from g=mn—m—n+1=mn—2m+ 1 that, for any
given set of indices Ay, - -, A o» €ither

(i) there exists a row such that every index on that row belongs to
{Aos Ape e uA ), or

(ii) there exist 1 < B8] < B; < m such that, for » = 1, 2, exactly one index on
the B;th row does not belong to {Aq, Ay, - ,A ).

According to our earlier observation, fyxo- A, vanishes in Case (i). Because
of the transformation 7,, for the proof of the vanishing of {,, ..., , it suffices
to consider Case (ii) with the additional assumption that 8; = m, y is not on
the mth row, and A; = (m, i + 1) for 0 <i < n — 2. Define

Pop, - py = g‘00\0"->\,.—zu,.—|~~nq

for indices @&, p,_y, - -,p, not on the mth row. We claim that ¢@,, ...
satisfies the following set of equations corresponding to (6.11.1):

Kq

m—1
2 P, o'y, Bryun--u, = 0 forall fixed 1 < a”, B” <n,

(6.112) !

n
2 Rw,axgam, n, = 0 forallfixed 1 <o, p'<m.
a’=1
The second equation is clearly satisfied. To verify the first equation, it suffices
to show the vanishing of

Pim, a’Y(m, B, py = g(m, @Yo+ Npa(m, By - g

This is clear, because by skew-symmetry it suffices to consider the case
(m, B”") = (m, n) and in this case every index on the mth row belongs to the
set {Ag,* -, A,_p,(m, B”), b, - - - .} Since the equations in (6.11.2) are satis-
fied, by induction hypothesis ¢,, ..., vanishes. Hence $ing--- A, vanishes.

The Case of D!V. At z = 0 the curvature tensor of the invariant metric with
potential ~log(l — 23|z, |* + | 2, 22 |*) satisfies

2 g—aa

«a

2 -
+2 3 |4 - g,
a*=B

Raﬁ-vs{‘xﬁ- §87 =4

It follows that

2 RaﬁyB{a,B}\,u-)\q fsyx,qu
ava Y 8, AIs' : ';}\q

:42

Ao,

2

2
+2 2 Ifapx,-uxq - fﬁax,-.-x
1A
a*p

Egaai,miq
o
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To prove that the tangent bundle of D!" is 2-negative in the dual Nakano
sense, it suffices to show that, for g = 1, the equations
g‘aa)\,n-)\ = O’

q

{uﬁ)\l...)\q = {pa)\l...xq fora # B

imply the vanishing of §aBA.~~->\q when it is skew-symmetric in B, Aj,---,A,.
This follows from the fact that §aﬁ>\.~~>\., is skew-symmetric in 8, A, and
symmetric in a, 8. For

§aﬁ>\r“7\q = —fax,pxz...xq = -fx,amsz\,,

= §>\|ﬁa>\z"~7\q = §B>\|¢!>\z“'?\q = —g‘pa)\l...)‘q = - aBA)-- A,

7. Curvature characterization of compact symmetric Kihler manifolds

7.1. Besides the strong rigidity of suitably negatively curved compact
Kiahler manifolds, another major application of the complex-analyticity of
harmonic maps is the curvature characterizations of the complex projective
space and the complex hyperquadric [56], [19], [54]. (For the projective space
Mori [39] obtained the stronger result of characterization by the ampleness of
the tangent bundle by methods of algebraic geometry.) The strong rigidity is a
result of the Bochner-Kodaira technique for vanishing theorems applied to the
9 differential of a harmonic map. For this the target manifold has to be
suitably negatively curved. We know that strong rigidity holds for a compact
quotient of any irreducible bounded symmetric domain of complex dimension
=2, [53], [55]. On the other hand, the curvature characterizations of the
complex projective space and the complex hyperquadric [56], [19], [54] are
proved by using the second variation formula for energy-mininizing harmonic
maps. For this the target manifold has to be suitably positively curved. So far
the curvature characterization of general compact Kihler manifolds has not
been found. In this section we will deal with this question of curvature
characterization. We will not use the method of energy-minimizing harmonic
maps. Instead, we will use the Bochner-Kodaira technique and holonomy
groups. The result we get is only a partial answer to the question of curvature
characterization. First we give a definition.

Definition. The bisectional curvature of a Kédhler manifold M is said to be
irreducible at a point P of M if it is not possible to decompose the holomorphic
tangent space T}, » of M at P into two nonzero orthogonal direct summands =
and H such that R, £'¢/n'n' = 0 for all§ € Zand alln € H.
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Clearly if the complex dimension of M is n, and the bisectional curvature of
M is strongly (n — 1)-nondegenerate at P, then the bisectional curvature of M
is irreducible at P.

7.2. Theorem. Let M be a compact Kihler manifold whose holomorphic
tangent bundle T,, is 1-semipositive in the dual Nakano sense. Suppose the
bisectional curvature of M is irreducible at some point P of M. Then either M is
an irreducible Hermitian symmetric manifold with respect to the given Kdhler
metric or the cohomology ring of M with coefficients in R is isomorphic to that of
the complex projective space of the same dimension.

7.3. Corollary. Let M be an irreducible compact Hermitian symmetric space
of rank > 1. Then any Kdhler metric on M with respect to which the holomorphic
tangent bundle of M is l-semipositive in the dual Nakano sense must be a
constant multiple of the standard invariant Kihler metric on M.

The rest of this section is devoted to the proof of Theorem 7.2 and Corollary
7.3.

7.4. Proposition. Let M be a compact Kihler manifold whose holomorphic
tangent bundle is 1-semipositive in the dual Nakano sense. Then every harmonic
(p, q)-form is parallel (i.e., has zero covariant derivative).

Proof. Let g, ~be the Kihler metric of M, and let P17, be a harmonic ( p, q)
form on M. Let

P q
Neit, i, = 21 Piy- (k) ip, Biy T T 2 Pri B, 8kjy
p=

v=1

where [, = (i}, - -,i,) and J, = (ji,...,j,)- Let

— plk . rsJ
F= R 0™
Then
P P 4 q9 P 9 q

F=3 S4,-3 Su,-3 Sm,+3 S,

p=1o0=1 p=1r7r=1 v=10—1 v=1r7=1

where

— pi fie- a...r‘] "7
I,‘,o — R rg‘pil---(k)“---ip‘/;g["[_ (pu (r ip qgl s ,

_ o T (S)e o o T
IIn-r =R rE(pir --(k)‘,n-ip.l;gi‘,l P w9 qurj s

— plk iy (Dgr i, oy
i, =R r5PLj (D, - 7,8k, @iy g,

_ ik T ids)i T
IV, = RSy, iy B, @0 g
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To calculate 1, , we first consider the case p = o.
— Rk i\
IM‘_ R ,(p,-l...(k)“...,-pJ;(P" (P I’ 9.

For p # o,

D v...'_‘]
"er‘Px, c(5)g i J‘P D Doty

vanishes, because R’” is symmetric in k, s whereas P\ k), -
R
skew-symmetric in k, s.

_ kr _ i (D iy (8)e
II'“, - R, r§q7i|‘"(k)‘,"’ipjr"(af"‘jq‘pll )”' 'pjl 9 )

_ i _ _ _ N a..."...(k)”...~
HI,, = R0, gy, @O0 00 Ja

=1I,
To calculate IV, we first consider the case v = 7.
v, = le(p’pf'r--(l')y---j; @lr/v (g

Forv #r

— Tojv (k) (8)y
IV, = REQp i,y fy @00 O

ks

skew-symmetricin /, r.
Combining these calculations together, we obtain

vanishes, because R’ is symmetric in /, r, whereas ¢, i

p JR—

_ k e g

F= 2 Rr‘pt'l~~-(k),,"~i,,.l;(plI iy
p=1

+ 2 Rs‘Plp,, B, - <P”" (e

14 q

e .(1')”. -(

.(s)d.."

P

_ k7 ) Dy s (),
23 2RIt igi iy g @O O

p=1r=1
_ k _ L, _\J, i, I sJ,
=pRoy 97t Ry @

_2quIkr's_(ka - l(pII,, 18,
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By (1.3.3) for the case of the trivial line bundle, we have
= = — F
2 2 2 _
Bell3 + 10*@lla, = lIVelly, 2p0q!

1 -
7.4.1 +—— [ R A
( ) 2(P_ 1)!q! 'l;’ r(pklp_l.]qq) ?

— __1___ I . IsJ,_,
2p!(g —1)! fMR P T
Since the holomorphic tangent bundle of M is 1-semipositive in the dual
Nakano sense, it follows that F < 0. Since d¢ and d*@ both vanish identically,
we have

— 1 - -
2 P ] __ 1,80,
A ey [ Kooz o

___1__ k — o -1,
20— gt J R 2

Applying the same argument to ¢ instead of ¢ we obtain

-1 - -
| 2 - ] . I,sJ,
||VWI!M<2P'(q_ 1)!./;‘4Ri(plp114_|(p !

1
+—+——— | R¥ 7
2(p—1)g! fM Pt J, P

Plp-idy

Adding the two inequalities together, we obtain [|Vell2, + [[vell3, < 0. Thus
@ is parallel. q.e.d.

The proof of Proposition 7.4 is a generalization of the method of Bishop-
Goldberg [8] and Goldberg-Kobayashi [21], because when p = ¢ =1 and
¢;;=\;8;, and g,-=8,;, we have F =3, ,R,zdA, — \))*. This method of
generalization was introduced by Meyer [37] who used it in the case of real
Riemannian manifolds. Later Ogiue-Tachibana [43] applied Meyer’s method
[37] to the case of effective harmonic forms on Kihler manifolds. (In conjunc-
tion with the paper of Ogiue-Tachibana [43] we would like to point out that
there exists no compact Kahler ‘manifold M of positive pure curvature operator
in the 'sense of [43], because in such a case 7, is Nakano 1-positive and
H'(M,9\,) vanishes by the Nakano vanishing theorem and Serre duality,
contradicting the existence of a Kihler form.) Proposition 7.4 can also be
proved by considering only the effective harmonic forms. The reason for using
the present method of proof is that this method of proof of Proposition 7.4 can
readily yield the following proposition which can be used to complete
Schneider’s scheme [49] of proving Barth-Lefschetz type theorems for compact
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symmetric Kéhler manifolds, though we will not pursue it further in this paper
because of the stronger results obtained by Morse theory (see §8).

7.5. Proposition. Let M be a Kihler manifold whose holomorphic tangent
bundle is 1-semipositive in the dual Nakano sense. Let X be a positive number =
the ratio of any two eigenvalues of the Ricci tensor of M at any point. Let G be a
relatively compact subdomain of M with smooth boundary 0G such that 3G is
hyper-k-convex. Let E be a Hermitian holomorphic vector bundle over M which is
Nakano 1-semipositive. Then HY(G, E ® QF,) vanishes if one of the following
conditions is satisfied:

(@ g=k,andq> Ap.

(b) g =k, g = Ap, and 0G is strongly hyper-q-convex at some point of 9G.
(c) g = k, g = Ap, and E is Nakano 1-positive at some point of G.

The proof of Proposition 7.5 differs from that of Proposition 7.4 only in the
following. From the E-valued harmonic ( p, ¢)-form (p‘;P i, we form 1} m,J, in the
same way, but in defining F we have to contract the index a of ng; j with the
corresponding index from 7. On the right-hand side of the cquaption corre-
sponding to (7.4.1) we have an additional boundary term and another addi-
tional term involving the curvature form of E. The conclusions of Proposition
7.5 result from this equation. The conditioin ¢ > Ap or g=Ap is used to
compare the two terms involving the Ricci tensor. The strong hyper-g-convex-
ity of G at some point of dG is used in the same way as in the proof of
Lemma 5.11.

We now continue with the proof of Theorem 7.2. For the rest of this section
M denotes the Kédhler manifold of Theorem 7.2.

7.6. The l-semipositivity of T, in the dual Nakano sense implies that the
bisectional curvature of M is nonnegative. Since the bisectional curvature of M
is irreducible at P, it follows from the method of proof of [54, p. 647, Theorem
3] that the second Betti number b,(M) of M is 1.

For the rest of this section, for Q € M, T), , means the real tangent space of
M when M is regarded as a real manifold. It is given the complex structure J
from the complex manifold M so that it is a C-vector space. Let H, be the
holonomy group of M at Q. Clearly H,, is a subgroup of the unitary group of
the C-vector space T), ,.

The Ricci tensor of M is positive definite at P, because the bisectional
curvature of M is irreducible at P, otherwise some decomposition of the
complex vector space T, » into a 1-dimensional complex linear subspace and
its orthogonal complement leads to a contradiction. According to [31], this
together with b,(M) = 1 implies that M is simply connected and irreducible in
the sense of the de Rham decomposition theorem [16]. Hence for Q € M, H,,
is connected and acts irreducibly on T} .
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7.7. Suppose M is not Hermitian symmetric (and therefore not Rieman-
nian symmetric) with respect to the given Kahler metric. We want to prove
that the cohomology ring of M over R is isomorphic to that of the complex
projective space of the same dimension. The case dim- M = 1 is clear. So we
assume dim: M = 2.

For Q € M let R? denote the Riemannian curvature tensor of M at Q, i.e.,
let RSy = VxVy — VyVx— Vixy for X,Y € T), 5, where Vy denotes the
covariant differentiation in the direction X with respect to the Levi-Civita
connection. Since M is not Riemannian symmetric, it follows from [51, p. 233,
Theorem 8] that for some Q € M the holonomy system {T}, ,, R?, H,} is not
symmetric in the sense of [51, p. 215]. By [51, p. 221, Theorem 4], the action of
H, on the unit sphere of T), , must be transitive. Hence the action of Hj, on
the unit sphere of T, p is transitive.

7.8. Define R’ by

R = h(R?),
Jren MR

where h(R?”) is the tensor obtained by the natural action of # on R”. Let ) be
the Lie algebra of Hp. Define as follows a Lie algebra g whose underlying
vector spaceis ) @ T, p:

(7.8.1) [4,B]=[4,Blinbford,BE b,
(7.8.2) [X,Y] =Ry for X,Y €T, 5,
(7.8.3) [4, X]=A(X)forA Ehand X € Ty, .

Because of [51, p. 213, Theorem 1], (h(R"))y y belongs to b for X,Y € Ty p
and & € Hp. Hence R’y ; belongs to §) for X, Y € T, . The Jacobi identity for
g is satisfied because

(7.8.4) [4, Ry y] = Ry 4vy = Ry ax)

for 4 €Y, and X, Y € T,  due to the invariance of R’ under the action of
Hp. So g is well-defined and is indeed a Lie algebra.

In the same way as one forms the Ricci tensor from a curvature tensor, one
forms the symmetric quadratic form (X, Y) on T, , from R’. That is, r( X, Y)
is the trace of the endomorphism

Zw Ry Y.

Being equal to the Ricci tensor of M at P averaged over the action of Hp, the
quadratic form r is positive definite.

Since Hp is compact, the Killing form B(-,-) of § is negative semidefinite
(30, p. 122, Prop. 6.6]. The Killing form B,(-,-) of g is strictly negative definite.
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For, when A € H,, it follows from (7.8.1) and (7.8.3) that

B(A4,4) =By(4,4) — 3 4,
i’j

due to the skew-symmetry of 4 = (4,;) with respect to an orthonormal basis
over R of the R-vector space T, . Moreover, when X € T,, p, we have
R’y 4(x) = 0 by (7.8.4), and it follows from (7.8.2) and (7.8.3) that

(7.8.5) B,(X, X) = —r(X, X).

Let G be the adjoint group Int(g) of g [30, p. 116]. Since B, is strictly
negative definite, G is a compact subgroup of the automorphism group Aut(g)
of g [30, p. 122, Prop. 6.6]. Let H be the analytic subgroup of G which
corresponds to the subalgebra ad (h) of ad (g). The adjoint representation
Ady, of Hp on b together with the action of Hp on T}, , defines a monomor-
phism from H, to Aut(g) whose image clearly equals H. This monomorphism
is compatible with the actions of H and Hp on T), p.

The self-map of g which sends X to —X for T, » and leaves every element of
b fixed defines an involutive automorphism s of g. The automorphism s of g
induces an involutive analytic automorphism ¢ of G such that the identity
component of the set of fixed points of o is H. Since H is compact, the pair
(G, H) of Lie groups is a Riemannian symmetric pair. Since the tangent space
of G/H at the point H is naturally isomorphic to T}, », and H acts effectively
on T, p, it follows that G acts effectively on G/H.

The restriction of —B, to T), , defines a G-invariant Riemannian structure on
G/H, which is clearly invariant under the complex structure operator J of Ty, p
because of (7.8.5). Hence G/H is a Hermitian symmetric space [30, p. 302,
Prop. 4.2]. By [51, p. 213, Theorem 1] and [30, p. 207, Theorem 4.1] the
holonomy group of G/H at the point H is equal to H. Since the action of H,
on the unit sphere of T, » (and therefore the action of H on the unit sphere of
the tangent space of G/H at H) is transitive, it follows that the Hermitian
symmetric space G/H is irreducible and of rank one. So H is the full unitary
group of the tangent space of G/H at H. Hence H) is the full unitary group of
Ty p-

7.9. Let ¢ be a harmonic (p, ¢)-form on M. By Proposition 7.4, ¢ is
parallel. Since H, is the full unitary group of T, » by §7.8, it follows that at P
the form ¢ is invariant under the full unitary group of T, ,. We can regard ¢
as a linear function on the set of all contravariant tensors £ = (&'t "%»/v"" Ja) of
type (p, q) at P. This linear function is invariant under the full unitary group
of T, p. By Weyl’s theory [64] of invariants of the unitary group (see [3, p. 291,
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Theorem (3.12)]), such linear invariants are zero when p # ¢ and are of the
form

(7'9'1) 2 c‘rgir e .qui'r(l)j-l T gif(p)i-p

when p = g, where ¢, € C, and the sum is over all permutations 7 of {1,---,p}.
Since Piyeoifio o, is skew-symmetric in i ,- - -,iﬂ an_djnj_,,- g it follows that
at P, ¢ vanishes when p # g and <p,~]...,-pj-l...j;ﬁ"""p!r"!r is of the form (7.9.1)
with ¢, = (sgn 7)c for some ¢ and for all + when p = q. Hence ¢ is a constant
multiple of w? at P when p = g, where w is the Kihler form of M. Since g is
parallel, ¢ is a constant multiple of w? on all of M. Thus the cohomology ring
of M over R is isomorphic to that of the complex projective space of the same
dimension. This concludes the proof of Theorem 7.2.

Observe that in the proof of Theorem 7.2 the irreducibility of the bisectional
curvature of M at one point is used only to show that b,(m) = 1 and the Ricci
tensor is positive definite at some point. For the proof of Corollary 7.3 the
assumption of the irreducibility of the bisectional curvature at some point is
not needed because the second Betti number is clearly 1, and the Ricci tensor
must be positive definite at some point due to the nonnegativity of the
bisectional curvature and the simple connectedness of the manifold [31].

7.10. Remarks. 1. In the last step of the proof of Theorem 7.2 one can
avoid using Weyl’s theory of invariants by using the following observation. The
cohomology ring of P, is isomorphic to the ring of all exterior forms at one
point which are invariant under its holonomy group, because any such an
exterior form at one point yields a harmonic form by parallel transport.

2. There is a Riemannian analog of Theorem 7.2 which can be proved in the
same way. In the Riemannian case the 1-semipositivity of the tangent bundle
in the dual Nakano sense is replaced by the nonnegativity of the curvature
operator of [37]. The irreducibility of the bisectional curvature at one point is
replaced by simple connectedness and irreducibility of the manifold in the
sense of de Rham and the positive definiteness of the Ricci curvature at one
point. The conclusion is that either the manifold is an irreducible symmetric
Riemannian manifold with respect to the given Riemannian metric or its
cohomology ring with coefficients in R is isomorphic to that of one of the
compact symmetric Riemannian manifolds of rank 1.

3. It is unknown whether the assumption in Theorem 7.2 of the 1-semiposi-
tivity of T,, in the dual Nakano sense can be weakened to the nonnegativity of
the bisectional curvature, and whether one can conclude that M is biholomor-
phic to an irreducible compact Hermitian symmetric manifold in all cases.
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8. Barth-Lefschetz type theorems

8.1. Schneider [49] introduced a scheme of using the vanishing theorem of
Grauert-Riemenschneider [22] for strongly hyper-g-convex domains to gener-
alize theorems of Barth-Lefschetz type [4], [5], [6], [29], [36] for submanifolds of
low codimension in the complex projective space (and submanifolds of codi-
mension 2 in the Grassmannian [7]) to the more general case of compact
symmetric Kihler manifolds. He encountered difficulties because the holomor-
phic tangent bundle of a compact symmetric Kédhler manifold is not Nakano
semipositive except in the case of the complex projective space. By using the
method of proof of Proposition 7.5, it is possible to overcome his difficulty.
However, Schneider’s proof of the strong hyper-g-convexity of the complement
of a complex submanifold in a compact symmetric Kéhler manifold seems to
be invalid, even for the special case of the complex projective space, except in
the obvious case of codimension one. For this and two other reasons given
below we do not complete Schneider’s scheme here. In the meantime Sommese
[58] announced some generalizations of the Barth-Lefschetz type theorems to
homogeneous compact complex manifolds with details to be given in a series
of papers quite a number of which have already appeared [59], [60], [61].
Moreover, if the complement of a complex submanifold of a compact Kahler
manifold is strongly hyper-g-convex, then one can easily get Barth-Lefschetz
theorems at the homotopy level by means of Morse theory under the very weak
assumption that the bisectional curvature of the compact Kihler manifold is
nonnegative. This can be achieved by using the second variation formula for
arc-length and by introducing an appropriate class of functions lying between
the classes of subharmonic and plurisubharmonic functions. We will devote the
rest of this section to this method of getting Barth-Lefschetz type theorems.

First we introduce the new class of functions which we need.

Definition. Let f be a real-valued C? function on a Kihler manifold M of
complex dimension n. Let 1 < g < n. The function f is said to be (strongly)
g-plurisubharmonic at a point P of M if for every local complex submanifold N
of M at P of complex dimension g the restriction of f to N is (strongly)
subharmonic at P when N is given the induced Kihler metric. In other words, f
is strongly g-plurisubharmonic (respectively g-plurisubharmonic) at P if for
any unitary g-frame 3"_, a}(9/3z') at P (1 < » < q) the expression

“ a2f i
E 02,0Z; 4 a,

1i,j=1 J

N7

v

is positive (respectively nonnegative) at P.
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For k > 0 the g-plurisubharmonicity of f is said to be = « at P if f — k(dp)>
is g-plurisubharmonic at P where d, is the distance function measured from P.

If g is a real-valued C? function such that g = f at P, and g = f on some
neighborhood of P, then the g-plurisubharmonicity of g at P is = the g-pluri-
subharmonicity of f at P.

Clearly (strong) n-plurisubharmonicity coincides with (strong) subharmonic-
ity and (strong) 1-plurisubharmonicity coincides with (strong) plurisubhar-
monicity. Except for the case ¢ = 1, (strong) g-plurisubharmonicity depends
on the Kahler metric.

8.2. Let M be a Kihler manifold with nonnegative holomorphic bisectional
curvature, and G a relatively compact subdomain of M with smooth boundary 9G.
Assume that 0G is strongly hyper-q-convex. Then there exists a smooth exhaus-
tion function on G which is strongly g-plurisubharmonic, where an exhaustion
function on G means a function approaching oo on 3G.

The proof of this theorem and its immediate consequences will occupy the
rest of this section. Let d; be the distance function from 9G. The exhaustion
function will be obtained by smoothing out 7 o (-d;), where 7 is a sufficiently
convex increasing smooth function. To apply this theorem to obtain Barth-
Lefschetz type theorems by means of Morse theory, it suffices to conclude the
existence of a smooth strongly g-pseudoconvex exhaustion function on G. (A
strongly g-pseudoconvex function means a function whose Levi form at every
point has no more than g — 1 nonpositive eigenvalues.) However, for this
method it is essential to assume that G is strongly hyper-g-convex instead of
merely strongly g-pseudoconvex, even if one only wants to conclude the
existence of a smooth strongly g-pseudoconvex exhaustion function on G. (The
strong g-pseudoconvexity of 3G means that the Levi form of the function
defining 0G has no more than ¢ — 1 nonpositive eigenvalues on the complex
tangent space of 0G at every point.) The difficulty is with the smoothing
process. If 9G is strongly g-pseudoconvex, then the continuous exhaustion
function 7 o (-d) is strongly g-pseudoconvex in the sense that for any point
there is a local complex submanifold of complex codimension ¢ — 1 so that the
restriction of 7o (—d;) to this submanifold is strongly plurisubharmonic. In
general one cannot smooth out such a continuous strongly g-pseudoconvex
function to get a smooth strongly g-pseudoconvex function. The problem is
that the sum of two continuous strongly g-pseudoconvex functions may fail to
be strongly g-pseudoconvex, because at a given point the local complex
submanifolds of complex codimension ¢ — 1 on which the restrictions of the
two functions are strongly plurisubharmonic respectively may have tangent
spaces whose intersection is of complex codimension 2(g — 1). Moreover, one
cannot modify Morse theory to make it applicable to the case of a continuous
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strongly g-pseudoconvex exhaustion function, as is seen from the following
counter-example. For g > 2 consider the Segre embedding. Let M = P, , and
G = the set of points of M of distance >7 from P, X P, with n being a
sufficiently small positive number. Then 0G is strongly g-pseudoconvex. By the
argument of the second variation of the arc-length given later in this section,
one can easily see that 7o (-d;) is a continuous strongly g-pseudoconvex
exhaustion function on G for some smooth sufficiently convex increasing
function 7. However, G admits no smooth strongly g-pseudoconvex exhaustion
function, otherwise 4g — 1 > (2¢ + 1) + g implies the vanishing of
H*~Y(G,C)~ HXG,C) and the surjectivity of H*(P,,,,,C) - H*(P, X
P , C), where H_ denotes cohomology with compact support. The nonvanishing
of H*7 (G, C) shows also that one cannot modify Morse theory to make it
applicable to the case of a continuous strongly g-pseudoconvex exhaustion
function. The introduction of strongly g-plurisubharmonic functions is to
overcome the difficulty of smoothing. We will not follow the path of introduc-
ing a continuous strongly g-plurisubharmonic function, proving that 7 o (-d;)
is such a function, and then smoothing it out. Instead we will construct, for
each P € G, a smooth function 8, defined on a geodesic ball of radius 7,
centered at P so that
(1) 8, = dj; at P and &, = d; on the geodesic ball,

(ii) the g-plurisubharmonicity of 7 o (-8,) is = k, > 0 at every point of the
geodesic ball,

(iii) the partial derivatives of &, up to the third order are bounded by E, on
the geodesic ball,

(iv) as functions of P € G both functions r, and «k, are locally bounded
away from zero, and the function E, is locally bounded from above.

We will cover G by a locally finite countable family of coordinate charts,
and smooth out 7 o (-d;) successively on a sufficiently large compact subset of
each chart so that these compact subsets still cover G. The smoothing will be
done by using diffeomorphisms of G which fix each point outside the coordi-
nate chart and which on the compact subset are translations with respect to the
coordinates of the chart. In each step of the smoothing process we will obtain
in a natural way from the family of functions 7 o (-§,), P € G, another family
of functions which have the same properties and stand in the same relation to
the partially smoothed-out 7 o (-d;) as the family 70 (-8,), P € G, to 7o
(-d)- Thus at the end of the smoothing process the smooth function obtained
from 7 o (—d ) will be strongly g-plurisubharmonic.

83. Let M and G be as in the assumptions of Theorem 8.2. We first fix our
notations. Let n be the complex dimension of M. For P € M and r > 0 let
B(P, r) be the set of all points of M whose distances from P are < r. For a
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curve y in M we denote the length of y by L(y). For the rest of this section, for
P € M, T, p means the real tangent space of M when M is regarded as a real
manifold. As before, we denote by (- ,-) the inner product on T, , defined by
the Kahler metric; for X € T), , we let vy denote covariant differentiation in
the direction X with respect to the Levi-Civita connection; and for X, Y € T, ,
we let Ry y = VW — V. Vx — Vix,v)- Let J be the complex structure of M.
We use Bisect( X, Y') to denote the holomorphic bisectional curvature

(RyyX,Y)+ (R;x yJX,Y).

For a function f we use the following notation for the real Hessian and the
Levi form of f respectively:

H(X,Y)f= XYf— (W%Y)f,
R(X,Y)f= H(X,Y)f+ H(JX, JY)f.

The strongly hyper-g-convexity of G means that there exists a positive
number 7 such that if V,- - -, Vs IVys -, JV, are orthonormal vectors tangent
to 9G at a point Q of 3G and if ¥ is the unit outward normal of 3G at Q, then

q
2 <[Vw JV;]a JVO>< -n.
v=1

This one can easily see by using the formula, which defines the exterior
derivative of a 1-form in terms of the Lie bracket, and using the relation
between ¥}, and the gradient of a defining function of 9G.

Fix P € G. Then the distance d;(P) of P from 9G is realized by a geodesic
¥(2):[0, /] » M in M parametrized by its arc-length with y(0) = 0 and y(/) €
9G. Let Q = y(/). We observe that, since the geodesic y(z), 0 <¢ </ is
perpendicular to 8G at Q, the point P is determined by the point Q of 3G and
the positive number /. We lengthen the geodesic y(z), 0 < ¢ </, at both ends so
that we can assume that y(¢) is defined for —e <t </ + ¢, where ¢ is some
positive number. In the following we denote by y the lengthened geodesic y(t),
—-& <t <+ e Choose 2n parallel vector fields X, - -, X,, along y such that at
every point of y

@) X,,- - -, X,, are orthonormal,
(ii) X, is the unit tangent vector of v,
(i) JX,, = Xy, forl <v=<n.
Define a coordinate system y,,- - -,),, on an open neighborhood of y by the
map

2n
o: (ylf""yZn)Hexpy(y,)( vav(Y(yl)))
2

v=



COMPLEX-ANALYTICITY OF HARMONIC MAPS 117

The set ®~'(dG) near y, = I, y, = -+ - =y, = 0 is defined by
i =1+ (32502 20)
with f and its gradient vanishingaty, = --- =y,, = 0.

Let 0 < p(y,) <1 be a smooth function on R which is identically zero on
some neighborhood of y;, = 0, and identically 1 on some open neighborhood of
»; = I. We introduce another coordinate system (x,,---,x,,) on some open
neighborhood U of y which is related to the coordinate system (y,,- - -,),,) by

X1 =0~ P()ﬁ)f(}’z,' 3 Yan)s
x,=y, (2<wv<2n).

The coordinate system (x,,- - -, x,,) satisfies the following conditions.
() yisgivenbyx, = -+ =x,, =0, e <x; <[ +eg
(ii) 9G is defined by x, = I near y(/),
(i) 3= = X, (1 <» < 2n) at every point of y,
(iv) Vx50 =0at Pfor2 <p,» <2n.
Choose a positive number a such that the set F defined by — 3¢ < x; </ + 1¢,
| x,|<a,2<w<2n,isrelatively compact in U, and F N 3G = F N {x, = I}.

For the rest of this section a 2n-tuple (b,, - -,b,,) of real numbers denotes the
point whose coordinates are (b,,- - -, b,,) with respect to the coordinate system
(xp5 775 %9,)

84. For any point (x?,---,x2,) in Flet §(x?,- - -,x3,) be the length of the

curve
te (2, x3,--+,x9,), xP<t<I

with respect to the Kahler metric of M. Between  and the distance function d;
from dG we have the following relation.
(8.4.1) 8(P)=d;(P), 8§=d;onF.
The derivative of § along y is clearly —1. Consider the hypersurface {8 = /}.
We want to computge the Levi form of § restricted to the complex tangent
space of {§ = [} at P.

First we use the first variation formula of arc-length to verify that X (P) is
tangential to {8 =/} for 2 <» < 2n. Fix 2 < » < 2n. Let C, be the curve

x, =t 0=<r<]|,
x,=s,
X, = 0, p+#1,»r.
By the first variation formula of arc-length [13, p. 5, (1.3)], we obtain

1 !
RN e

21(c)
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which vanishes, where X, X, are regarded as functions of ¢ through y(¢). Since
clearly (0/0x,)d | equals (d/ds)L(C,) |,—¢, it follows that X (6 — /) = X,§ =
0 at P. Hence X, is tangential to {6 = /} at P.

8.5. We now compute the Levi form of & restricted to the complex tangent
space of {6 =/} at P. Let X, = 9/0x, (1 <» < 2n) at every point of F. Fix
real numbers A,(3 <» <2n) and let ¥ = 32", A X,. Let T, be the curve

x, =t 0sr<]|,
x, =0,
x,= Ao, 3<p<2n.

By the second variation formula of arc-length [13, p. 20, §6], we obtain

02 _ i i
(8-5-1) wL(ro) v=0 (WY, X1>|,=0 _£=O<RV,X,V’ X,) d,

where V, X, are regarded as functions of ¢ through y(t). Since clearly V'V§|,
equals (32/9v*)L(T,) |,~o, it follows from (8.5.1) and W, V|, = O that

i
(8.5.2) VV8 |p = (V) X)|ims — ft (Rl Xy .

Since M is Kihler, for any real tangent vector field X one has
X + VyJX = %W X + v X
= %X +J([JX, X] + wJX)
=J[JX, X].
It follows from (8.5.2) that

(853) LV, V)|, =<V, V], JX,)LZI —f’ Bisect(V, X,) dt.
=0

Since for any orthonormal vectors V,- -, V,, JV},---,JV, tangential to dG at
Q one has

q
ORULATLANZ S
1

v=

and since the holomorphic bisectional curvature of M is nonnegative, it follows
from (8.5.3) that

q
(8.5.4) > L(V,,V,)8< - atP.

v=1

8.6. To take care of the Levi form for the normal direction of {x, = &}, we
have to compose -8 with a convex increasing function. Take b > 0 such that
B(P, b) is relatively compact in F. Take a real-valued smooth function defined
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on some open neighborhood of [-/ — b, -/ + b] in R such that both the first
and second derivatives 7, 7" of T are positive at —/.

Take orthonormal vectors W,- -, W, JW,,--- . JW, in T, p. We want to
compute 29_, £(W,, W,)(r o (-8)). This expression remains unchanged when
the set Wy, -, w,, JW,,-- SJW, is replaced by another orthonormal set
spanning the same R-vector subspace of T}, . Hence without loss of generality
we can choose an orthonormal set of vectors Vo, -+, V,, JV,---,JV, in Ty p
such that

@V, -, Vo JVi,- - JV, are tangential to 9G at P,

(ii) ¥, is normal to 9G,

@)w,=v,1spv<gqg-—1,

(iv) W,=V1— o’V + oV for some 0 < a < 1.

Let A be the length of the second-order covariant derivative of § at P. Simple
direct computations yield at P
q

3 (0, W)(re (-9) = &(1) = (1) 3 £, 1,)0

+7 (<) (@22, V,)8 + £V, V,)8)
—2ai/1 - ?R(V,.¥,)5)

= a’r”"(-1) + 7(-1)(n — 8ad),
whichis = 7/(~I)(n/2) if « < 71,/(164), and which is = 87'(~)4 if a > 1 /(164)
and 7(-1)/7'(-) = (164)* /n*. Let ¢ be the minimum of 7'(-/)(n/2) and
87'(-1)A. Then
the g-plurisubharmonicity of 7 o (-8) = c at P

8.6.1
(86.1) if /7" = (164)* /n* at 1.

8.7. We now want to deal with the Levi form of the smoothing of 7 o (-d;)
for a suitable smooth convex increasing function 7. We let the point vary inside
G. Since 8, b, A depend on P, we denote then by 8p, bp, 4,. Since the point P
is determined by Q and /, letting P vary is the same as letting Q and / vary. By
considering the varying of Q and /, we readily see that we can assume without
loss of generality that, as functions of P € G, b, is locally bounded away from
zero, and both 4, and b, are locally bounded from above.

Let /, be the diameter of G. Choose a smooth convex increasing function
7:(-/,,0) = R such that 7(A\) goes to co as A approaches 0 and 7" /7" =
(164,) /n* at —d(P) for all P € G. Let ¢, be the minimum of 37'(-d(P))n
and 87'(-d;(P))Ap. It follows from (8.6.1) that

(8.7.1) the g-plurisubharmonicity of 7 o (-8,) = ¢p at P.
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Let E, be the supremum on B(P, bp) of the lengths of the covariant deriva-
tives of 7o (-6,) up to order 3. By the reasoning given above we can also
assume without loss of generality that E, as a function of P € G is locally
bounded from above. It follows from (8.7.1) and the local boundedness of E,
from above that there exists a function u, of P € G with 0 < up < bp, which is
locally bounded away from zero such that for P € G

(872) the g-plurisubharmonicity of 7 o (-8,) = 1c,
o at every point of B(P, u,,).

We now describe the smoothing process for 7o (-d;). Take a coordinate
chart U of M, which is relatively compact in G. Let Y},---,Y,, be the vector
fields on U defined by partial differentiation with respect to the coordinate
functions of U. Take a compact subset K of U and a smooth function
0 < p < 1 with compact support in U such that p = 1 on some open neighbor-
hood D of K. For 1 <i<2nlet T(t),t € R, be the 1-parameter subgroup of
the diffeomorphism group of G obtained by integrating the vector field pY,.
For s = (51, *,5,,) € R*" let T(s) = T(s)) - - T»,(s,,)- Take e >0 such
that T(s)K C D when the distance | s | of s from the origin of R*"is <e. Let {
be a nonnegative smooth function on R?", whose support is contained in the
ball of radius e centered at 0, and whose L' norm is 1. For any continuous
function f on G define for P € G

(8)(P) = [ __ $()A(T(s)P),

where integration is with respect to the Euclidean measure of R?”. Then Sf is
smooth on K and agrees with f outside the support of p. Let 7 be the
supremum of the distance between P and T(s)P for |s|<e and P € G. The
supremum # is finite because every T(s) fixes every point of G outside the
support of p. If for some given point P of G the function f is smooth on
B(P, h), then Sf is smooth at P.

Because of (8.7.1) and (8.7.2), for any given 0 <A <1 we can choose e
sufficiently small so that for P € G
the g-plurisubharmonicity of 7 o (=8,) o T(s) is = $Acp

(8.7.3) ,
at every point of B(P, Au,) for | s|<e.

By (8.4.1) we have for every s and every P € G

To(-dg)eT(s)=ro (_ST(S)P) oT(s) atP,

(8.7.4) 70 (~dg) o T(s) =10 (-85yp) © T(s) on B(P, by — 2h).
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For a family of functions ¥ = {f,} indexed by P € G, we define another
family of functions Sp(%) also indexed by P € G as follows (when the
definition makes sense):

Sp(F) z-/;eR“{(S)fT(:)P ° T(s),

where integration is with respect to the Euclidean measure. By an abuse of
notation we denote S,(%) by S'(fp). We apply this definition to the family
7o (-0p), P € G, and obtain for every P € G a smooth function S’(7 ° (-8,))
on B(P, bp — 2h). We observe that when the distance of P from U is > bp, the
function agrees with 7 o (—-0,), and we can use in such a case B(P, bp) as the
domain of definition of S’(7 o (-68,)). For any given 0 < A < 1 we can choose
e sufficiently small so that for P € G

the lengths of the covariant derivatives of S'(7 © (-8,))
up to order 2 are bounded by E,/A on B(P, Ab, — 2h).

It follows from (8.7.3) that

(8.7.6) the g-plurisubharmonicity of S’(7 o (-8,)) is =4jAc, at
o every point of B(P, Abp — 2h).

Moreover, it follows from (8.7.4) that

(8.7.5)

S(to(-dg)) =8 (7°(-8p)) atP,

(8.7.7) S(7 o (-dg)) = 8(7°(-8;)) onB(P, b, — 2h).

In the case where the distance of P from U is > bp, S(7 o (-d)) = 7 © (-dg)
and S’(7 o (-0p)) = 70 (-8p), so that (8.7.5), (8.7.6), (8.7.7) all hold with
B(P, Abp — 2h) or B(P, bp — 2h) replaced by B(P, bp).

8.8. Now instead of a single coordinate chart U we take a locally finite
family of coordinate charts U,, 1 < p < oo, with a compact subset K, in each
U, so that the family K,, 1 <p< oo, covers G. Corresponding to e, A, S, S” we
have €y hu, S,, S, Since the family U, 1 <p < oo, is locally finite, we can
successively choose e,, 1 <p < oo, sufficiently small so that the family K|,
1 <p< oo, still covers G, where K, is the set of all points of K, whose
distances from G — K|, are less than the sum of all o, with U, N U, # @. Let
be the resulting function obtained by applying successively the operators S,
1 <p<oo,toro(-dg). Since S, f=fon G — U, and the family U, | <p <
00, is locally finite, the function ¢ is well-defined. Moreover, the function ¢ is
smooth, because K, 1 < p < oo, covers G. For P € G, let y;, be the resulting
function obtained by applying successively the operators S, 1 < p < oo, to the
family of functions 7o (-§p), P € G. Since the family U, 1 <p < oo, is
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locally finite, we can successively choose e,, 1 < p < oo, sufficiently small so
that

(i) @ is an exhaustion function of G,

(i) ¢, is smooth on B(P,3up), and the g-plurisubharmonicity of
is = §c, at every point of B(P, 3up),

(ili) ¢ = Yp at P and ¢ = ¢y on B(P, 3up).

It is possible to make the choice so that (ii) and (iii) hold because of the
statements corresponding to (8.7.5), (8.7.6), (8.7.7) at each stage of the applica-
tion of the operators S, and S;. It follows that the g-plurisubharmonicity of ¢
is = jcp at P. Thus ¢ is a strongly g-plurisubharmonic exhaustion function on
G. This smoothing process is essentially the same as the one given by Richberg
[45] for strongly plurisubharmonic functions (cf. [24]).

8.9. Theorem. Let M be a Kdhler manifold of complex dimension n with
nonnegative holomorphic bisectional curvature. Let G be a relatively compact
subdomain of M with smooth boundary 9G. Let 1 < q < n and assume that 3G is
strongly hyper-q-convex. Then w,(M, M — G) vanishes forv<n — q.

Proof. Choose a relatively compact open neighborhood D of G in M such
that 0D is smooth and strongly hyper-g-convex. by Theorem 8.2 there exists a
smooth exhaustion function ¢ on D which is strongly g-plurisubharmonic. Let
a be a real number such that ¢ < a on G. We can approximate ¢ on {p < a}
in the C? topology uniformly by Morse functions [38, p. 37, Cor. 6.8}, i..,
smooth functions whose critical points are all nondegenerate and hence
isolated. Choose a Morse function f on {¢ < a} which approximates ¢ so
closely in the C? topology that f is strongly g-plurisubharmonic on {¢ < a},
and for some b < a one has G C {f <b} and {f< b} C {p < a).

By the strong g-plurisubharmonicity of f the Levi form of f must have at
least n — g + 1 positive eigenvalues at every point. So the real Hessian of f
must have at least n — g + 1 positive eigenvalues at every point. It follows that
the index of —f, which is the number of negative eigenvalues of the real Hessian
of —f,is=n — q + 1 at every critical point of —f.

Let ¢ be the minimum of f on {¢ < a}. Since f is a Morse function, the set
{ f = c} consists of only a finite number of points. Fix » < n — g. Let B be the
closed unit ball of real dimension ». Let 0: B — M be a continuous map with
0(0B) C M — G. Since {f = c} is a finite set, we can continuously deform o
without changing o | 9B such that o(B) is disjoint from {f= ¢} and hence
from {f<d} for some d > c. Since the index of -fis=n — g + 1 at every
critical point of —f, M — {~f > —d} has the same homotopy type as M —
{-f > -b} with finitely many cells of dimension = n — g + 1 attached [38, p.
19, Remark 3.3]. It follows from » <n — g + 1 that the continuous map
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o: B - M can be continuously deformed into M — {—f > -b} and hence into
M — G without changing 6| dB. q.e.d.

An immediate consequence of Theorem 8.9 is the following.

8.10. Theorem. Let M be a compact Kihler manifold of complex dimension n
with nonnegative holomorphic bisectional curvature. Let 1 < g <n. Let V be a
complex submanifold of M admitting a tubular neighborhood U with smooth
boundary such that M — U has strongly hyper-q-convex boundary. Then «,(M, V')
vanishes forv<n — q.

8.11. Remark. For Theorem 8.2 to hold, instead of assuming that 0G is
strongly hyper-g-convex, we can assume that dG is hyper-g-convex and the
bisectional curvature of M is (¢ + 1)-nondegenerate. The same proof works
with some obvious modifications. Theorems 8.9 and 8.10 remain true with a
similar change of assumptions.

9. A generalization of the strong Lefschetz theorem

9.1. In the last section we proved a Barth-Lefschetz type theorem for
compact Kahler manifolds of nonnegative holomorphic bisectional curvature.
Unfortunately it works only for complex submanifolds admitting tubular
neighborhoods whose complements have strongly hyper-g-convex boundaries.
So far there is no way to verify which complex submanifolds admit such
tubular neighborhoods except in the obvious case of codimension one. Out of
the desire to get Barth-Lefschetz type theorems with only bisectional curvature
conditions, in this section we will prove a generalized strong Lefschetz theorem
for Hermitian holomorphic vector bundles over compact Kihler manifolds
which are 1-semipositive and k-positive in the sense of Griffiths. This gener-
alized strong Lefschetz theorem will be used to give the surjectivity portion of a
Barth-Lefschtz type theorem at the homology level for compact Kahler mani-
folds whose bisectional curvature is nonnegative and k-nondegenerate.

In [59] Sommese proved a generalization of the strong Lefschetz theorem for
a class of bundles over algebraic manifolds called k-ample bundles which he
introduced. These bundles are characterized by the property that high powers
of the associated line bundles over the projectivizations of their duals have
enough sections to give a holomorphic map of fiber dimension < k. His
generalized strong Lefschetz theorem follows from the usual strong Lefschetz
theorem by slicing by ample divisors to reduce the fiber dimension of the
holomorphic map to zero to get positive bundles. He used his generalized
strong Lefschetz theorem to prove the surjectivity portion of a Barth-Lefschetz
type theorem at the homology level for compact algebraic manifolds with
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k-ample tangent bundles and, in particular, for certain compact homogeneous
algebraic manifolds. However, the nonnegativity and the k-nondegeneracy of
the bisectional curvature are locally given conditions in nature, whereas the
k-ampleness of the tangent bundle involves the existence of global sections of
certain associated line bundles. For Barth-Lefschetz type theorems for mani-
folds with bisectional curvature conditions, we need the generalized strong
Lefschetz theorem given in this section. This generalization cannot be derived
from the usual strong Lefschetz theorem and requires a completely different
approach.

9.2. Theorem (the generalized strong Lefschetz theorem). Let M be a com-
pact Kihler manifold of complex dimension n. Let E be a Hermitian holomorphic
vector bundle of rank r over M, which is Griffiths 1-semipositive and Griffiths
k-positive. Let c,(E) be the rth Chern class of E. Then the map f;: H'(M,C) -
H'*2(M, C) defined by cupping with c(E) is injective for i<n—k+1—r
and surjective fori =n+k—1—r.

Most of the rest of this section will be devoted to the proof of this theorem.

9.3. Let M be a compact Kéhler manifold of complex dimension n with
Kahler form w and local coordinates z%(1 < a < n). Let u = y=1 u zdz* A dzP
be a closed (1, 1)-form on M, which is positive semidefinite and has at least
n — k + 1 positive eigenvalues at every point of M. For ¢ > 0 let w, = u + ew.
According to Lemma 4.6, after replacing w by w, for some sufficiently small e,
we can assume without loss of generality that at every point of M the
eigenvalues A,,- - -, A, of u with respect to w satisfies the condition that

EX—EA 2 A

a€A BEB

is positive for any subset 4 of p elements and any subset B of ¢ elements in
{1,---,n}withp +g<n—k+ 1.

Fix a point P of M, and choose a local coordinate system z',---,z" at P so
that @ = V=13"_,dz* A dz® and u = V=1 3"_, A ,dz* N dz* at P. For subsets
A={ay, --,a,} and B = {B,,---,B,} of {1,---,n} with ¢; < --- <@, and
By <---<PB,weletdz? =dz® A --- Ndz% and dz® = dzP' N\ - - - AdzPe. For
a subset C = {y,,"--,v.} of {1,---,n} let

(dz Ndz)€ = (dzn A dz;) Ao A (dzve A dzz).

Moreover, let

ABC 2)\_ 2 Aa— 2 Ag-

a€EAUC aEBUC
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For ( p, g)-forms

Q= 2 (PABcdzA/\dZ_B/\(dz/\dz_)C,
A,B,C

V=3 Ypedz® NdzB A (dz A dz)€
A,B,C

at Pwithp + ¢ <n — k + 1 define

(p,¥) = 2 )‘Ach’ABc‘PABc-
A,B,C

By the assumption on u, (- ,-)’ is a positive definite Hermitian form.
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The notations (- ,-), L, and A used below carry the same meanings as in

§3.3.
94. Lemma. For (p, q)-forms @,y on M withp +q<n—k + 1,

(MuNog),¥)—(uNAp,¥)=(p,¥)".

Proof. We prove it at the point P of M with the local coordinates described
above. Since both sides are linear in g, it suffices to prove the special case

where
@ =dz? ANdzB A (dz A dz)C.
We have

Ap = L S dzA NdzB A (dz A dz)CT

/jfoEC

uNAp= 3 N,dz* ANdzB A (dz A dz)©
ceC

+ 3 N dzA ANdzZB A (dz A dz) CT IV,

TEAUBUC
cEC

On the other hand,

ulho=y-1 3 Adz* Ndz® A (dz Adz)V,

T¢AUBUC

Aung)= D AdA AdEP A (dz Adz) VD
T¢AUBUC
oEC

+ S AdzA AdZB A (dz A dE)C.
TgAUBUC
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It follows that

AMung)—urhp= 3 N — D Ndz* NdzB A (dz N dE)C
TEAUBUC TeC

= N pcdz? N dz® A (dz N dz)C,

which yields the wanted formula upon taking the inner product with {. q.e.d.

For Lemma 9.4 the condition p + ¢ <n — k + 1 is not needed if we define
(+,-)" also for other forms. Moreover, the lemma holds for any (1, 1)-form
without any eigenvalue condition.

Let P’ be the set of all primitive /-forms with respect to the Kahler metric of
M.

9.5. Lemma. For any v, € P', u N\ v,= w,, + Lw, + L?>w,_,, where w, €
Pv=1+211-2).

Proof. We have the decomposition

p— v
ulv = 2 L'w;_5y19s

v=0

where w,_,,,, € P/7?*2 for »=0. We know that L*: P - L*P" is an
isomorphism for p < n — v and L*P” = 0 for p > n — ». It follows that

O=uAN Ln_,+l1)[ — Ln—l+l(u A 91)

— n+v—I[+1
- E L Wi—2p+2
=0

— n+v—I[+1
= 2 L Wi—2v+2-
v=3

Sincen+v—I+1<n—(—2v+2) for =3, we have w,_,,,, = 0 for
v=3.

Lemma 9.5 holds when u is replace by any 2-form.

9.6. Lemma. Let v;, w, be primitive I-forms. Then for0 <pu <n — [ — 1 with
p#3(n—1),

<u A Lﬂvl’ LM+IWI>: (M +n11(7:21p._ M) (L”v,, L"w,)’.

Proof. By (3.3.1),for0 <» <n — [wehave

ALlv,=v(n—1—v+ 1)L 'y,
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where L™'v, is taken to mean zero. By Lemma 9.4 we obtain
(u A Lro, L wy= (A(u A LPv)), Liw,)

= (L*v;, L*w;)" + (u A L*o;, L*w;)
= (L*v,, L*w)Y + p(n —1—p+ 1){u A LF o, LFw))

p(n—=I1—p+1) - 1
= (L*v,, L*w,) + AL "
(L*v;, L*w;) EDCEYED, (u NL* o, ALF" 'w))

l-‘(n—l_“+ 1) +1
= (L"™,, L*w)) + N L*p,, L* .
(L*v, wp) (“ T 1)(n = ”) (u U, wp)

The assertion follows from solving for (u A L*v,, L**'w,) in the above
equation. q.e.d.

In Lemma 9.6, when p = 5(n — I), the proof gives (L*v,, L*w,)’ = 0. We
will use only the case p < 3(n — I).

9.7. Lemma. Let v, w,,, be respectively a primitive I-form and (I + 2)-form.
Thenforl<p<n-—1-2,

(u A L*oj, L*wp)y= —3(n — I — p — 1){L*0;, L* 'w;1,)".

Proof.
(u N L*op, L¥wp)= (A(u A L*vo), L*"'wyyp)

= (L*v;, L* 'w_,) + (u AN AL*v,, L*"'w;,) (by Lemma 9.4)

= (L*v,, L"_1W1+2>' +u(n—1—p+ )AL o, L wy,)
n—Il—p+1
n—Il—p—1
n—Il—p+1
n—Il—p—1

= (L*v, L w,) + (uLF Yo, AL W)

= (L¥v, L* 'wy,) + (u N\ LFo;, L*wpy).

The assertion follows from solving form (u A L*v,, L*w,,,) in the above
equation.

9.8. Lemma. Let v, w,_, be respectively a primitive I-form and (I — 2)-form.
Thenfor0<p<n—|,

(u N L*o,, LF 2w, )= 3(p + 2)(L*v;, L 1w,_y) .
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Proof.
(u A L*v,, L** 2w, )= (A(u A L*v;), L*'w,_,)
= (L*v,, L**'w_,) + (u A AL*v;, L**'w,_,) (by Lemma 9.4)
= (L*v, L* 'w_,Y +pu(n —1—p+ 1){u A L* o, LF 'w_,)

= (Lro, LF W) + o ESun Lo AL 2w, y)

= (Lo, L wi) + o _’: 5 (u A Lioy, L 2w ,).
The assertion follows from solving for (u A L*v,, L**?w,_,) in the above
equation.

99. Lemma. For p+q<n—k+ 1 the map HP(M, Q9 -
HP*Y(M, Q9+") defined by multiplication by u is injective.

Proof. Fix p and g with p + ¢ <n — k + 1. Any element of H?(M, Q7) is
represented by a harmonic ( p, ¢)-form ¢ on M. Assume that u A @ is 9-exact.
We have to show that ¢ is identically zero. Let / = p + ¢. Uniquely ¢ can be
written in the form

= 2 L“vl—Zu?

osp<j/

where v,_,, is a primitive harmonic (/ — 2p)-formon M. Let¢,, 0 < p < 11, be
positive numbers whose values are to be chosen later in the proof. Let

v= ¢, L¥v,_,,.

osps<j/

Then ¢ is a harmonic /-form on M. As before, * denotes the Hodge star
operator with respect to the Kéhler metric of M, and * denotes the composite
of * and the complex conjugation. Since *Ly is a harmonic form on M, it
follows that

[ (wno.L¥y=[ungrsLy=o0.
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On the other hand, by Lemmas 9.5, 9.6, 9.7, and 9.8, we have

(uNg, Ly)= 20 {C,L(“ A LFv,_,,, L#+lvl—2p.>
y,?

+euLto_y,, L"+zv,_2u_2)
+c,u+1<“ A L“Hvl—zu—z, L"+lvl—2u>}

Y RGN

B N ’
n—1 (L 02,5 L 01—2,‘>
p=0

ut2
2

I pt+1 ’
tc, (L Vs gus L¥ 015, 5)

n—1I1+p ,
G (Lo g, LMy, } .

We now choose ¢, = 1 and inductively c, so that

_a(rt2)
e

Then

(une,Lyy= 3 cu(”+ l)rf"_—l“ru)

osp<il

<L“”1—2;u LuDI—Zu)"

From the positive definiteness of (- ,-)" and the vanishing of the irtegral of
(uNo, Ly) over M it follows that each L*v,_,, is identically zero on M.
Hence g is identically zero on M.

9.10. We now proceed to prove Theorem 9.2. Let M and E be as in the
assumptions of Theorem 9.2. Let F be the tautological line bundle over the
projective bundle P( E*) associated to the dual bundle E* of E. The curvature
form of the dual bundle F* of F with the metric induced from that of E is a
(1, 1)-form on P(E*), which is positive semidefinite and has n — k + r positive
eigenvalues at every point of P(E*) (see Lemma 4.5). Denote this curvature
form by u. By Lemma 9.9, the map ®;: H'(P(E*),C) - H"}(P(E*),C) de-
fined by cupping with u is injective for/ < n — k + r.

We now use the argument of Bloch-Gieseker [9, p. 113, Prop. 1.1] to get the
injectivity of f, for i<n — k + 1 — r. By [27, p. 144], we have the following
ring-isomorphism:

¥: H*(M,C)[T]/1> H*(P(E*),C).
Here [ is the ideal generated by
Tr— T '+ + (1) el T+ (-1)c,,
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where ¢; € H*(M, C) is the ith Chern class of E. Moreover, this ring-isomor-
phism sends 7T to the Chern class of F*.

Fix i <n — k + 1 — r. Assume that some nonzero element ¢ of H'(M, C) is
in the kernel of f,. We want to derive a contradiction. Since £c(E) =0, it
follows that the nonzero element

ni= ¥(E(T 7 —e T2+ 4 (1) e, T+ (1) e

of H'*2""2(P(E*), C) satisfies ®,, ,,_,(n) = 0. This is a contradiction because
i+2r—2<n—k+r.

We now use Poincaré duality to get the surjectivity of f,fori=n+ k — 1 —
r. Let v be the real harmonic 2r-form on M representing c,. Suppose f; is not
surjective for some i =n + kK — 1 — r, and we want to derive a contradiction.
Since f; is not surjective, there exists some nonzero harmonic (i + 2r)-form ¢
on M which is orthogonal to v A ¥ for all harmonic i-forms y on M. That is,

/Mv/\xp/\;cp=0,

or equivalently
[ o1 (o) A3GY) =0.
M

Hence the closed (2n — i)-form v N %@ is orthogonal to =y for all harmonic
i-forms ¢ on M. That is, v A %@ is orthogonal to all harmonic (2n — i)-forms.
It follows that v A %@ is d-exact. The cohomology class represented by %@ is
mapped to zero by f,,_;_,,. This contradicts the injectivity of f,,,_;_,,.

9.11. Theorem. Let M be a compact Kdihler manifold of complex dimension
n, whose holomorphic bisectional curvature is nonnegative and k-nondegenerate.
Let V be a complex submanifold of complex dimension d. Then the restriction
map ®,: H'(M,C) —» H'(V,C) is surjective for [=2n —k — 1 — d.

Proof. Let [V] denote the closed (n — d, n — d)-current defined by in-
tegration over V. This current [V'] defines an element v € HX"~ (M, C). Let
j: V= M be the inclusion map. Then j*v € H*" (¥, C) is equal to the
(n — d)th Chern class c,_,(N,) of the normal bundle N, of V in M. Fix
[=2n—k—1—d and take a € H'(V,C). By the assumption on the holo-
morphic bisectional curvature of M, the tangent bundle T}, of M is Griffiths
1-semipositive and Griffiths k-positive. Being a quotient bundle of T,,, N, is
also Griffiths 1-semipositive and k-positive. By Theorem 9.2, there exists
B € H™*"=4(y, C) such that a equals the cup product 8 U c,_,(N,). Let G
be an open tubular neighborhood of ¥ in M such that V is differentiably a
deformation retract of G. Then B can be extended to an element y of
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H'72"=4)(G,C). Let ¢ be a closed (/ — 2(n — d))-form on G representing y.
Then ¢ A [V]is a closed /-current on M which defines an element @ € H'(M, C)
with @,(&) = a.

10. A vanishing theorem for semipositive line bundles

10.1. We conclude this paper by giving a vanishing theorem for semiposi-
tive line bundles over non-Kahler manifolds. It is obtained by combining the
v and ¥V Bochner-Kodaira techniques described in §1 and using some simple
estimates from elementary real analysis. This vanishing theorem is motivated
by the conjecture of Grauert-Riemenschneider [23, p. 277], [47, Conjecture 1]
which is still an open problem. The difficulty with the conjecture is how to
prove the following special case.

Conjecture of Grauert-Riemenschneider. Let M be a compact complex mani-
fold which admits a Hermitian holomorphic line bundle L whose curvature form is
positive definite on a dense open subset G of M. Then M is Moishezon.

An equivalent form is that if L is a Hermitian holomorphic line bundle over
a compact complex manifold M whose curvature form is positive definite on a
dense open subset G of M, then H'(M, L* ® K,,) = 0 for » sufficiently large.
Here K, is the canonical line bundle of M. (See [47, Conjecture II]).

When M is Kihler, the above equivalent form follows from the ¥ Bochner-
Kodaira technique and the identity theorem for solutions of second-order
elliptic partial differential equations. It holds with » = 1, [47]. However, when
M is not assumed to be Kihler, no proof is known even for the special case
where M — G is a subvariety except when it is a subvariety of dimension zero
[46] or one [52].

The conjecture of Grauert-Riemenschneider was originally introduced for
the purpose of characterizing Moishezon spaces by quasi-positive torsion-free
sheaves. Since then a number of other characterizations of Moishezon spaces
have been obtained [20], [44], [57], [63] which circumvent the difficulty of
proving the Grauert-Riemenschneider conjecture by stating the characteriza-
tions in such a way that a proof can be obtained by using blow-ups, Kodaira’s
vanishing and embedding theorems, or L? estimates of 9 for complete Kahler
manifolds.

We now state our vanishing theorem for semipositive line bundles over
non-Kéhler manifolds.

10.2. Theorem. Let M be a compact complex manifold of complex dimension
n with a Hermitian metric, and L be a Hermitian holomorphic line bundle over M
whose curvature form u is positive definite on an open subset G of M. Suppose
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there exists a positive number A such that at every point P of M the eigenvalues
A(P) < --- <)\, (P) of u at P with respect to the Hermitian metric of M satisfy
the condition N\ (P) < AX(P). Suppose M — G can be covered by a finite
number of differentiable coordinate charts U,, x.,---,x?" (1 < k < k) such that
(M — G) N {x. = constant, 1 <i<2n— 1} is always a finite set. Then for
any holomorphic line bundle F over M, H'(M, L’ ® F) vanishes for v sufficiently
large.

The rest of this section will be used for the proof of this theorem.

10.3. We use the notations of Theorem 10.2. Let u = v-1u,dz' A dz). Let
V=12z' A dz/ be the curvature form of the canonical line bundle K » of M with
the Hermitian metric induced from that of M. The raising and lowering of
indices will be done with respect to the Hermitian metric of M. Choose a
Hermitian metric for F, and let/-1 v, dz' N dz’ be its curvature form. Though
M is in general not Kahler, for L’ ® F and M one can derive formulas
analogous to (1.3.3) and (1.3.5). The only difference is the presence of an
additional term coming from the torsion tensor of the Hermitian metric of M
(cf. [25, p. 429, Theorem 7.2]). Take a positive integer » and an L’-valued
harmonic form ¢ on M. We have the following two formulas corresponding to
(1.3.3) and (1.3.5).

(103.1) 0=Vel3 +» fMu"ftpi-qT; + fM(v"'f —R7)p 97 + T,

0=Iivoll}+ v w9y —v[ ulieyel + [ oo
(10.3.2) ) _M M
=) e’ + D

where T, T, are terms from the torsion tensor of the Hermitian metric of M,
and can be estimated by

| T 1< Cillolly(llplly + Ivelly + IVell,) (i=1,2),

C, being a constant independent of ». Multiplying (10.3.1) by n4 and adding
the resulting equation to (10.3.2) we obtain

0= 1I9e I + 1volly + v (nd + Dulorgy — v via; o/
+fM((nA + 1)0’7 - nAR"_j)q),-'?Tf - fMUi;*Pj'; +nAT, + T,

=1Vl + Ivelld, +» fMu%,.-?; + 8,
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where

|S1< Gllgl y(llgllp + 1901l + 1Vl ),
with C, independent of ». Since
_ 1 —
ol (1V@lly + 1199l ) < Glioly, + 5= (Ivel}, + Ivel),
2

it follows that

1,— 1
|51< G(1+ G)ligl, + 51013, + 5 Vel

(1033) _ o
19013+ 19l + 20 [ wlp-g; <2G,(1+ Gyl
M

104. By replacing the family of charts {U,} by another family if necessary,
we can assume without loss of generality that in addition

G U= ={|xL|<1,---,| x}"|< 1} is relatively compactin U, 1 <k <k,
and

()M - GcC Ut U

Take any & > 0. Since (M — G) N {x} = constant, 1 <i<2n— 1} is al-
ways a finite set, we can cover U by a finite number of open subsets W,, of U/
such that

(i) each W,, is of the form D,, X J,, with respect to the coordinate system
x!,--+,x2" with D, CR?""!and J,, CR,

(ii) J, is a finite union of open intervals I, with center c
length <¢,

(iii) the interval I;M with center c,,, and length twice that of I, lies in
{| x2"|< 1}, and for fixed , A the intervals I;M are pairwise disjoint.

@iv) M-G is iiisjoint fr~om Doy X (Try = L)

LetJy, = U I, and W, = D, X J,.

Whenj is sufficiently large, for each (2n — 1)-tuple of integers (p,* - *,P2,—1)
with 1 < p, <2/ — 1, the cube

{mf1<ﬁ<hfl
i J

Ap and

R 1<i<2n—1}

is contained in some D,,. By replacing the sets D,, by these cubes, we can
assume without loss of generality that

(10.4.1) the intersection of 2k + 1 distinct members of { W, A}x,x is empty.

Choose a smooth function —& < px)\”(xf”) < ¢ with compact support in fmu
so that p,, = x2" — ¢, on Iy, and |(3/3x2")p,|<2 on I,,. We can
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naturally regard p,,,, as a function on D,, X fn,‘u. Write
10.4.2 20, = = Virgs
( ) j;xxXl,Aul P | kAp Ap
where
w,=dx! A Adx2n,

K K

K

V)\u.: px)\u)lq)lz

2n
Dwxiw( dx

A —f ( 9 T3, Pex ) |<P|2
K K
* DX (Toa,—TIa,) ox 2n g

Integration by parts yields

d
I/x}\p,z_f - pn}\u(mlq:)'z)wx

KA KAp

We can find constants E, depending only on k and independent of ¢ and » such
that

10.4.3 ’<E 0.,
(10.4.3) f%xwl*pl . y ul‘P| x
(10.4.4) [Vaul<eE[  lol(Ivel+ Vo),
K qu
(10.4.5) | Viru|< E, lol,
)\’L fKAX(]xAu Toaw)

where the integration of a function means with respect to the volume form of
M. Let

Qe = (Un,)\VVx)\) - (U:c,)\,p,Dx)\ X (IKML - Ix}\p))_’

and E = sup,(E,)?. From (10.4.1)-(10.4.5) it follows that
[ loP<2kEef |o| (I ve|+|Vol) +2kE[  |of.
Q. M M—-Q,

Choose ¢ so small that kEe < 1. Then

(10.4.6) f|<p|2 kE(2+e)f |¢|2+2kEs(nv<p||§,+n%nﬁ,).
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Combining this with (10.3.3), we obtain

IVeli3, + 2l vell3, + 2» jMu"fqo,-?,-
(10.4.7) < 2c2(1 + lcz)(l +2kE(2 + s))f lo?
2 M-Q,

1 R
+8C2(1 + ECZ)kEs(HV(pHﬁ, + Ivpli2,).

We choose ¢ so small that 8C,(1 + 3C,)kEe < 1, and » so large that

2vui7<PF;; >2C2(1 + %Cl)(l +2kE(2 + e)) Iq)lz

on M — Q.. It follows from (10.4.7) that =0 on M — Q, and || Vell,, =
Ivell » = 0, and it follows from (10.4.6) that ¢ = 0 on M. This concludes the
proof of Theorem 10.2.

10.5. Remarks. 1. To get the vanishing of HY(M, L* ® F) for v sufficiently
large, the assumptions of Theorem 10.2 concerning the positivity of u and its
eigenvalues can be weakened to 37_, A,(P) >0 for P € Gand 37_,_ ;A ,(P)
< AZ? A, (P) for P € M. The proof is completely analogous to that of
Theorem 10.2.

2. A corollary to Theorem 10.2 is that M is Moishezon. For, one can use
Kodaira’s method [34, §3] of blowing up points to show that for » sufficiently
large I'(M, L”) separates points of G and gives local coordinates at points of
G.

3. Theorem 10.2 cannot be used to characterize Moishezon manifolds
because the pullback of L to a blow-up of M in general fails to satisfy the
assumption on the eigenvalues of the curvature form. In this regard Theorem
10.2 is highly unsatisfactory.
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