MINIMAL SETS OF FAMILIES OF VECTOR FIELDS ON COMPACT SURFACES

JORGE HOUNIE

1. Introduction

Let M be a compact connected smooth manifold of dimension two, and consider a subgroup G of the group of diffeomorphisms of M. A set $\Omega \subset M$ is G-invariant if $g \Omega \subset \Omega$ for all g in G. A set is said to be G-minimal if it is closed G-invariant nonempty, and contains no such proper subset. Let D be a set of smooth vector fields on M, and consider the group G_{D} generated by the one-parameter group whose infinitesimal generators are the elements of D. When D contains exactly one vector field, a well-known theorem of Schwartz [5] shows that a G_{D}-minimal set is either a point, a homeomorph of S^{1} or all of M (in the last case M must be homeomorphic to a torus T^{2}). The purpose of this paper is to extend this result to arbitrary families of vector fields.

Theorem 1. Let M be a compact connected two-dimensional smooth manifold. Let D be a set of smooth vector fields on M, and consider a G_{D}-minimal set $\Omega \subset M$. Then Ω must be one of the following:
(a) a point which is a common zero of the vector fields of D;
(b) a $G_{D^{-}}$orbit homeomorphic to S^{1};
(c) all of M.

Proof. Let $m \in \Omega$, and denote by $\gamma(m)$ the G_{D}-orbit of m, i.e., the set of points of the form $g(m), g \in G_{D}$. By a theorem of Sussmann [7], $\gamma(m)$ is a smooth connected paracompact submanifold of M (with a natural differentiable structure) of dimension $k, 0 \leqslant k \leqslant 2$. All vector fields in D are tangent to $\gamma(m)$. If $k=0, \gamma(m)$ is a point and we have (a). If $k=2, \gamma(m)$ is open in M. Then $\overline{\gamma(m)} \backslash \gamma(m)$ is a closed invariant proper subset of Ω, so $\overline{\gamma(m)}=\gamma(m)=$ $\Omega=M$. This gives (c). If $k=1, \gamma(m)$ is homeomorphic to S^{1} or \mathbf{R}. In the first case we get (b). Assume that $\gamma(m)$ is homeomorphic to \mathbf{R}, and consider $\overline{\gamma(m)}=\Omega$. If the interior of Ω is nonempty, we conclude as before that $\Omega=M$. The theorem will be proved if we show that Ω cannot be nowhere dense when $\gamma(m)$ is homeomorphic to \mathbf{R}. Let us reason by contradiction, and assume that Ω is nowhere dense.

[^0]Consider a vector field X which belong to D and does not vanish at m, and consider an imbedding $i:[-1,1] \rightarrow M$ such that
(a) X is transversal to $i((-1,1))=I$,
(b) $i(-1)$ and $i(1)$ are not in Ω,
(c) $i(0)=m$.

Given a point p in $I \cap \Omega, \gamma(p)$ is homeomorphic to \mathbf{R}. In fact, we may choose a diffeomorphism $j: \mathbf{R} \rightarrow \gamma(p)$ so that $j(0)=p, j^{\prime}(0)=\lambda X(p), \lambda>0$. Since $\cap_{n} \overline{j[n, \infty)}$ is closed, invariant and nonempty, and is thus equal to Ω, it follows that there is a least positive s_{0} such that $j\left(s_{0}\right) \in I$: "the first return to I of the G_{D}-orbit through p in the direction of X ". It is easy to see that the vector $j^{\prime}(s), 0 \leqslant s \leqslant s_{0}$, can be extended to a vector field Y in M, which is a finite linear combination with smooth coefficients of vector fields of D, that is, Y belongs to the $C^{\infty}(M)$-module D^{\prime} generated by D. So in a neighborhood of p in I, the first return to I of the G_{D}-orbit of a point in $\Omega \cap I$ is also the first return to I through the orbit of Y. Since $\Omega \cap I$ is compact and nowhere dense in I, we may cover $\Omega \cap I$ with a finite number of disjoint open subsets of I, so that in each one of them the "first return" is performed through the orbit of a vector field of D^{\prime}. Thus the "first return function" can be extended to a smooth function \tilde{f} in a neighborhood of $\Omega \cap I$ in I. The latter induces a smooth function $f=i^{-1} \tilde{f}$, in a neighborhood V of $i^{-1}(\Omega \cap I)=G, f: V \rightarrow$ $(-1,1)$.

In the same way, we obtain a smooth function $g: V \rightarrow(-1,1)$ induced by "the first return to I of the G_{D}-oribt of p in the direction of $-X$ ". Letting W be open in $(-1,1)$ such that $G \subset W \subset \bar{W} \subseteq V$, we summarize the properties of f and g :
(1) $G=(-1,1) \backslash \cup_{i=1}^{\infty}\left(a_{i}, b_{i}\right), G$ is perfect,
(2) $H=\left\{a_{i}, b_{i}, i=1,2, \cdots\right\}, f(H) \subseteq H, g(H) \subseteq H$,
(3) $\left(a_{i}, b_{i}\right) \subset W$ implies $f\left(\left(a_{i}, b_{i}\right)\right)=\left(a_{j}, b_{j}\right), g\left(\left(a_{i}, b_{i}\right)\right)=\left(a_{k}, b_{k}\right)$ for some j, k,
(4) $f(G) \subset G, g(G) \subset G$.
(5) $0<L \leqslant\left|f^{\prime}(w)\right| \leqslant F, 0<L \leqslant\left|g^{\prime}(w)\right| \leqslant F$, for all $w \in W, 0<L<1<$ F,
(6) $\left|f^{\prime \prime}(w)\right| \leqslant M,\left|g^{\prime \prime}(w)\right| \leqslant M$, for all $w \in W$.

Consider the semigroup S generated by f and g, i.e., the functions $h: G \rightarrow G$ of the form $h=f^{n_{1}} \circ g^{m_{1}} \circ \cdots \circ f^{n_{j}} \circ g^{m_{j}}, n_{i}, m_{i} \in \mathbf{Z}^{+}$, where f^{n} indicates composition n-times. We shall denote the S-orbit of x by $[x], x \in G$. Then
(7) $i[x]=\gamma(i(x)) \cap \Omega, x \in G$,
(8) If $h \in S, a \in G$ and $h(a)=a$, there is a neighborhood U of a such that $h(b)=b$ for all b in $U \cap G$.

The last property is proved by observing that locally f and g are induced by the first return functions of certain vector fields Y_{j}, transversal to I. Therefore h induces a piecewise differentiable path α made up to arcs of integral curves of the Y_{j}^{\prime} 's. Since $h(a)=a$ and $\alpha \subseteq \gamma(i(a))$, each arc is traversed the same number of times in each direction. If $b \in G$ is sufficiently close to a, the path β induced by h starting at $i(b)$ will follow the arcs of integral curves of the same Y_{j} 's used by α and in the same order. In particular, each arc will be traversed the same number of times in each direction. This implies that $h(b)=b$. Note that $U \cap G$ does not reduce to a point since G is perfect.

To prove the theorem we need only show that properties (1) to (8) lead to a contradiction.

To each sequence of positive integers $\left(n_{1}, m_{1}, n_{2}, m_{2}, \cdots\right)$ we associate a sequence F_{j} of functions of S so that

$$
\begin{align*}
& F_{0}=\text { identity }, \\
& F_{j}=f^{j-M_{k}} \circ F_{M_{k}}, \quad M_{k}<j \leqslant N_{k+1}, \quad k=0,1,2, \cdots, \tag{9}\\
& F_{j}=g^{j-M_{k} \circ F_{N_{k}}, \quad N_{k}<j \leqslant M_{k}, \quad k=1,2, \cdots,}
\end{align*}
$$

where $N_{k}=n_{1}+m_{1}+\cdots+n_{k}, M_{k}=N_{k}+m_{k}, M_{0}=0$.
Lemma 1. There exist a complementary interval $(a, b), a, b \in G$, and a sequence of positive integers $n_{1}, m_{1}, n_{2}, m_{2}, \cdots$ so that F_{j} defined by (9) satisfies $F_{j}(a, b) \subset W, j=1,2, \cdots$, and $\left\{F_{j}(a), j=1,2, \cdots\right\}$ is dense in G.

Proof. Let $\mu=\operatorname{dist}(G,(-1,1) \backslash W), A=\left\{i \mid b_{i}-a_{i} \geqslant \mu\right\}$ and $B=\left\{a_{i}, b_{i}, i\right.$ $\in A\}$. The sets A and B are finite. By (7) we may identify $\left[a_{1}\right]$ with the integers \mathbf{Z}, where $k \in \mathbf{Z}$ corresponds to the $|k|$-th return to I in the direction of X or $-X$ according to the sign of k. Denote by $\bar{f}, \bar{g}, \bar{F}_{j}$ the functions induced by f, g, F_{j} in this identification. Then $\bar{f}(k)=k \pm 1, \bar{g}(k)=k \pm 1$ and $|\bar{f}(k)-\bar{g}(k)|$ $=2$. Hence there is a sequence of positive integers (n_{1}, m_{1}, \cdots) such that either $\bar{F}_{j}(0)=j$ or $\bar{F}_{j}(0)=-j, j=1,2, \cdots$, (according to the sign of $\left.\bar{f}(0)\right)$. It follows from (2) and the construction of F_{j} that there exists N such that $F_{k}\left(a_{1}\right) \notin B$ for $k \geqslant N$ and $F_{N}\left(a_{1}\right)=a_{i}$ or b_{i} for some $i \notin A$. Hence $\left(a_{i}, b_{i}\right) \subset$ W, and it follows from (3) and the choice of N that $\mid F_{j}\left(a_{i}\right)-F_{j}\left(b_{i}\right)<\mu$ for all $j=1,2, \cdots$. Then setting $(a, b)=\left(a_{i}, b_{i}\right), F_{j}((a, b)) \subseteq W$ for all $j=1,2, \cdots$. The density of $\left\{F_{j}(a)\right\}$ follows from $\Omega=\cap_{n} \overline{j[n, \infty)}=\cap_{n} \overline{j(-\infty, n]}$, where $j: \mathbf{R} \rightarrow \gamma(i(a))$ is a diffeomorphism.

Using Lemma 1, the mean value theorem and estimates (5) and (6) we may find, adapting the reasonings of [5, p. 456], a positive $\nu<\mu$ so that $\mid F_{j}(x)-$ $F_{j}(a) \mid<\mu$ for $|x-a|<\nu, j=1,2, \cdots$, and $F_{j}^{\prime}(x) \rightarrow 0$ uniformly for $|x-a|$ $\leqslant \nu, j \rightarrow \infty$, where a is the left endpoint of the interval of Lemma 1.

Select j such that

$$
\begin{align*}
& \left|F_{j}^{\prime}(x)\right| \leqslant \frac{1}{2} \quad \text { if }|x-a| \leqslant \nu, \\
& \left|F_{j}(a)-a\right| \leqslant \nu / 2 \tag{11}
\end{align*}
$$

It follows that $F_{j}:[a-\nu, a+\nu] \rightarrow[a-\nu, a+\nu]$ has a unique fixed point p in [$a-\nu, a+\nu$]. Obtaining the fixed point by successive approximations starting at a we see that $p \in G$. This contradicts (8).

Remarks. (1) Each one of the alternatives of Theorem 1 for a minimal set Ω actually occurs for suitable D. For instance, (c) is obtained if D is such that to every point p of M there corresponds a pair of vectors of D which are linearly independent at p. On the other hand, if $M=\Omega=\overline{\gamma(m)}$ but $\operatorname{dim} \gamma(m)=1, M$ must be homeomorphic to a torus T^{2}, since in this case any two vectors of D are linearly dependent at every point of M, and D defines a line field without singularities (see next section).
(2) When D contains exactly one vector field, the functions f and g appearing in the proof of Theorem 1, satisfy $f=g^{-1}$, and the semigroup S is a group, so proofs become simpler (see [5]).
(3) It is clear that "smooth" may be replaced by C^{2} everywhere. A well-known example of Denjoy [1], showed that the theorem is false in the C^{1} case.

2. Line fields

A smooth line field with singularities Λ on a manifold M is a smooth one-dimensional distribution defined on an open subset V of M. The points of $M \backslash V$, where the distribution is not defined, are the singularities of Λ; if $V=M$ we say that Λ is without singularities. By Frobenius theorem, the maximal integral curves of Λ constitute a regular one-dimensional foliation of V. Thus we may consider an equivalence relation on M, whose equivalence classes are (i) the leaves of this foliation, and (ii) single points of $M \backslash V$. A subset of M is Λ-invariant if it is a union of equivalence classes. A Λ-minimal set is a closed nonempty invariant set which contains no such proper subset. Two line fields with singularities Λ_{1}, Λ_{2} defined on manifolds M_{1} and M_{2} respectively are equivalent if there exists a homeomorphism of M_{1} onto M_{2} which preserve the equivalence relations induced by Λ_{1} and Λ_{2}. In particular, if Λ_{1} and Λ_{2} are equivalent, M_{1} and M_{2} are homeomorphic.

A line field induced on $T^{2}=\mathbf{R}^{2} / \mathbf{Z}^{2}$ by a straight line with irrational angular coefficient will be referred to as "irrational line field on T^{2} ".

Theorem 2. Let M be a compact connected two-dimensional smooth manifold, and let Λ be a smooth line field with singularities on M. Then a Λ-minimal set Ω must be one of the following:
(a) a singularity of Λ;
(b) a closed integral curve of Λ, homeomorphic to S^{1};
(c) all of M. In this case Λ is equivalent to an irrational line field on T^{2}.

Proof. Let V be the open subset of M where Λ is not singular, and consider a family of vector fields D which vanish on $M \backslash V$ such that to every point p of V, there are a neighborhood U of P and a vector field X of D which spans Λ over U. It follows that Ω is G_{D}-minimal so (a), (b) or (c) or Theorem 1 must hold. If (c) holds, Λ has no singularities. This implies (see for instance [3, p. 275]) that the Euler characteristic of M is zero, so M is homeomorphic to a torus T^{2} or a Klein bottle K^{2}. In the latter case, every regular one-dimensional foliation of M has a closed leaf (Kneser [2, p. 153]), so Ω cannot be all of M. Then M must be homeomorphic to T^{2}. Consider a smooth closed curve Γ everywhere transversal to Λ, and consider a vector $X \neq 0$ on Γ which spans Λ over Γ. Let $f(x)$ be the first return to Γ of the leaf through x in the direction of X. Suppose that for a certain $x \in \Gamma$ the arc of integral curve of Λ which joins x to $f(x)$ enters Γ in the direction of $-X$. Then the same will happen for all $x \in \Gamma$ since the set of those points is open and closed in Γ. This implies that f reverses the orientation of Γ and has a fixed point, which is impossible. Thus the arcs leaving Γ in the direction of X, also enter Γ in the direction of X. This induces a coherent orientation on the leaves of Λ, and Λ may be spanned by a single vector field X_{1} which extends X. The "first return to Γ " function induced by X_{1} must have an irrational rotation number. Therefore Λ is equivalent to an irrational line field on T^{2} [6, Chap. III].

Remark. Related results concerning line fields spanned by a single vector field were studied in [4, p. 210]. When the set V where Λ is regular is simply connected, Λ is spanned by a single vector field. However, this is not true in general, as simple examples show.

References

[1] A. Denjoy, Sur les courbes définies par des équations differentielles à la surface du tore, J. Math. Pures Appl. 11 (1932) 333-375.
[2] H. Kneser, Regulare Kurvenscharen auf den Ringflächen, Math. Ann. 91 (1924) 135-154.
[3] J. Little, On singularities of submanifolds of higher dimensional Euclidean spaces, Ann. Mat. Pura Appl. 83 (1969) 261-335.
[4] R. Sacksteder \& A. Schwartz, Limit sets of foliations, Ann. Inst. Fourier (Grenoble) 15 (1965) 201-213.
[5] A. Schwartz, A generalization of the Poincaré-Bendixon theorem to closed two-dimensional manifolds, Amer. J. Math. 85 (1963) 453-458.
[6] S. Sternberg, Celestial mechanics, Part II, Benjamin, New York, 1969.
[7] H. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180 (1973) 171-188.

Universidade Federal de Pernambuco Recife, Brasil

[^0]: Communicated by R. Bott, April 10, 1981. The author was partially supported by $\mathrm{CNP}_{\mathrm{q}}$, Brazil.

