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MINIMAL SETS OF FAMILIES OF VECTOR
FIELDS ON COMPACT SURFACES

JORGE HOUNIE

1. Introduction

Let M be a compact connected smooth manifold of dimension two, and
consider a subgroup G of the group of diffeomorphisms of M. A set Ω C M is
G-invariant if gΩ C Ω for all g in G. A set is said to be G-minimal if it is closed
(/-invariant nonempty, and contains no such proper subset. Let D be a set of
smooth vector fields on Λf, and consider the group GD generated by the
one-parameter group whose infinitesimal generators are the elements of D.
When D contains exactly one vector field, a well-known theorem of Schwartz
[5] shows that a G^-minimal set is either a point, a homeomorph of S1 or all of
M (in the last case M must be homeomorphic to a torus T2). The purpose of
this paper is to extend this result to arbitrary families of vector fields.

Theorem 1. Let M be a compact connected two-dimensional smooth manifold.

Let D be a set of smooth vector fields on M, and consider a GD-minimal set

Ω C M. Then Ω must be one of the following:

(a) a point which is a common zero of the vector fields of D;

(b) a GD-orbit homeomorphic to Sι;

(c)allofM.

Proof. Let m G Ω, and denote by y(m) the G^-orbit of m, i.e., the set of
points of the form g(m), g E GD. By a theorem of Sussmann [7], γ(m) is a
smooth connected paracompact submanifold of M (with a natural differentia-
ble structure) of dimension k, 0 < k < 2. All vector fields in D are tangent to
γ(m). If k — 0, y(m) is a point and we have (a). If k = 2, y(m) is open in M.
Then γ(m)\γ(m) is a closed invariant proper subset of Ω, so y(m) = y(m) —
Ω = M. This gives (c). If k — 1, y(m) is homeomorphic to Sι or R. In the first
case we get (b). Assume that γ(m) is homeomorphic to R, and consider
γ(m) = Ω. If the interior of Ω is nonempty, we conclude as before that Ω = M.
The theorem will be proved if we show that Ω cannot be nowhere dense when
γ(m) is homeomorphic to R. Let us reason by contradiction, and assume that
Ω is nowhere dense.
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Consider a vector field X which belong to D and does not vanish at m, and

consider an imbedding i: [-1,1] -> M such that

(a) A'is transversal to i((-l, 1)) = /,

(b) /(-I) and /(I) are not in Ω,

(c) /(O) = m.

Given a point/? in / Π Ω, γ(/?) is homeomorphic to R. In fact, we may choose

a diffeomorphism j: R -> γ(/?) so that j(0) = p, j'(0) = λX(p), λ > 0. Since

Ππy[n,oo) is closed, invariant and nonempty, and is thus equal to Ω, it

follows that there is a least positive sQ such thaty(^0) G /: "the first return to /

of the G^-orbit through p in the direction of X". It is easy to see that the

vector/(J), 0 < s < sθ9 can be extended to a vector field Y in Λf, which is a

finite linear combination with smooth coefficients of vector fields of D, that is,

Y belongs to the C°°(M)-module D' generated by D. So in a neighborhood of

p in /, the first return to / of the GD-orbit of a point in Ω Π / is also the first

return to / through the orbit of Y. Since Ω Π / is compact and nowhere dense

in /, we may cover Ω Π / with a finite number of disjoint open subsets of /, so

that in each one of them the "first return" is performed through the orbit of a

vector field of D'. Thus the "first return function" can be extended to a

smooth function / in a neighborhood of Ω Π / in /. The latter induces a

smooth function / = Γιfi9 in a neighborhood V of i~\ίl Π /) = G, f:V ->

(-1,1).

In the same way, we obtain a smooth function g: V -* (-1,1) induced by

" the first return to / of the GD-oribt of p in the direction of -X". Letting Wbe

open in (-1,1) such that G C W C W C V, we summarize the properties of/

andg:

(1) G - (-1,1) \ U« Xfl,, 6,.), G is perfect,

(2) Jϊ = {ai9 bi9 i - 1,2, },/(#) c # , g ( ί θ C if,

(3) (ai9 bt) C W implies/((β,, 6,.)) = (fly, 6,), gi(flf., 6,-)) = (flΛ, bk) for some

( 4 ) / ( G ) C G , g ( G ) C G .

(5) 0 < L <\f'(w)\< F,0<L <\g'(w)\< F9foτ3LllwEW,0<L<\<

F9

(6) |/"(w) I < M, I g"(w) I < M, for all w £ ^ .

Consider the semigroup S generated by/and g, i.e., the functions h: G -> G

of the form A ^ f ' o g ^ o . . . o /Λ> o gw>, «., W / G Z + , where / n indicates

composition n-times. We shall denote the S-orbit of x by [x], x G G. Then

(7) i[x] = γ(/(x)) Γ)Q,xGG9

(8) If h G S, β G G and Λ(α) = α, there is a neighborhood U oί a such that

= 6 for all binUΠG.
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The last property is proved by observing that locally/and g are induced by the

first return functions of certain vector fields Yj9 transversal to /. Therefore h

induces a piecewise differentiable path a made up to arcs of integral curves of

the Y/s. Since h(a) = a and a C y(i(a)), each arc is traversed the same

number of times in each direction. If b E G is sufficiently close to α, the path β

induced by h starting at ι(ft) will follow the arcs of integral curves of the same

Yj's used by a and in the same order. In particular, each arc will be traversed

the same number of times in each direction. This implies that h(b) — b. Note

that U Π G does not reduce to a point since G is perfect.

To prove the theorem we need only show that properties (1) to (8) lead to a

contradiction.

To each sequence of positive integers (nl9ml9n29m29 --) we associate a

sequence Fj of functions of S so that

Fo = identity,

(9) Fj=fJ-Mk°F»it, Mk<j<Nk+ι, * = 0, l ,2, . ,

Fj = gJ-M"oFNk, Nk<j<Mk, * = 1 , 2 , ,

where Nk = «, + m, + ••• +nk, Mk = Nk + mk, Mo = 0.

Lemma 1. There exist a complementary interval (α, b), a, b E G, and a

sequence of positive integers nl9ml9n29m29- -- so that Fj defined by (9) satisfies

Fj(a9 b) C WJ = 1,2, , and {Fj(a)9 j = 1,2, } is dense in G.

Proof Let μ = dist(G, (-1,1) \W)9A = {*' I bt - at > μ} and B = {ai9 bi9 i

E A}. The sets A and B are finite. By (7) we may identify [ax] with the integers

Z, where k E Z corresponds to the | k \ -th return to / in the direction of X or

-X according to the sign of k. Denote by/, g, Fj the functions induced by/, g,

Fj in this identification. Then f(k) = k ± 1, g(k) = k ± 1 and |/(Λ) - g(fc)|

= 2. Hence there is a sequence of positive integers (nλ9 mλ9 ) such that

either fj(O) =y or ^(0) = -j\ j = 1,2, , (according to the sign of /(0)). It

follows from (2) and the construction of Fj that there exists N such that

Fk(ax) &B ίoτ k> N and FN(ax) = α̂  or 6, for some / ί A. Hence (α,, fez) C

W9 and it follows from (3) and the choice of N that | F^a^ - ίj(ftf.) < μ for all

j = 1,2, . Then setting (α, 6) = (α,, ̂ ) , iy((a, ft)) C ^ for ally = 1,2,

The density of {Fj(a)} follows from Ω = Γ\/[«, oo) = ίΊwy(-oo, Λ], where

/: R -> γ(/(β)) is a diffeomoφhism.

Using Lemma 1, the mean value theorem and estimates (5) and (6) we may

find, adapting the reasonings of [5, p. 456], a positive v < μ so that | Fj(x) —

Fj(a)\<μ for | JC - a\< vj - 1,2, , and Fj(x) -» 0 uniformly for \x — a\

^pj ^ oo, where a is the left endpoint of the interval of Lemma 1.
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Select y such that

1 } \Fj{a)-a\<v/2.

It follows that Fy. [a — v, a + v] -» [a — v, a 4- v] has a unique fixed point/? in
[a — v,a + v]. Obtaining the fixed point by successive approximations starting
at a we see that/? E G. This contradicts (8).

Remarks. (1) Each one of the alternatives of Theorem 1 for a minimal set Ω
actually occurs for suitable D. For instance, (c) is obtained if D is such that to
every point p of M there corresponds a pair of vectors of D which are linearly
independent at/?. On the other hand, if M — Ω = γ(m) but dimγ(m) = 1, M
must be homeomorphic to a torus Γ2, since in this case any two vectors of D
are linearly dependent at every point of Λf, and D defines a line field without
singularities (see next section).

(2) When D contains exactly one vector field, the functions / and g
appearing in the proof of Theorem 1, satisfy/ = g"1, and the semigroup S is a
group, so proofs become simpler (see [5]).

(3) It is clear that "smooth" may be replaced by C2 everywhere. A
well-known example of Denjoy [1], showed that the theorem is false in the C1

case.

2. Line fields

A smooth line field with singularities Λ on a manifold M is a smooth
one-dimensional distribution defined on an open subset V of M. The points of
Aί\V9 where the distribution is not defined, are the singularities of Λ; if
V = M we say that Λ is without singularities. By Frobenius theorem, the
maximal integral curves of Λ constitute a regular one-dimensional foliation of
V. Thus we may consider an equivalence relation on M, whose equivalence
classes are (i) the leaves of this foliation, and (ϋ) single points of M \ V. A
subset of M is Λ-invariant if it is a union of equivalence classes. A Λ-minimal
set is a closed nonempty invariant set which contains no such proper subset.
Two line fields with singularities Λl5 Λ2 defined on manifolds Mι and M2

respectively are equivalent if there exists a homeomorphism of Mλ onto M2

which preserve the equivalence relations induced by Ax and Λ2. In particular,
if Λ! and Λ2 are equivalent, Mλ and M2 are homeomorphic.
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A line field induced on Γ 2 = R 2/Z 2 by a straight line with irrational
angular coefficient will be referred to as "irrational line field on T2 ".

Theorem 2. Let M be a compact connected two-dimensional smooth manifold,

and let A be a smooth line field with singularities on M. Then a A-minimal set Ω

must be one of the following:

(a) a singularity of A\

(b) a closed integral curve of A, homeomorphic to Sι;

(c) all of M. In this case A is equivalent to an irrational line field on T2.

Proof. Let V be the open subset of M where Λ is not singular, and consider
a family of vector fields D which vanish onM\V such that to every point p of
Vy there are a neighborhood U of P and a vector field X of D which spans Λ
over U. It follows that Ω is G^-minimal so (a), (b) or (c) or Theorem 1 must
hold. If (c) holds, Λ has no singularities. This implies (see for instance [3, p.
275]) that the Euler characteristic of M is zero, so M is homeomorphic to a
torus T2 or a Klein bottle K2. In the latter case, every regular one-dimensional
foliation of M has a closed leaf (Kneser [2, p. 153]), so Ω cannot be all of M.
Then M must be homeomorphic to T2. Consider a smooth closed curve Γ
everywhere transversal to Λ, and consider a vector X Φ 0 on Γ which spans Λ
over Γ. Let/(x) be the first return to Γ of the leaf through x in the direction of
X. Suppose that for a certain x G Γ the arc of integral curve of Λ which joins x
to f(x) enters Γ in the direction of -X. Then the same will happen for all
x E Γ since the set of those points is open and closed in Γ. This implies that /
reverses the orientation of Γ and has a fixed point, which is impossible. Thus
the arcs leaving Γ in the direction of X, also enter Γ in the direction of X. This
induces a coherent orientation on the leaves of Λ, and Λ may be spanned by a
single vector field Xx which extends X. The "first return to Γ" function
induced by Xλ must have an irrational rotation number. Therefore Λ is
equivalent to an irrational line field on T2 [6, Chap. III].

Remark. Related results concerning line fields spanned by a single vector
field were studied in [4, p. 210]. When the set V where Λ is regular is simply
connected, Λ is spanned by a single vector field. However, this is not true in
general, as simple examples show.
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