MINIMAL SETS OF FAMILIES OF VECTOR FIELDS ON COMPACT SURFACES

JORGE HOUNIE

1. Introduction

Let M be a compact connected smooth manifold of dimension two, and consider a subgroup G of the group of diffeomorphisms of M. A set $\Omega \subset M$ is G-invariant if $g\Omega \subset \Omega$ for all g in G. A set is said to be G-minimal if it is closed G-invariant nonempty, and contains no such proper subset. Let D be a set of smooth vector fields on M, and consider the group G_D generated by the one-parameter group whose infinitesimal generators are the elements of D. When D contains exactly one vector field, a well-known theorem of Schwartz [5] shows that a G_D -minimal set is either a point, a homeomorph of S^1 or all of M (in the last case M must be homeomorphic to a torus T^2). The purpose of this paper is to extend this result to arbitrary families of vector fields.

Theorem 1. Let M be a compact connected two-dimensional smooth manifold. Let D be a set of smooth vector fields on M, and consider a G_D -minimal set $\Omega \subset M$. Then Ω must be one of the following:

(a) a point which is a common zero of the vector fields of D;

(b) a G_{D} -orbit homeomorphic to S^{1} ;

(c) all of M.

Proof. Let $m \in \Omega$, and denote by $\gamma(m)$ the G_D -orbit of m, i.e., the set of points of the form g(m), $g \in G_D$. By a theorem of Sussmann [7], $\gamma(m)$ is a smooth connected paracompact submanifold of M (with a natural differentiable structure) of dimension $k, 0 \le k \le 2$. All vector fields in D are tangent to $\gamma(m)$. If k = 0, $\gamma(m)$ is a point and we have (a). If k = 2, $\gamma(m)$ is open in M. Then $\overline{\gamma(m)} \setminus \gamma(m)$ is a closed invariant proper subset of Ω , so $\overline{\gamma(m)} = \gamma(m) = \Omega = M$. This gives (c). If k = 1, $\gamma(m)$ is homeomorphic to S^1 or \mathbf{R} . In the first case we get (b). Assume that $\gamma(m)$ is nonempty, we conclude as before that $\Omega = M$. The theorem will be proved if we show that Ω cannot be nowhere dense when $\gamma(m)$ is homeomorphic to \mathbf{R} . Let us reason by contradiction, and assume that Ω is nowhere dense.

Communicated by R. Bott, April 10, 1981. The author was partially supported by CNP_q, Brazil.

JORGE HOUNIE

Consider a vector field X which belong to D and does not vanish at m, and consider an imbedding $i: [-1, 1] \rightarrow M$ such that

- (a) X is transversal to i((-1, 1)) = I,
- (b) i(-1) and i(1) are not in Ω ,

(c) i(0) = m.

Given a point p in $I \cap \Omega$, $\gamma(p)$ is homeomorphic to **R**. In fact, we may choose a diffeomorphism $j: \mathbf{R} \to \gamma(p)$ so that $j(0) = p, j'(0) = \lambda X(p), \lambda > 0$. Since $\bigcap_{n} j[n,\infty)$ is closed, invariant and nonempty, and is thus equal to Ω , it follows that there is a least positive s_0 such that $j(s_0) \in I$: "the first return to I of the G_p -orbit through p in the direction of X". It is easy to see that the vector j'(s), $0 \le s \le s_0$, can be extended to a vector field Y in M, which is a finite linear combination with smooth coefficients of vector fields of D, that is, Y belongs to the $C^{\infty}(M)$ -module D' generated by D. So in a neighborhood of p in I, the first return to I of the G_D -orbit of a point in $\Omega \cap I$ is also the first return to I through the orbit of Y. Since $\Omega \cap I$ is compact and nowhere dense in I, we may cover $\Omega \cap I$ with a finite number of disjoint open subsets of I, so that in each one of them the "first return" is performed through the orbit of a vector field of D'. Thus the "first return function" can be extended to a smooth function \tilde{f} in a neighborhood of $\Omega \cap I$ in I. The latter induces a smooth function $f = i^{-1}\tilde{f}i$, in a neighborhood V of $i^{-1}(\Omega \cap I) = G$, $f: V \to G$ (-1, 1).

In the same way, we obtain a smooth function $g: V \to (-1, 1)$ induced by "the first return to I of the G_D -oribt of p in the direction of -X". Letting W be open in (-1, 1) such that $G \subset W \subset \overline{W} \subseteq V$, we summarize the properties of f and g:

(1) $G = (-1, 1) \setminus \bigcup_{i=1}^{\infty} (a_i, b_i)$, G is perfect,

(2) $H = \{a_i, b_i, i = 1, 2, \dots\}, f(H) \subseteq H, g(H) \subseteq H,$

(3) $(a_i, b_i) \subset W$ implies $f((a_i, b_i)) = (a_j, b_j)$, $g((a_i, b_i)) = (a_k, b_k)$ for some $j, k, j \in W$

 $(4) f(G) \subset G, g(G) \subset G.$

(5) $0 < L \le |f'(w)| \le F$, $0 < L \le |g'(w)| \le F$, for all $w \in W$, 0 < L < 1 < F,

(6) $|f''(w)| \leq M$, $|g''(w)| \leq M$, for all $w \in W$.

Consider the semigroup S generated by f and g, i.e., the functions $h: G \to G$ of the form $h = f^{n_1} \circ g^{m_1} \circ \cdots \circ f^{n_j} \circ g^{m_j}$, $n_i, m_i \in \mathbb{Z}^+$, where f^n indicates composition *n*-times. We shall denote the S-orbit of x by $[x], x \in G$. Then

(7) $i[x] = \gamma(i(x)) \cap \Omega, x \in G$,

(8) If $h \in S$, $a \in G$ and h(a) = a, there is a neighborhood U of a such that h(b) = b for all b in $U \cap G$.

740

The last property is proved by observing that locally f and g are induced by the first return functions of certain vector fields Y_j , transversal to I. Therefore h induces a piecewise differentiable path α made up to arcs of integral curves of the Y_j 's. Since h(a) = a and $\alpha \subseteq \gamma(i(a))$, each arc is traversed the same number of times in each direction. If $b \in G$ is sufficiently close to a, the path β induced by h starting at i(b) will follow the arcs of integral curves of the same Y_j 's used by α and in the same order. In particular, each arc will be traversed the same number of times in each direction. This implies that h(b) = b. Note that $U \cap G$ does not reduce to a point since G is perfect.

To prove the theorem we need only show that properties (1) to (8) lead to a contradiction.

To each sequence of positive integers $(n_1, m_1, n_2, m_2, \cdots)$ we associate a sequence F_i of functions of S so that

(9)
$$F_{0} = \text{identity},$$

$$F_{j} = f^{j-M_{k}} \circ F_{M_{k}}, \quad M_{k} < j \le N_{k+1}, \quad k = 0, 1, 2, \cdots,$$

$$F_{j} = g^{j-M_{k}} \circ F_{N_{k}}, \quad N_{k} < j \le M_{k}, \quad k = 1, 2, \cdots,$$

where $N_k = n_1 + m_1 + \dots + n_k$, $M_k = N_k + m_k$, $M_0 = 0$.

Lemma 1. There exist a complementary interval (a, b), $a, b \in G$, and a sequence of positive integers $n_1, m_1, n_2, m_2, \cdots$ so that F_j defined by (9) satisfies $F_i(a, b) \subset W, j = 1, 2, \cdots$, and $\{F_i(a), j = 1, 2, \cdots\}$ is dense in G.

Proof. Let $\mu = \operatorname{dist}(G, (-1, 1) \setminus W)$, $A = \{i \mid b_i - a_i \ge \mu\}$ and $B = \{a_i, b_i, i \in A\}$. The sets A and B are finite. By (7) we may identify $[a_1]$ with the integers **Z**, where $k \in \mathbf{Z}$ corresponds to the |k|-th return to I in the direction of X or -X according to the sign of k. Denote by $\overline{f}, \overline{g}, \overline{F_j}$ the functions induced by f, g, F_j in this identification. Then $\overline{f}(k) = k \pm 1$, $\overline{g}(k) = k \pm 1$ and $|\overline{f}(k) - \overline{g}(k)| = 2$. Hence there is a sequence of positive integers (n_1, m_1, \cdots) such that either $\overline{F_j}(0) = j$ or $\overline{F_j}(0) = -j$, $j = 1, 2, \cdots$, (according to the sign of $\overline{f}(0)$). It follows from (2) and the construction of F_j that there exists N such that $F_k(a_1) \notin B$ for $k \ge N$ and $F_N(a_1) = a_i$ or b_i for some $i \notin A$. Hence $(a_i, b_i) \subset W$, and it follows from (3) and the choice of N that $|F_j(a_i) - F_j(b_i) < \mu$ for all $j = 1, 2, \cdots$. Then setting $(a, b) = (a_i, b_i), F_j((a, b)) \subseteq W$ for all $j = 1, 2, \cdots$. The density of $\{F_j(a)\}$ follows from $\Omega = \bigcap_n \overline{j}[n, \infty) = \bigcap_n \overline{j}(-\infty, n]$, where $j: \mathbb{R} \to \gamma(i(a))$ is a diffeomorphism.

Using Lemma 1, the mean value theorem and estimates (5) and (6) we may find, adapting the reasonings of [5, p. 456], a positive $\nu < \mu$ so that $|F_j(x) - F_j(a)| < \mu$ for $|x - a| < \nu$, $j = 1, 2, \dots$, and $F'_j(x) \to 0$ uniformly for $|x - a| \le \nu$, $j \to \infty$, where a is the left endpoint of the interval of Lemma 1.

Select j such that

(11)
$$|F'_{j}(x)| \leq \frac{1}{2} \quad \text{if } |x-a| \leq \nu,$$
$$|F_{j}(a)-a| \leq \nu/2.$$

It follows that $F_j: [a - \nu, a + \nu] \rightarrow [a - \nu, a + \nu]$ has a *unique* fixed point p in $[a - \nu, a + \nu]$. Obtaining the fixed point by successive approximations starting at a we see that $p \in G$. This contradicts (8).

Remarks. (1) Each one of the alternatives of Theorem 1 for a minimal set Ω actually occurs for suitable *D*. For instance, (c) is obtained if *D* is such that to every point *p* of *M* there corresponds a pair of vectors of *D* which are linearly independent at *p*. On the other hand, if $M = \Omega = \overline{\gamma(m)}$ but dim $\gamma(m) = 1$, *M* must be homeomorphic to a torus T^2 , since in this case any two vectors of *D* are linearly dependent at every point of *M*, and *D* defines a line field without singularities (see next section).

(2) When D contains exactly one vector field, the functions f and g appearing in the proof of Theorem 1, satisfy $f = g^{-1}$, and the semigroup S is a group, so proofs become simpler (see [5]).

(3) It is clear that "smooth" may be replaced by C^2 everywhere. A well-known example of Denjoy [1], showed that the theorem is false in the C^1 case.

2. Line fields

A smooth line field with singularities Λ on a manifold M is a smooth one-dimensional distribution defined on an open subset V of M. The points of $M \setminus V$, where the distribution is not defined, are the singularities of Λ ; if V = M we say that Λ is without singularities. By Frobenius theorem, the maximal integral curves of Λ constitute a regular one-dimensional foliation of V. Thus we may consider an equivalence relation on M, whose equivalence classes are (i) the leaves of this foliation, and (ii) single points of $M \setminus V$. A subset of M is Λ -invariant if it is a union of equivalence classes. A Λ -minimal set is a closed nonempty invariant set which contains no such proper subset. Two line fields with singularities Λ_1 , Λ_2 defined on manifolds M_1 and M_2 respectively are equivalence relations induced by Λ_1 and Λ_2 . In particular, if Λ_1 and Λ_2 are equivalent, M_1 and M_2 are homeomorphic.

742

A line field induced on $T^2 = \mathbf{R}^2 / \mathbf{Z}^2$ by a straight line with irrational angular coefficient will be referred to as "irrational line field on T^2 ".

Theorem 2. Let M be a compact connected two-dimensional smooth manifold, and let Λ be a smooth line field with singularities on M. Then a Λ -minimal set Ω must be one of the following:

(a) a singularity of Λ ;

(b) a closed integral curve of Λ , homeomorphic to S^1 ;

(c) all of M. In this case Λ is equivalent to an irrational line field on T^2 .

Proof. Let V be the open subset of M where Λ is not singular, and consider a family of vector fields D which vanish on $M \setminus V$ such that to every point p of V, there are a neighborhood U of P and a vector field X of D which spans Λ over U. It follows that Ω is G_D -minimal so (a), (b) or (c) or Theorem 1 must hold. If (c) holds, Λ has no singularities. This implies (see for instance [3, p. 275]) that the Euler characteristic of M is zero, so M is homeomorphic to a torus T^2 or a Klein bottle K^2 . In the latter case, every regular one-dimensional foliation of M has a closed leaf (Kneser [2, p. 153]), so Ω cannot be all of M. Then M must be homeomorphic to T^2 . Consider a smooth closed curve Γ everywhere transversal to Λ , and consider a vector $X \neq 0$ on Γ which spans Λ over Γ . Let f(x) be the first return to Γ of the leaf through x in the direction of X. Suppose that for a certain $x \in \Gamma$ the arc of integral curve of Λ which joins x to f(x) enters Γ in the direction of -X. Then the same will happen for all $x \in \Gamma$ since the set of those points is open and closed in Γ . This implies that f reverses the orientation of Γ and has a fixed point, which is impossible. Thus the arcs leaving Γ in the direction of X, also enter Γ in the direction of X. This induces a coherent orientation on the leaves of Λ , and Λ may be spanned by a single vector field X_1 which extends X. The "first return to Γ " function induced by X_1 must have an irrational rotation number. Therefore Λ is equivalent to an irrational line field on T^2 [6, Chap. III].

Remark. Related results concerning line fields spanned by a single vector field were studied in [4, p. 210]. When the set V where Λ is regular is simply connected, Λ is spanned by a single vector field. However, this is not true in general, as simple examples show.

References

- [2] H. Kneser, Regulare Kurvenscharen auf den Ringflächen, Math. Ann. 91 (1924) 135-154.
- J. Little, On singularities of submanifolds of higher dimensional Euclidean spaces, Ann. Mat. Pura Appl. 83 (1969) 261-335.

A. Denjoy, Sur les courbes définies par des équations differentielles à la surface du tore, J. Math. Pures Appl. 11 (1932) 333-375.

JORGE HOUNIE

- [4] R. Sacksteder & A. Schwartz, Limit sets of foliations, Ann. Inst. Fourier (Grenoble) 15 (1965) 201-213.
- [5] A. Schwartz, A generalization of the Poincaré-Bendixon theorem to closed two-dimensional manifolds, Amer. J. Math. 85 (1963) 453-458.
- [6] S. Sternberg, Celestial mechanics, Part II, Benjamin, New York, 1969.
- H. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180 (1973) 171-188.

Universidade Federal de Pernambuco Recife, Brasil